
Formal derivation of a

Stable Marriage algorithm

A. Bijlsma∗

January, 1991

1 Problem description

In this paper the well-known Stable Marriage Problem is considered once again. The name of
this programming problem comes from the terms in which it was first described [2]:

A certain community consists of n men and n women. Each person ranks
those of the opposite sex in accordance with his or her preferences for a marriage
partner. We seek a satisfactory way of marrying off all members of the community.
(. . .) We call a set of marriages unstable (. . .) if under it there are a man and
a woman who are not married to each other but prefer each other to their actual
mates.

Question: For any pattern of preferences is it possible to find a stable set of
marriages?

The purpose of the colourful anthropomorphic terminology seems to be to provide motivation
for the design decisions. It was faithfully adhered to or even embellished upon by later authors
on the subject. Among the concepts introduced in this fashion are courtships [2], proposers
held in suspense [9], jilted suitors [6], fiancés (and even, though probably by mistake, financés)
[1], admirers [4], matchmakers [3], and equal rights for women [12] as well as chains of forced
sacrifices of women [7]. However, it has often been observed that in general such terminology
encourages the programmer to make implicit assumptions and to refrain from exploring certain
alternatives that do not fit easily into the metaphor. In this paper an alternative strategy is
pursued in that a solution to the Stable Marriage Problem is derived by means of the formal
manipulation of uninterpreted formulae, rigorously avoiding the usual imagery. The reader is
invited to refrain from attaching romantic interpretations to the predicates introduced below.

Let us restate the problem in a more formal way. Given are two disjoint finite sets X and
Y with the same number of elements. For convenience’s sake, we establish the convention
that dummies x, u range over X and dummies y, v range over Y . For every x there is given
a linear order wx of Y and for every y there is given a linear order wy of X . We are asked
to give variable f of type array X of Y a value that satisfies

(∀y :: (#x :: f.x = y) ≤ 1)
∗Department of Mathematics and Computing Science, Eindhoven University of Technology, P.O. Box 513,

5600 MB Eindhoven, The Netherlands.

1

AB22 2

—i.e., f is injective—and

(∀x, u :: x wf.u u ∨ f.u wx f.x) .

2 First approximation

Our derivation starts with the replacement, in the postconditions, of a constant, namely X ,
by a variable: we introduce a variable A of type set of X and take as invariants1

P0 : (∀y :: (#x : A.x : f.x = y) ≤ 1) ,
P1 : (∀x, u : A.x ∧A.u : x wf.u u ∨ f.u wx f.x) .

These invariants are trivially initialized by A := ∅ . An obvious strategy is to increase A by
one element at a time until A = X . Thus our first approximation is

|[var A : set of X ;
A := ∅
{inv P0..1; bd |X \A|}

; do A 6= X → |[var a : X ;
S0 {¬A.a}

; A := A ∪ -[a]-
]|

od
]| .

3 Second approximation

It is now our task to find a solution for S0 as specified by the first approximation. Observing
that P0 and P1 only mention the values of f on A leads us to suspect that S0 will involve
giving a value to f.a . Therefore we investigate under what circumstances the assignment
f.a := b ensures the invariance of P0..1. Assuming P0..1 and ¬A.a , we derive2

P0(A := A ∪ -[a]-)(f := f(a : b))
≡ {substitution}

(∀y :: (#x : A.x ∨ x = a : f(a : b).x = y) ≤ 1)
≡ {split off x = a , using ¬A.a}

(∀y :: (#x : A.x : f.x = y) + db = ye ≤ 1)
≡ {split off y = b}

(∀y : y 6= b : (#x : A.x : f.x = y) ≤ 1) ∧ (#x : A.x : f.x = b) = 0
≡ {first conjunct follows from P0}

(#x : A.x : f.x = b) = 0
≡ {property of #}

(∀x : A.x : f.x 6= b) .

1We allow ourselves to write A.x as an abbreviation for x ∈ A .
2Here f(a : b) is defined by f(a : b).x = f.x for x 6= a and f(a : b).a = b . Moreover, d. . .e denotes the

conversion function from booleans to integers that is defined by dtruee = 1 and dfalsee = 0.

