
Point and interval estimation of the population size
using the truncated Poisson regression model

Peter GM van der Heijden1, Rami Bustami1, Maarten JLF Cruyff1,
Godfried Engbersen2 and Hans C van Houwelingen3

1Department of Methodology and Statistics, Utrecht University, Utrecht, The Netherlands
2Faculty of Social Sciences, Erasmus University Rotterdam, Rotterdam, The Netherlands
3Department of Medical Statistics, Leiden University Medical Center, Leiden,
The Netherlands

Abstract: A method is presented to derive point and interval estimates of the total number of individuals in
a heterogenous Poisson population. The method is based on the Horvitz–Thompson approach. The zero-
truncated Poisson regression model is �tted and results are used to obtain point and interval estimates for
the total number of individuals in the population. The method is assessed by performing a simulation
experiment computing coverage probabilities of Horvitz–Thompson con�dence intervals for cases with
different sample sizes and Poisson parameters. We illustrate our method using capture–recapture data
from the police registration system providing information on illegal immigrants in four large cities in the
Netherlands.

Key words: capture–recapture; Horvitz–Thompson con�dence interval; parametric bootstrap; population
size estimation; truncated Poisson regression model

Data and Programs available from: http://stat.uibk.ac.at/SMIJ
Received September 2001; revised January 2003, May 2003; accepted May 2003

1 Introduction

Registration �les can be used to generate a list of individuals from some population. If
each time that an observation of a population member occurs is registered but, for one
reason or another, some population members are not observed at all, the list will be
incomplete and will show only part of the population. In this paper a method is
presented to estimate the size of a population and its characteristics in terms of a
number of covariates, from incomplete registration lists.

As an example we discuss the estimation of the number of illegal immigrants in The
Netherlands from police records. These records contain information on the number of
times each illegal immigrant was apprehended by the police and they are incomplete
because the illegal immigrants who were never apprehended do not appear in them.
Two other examples from the �eld of criminology that our method was applied to are
the estimation of the size of the population of drunken drivers and illegal gun owners in
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The Netherlands based on police records on the number of apprehended individuals
(Van der Heijden et al., 2003). One could also think of noncriminal applications, such
as the estimation of the number of individuals with a certain illness from a registration
of doctor visits, the number of researchers working in a particular research area from a
registration of published papers, the number of research groups working in a particular
area from a registration of patents, or the number of potential clients in a hotel chain
from a registration of visits of clients. All these applications have in common that, due
to the nature of the registration data, a zero count cannot be observed and the data are
truncated.

For the estimation of the number of illegal immigrants in The Netherlands (Van der
Heijden et al., unpublished manuscript, 1997), police records are available for 1995, for
four cities in The Netherlands: Amsterdam, Rotterdam, The Hague and Utrecht. The
records are used to derive count data on how often each illegal immigrant is
apprehended by the police.

These count data can be considered as a special form of capture–recapture data. In
traditional methods it is assumed that the count of every individual is generated by the
same Poisson distribution. Let yi be the number of times individual i(i ˆ 1, . . . , Nobs) is
apprehended (yi ˆ 0, 1, . . . ). Then the number of times he=she is apprehended follows a
Poisson distribution

P(yijl) ˆ exp(¡l)lyi

yi!
(1:1)

which is determined by the Poisson parameter l(l > 0). Since we are using registration
data, we do not know the number of individuals who are apprehended zero times,
f0 , but we can estimate their number from the observed frequencies fk(k > 0) by
assuming that fk is generated by a truncated Poisson distribution. Once an estimate
f̂f0 is obtained, we are able estimate the size of the population N̂N by adding f̂f0 to the
number of apprehended illegal immigrants.

In this paper we adopt a more general approach. We use the truncated Poisson
regression model (see, for example, Cameron and Trivedi, 1998; Gurmu, 1991;
Long, 1997; Winkelmann, 1997), in which the logarithm of the Poisson parameter l
is a linear function of a number of characteristics (covariates) known for an observed
individual. The regression model allows individuals with different characteristics to
have different Poisson parameters. In the statistical literature, this is referred to as
observed heterogeneity, where the term ‘observed’ indicates that the Poisson parameter
of an individual is not in�uenced by unobserved variables. Here, for each observed
individual i, f̂f0i is estimated from his estimated Poisson parameter l̂li and added up to
obtain f̂f0 ˆ

P
i f̂f0 , i ˆ 1, . . . , Nobs.

The following assumptions are involved in estimating the population size. The �rst
assumption is that the count of an individual is generated by a Poisson distribution.
This assumption can be better understood by studying the genesis of the Poisson
distribution (see Johnson et al., 1993, for an overview). We present here a few elements.
(i) The Poisson distribution with parameter l is generated as the limit of a binomial
distribution with success probability p and N realizations, where N tends to in�nity and
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p tends to zero, while Np remains �nite and equal to l. However, even for small N and
small p the approximation of the Poisson distribution to the binomial distribution is
already quite good, for example the Poisson distribution with l ˆ 0.1 approximates the
binomial distributions with the N ˆ 3 and p ˆ 0.033 or for N ˆ 10 and p ˆ 0.01 quite
closely. (ii) Johnson et al. (1993, referring to Charlier, 1905) note that the probability of
success does not have to be constant for the Poisson limit to hold. (iii) A related result
is that if X1 is a realization of a Poisson distribution with Poisson parameter l1 , and X2
is a realization of a Poisson distribution with Poisson parameter l2 , then X1 ‡ X2 is a
realization of a Poisson distribution with Poisson parameter l1 ‡ l2 . These three
elements show that a Poisson distribution for an individual can be generated under a
rather broad set of circumstances. Elements (ii) and (iii) show us that the probability of
apprehension does not have to be constant over time. However, it should be noted that
if the probability of (new) apprehension increases or decreases due to an apprehension
or a nonapprehension, the independence structure of the binomial distribution is
violated, and consequently so is that of the Poisson distribution. So, for example, if
an illegal immigrant changes his behaviour following an apprehension and if as a result
of that his probability to be apprehended decreases, the assumption of the Poisson
distribution is violated. An extreme instance of such a violation is that the illegal
immigrant is apprehended and forced to leave the country.

The second assumption in our approach to estimate the size of the population is that
the Poisson parameters are linearly related to a set of observed covariates. This
presupposes that one is able to measure the relevant covariates, and this is not
necessarily the case. If there are any relevant covariates that are unobserved, the
assumption is violated. However, this kind of violation can become evident as a result of
analysing the data: in the Poisson regression model, the conditional variance is equal to
the conditional mean, but relevant unobserved covariates result in overdispersion, that
is, the situation that the conditional variance is larger than the mean. We return to this
later.

For the example of the illegal immigrants the �rst assumption is severely violated if,
once apprehended, they are forced to leave the country. If they are expelled effectively,
they have a low probability to return and be apprehended again. However, in The
Netherlands, illegal immigrants who are apprehended by the police often cannot
be effectively expelled because either they refuse to mention their nationality, or their
home country does not cooperate in receiving them back. In these cases the police
requests them to leave the country, but it is unlikely that they will abide by this request.

In the 1995 police records of the abovementioned four large cities it was registered
whether the apprehended illegal immigrant was effectively expelled or not. In the data
that was available to us an illegal immigrant was coded as ‘effectively expelled’ when he
was transported back to his home country by airplane, by boat or by car. An illegal
immigrant was coded as ‘ineffectively expelled’ if his �le reported he was ‘sent away’,
‘set out in a southern direction’ (being left at the border of Belgium, where they can
re-enter The Netherlands immediately), ‘left with destination unknown,’ ‘we cannot
solve this problem,’ or ‘transported by car into the direction of the border.’ Lastly, an
illegal immigrant was coded as ‘other’ when he was brought to a centre for asylum
seekers or a psychiatric hospital. For more details, see van der Leun et al. (1998). In total
4392 illegal immigrants were �led, 1880 of whom could not be effectively expelled,
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2036 were effectively expelled, and for 476 illegal immigrants the reason was ‘other’
or missing in his �le. The apprehension data are given in Table 1. Note that,
although ‘effectively expelled’ illegal immigrants have a much lower frequency of
re-apprehension, re-apprehension is still possible when these illegal immigrants re-
enter The Netherlands after having been transported back to their home country.

For our analysis, we will consider illegal immigrants who were not effectively
expelled (further abbreviated as IINEE), as for those the two assumptions discussed
above are not a priori unrealistic. The following covariates were available to us: age,
gender, country and reason for being apprehended. To give some insight in the data, we
present the apprehension frequencies for each of the levels of the covariates in Table 2.

The zero-truncated Poisson regression model provides an estimator for f0 , the
number of IINEE that were not apprehended by the police, and, by adding the IINEE
that were actually apprehended, their total number in the population. The relevance of
these estimators increases if their con�dence interval is known. For simple truncated
Poisson regression models (with categorical covariates), such con�dence intervals have
already been derived for subpopulations obtained by subdividing the data according to
all categorical covariate combinations (see Zelterman, 2002).

In this paper we extend this work in a number of ways: by (1) proposing overall
con�dence intervals for the population size, (2) estimating those intervals by �tting the
truncated Poisson regression model with covariates that can be both categorical as well
as continuous, (3) using more parsimonious models so that we are not forced to
incorporate all categorical covariate combinations, but can restrict our models to
include, for example, main effects only, (4) studying characteristics of the whole
population as well as of subpopulations (e.g., the probability that members of
subpopulations are apprehended), and (5) assessing model �t. Extensions (1) to (3)
are not trivial problems since we not only have to take into account individual sample
�uctuations, but also the probability of an individual to be observed or not. The method
that we use to solve this problem is based on the Horvitz–Thompson estimator (Kendall
and Stuart, 1991, p. 173).

In section 2 we review traditional capture–recapture methods employing the homo-
geneous Poisson model to estimate the number of unobserved individuals in the popula-
tion. In section 3 the Horvitz–Thompson method is presented and applied to the
homogeneous Poisson model. The zero-truncated Poisson regression model is reviewed
in section 4 and the Horvitz–Thompson point and interval estimation method for this
model is presented in section 5. Assessment and performance of the method is done using a
simulation experiment as described in section 6. Application and data analysis are
presented in section 7. Section 8 is devoted to a brief and general discussion.