AB22 3

We see that the assignment f.a := b ensures the invariance of P0 provided b is chosen
such that

Q0 : (∀x : A.x : f.x 6= b)

holds. Now we turn to P1. Under the same assumptions as before we have

P1(A := A ∪ -[a]-)(f := f(a : b))
≡ {substitution}

(∀x, u : (A.x ∨ x = a) ∧ (A.u ∨ u = a) : x wf(a:b).u u ∨ f(a : b).u wx f(a : b).x)
≡ {split off x = a and split off u = a , using ¬A.a}

(∀x, u : A.x ∧A.u : x wf.u u ∨ f.u wx f.x)
∧ (∀u : A.u : a wf.u u ∨ f.u wa b)
∧ (∀x : A.x : x wb a ∨ b wx f.x)
∧ (a wb a ∨ b wa b)

≡ {first conjunct is P1;
rename dummy u := x in second conjunct;
fourth conjunct follows from reflexivity of wb and wa

}
(∀x : A.x : (a wf.x x ∨ f.x wa b) ∧ (x wb a ∨ b wx f.x)) .

So we see that the assignment f.a := b ensures the invariance of P1 provided a and b are
chosen to satisfy

(∀x : A.x : (a wf.x x ∨ f.x wa b) ∧ (x wb a ∨ b wx f.x)) . (1)

However, this raises the question whether such a and b always exist. Unfortunately, the
answer is negative. To see this, take X = -[0, 1, 2]-, Y = -[3, 4, 5]- and let all orderings be the
usual ordering of the integers. Consider a state where A = -[0, 2]-, f.0 = 4, f.2 = 5. Then
the condition ¬A.a forces us to choose a = 1 and (1) becomes

(1 ≥ 0 ∨ 4 ≥ b) ∧ (0 ≥ 1 ∨ b ≥ 4) ∧ (1 ≥ 2 ∨ 5 ≥ b) ∧ (2 ≥ 1 ∨ b ≥ 5) ,

which is equivalent to

4 ≤ b ≤ 5 .

Clearly no value of b satisfying Q0 solves this equation.
It is therefore necessary to strengthen the repetition’s invariant in order to make choosing

a and b easier. Now the problem with this is that all four terms in (1) contain a or b or
both. Since a and b are chosen afresh in each iteration step, incorporation of such a term into
the invariant only helps if a and b are replaced therein by the dummies of suitable universal
quantifications. Obviously, we get the simplest additional invariant if we do this for a term
that contains only one of a and b , not both. There are two such terms; we let our choice be
guided by the fact that the condition for a (viz., ¬A.a) is simpler than the one for b (viz.,
(∀x : A.x : f.x 6= b))—an asymmetry caused by the decision to represent the coupling between
X and Y as a mapping. We therefore decide to strengthen the invariant of the repetition
with

P2 : (∀x, u : A.x ∧ ¬A.u : u wf.x x) .

AB22 4

This does indeed simplify the choice of a and b , as (1) follows from P2 ∧Q1, where

Q1 : (∀x : A.x : x wb a ∨ b wx f.x) .

We have yet to check the invariance of P2. As P2 clearly holds when A = ∅ , the initialization
does not have to be adjusted. Moreover, assuming P2 we have

P2(A := A ∪ -[a]-)(f := f(a : b))
≡ {substitution}

(∀x, u : (A.x ∨ x = a) ∧ ¬A.u ∧ u 6= a : u wf(a:b).x x)
≡ {split off x = a , using ¬A.a}

(∀x, u : A.x ∧ ¬A.u ∧ u 6= a : u wf.x x) ∧ (∀u : ¬A.u ∧ u 6= a : u wb a)
≡ {first conjunct follows from P2}

(∀u : ¬A.u ∧ u 6= a : u wb a)
≡ {reflexivity, renaming}

(∀x : ¬A.x : x wb a) .

Hence the assignment f.a := b ensures the invariance of P2 provided that a and b are chosen
to satisfy

Q2 : (∀x : ¬A.x : x wb a) .