Table 1 Illegal immigrants data: observed frequencies for the three groups

Group f1 f2 f3 f4 f5 f6 Total

Not effectively expelled 1645 183 37 13 1 1 1880
Effectively expelled 1999 33 2 1 1 2036
Other missing 430 41 5 476

Total 4074 257 44 14 2 1 4392

308 PGM van der Heijden et al.



2 Traditional capture–recapture methods

The zero-truncated Poisson distribution is de�ned by a probability function conditional
on y > 0, that is

P(yijyi > 0, l) ˆ P(yijl)
P(yi > 0jl)

ˆ exp(¡l)lyi

yi!(1 ¡ exp(¡l))
, yi ˆ 1, 2, . . . (2:1)

with p(yi > 0 j l) ˆ 1 7 exp(¡l), i ˆ 1 . . . , Nobs. An estimate l̂l for l can be obtained by
�tting the truncated Poisson distribution using methods discussed for truncated Poisson
regression in section 4 (the truncated Poisson regression models should then only have
an intercept and no covariates). The estimate l̂l can be used to estimate the probability
of an individual not to be observed, p̂p0 ˆ exp(¡l̂l). The number of unobserved
individuals (individuals who were not apprehended but had a positive probability to
be apprehended), is denoted by f̂f0 and can be calculated as

f̂f0 ˆ p̂p0

1 ¡ p̂p0
Nobs

where Nobs is the number of observed individuals in the sample.

3 Horvitz–Thompson point and interval estimation of the total number
of individuals: homogeneous Poisson case

Consider the zero-truncated homogeneous Poisson model de�ned by (2.1). A point
estimate for the total number of individuals in the population may be de�ned as
(Kendall and Stuart, 1991, p. 173)

N̂N ˆ
XN

iˆ1

Ii

p(l)
(3:1)

Table 2 Illegal immigrants not effectively expelled: observed frequencies for the
covariate categories

Covariate category f1 f2 f3 f4 f5 f6 Total

>40 years 105 6 111
<40 years 1540 177 37 13 1 1 1769

Female 366 24 6 1 1 398
Male 1279 159 31 12 1 1482

Turkey 90 3 93
North Africa 838 146 28 9 1 1 1023
Rest of Africa 229 11 3 243
Surinam 63 1 64
Asia 272 9 1 2 284
America, Australia 153 13 5 2 173

Being illegal 224 29 5 1 259
Other reason 1421 154 32 12 1 1 1621
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Here Ii ˆ 1 if individual i is present and Ii ˆ 0 otherwise, and p(l) ˆ 1 7 exp(l) is the
probability of an individual to be present in the sample. The estimate l̂l is obtained from
�tting the zero-truncated homogeneous Poisson model (2.1). This estimator is (approxi-
mately) unbiased if, conditional on I1 , . . . , IN , 1=p(l̂l) is an (approximately) unbiased
estimator of 1=p(l). This holds if the number of observations Nobs is not too small.

The variance of N̂N can be decomposed in two parts

var(N̂N) ˆ E[var(N̂NjI1 , . . . , IN)] ‡ var(E[N̂NjI1 , . . . , IN]) (3:2)

The �rst term in (3.2) re�ects the sampling �uctuation in the truncated Poisson
distribution conditional on I1 , . . . , IN and is estimated by var(N̂NjI1 , . . . , IN). This
term var(N̂NjI1 , . . . , IN) can be estimated using the d-method. This leads to

vâar(N̂NjI1 , . . . , IN) ˆ
XN

iˆ1

Ii
@

@l
1

p(l)

Á !T

s2 (l)
XN

iˆ1

Ii
@

@l
1

p(l)

Á !­­­­­­
lˆl̂l

(3:3)

where s2(l) ˆ varl(l̂ljI1 , . . . , IN). (This notation allows for high-dimensional l.)
For our case, we have

PN
iˆ1 Ii ˆ Nobs. So (3.3) can be re-written as

vâar(N̂NjI1 , . . . , IN) ˆ Nobs ¡ exp(¡l̂l)

(1 ¡ exp(¡l̂l))2

Á !2

s2 (l̂l) (3:4)

The second term in (3.2) re�ects the variation in the obtained sample. If the number of
observations Nobs is not too small, we can safely assume that

E[N̂NjI1 , . . . , IN] ˆ
XN

iˆ1

Ii

p(l)
(3:5)

The variance of this expression is given by

var
XN

iˆ1

Ii

p(l)

Á !