Hence the second approximation to the program is

|[var A : set of X ;
A := ∅
{inv P0..2 ; bd |X \A|}

; do A 6= X → |[var a : X ; b : Y ;
S1 {¬A.a ∧Q0..2}

; f.a := b
; A := A ∪ -[a]-
]|

od
]| .

4 Third approximation

For any b , it is not difficult to find a value of a that satisfies Q1 and Q2, as these both
require a to be small in terms of wb . Indeed,

Q1..2
≡ {by definition}

(∀x : A.x : x wb a ∨ b wx f.x) ∧ (∀x : ¬A.x : x wb a)
≡ {trading}

(∀x : A.x ∧ b <x f.x : x wb a) ∧ (∀x : ¬A.x : x wb a)
≡ {domain merge}

(∀x : (A.x ∧ b <x f.x) ∨ ¬A.x : x wb a)
≡ {complement rule}

(∀x : b <x f.x ∨ ¬A.x : x wb a) .

AB22 5

Having now shown that

Q1 ∧Q2 ≡ (∀x : b <x f.x ∨ ¬A.x : x wb a) , (2)

we find that Q1..2 may be initialized by a := (ub x :: x), where ub is the minimum quantifier
corresponding to wb . Of course, there is no reason to suppose that this a satisfies ¬A.a . The
search for a suitable a will be organized as a repetition with invariant Q0..2 and guard A.a .
Our program now looks like this:

|[var A : set of X ;
A := ∅
{inv P0..2 ; bd |X \A|}

; do A 6= X → |[var a : X ; b : Y ;
S2 {Q0}

; a := (ub x :: x)
{inv P0..2 ∧Q0..2; bd (#x :: x wb a)}

; do A.a → S3 od
; f.a := b
; A := A ∪ -[a]-
]|

od
]| .

Note that the bound function represents a decision to inspect candidates for a in increasing
order with respect to wb .

5 A simple program

Let us investigate solutions for S3 of the form a := a′ . Assuming P0..2∧Q0..2∧A.a we have

Q1..2(a := a′)
≡ {substitution}

(∀x : A.x : x wb a′ ∨ b wx f.x) ∧ (∀x : ¬A.x : x wb a′)
≡ {split off x = a , using A.a}

a wb a′ ∨ b wa f.a
∧ (∀x : A.x ∧ x 6= a : x wb a′ ∨ b wx f.x)
∧ (∀x : ¬A.x : x wb a′)

⇐ {heading for a′ =b a , in order to decrease the bound function}
b wa f.a
∧ (∀x : A.x ∧ x 6= a : x wb a′ ∨ b wx f.x)
∧ (∀x : ¬A.x : x wb a′)

⇐ {Q1..2 implies last two terms with a instead of a′}
b wa f.a
∧ (∀x : A.x ∧ x 6= a : x wb a ⇒ x wb a′)
∧ (∀x : ¬A.x : x wb a ⇒ x wb a′)

≡ {merge domains of last two conjuncts, using A.a}
b wa f.a ∧ (∀x : x 6= a : x wb a ⇒ x wb a′)

AB22 6

≡ {trading}
b wa f.a ∧ (∀x :: x =b a ⇒ x wb a′)

⇐ {(∃x :: x =b a), see proof below}
b wa f.a ∧ a′ = (ub x : x =b a : x) .

The existential quantification in the last hint of this derivation holds because

(∃x :: x =b a)
≡ {definition of =b , trading}

(∃x : x 6= a : x wb a)
⇐ {A.a}

(∃x : ¬A.x : x wb a)
≡ {Q2}

(∃x :: ¬A.x)
≡ {}

A 6= X .

As the invariance of P0..2 ∧ Q0 is trivial, it has now been established that the assignment
a := (ub x : x =b a : x) satisfies the requirements for S3, provided b wa f.a holds. What if
it does not? In that case, the simplest3 plausible way to establish the required inequality
would be a swap f.a, b := b, f.a . Such a swap trivially preserves A.a ; we are obliged to check,
however, that it also leaves the invariants intact.

P0(f := f(a : b))
≡ {substitution}

(∀y :: (#x : A.x : f(a : b).x = y) ≤ 1)
≡ {split off x = a , using A.a}

(∀y :: (#x : A.x ∧ x 6= a : f.x = y) + db = ye ≤ 1)
≡ {split off y = b}

(∀y : y 6= b : (#x : A.x ∧ x 6= a : f.x = y) ≤ 1) ∧ (#x : A.x ∧ x 6= a : f.x = b) = 0
≡ {first conjunct follows from P0, second from Q0}

true ;

P1(f := f(a : b))
≡ {substitution}

(∀x, u : A.x ∧A.u : x wf(a:b).u u ∨ f(a : b).u wx f(a : b).x)
≡ {split off x = a and u = a , using A.a}

(∀x : A.x ∧ x 6= a ∧ A.u ∧ u 6= a : x wf.u u ∨ f.u wx f.x)
∧ (∀u : A.u ∧ u 6= a : a wf.u u ∨ f.u wa b)
∧ (∀x : A.x ∧ x 6= a : x wb a ∨ b wx f.x)
∧ (a wb a ∨ b wa b)

≡ {first conjunct follows from P1;
rename dummy u := x in second conjunct;
fourth conjunct follows from reflexivity of wb and wa

}
3A single assignment f.a := b or b := f.a is ruled out by Q0.

AB22 7

(∀x : A.x ∧ x 6= a : (x wb a ∨ b wx f.x) ∧ (a wf.x x ∨ f.x wa b))
≡ {Q1}

(∀x : A.x ∧ x 6= a : a wf.x x ∨ f.x wa b)
⇐ {this follows from P1 ∧A.a with f.a instead of b}

(∀x :: f.x wa f.a ⇒ f.x wa b)
⇐ {transitivity of wa}

f.a wa b ;

P2(f := f(a : b))
≡ {substitution}

(∀x, u : A.x ∧ ¬A.u : u wf(a:b).x x)
≡ {split off x = a , using A.a}

(∀x, u : A.x ∧ x 6= a ∧ ¬A.u : u wf.x x) ∧ (∀u : ¬A.u : u wb a)
≡ {first conjunct follows from P2}

(∀u : ¬A.u : u wb a)
≡ {Q2}

true ;

Q0(f, b := f(a : b), f.a)
≡ {substitution}

(∀x : A.x : f(a : b).x 6= f.a)
≡ {split off x = a , using A.a}

(∀x : A.x ∧ x 6= a : f.x 6= f.a) ∧ b 6= f.a
≡ {first conjunct follows from P0 ∧A.a}

b 6= f.a
≡ {Q0 ∧A.a}

true ;

Q1(f, b := f(a : b), f.a)
≡ {substitution}

(∀x : A.x : x wf.a a ∨ f.a wx f(a : b).x)
≡ {split off x = a , using A.a}

(∀x : A.x ∧ x 6= a : x wf.a a ∨ f.a wx f.x) ∧ (a wf.a a ∨ f.a wa b)
≡ {second conjunct follows from reflexivity of wf.a}

(∀x : A.x ∧ x 6= a : x wf.a a ∨ f.a wx f.x)
≡ {P1 ∧A.a}

true ;

Q2(b := f.a)
≡ {substitution}

(∀x : ¬A.x : x wf.a a)
≡ {P2 ∧A.a}

true .

We have now succeeded in showing that, in case f.a =a b , the swap f.a, b := b, f.a respects
the invariance of P0..2 ∧Q0..2 ∧A.a . The complete program thus becomes

AB22 8

|[var A : set of X ;
A := ∅
{inv P0..2; bd |X \A|}

; do A 6= X →|[var a : X ; b : Y ;
S2 {Q0}

; a := (ub x :: x)
{inv P0..2 ∧Q0..2}

; do A.a → if f.a =a b → f.a, b := b, f.a
f.a va b → skip

fi
{f.a va b ∧ P0..2 ∧Q0..2 ∧A.a}

; a := (ub x : x =b a : x)
od

; f.a := b
; A := A ∪ -[a]-
]|

od
]| .

We postpone the coding of S2 until after the choice of a suitable data representation.
As the bound function previously given for the inner repetition is no longer appropriate,

we have to reconsider termination of the inner repetition. We claim that

(Σx : A.x : k.x.(f.x)) + k.a.b

is a suitable bound function, where

k.x.y = (#u :: u wy x) . (3)

The assignment to a clearly decreases the term k.a.b and does not influence the others. It
remains to show that the alternative statement does not increase the bound function.