ˆ
XN

iˆ1

p(l)(1 ¡ p(l))
p2 (l)

ˆ
XN

iˆ1

1 ¡ p(l)
p(l)

(3:6)

In this expression, N is unknown. An unbiased estimator of the expression above using
only the available observations, is given by

XN

iˆ1

Ii
1 ¡ p(l)

p2 (l)
ˆ Nobs

1 ¡ p(l)
p2 (l)

(3:7)
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Finally, using p(l) ˆ 1 ¡ exp(¡l) and plugging in the estimated l̂l we obtain

vâar(E[N̂NjI1 , . . . , IN) ˆ Nobs
exp(¡l̂l)

(1 ¡ exp(¡l̂l))2
(3:8)

The variance of l in (3.4), s2 (l), is estimated from the derivatives of the log-likelihood
of the truncated Poisson distribution. Consider a random sample Y1 , . . . , YNobs

from
the truncated Poisson distribution with parameter l. Then the log-likelihood is
de�ned by

` ˆ
XNobs

iˆ1

yi log l ¡ Nobsl ¡ Nobs log(1 ¡ exp(¡l)) ¡ log
YNobs

iˆ1

yi! (3:9)

The estimated variance of l is

ŝs2 (l) ˆ ¡ @2`

@l2

³ ´¡1

The �rst derivative of the log-likelihood (3.9) w.r.t. l is

@`

@l
ˆ

XNobs

iˆ1

yil
¡1 ¡ Nobs ¡ Nobs exp(¡l)

1 ¡ exp(¡l)

and the second derivative is (after simpli�cation)

@2`

@l2 ˆ ¡
XNobs

iˆ1

yil
¡2 ‡ Nobs exp(¡l)

(1 ¡ exp(¡l))2

So the estimated variance of l is

ŝs2 (l) ˆ ¡ @2`

@l2

³ ´¡1

ˆ
XNobs

iˆ1

yil
¡2 ¡ Nobs exp(¡l)

(1 ¡ exp(¡l))2

Á !¡1

(3:10)

So the total variance in (3.2) is now obtained from (3.4) and (3.6), that is,

var(N̂N) ˆ Nobs
exp(¡l)

(1 ¡ exp(¡l))2

Á !2 XNobs

iˆ1

yil
¡2 ¡ Nobs exp(¡l)

(1 ¡ exp(¡l))2

Á !¡1

‡ Nobs
exp(¡l)

(1 ¡ exp(¡l))2 (3:11)
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For large values of Nobs, the variance of the maximum likelihood (ML) estimator of l is
estimated by (see Johnson et al., 1993)

ŝs2 (l) º l(1 ¡ exp(¡l))2 (1 ¡ exp(¡l) ¡ lexp(¡l))¡1N¡1
obs (3:12)

Note that the variances in (3.10) and (3.12) coincide at the ML estimate of l, that is,
when

@`

@l
ˆ 0

which implies that

XNobs

iˆ1

yi ˆ Nobsl
1 ¡ exp(¡l)

Thus

ŝs2 (l) ˆ Nobsl
1 ¡ exp(¡l)

l¡2 ¡ Nobs exp(¡l)

(1 ¡ exp(¡l))2

Á !¡1

ˆ Nobs[1 ¡ exp(¡l) ¡ l exp(l)]

l(1 ¡ exp(¡l))2

Á !¡1

which is equal to (3.12). Expressions (3.1) and (3.11) for N̂N and var(N̂N), respectively,
are computed by replacing the parameter l in these expressions by its estimate l̂l
obtained from �tting the zero-truncated homogeneous Poisson distribution (2.1). The
total variance in (3.11) can be used to compute a 95% con�dence interval for

N: N̂N § 1:96SD(N̂N), with SD(N̂N) ˆ
��������������
var(N̂N)

q
. In section 6 a simulation experiment is

reported that assesses the stability of these variance estimators.

4 The zero-truncated Poisson regression model

Let Y1 , . . . , YNobs
be a random sample from the zero-truncated Poisson distribution

with parameter li, i ˆ 1, . . . , Nobs. Consider the regression model (Cameron and
Trivedi, 1998)

log(li) ˆ bTx i (4:1)

where b ˆ (a, b1 , . . . , bp)T , and xi is a vector of covariate values for subject i, that
is x i ˆ (1, xi1 , . . . , x ip )T . The log-likelihood is given by

`(b) ˆ
XNobs

iˆ1

[yi log(li) ¡ li ¡ log(1 ¡ exp(li)) ¡ log(yi!)]
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Model (4.1) can be �tted by maximizing the likelihood directly, for example using a
Newton–Raphson procedure. This method is incorporated in Poisson regression
routines where it is possible to specify truncation, for example in the computer program
LIMDEP (Greene, 1995). We will elaborate on this method below. An alternative
method that employs the EM-algorithm is proposed by Dietz and Böhning (2000).
They show how standard software for Poisson regression can be employed to �t the
truncated Poisson regression model. Interestingly, they obtain an estimate of the
population size as a by-product of their estimation procedure.

The score function for the Newton–Raphson procedure is

U(b ) ˆ @`(b)
@b

The current value of the parameter vector b (t) is updated by

b (t‡1) ˆ b (t) ‡ W(b (t))¡1U(b (t))

with W the observed information matrix, that is,

W (b) ˆ ¡ @2`(b)

@b@bT (4:2)

Fitting model (4.1) provides an estimator for the unknown parameter li for the sampled
individuals and thus for the probability to be present, p(li), i ˆ 1, . . . , Nobs.