((Σx : A.x : k.x.(f.x)) + k.a.b)(f, b := f(a : b), f.a)
= {substitution}

(Σx : A.x : k.x.(f(a : b).x)) + k.a.(f.a)
= {split off x = a , using A.a}

(Σx : A.x ∧ x 6= a : k.x.(f.x)) + k.a.b + k.a.(f.a)
= {merge domains of outer terms}

(Σx : A.x : k.x.(f.x)) + k.a.b .

6 An efficient program

The bound function given at the end of the preceding section shows the time complexity of the
program to be O(|X|3). This is due to the fact that, in the inner repetition, the same elements
are compared over and over again. The culprit seems to be the initialization a := (ub x :: x),
which does not take into account any information gathered in previous steps. Inspired by (2),

AB22 9

we decide to remedy this by extending the invariants of both the inner and the outer repetition
with

P3 : (∀x, y : y <x f.x ∨ ¬A.x : x wy g.y) ,

where g is a variable of type array Y of X , initially satisfying

I0 : (∀y :: g.y = (uy x :: x)) .

It follows from (2) that, if P3 holds, Q1..2 may be initialized by a := g.b .
Which program fragments are dangerous for the invariance of P3? There are two such

fragments: the swap f.a =a b → f.a, b := b, f.a in the inner repetition and the final f.a := b ;
A := A ∪ -[a]- in the outer one. We show that neither of these actually damages P3:

P3(f := f(a : b))
≡ {substitution}

(∀x, y : y <x f(a : b).x ∨ ¬A.x : x wy g.y)
≡ {split off x = a , using A.a}

(∀x, y : x 6= a ∧ (y <x f.x ∨ ¬A.x) : x wy g.y) ∧ (∀y : y <a b : a wy g.y)
≡ {first conjunct follows from P3}

(∀y : y <a b : a wy g.y)
⇐ {P3 with x := a}

(∀y : y <a b : y <a f.a)
⇐ {transitivity}

f.a wa b ;

P3(A := A ∪ -[a]-)(f := f(a : b))
≡ {substitution}

(∀x, y : y <x f(a : b).x ∨ (¬A.x ∧ x 6= a) : x wy g.y)
≡ {split off x = a}

(∀x, y : x 6= a ∧ (y <x f.x ∨ ¬A.x) : x wy g.y) ∧ (∀y : y <a b : a wy g.y)
≡ {first conjunct follows from P3}

(∀y : y <a b : a wy g.y)
⇐ {P3 with x := a}

¬A.a .

So P3 is really an invariant of the program as it stands. However, if the introduction of g
is to have any effect, we need to incorporate at least one statement to change the value of
g . As the motivation for the introduction of g was to prevent repeated comparison of the
same elements in the inner repetition, we propose to append g.b := a to the body of the inner
repetition. This respects the invariance of P3, as, with a′ short for (ub x : x =b a : x), we
have

P3(g := g(b : a))(a := a′)
≡ {substitution}

(∀x, y : y <x f.x ∨ ¬A.x : x wy g(b : a′).y)
≡ {split off y = b}

(∀x, y : y 6= b ∧ (y <x f.x ∨ ¬A.x) : x wy g.y) ∧ (∀x : b <x f.x ∨ ¬A.x : x wb a′)

AB22 10

≡ {first conjunct follows from P3}
(∀x : b <x f.x ∨ ¬A.x : x wb a′)

≡ {definition of a′}
(∀x : b <x f.x ∨ ¬A.x : x =b a)

≡ {Q1..2, using (2)}
(∀x : b <x f.x ∨ ¬A.x : x 6= a)

≡ {trading, one-point rule}
b wa f.a ∧ A.a .

We have now obtained the following program:

{I0}
|[var A : set of X ;

A := ∅
{inv P0..3; bd |X \A|}

; do A 6= X →|[var a : X ; b : Y ;
S2 {Q0}

; a := g.b
{inv P0..3 ∧Q0..2}

; do A.a → if f.a =a b → f.a, b := b, f.a
f.a va b → skip

fi
{f.a va b ∧ P0..3 ∧Q0..2 ∧A.a}

; a := (ub x : x =b a : x)
; g.b := a

od
; f.a := b
; A := A ∪ -[a]-
]|

od
]| .

This program is equivalent to the standard algorithm [2] [11]. As we shall see in the next
section, its time complexity is O(|X|2), which is the best result attainable for this problem
[10].

7 Complexity analysis

We claim that t , defined as

t = (Σy :: k.(g.y).y) , (4)

with k given by (3), is a suitable bound function for the inner repetition. The only statement
that changes the value of t is g.b := a ; if we manage to prove that this statement always
decreases t , we may conclude that the algorithm as a whole has time complexity O(|X|2).
Therefore, we now investigate whether

AB22 11

{f.a va b ∧ A.a ∧ P0..3 ∧ Q0..2 ∧ t = T }
a := (ub x : x =b a : x)

; g.b := a
{t < T } .

With a′ short for (ub x : x =b a : x), we have

(t < T)(g := g(b : a))(a := a′)
≡ {(4), substitution}

(Σy :: k.(g(b : a′).y).y) < T
≡ {(4), t = T }

(Σy :: k.(g(b : a′).y).y) < (Σy :: k.(g.y).y)
≡ {split off y = b , other terms cancel}

k.a′.b < k.(g.b).b
≡ {(3)}

(#u :: u wb a′) < (#u :: u wb g.b)
⇐ {transitivity}

a′ =b g.b
⇐ {definition of a′}

a = g.b .

The condition a = g.b looks promising, as the invariant of the inner repetition can obviously
be extended with

Q3 : a = g.b .

Indeed, Q3 is established by the initialization a := g.b and reestablished in each iteration
step by g.b := a . However, we have not yet shown that Q3 still holds after the alternative
statement. To this end, we observe

Q3(b := f.a)
≡ {substitution}

a = g.(f.a)
⇐ {A.a}

(∀x : A.x : x = g.(f.x)) .

Thus, in order to discharge our proof obligation with respect to Q3, it is sufficient to show
that

P4 : (∀x : A.x : x = g.(f.x))

is an invariant of both repetitions. There are three program fragments that have a possible
influence on P4: the swap and the assignment to g.b in the inner repetition, and the final
f.a := b ; A := A ∪ -[a]- in the outer one. Taking them in order, we have

P4(f := f(a : b))
≡ {substitution}

(∀x : A.x : x = g.(f(a : b).x))
≡ {split off x = a , using A.a}

AB22 12

(∀x : A.x ∧ x 6= a : x = g.(f.x)) ∧ a = g.b
≡ {first conjunct follows from P4}

a = g.b
≡ {Q3}

true ;

P4(g := g(b : a))
≡ {substitution}

(∀x : A.x : x = g(b : a).(f.x))
≡ {split off terms with f.x = b}

(∀x : A.x ∧ f.x 6= b : x = g.(f.x)) ∧ (∀x : A.x ∧ f.x = b : x = a)
≡ {first conjunct follows from P4}

(∀x : A.x ∧ f.x = b : x = a)
≡ {Q0}

true ;

P4(A := A ∪ -[a]-)(f := f(a : b))
≡ {substitution}

(∀x : A.x ∨ x = a : x = g.(f(a : b).x))
≡ {split off x = a , using ¬A.a}

(∀x : A.x : x = g.(f.x)) ∧ a = g.b
≡ {first conjunct is P4}

a = g.b
≡ {Q3}

true .

This concludes the proof of the algorithm’s quadratic complexity.

8 Data refinement

The program description in the preceding sections is still at a very high level, namely, in
terms of linear orderings. However, the complexity analysis depends on the assumption that
statements like a := (ub x : x =b a : x) can be realized as O(1)-operations, thereby exclud-
ing the most naive implementations. It follows that we should pay some attention to the
implementation of the program in terms of lower-level operations.

As a first step, we assume some numbering for the elements of Y is available and we
identify the elements of Y with their numbers. In other words, we now assume Y = [0..N)
for some natural N .