5 Horvitz–Thompson point and interval estimation of the total number
of individuals: heterogeneous Poisson case

The �t of model (4.1) can be used to derive the Horvitz–Thompson estimator for the
total number of individuals in a heterogeneous Poisson population which is then
de�ned by

N̂N ˆ
XN

iˆ1

Ii

p(x i, b)
(5:1)

where Ii ˆ 1 if present and 0, otherwise. As in the homogeneous case, the variance of N̂N
is given by

var(N̂N) ˆ E[var(N̂NjIi)] ‡ var(E[N̂NjIi]) (5:2)
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The �rst term in (5.2) re�ects the sampling �uctuation in the truncated Poisson
distribution conditional on I1 , . . . , IN , and is estimated by var(N̂NjI1 , . . . , IN). The
latter can be estimated using the d-method. This leads to

vâar(N̂NjI1 , . . . , IN) ˆ
XNobs

iˆ1

@

@b̂b

1

p(xi, b̂b)

Á !T

(W(b̂b))¡1
XNobs

iˆ1

@

@b̂b

1

p(x i, b̂b)

Á !

(5:3)

with W(b) the observed information matrix obtained in (4.2), p(xi, b) ˆ
1 ¡ exp(¡l̂li) ˆ 1 ¡ exp(¡exp(bTx i)), the probability of an individual i to be observed
in the sample, and

XNobs

iˆ1

@

@b
1

p(xi, b)
ˆ

XNobs

iˆ1

¡xi exp( log(li) ¡ li)

(1 ¡ exp(¡li))
2

The second term in (5.2) re�ects the variation in the obtained sample. Using the same
argument as in section 3, we obtain

var(E[N̂NjI1 , . . . , IN]) º var
XN

iˆ1

Ii
1

p(x i, b)

Á !

(5:4)

which is estimated from the observed data by

vâar(E[N̂NjI1 , . . . , IN]) ˆ
XN

iˆ1

Ii
1 ¡ p(xi, b̂b)

p2 (xi, b̂b)
(5:5)

Expression (5.1) for N̂N is computed by replacing the parameter vector b by its ML
estimate b̂b obtained from �tting the zero-truncated Poisson regression model (4.1). The
total variance in (5.2) is estimated by adding expressions (5.3) and (5.5), and can be
used to compute a 95% con�dence interval for N: N̂N § 1:96SD(N̂N).

We have written a GAUSS-386i (GAUSS, version 3.2.8) procedure that �ts the
truncated Poisson regression model and computes Horvitz–Thompson point and
interval estimates for the total number of individuals in the population.

The Horvitz–Thompson point estimate has the interesting property that removing
covariates from a model tends to decrease the population size estimate. We prove this
phenomenon for the simple model with a dichotomous covariate. We will show that
this model will yield a larger estimated probability of a zero count, and hence a larger
estimated population size than the model without the dichotomous covariate.

Assume a population is built up from two subpopulations of equal size, one with
Poisson parameter X ˆ x ‡ d and one with Poisson parameter X ˆ x ¡ d, with d 6ˆ 0.
In this population the probability of a zero count equals E( exp(¡X)) ˆ exp(¡x)
[ exp(d) ‡ exp(¡d)]=2. Assume now a misspeci�ed model for this population, namely
the model where the fact that this population consists of two subpopulations is ignored.
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Under this misspeci�ed model the probability of a zero count equals exp(E(¡X)) ˆ
exp(¡x). The result now follows by the convexity of the exponential function since

E[exp(¡X)] ˆ exp{¡(x ¡ d)} ‡ exp{¡(x ‡ d)}
2

> exp
¡(x ¡ d) ¡ (x ‡ d)

2

» ¼

ˆ exp(¡x) ˆ exp(E[¡X])

a special case of Jensen’s inequality. This is illustra ted in Figure 1. The �gure also
illustra tes that the proof generalizes in a straightforward way to the situation where
the subpopulations are not of equal size (the straight line is above the curved line). Also,
the proof can be easily generalized to covariates with more than two categories, and the
situation of more than one covariate.

In the data sets that we have analysed thus far, the removal of covariates also
decreases the variance of the population size estimate, but we have no proof that this
property holds in general.

Note that the expectation of the model with the covariate approaches that of the
model without the covariate as d approaches zero. So the smaller the difference in l
between the subpopulations, the less the effect on the population size estimate will
be when the covariate discriminating between the subpopulations is omitted from the
model. This also implies that covariates that contribute signi�cantly to the �t of the
model (which can be assessed with a chi-square test or a criterion like the AIC)

Figure 1 Expectation of the zero count for a model with and a model without a dichotomous covariate.
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introduce observed heterogeneity in the model and therefore signi�cantly reduce the
amount of overdispersion. Nonsigni�cant covariates, however, do not signi�cantly
reduce the amount of overdispersion and may therefore be left out. For the process of
model selection this means that the best model is the model with all signi�cant
covariates included and, for reasons of parsimony and smaller con�dence intervals,
all nonsigni�cant covariates left out.