In order to obtain an efficient coding for the statement S2 establishing Q0, we decide to
strengthen the invariant of the outer repetition with

P5 : (∀y :: (∃x : A.x : f.x = y) ≡ 0 ≤ y < n)

and that of the inner repetition with

Q4 : (∀y :: (∃x : A.x : f.x = y) ≡ 0 ≤ y ≤ n ∧ y 6= b) .

AB22 13

With these conventions, S2 can be simply coded as b := n . Moreover, the guard A 6= X may
equivalently be written as n 6= N . However, observe that P5 makes it necessary to extend
the initialization A := ∅ with n := 0 and the increase A := A ∪ -[a]- with n := n + 1.

Finally, we come to the representations of the linear orderings. As can be seen from
the program text, it is advantageous to represent the orderings of X and Y respectively in
different ways. Assume that arrays rank and next are given that satisfy

I1 : (∀x, y :: rank.x.y = (#v :: v <x y)) ,
I2 : (∀x, y :: next.x.y = (uy u : u =y x : u)) .

(It is not important what the value of next.x.y is in case x is the maximum of X with respect
to wy .) Assuming I1..2, we may translate the condition f.a =a b by rank.a.(f.a) > rank.a.b
and the assignment a := (ub x : x =b a : x) by a := next.a.b .

This gives the lower-level version of the program, in which all operations have been coded4

in a way consistent with the assumptions in the complexity analysis:

{I0..2}
|[var n : int; A : set of X ;

A := ∅
; n := 0
{inv P0..5; bd |X \A|}

; do n 6= N → |[var a : X ; b : Y ;
b := n

; a := g.b
{inv P0..4 ∧Q0..4; bd (4)}

; do A.a → if rank.a.(f.a) > rank.a.b → f.a, b := b, f.a
rank.a.(f.a) ≤ rank.a.b → skip

fi
{f.a va b ∧ A.a ∧ P0..4 ∧Q0..4}

; a := next.a.b
; g.b := a

od
; f.a := b
; A := A ∪ -[a]-
; n := n + 1
]|

od
]| .

Acknowledgements

I wish to thank the members of both the Eindhoven Tuesday Afternoon Club and the Eind-
hoven Algorithm Club, in particular Berry Schoenmakers, for their helpful criticism of previous
versions of this paper.

4If desired, the set A may be replaced with a boolean array. We leave this to the reader.

AB22 14

References

[1] L. Allison, ‘Stable marriages by coroutines’. Inf. Proc. L. 16 (1983), 61–65.

[2] D. Gale & L.S. Shapley, ‘College admissions and the stability of marriage’. Amer. Math.
Monthly 69 (1962), 9–15.

[3] D. Gale & M. Sotomayor, ‘Ms. Machiavelli and the Stable Matching Problem’. Amer.
Math. Monthly 92 (1985), 261–268.

[4] D. Gale & M. Sotomayor, ‘Some remarks on the Stable Matching Problem’. Discr. Appl.
Math. 11 (1985), 223–232.

[5] D. Gusfield, ‘Three fast algorithms for four problems in stable marriage’. SIAM J. Comp.
16 (1987), 111–128.

[6] M.E.C. Hull, ‘A parallel view of stable marriages’. Inf. Proc. L. 18 (1984), 63–66.

[7] R.W. Irving & P. Leather, ‘The complexity of counting stable marriages’. SIAM J. Comp.
15 (1986), 655–667.

[8] R.W. Irving, P. Leather, & D. Gusfield, ‘An efficient algorithm for the “optimal” stable
marriage’. J. ACM 34 (1987), 532–543.

[9] D.G. McVitie & L.B. Wilson, ‘The Stable Marriage Problem’. Comm. ACM 14 (1971),
486–492.

[10] C. Ng & D.S. Hirschberg, ‘Lower bounds for the Stable Marriage Problem and its vari-
ants’. SIAM J. Comp. 19 (1990), 71–77.

[11] G. Pólya, R.E. Tarjan, & D.R. Woods, Notes on introductory combinatorics. Birkhäuser
Verlag, Boston, 1983.

[12] N. Wirth, Algorithms + data structures = programs. Prentice-Hall, Englewood Cliffs,
1976.