Finally, from Jensen’s inequality we may infer that, if the best model is still over-
dispersed, the population size estimate will be an underestimate of the true population
size. To check if this is the case, the observed and the �tted marginal frequencies can be
compared. For this purpose we use Pearson residuals, which are computed as
(observed ¡ fitted)=

p
(fitted). Also, a Lagrange multiplier test proposed by Gurmu

(1991) can be used to test for overdispersion in the model as a result of unobserved
heterogeneity. It compares the model �t of the Poisson model with alternative models
with an extra dispersion parameter included, such as the negative binomial regression
model. The test statistic is chi-square distributed with one degree of freedom.

6 A simulation experiment

To assess the performance of the Horvitz–Thompson method, an experiment was
carried out to investigate the coverage probability of the Horvitz–Thompson con�dence
interval (Table 3). At the same time we evaluated the coverage probability of the
con�dence interval obtained by using parametric bootstrapping (see, for example Efron
and Tibshirani, 1993). The experiment is performed using a homogenous Poisson
model (with intercept only), and is carried out as follows:

1) A sample of size N ˆ 100, 250, 500, 1000 is drawn from a nontruncated homo-
genous Poisson distribution with parameters l ˆ 0:5, 1, 1:5, 2, 2:5.

2) After omitting the zero count, for each of the above 20 observed samples of size Nobs,
an EM-algorithm is applied to �t a truncated homogenous Poisson distribution to
obtain an estimate f̂f0 for f0 , the zero-count, as well as an estimate l̂l for the Poisson
parameter l. Thus, N̂N ˆ Nobs ‡ f̂f0 .

Table 3 Coverage probabilities of Horvitz–Thompson (HT) 95% con� dence
intervals and 95% con� dence intervals generated from 500 parametric bootstrap
samples (Boot)

(l, N) 100 250 500 1000

0.5 HT: 0.93 HT: 0.96 HT: 0.95 HT: 0.94
Boot: 0.88 Boot: 0.89 Boot: 0.92 Boot: 0.95

1 HT: 0.96 HT: 0.95 HT: 0.94 HT: 0.95
Boot: 0.92 Boot: 0.95 Boot: 0.93 Boot: 0.93

1.5 HT: 0.95 HT: 0.94 HT: 0.96 HT: 0.95
Boot: 0.94 Boot: 0.95 Boot: 0.95 Boot: 0.96

2 HT: 0.96 HT: 0.96 HT: 0.95 HT: 0.95
Boot: 0.96 Boot: 0.95 Boot: 0.96 Boot: 0.95

2.5 HT: 0.97 HT: 0.94 HT: 0.96 HT: 0.92
Boot: 0.96 Boot: 0.94 Boot: 0.95 Boot: 0.93
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3) Horvitz–Thompson 95% con�dence intervals are computed.
4) For each of the above 20 observed samples, 500 bootstrap samples are drawn from

a nontruncated homogenous Poisson distribution with N̂N and l̂l obtained in 2).
95% bootstrap con�dence intervals are obtained using the percentile method. Note
that by drawing samples of size N̂N from a nontruncated distribution instead of
drawing samples of size Nobs from a truncated distribution, we take into account
that there are two sources for the variance of N̂N (see (3.2)).

5) Steps 1 to 4 are repeated 500 times.
6) Coverage probabilities were calculated as the proportion of con�dence intervals

containing the original sample size N. These probabilities were obtained for both
the Horvitz–Thompson con�dence interval and the bootstrap con�dence interval.

The results summarized in Table 3 indicate that the Horvitz–Thompson con�dence interval
has a higher coverage probability than that of the bootstrap con�dence interval when both
l and N are small (l ˆ 0:5 and N ˆ 100, 250). For other values of l and N, bootstrap
con�dence intervals and Horvitz–Thompson con�dence intervals are comparable.

In general, the simulation results indicate that the Horvitz–Thompson con�dence
interval performs well for different values of N and l in the homogeneous Poisson case.
It is likely that the method also works well if there are (a limited number of) categorical
covariates as considered in this paper. The total population size is the sum of the
population sizes for each covariate pattern. In a saturated model, each pattern has its
own Poisson parameter and the estimated population sizes per pattern are completely
independent. The variance of the sum is equal to the sum of the variances. Since the
simulation results show the validity of the variance estimate for each pattern, it is
a fortiori valid for the total. Modelling the Poisson parameters via a regression model
with categorical covariates can only help to improve the estimator and reduce the
variance. It is like combining patterns with similar probabilities. Therefore, we are
con�dent that the simulation results also carry over to this situation.

The situation gets more complicated if there are many possible covariate patterns.
The Poisson parameter for rare patterns can become very hard to estimate. This can be
detrimental if the Poisson parameter l is small, indicating a small capture probability.
How to handle this situation is the subject of further research.

Similar arguments hold for continuous covariates. If there are no outlying patterns,
regression models could be thought of as partitioning the covariate space in homo-
geneous subgroups. For each subgroup the simulation results apply and hence we trust
that our procedure is also valid for the total sample size. The situation is different if
there are extreme patterns. The Poisson parameters for such patterns might be hard to
estimate and sensitive to the regression model used. Problems may arise if such patterns
have low capture probability. Our simulation study does not quite cover this situation.
It is also the subject of further research.

7 Data analysis

Consider the IINEE data described in section 1. The response of interest is the number
of times an individual is apprehended by the police. The following four variables were
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available as covariates in the truncated Poisson regression model: nationality (N),
gender (G), age (A) and reason for being apprehended (R) (compare Table 2)
(unfortunately, we do not have continuous covariates in this example, but the
method proposed in this paper applies in the same way). We recoded the variable
nationality, which had six categories, by creating �ve dummy variables considering
America and Australia as the reference category.

Table 4 shows the results of the zero-truncated Poisson regression analysis on the full
model, containing all four available covariates. It shows the maximum likelihood
estimates of the regression parameters together with their corresponding standard
errors and P-values. The variables gender, age and nationality (Turkey, Rest of Africa,
Surinam or Asia) contribute signi�cantly to the average number of times an individual is
apprehended by the police. The results show that male individuals and individuals who
are less than 40 years of age are, on average, more frequently apprehended by the
police. Individuals from Turkey, rest of Africa, Surinam and Asia are less frequently
apprehended than those from America and Australia . The variable reason for being
apprehended appears to have no impact on the average number of times an individual
is apprehended by the police.

For the purpose of model selection, we �tted several truncated Poisson regression
models. We used expression (5.1) to obtain the point estimates of the total number in
the population and the variance in (5.2) to compute the 95% con�dence intervals. The
results are shown in Table 5. The null model yields the lowest estimate of the total
number of IINEE (N̂N ˆ 7080). The corresponding 95% Horvitz–Thompson con�dence
interval is (6363, 7797). The largest estimate of N, N̂N ˆ 12 691, is obtained by �tting the
full model of Table 5. These estimates illustrate the theoretical result of section 5 that, in
a sequence of nested models, the more covariates that are added to the model, the higher
the point estimate of N is expected to become.

In order to compare the various models we also computed AIC- values and
performed likehood-ratio tests for the models in Table 5. Just as in other areas of
statistica l modelling, model selection is a dif�cult issue, and more research is needed to
�nd out which approach is best in the area we are discussing here. However, in line with

Table 4 Truncated Poisson regression model � t to the IINEE data

Regression parameters MLE SE P-value*

Intercept ¡2.317 0.449
Gender (male ˆ 1, femaleˆ 0) 0.397 0.163 0.015
Age (<40 years ˆ 1, >40 years ˆ 0) 0.975 0.408 0.017
Nationality

(Turkey) ¡1.675 0.603 0.006
(North Africa) 0.190 0.194 0.328
(Rest of Africa) ¡0.911 0.301 0.003
(Surinam) ¡2.337 1.014 0.021
(Asia) ¡1.092 0.302 <0.001
(American and Australia) 0.000

Reason (being illegalˆ 1, other reasonˆ 0) 0.011 0.162 0.946

Log-likelihoodˆ ¡848.448.
*P-value for Wald test.
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the theoretical result just illustra ted, in order to obtain an accurate estimate for N it is
crucial that covariates that take into account a signi�cant amount of the heterogeneity
are included in the �nal model. Therefore one could start with all available covariates
(the full model G ‡ A ‡ N ‡ R) and then drop covariates that turn out not to be
signi�cant (backward elimination). A model choice can then be based on likelihood-
ratio tests (which can be used if the models are nested), or the AIC criterion (which can
also be used when the models are non-nested).

The likelihood-ratio test in Table 5 shows that the variable reason for being caught
can be dropped from the full model (G2 ˆ 0:004, df ˆ 1, P ˆ 0:949). From the
resulting model (G ‡ A ‡ N) the variable nationality cannot be dropped (G2 ˆ 86:1,
df ˆ 5, P < 0:001), nor can the variables gender and age (not shown here). Since
the AIC criterion also favours this model and our choice of N̂N should be based on the
best-�tting model, our best estimate seems to be that of the model (G ‡ A ‡ N),
N̂N ˆ 12 690. When models are misspeci�ed (e.g., the null model and the models in the
second and the third row of Table 5) their results, including the value of N̂N, should not
be interpreted.

A way of examining the goodness of �t of a model is to compare the observed and the
estimated frequencies by looking at the Pearson residuals, as presented in Table 6. The
residuals for k ˆ 2, k ˆ 4 and k ˆ 6 seem rather large, indicating some lack of �t.
The Lagrange multiplier test of Gurmu (1991) (see section 5) suggests that there still
remains some unobserved heterogeneity that cannot be ignored (w2 ˆ 55:0, df ˆ 1).
Therefore we must conclude that the population size estimate N̂N ˆ 12 690 should be
interpreted as an underestimate of the true population size. It is an object of further

Table 6 Observed and estimated counts for illegal
immigrants for model (G ‡ A ‡ N)

k Observed Estimated Residuals

0 0 10810.4
1 1645 1612.6 0.81
2 183 233.7 ¡3.32
3 37 30.1 1.25
4 13 3.2 5.42
5 1 0.3 1.31
6 1 0.0 6.57

Table 5 Estimated N̂ and HT 95% con� dence intervals for N obtained from � tting different truncated
Poisson regression models. Model comparisons using the likelihood-ratio test and AIC criterion are
also given. w2

…1† is the Lagrange multiplier test testing for overdispersion

Model AIC G2 df P* w2
…1† N̂ CI

Null 1805.9 106.0 7080 6363–7797
G 1798.3 9.6 1 0.002 99.7 7319 6504–8134
G‡A 1789.0 11.2 1 <0.001 93.7 7807 6637–8976
G‡A‡N 1712.9 86.1 5 <0.001 55.0 12690 7186–18194
G‡A‡N‡R 1714.9 0.004 1 0.949 55.0 12691 7185–18198

*P-value for likelihood-ratio test. HT ˆ Horvitz–Thompson.
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study whether the sign and the size of speci�c residuals are indications of the size of the
discrepancy between the population size estimate and the true population size.

It is also possible to make comparisons between observed and estimated number of
individuals for subgroups in the data. Table 7 shows such comparisons based on the
model �t of model (G ‡ A ‡ N). Note that for all subgroups the Horvitz–Thompson esti-
mate of the number of individuals is much larger than the number of individuals observed
in the data. This indicates that the probability that illegal individuals are not apprehended
is high for all subgroups in the population. Moreover, it is clear that male individuals,
individuals who are less than 40 years of age, individuals from North Africa have larger
probability to be apprehended, a con�rmation of what was observed in Table 4.

8 Discussion

The Horvitz–Thompson method was presented to estimate the total number of
individuals in a heterogeneous Poisson population. The truncated Poisson regression
model was utilized to estimate f0 , the number of individuals who were not apprehended
by the police, but have a positive probability to be apprehended. The Horvitz–
Thompson method was assessed using a simulation experiment evaluating a truncated
homogeneous Poisson distribution and for this situation it was proved to be appro-
priate (it is likely that these results generalize to Poisson regression, but some speci�c
questions still need to be investigated; see section 6). It was proven that in a series of
nested models, models including more signi�cant covariates yield a larger point estimate
for the population size.

In this approach the following assumptions were made. First, it is assumed that each
individual count is a realization of a Poisson distribution. In principle, this assumption
holds under rather broad circumstances as explained in section 1. The main threat to
this assumption is that, due to an apprehension or a nonapprehension, the probability
of the next apprehension increases or decreases. For example, an illegal immigrant who
is never apprehended might become careless, thus increasing his probability to be

Table 7 Comparisons between observed and estimated N for subgroups based on model (G ‡ A ‡ N)

Subgroup Observed Estimated Observed=Estimated

Males 1482 8880.10 0.167
Females 398 3811.40 0.104

Individuals with age <40 years 1769 10506.72 0.168
Individuals with age >40 years 111 2184.73 0.051

Individuals from Turkey 93 1740.03 0.053
Individuals from North Africa 1023 3055.23 0.335
Individuals from Rest of Africa 243 2058.00 0.118
Individuals from Surinam 64 2387.75 0.027
Individuals from Asia 284 2741.96 0.104
Individuals from America and Australia 173 708.47 0.244
Individuals caught for reason Being illegal 259 1631.68 0.159
Individuals caught for Other reason 1621 11509.77 0.147
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apprehended, or, once apprehended he might become more careful so that his
probability to be apprehended decreases. It may also be that an apprehension in�uences
the behaviour of police of�cers, in the sense that the probability of a next apprehension
increases. Whether any of these examples is true or not is a topic that needs to be
investigated separately.

The second assumption is that the logarithm of each individual Poisson parameter is
a function of covariates, or in other words, that the covariates are suf�cient to describe
the individual differences in the Poisson parameters. However, it will often occur that
not every relevant covariate is measured so that this assumption is violated. Whether
this is the case can be checked from the analysis. First, a Lagrange multiplier test
discussed in section 5 tests if there remains unobserved heterogeneity, that is, hetero-
geneity that is additional to that taken into account by the available covariates. Second,
the observed counts may deviate from the �tted counts. If it turns out that the second
assumption is violated, the point estimate of the population size is to be interpreted as a
lower bound.

In the case where the second assumption is violated, the difference between the lower
bound estimate and the true population size is not known. One way to investigate this is
to use a model that accounts for unobserved heterogeneity (overdispersion) between
individuals, such as the zero-truncated negative binomial regression model, not used in
this work. Such models take into account other sources of heterogeneity between
individuals that are not observed in the data in terms of covariates. The zero-truncated
negative binomial model incorporates overdispersion (which is accounted for by
including an additional parameter a in the model) in the sense that the truncated
variance of the negative binomial exceeds the truncated variance of the Poisson. The
Poisson is a limiting case of the negative binomial and is obtained as a ! 0 (see
Grogger and Carson, 1991; Greene, 1997, for more details). An implementation of the
Horvitz–Thompson method to results from �tting such models will also be the subject
of a future publication.
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