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A SIMPLE AND EFFICIENT PARALLEL FFT ALGORITHM USING

THE BSP MODEL

M�ARCIA A� INDA AND ROB H� BISSELING

Abstract� In this paper� we present a new parallel radix�� FFT algorithm based on

the BSP model� Our parallel algorithm uses the group�cyclic distribution family� which

makes it simple to understand and easy to implement� We show how to reduce the com�

munication cost of the algorithm by a factor of three� in the case that the input�output

vector is in the cyclic distribution� We also show how to reduce computation time on

computers with a cache�based architecture� We present performance results on a Cray

T�E with up to �� processors� obtaining reasonable e	ciency levels for local problem

sizes as small as 
�� and very good e	ciency levels for sizes larger than 
��
�

�� Introduction

The discrete Fourier transform �DFT� plays an important role in computational science�

DFT applications ranges from solving numerical di�erential equations to signal processing�

�For an introduction to DFT applications see e�g� ����� The widespread use of DFTs in

computational science is mainly due to the existence of fast algorithms	 known by the

general name of fast Fourier transform �FFT�	 which compute the DFT of an input vector

of size N in O�N logN� operations instead of the O�N�� operations needed by a direct

approach	 i�e�	 by a matrix
vector multiplication�

In ���
	 Cooley and Tukey ��� published a paper describing the FFT idea �giving special

attention to the so called radix�� FFT �� Since then	 many variants of the algorithm

have appeared� For an extensive discussion of the family of FFT algorithms	 see Van

Loan ����� In recent years	 after the dawn of parallel computing	 the originally sequential

FFT algorithms have been modi�ed and adapted to the needs of parallel computation

�see e�g� ��	 �	 �	 �	 ��	 ��	 ��	 �
	 ��	 ��	 �
	 �����

The lack of a uni�ed parallel computing model and the existence of many di�erent

parallel architectures have made it rather di�cult to develop e�cient and portable parallel

FFTs� Recently	 however	 as the parallel programming environments have become less

machine dependent	 examples of such algorithms have appeared� Typical examples are the

Key words and phrases� fast Fourier transform� bulk synchronous parallel� parallel computation�

Inda supported by a doctoral fellowship from CAPES� Brazil� Computer time on the Cray T�E of

HPaC� Delft� funded by NCF� The Netherlands�

�



�
pass �or �
step� approach and the related transpose approach �see e�g� ��	 �	 ��	 �
	 �����

Those algorithms regard the input vector of size N � N�N� as an N� � N� matrix	 and

carry out the computations in a similar way as done for two
dimensional FFTs� Since

those algorithms require the number of processors p to be a divisor of N� and N�	 they

can only be used if p � p
N �

As the number of available processors grows and the communication speed increases	

it is important to develop parallel algorithms that can handle more than
p
N proces


sors� Though generalized algorithms have already been proposed	 they only work for very

speci�c combinations of N and p such as p � N �d����d�k	 where d is the dimensionality

and � � k � p
N ���	 Chap� ����� or k � � ����	 and both N and p are powers of two�

Furthermore	 to our knowledge none of those algorithms were implemented�

Our main aim in this paper is to present a new parallel FFT algorithm and its im


plementation� Our parallel algorithm works for any p � N as long as both are powers

of two	 which is required because of the radix
� framework� �A mixed
radix framework

will be discussed elsewhere ������ We dedicate the remainder of this section to giving a

brief introduction to the basic framework of radix
� and radix
� FFTs and to the bulk

synchronous parallel �BSP� model� In Section �	 we derive our parallel FFT algorithm

by inserting suitable permutation matrices into the basic radix
� decomposition of the

Fourier matrix� This approach leads to a simple and easy to implement distributed mem


ory parallel FFT algorithm� In Section �	 we present a set of templates that are used

in the implementation of the algorithm� In Section �	 we present variants of our FFT

algorithm� We show how to modify the algorithm to accept vectors that are not in the

block distribution� We also show how to obtain a cache�friendly version of our algorithm	

that is	 an algorithm that takes advantage of the cache memory of a computer by breaking

up the computations into small sections in such a way that the data stored in the cache is

completely used before new data is brought in� In Section 
	 we present results regarding

the performance of our implementation and discuss aspects such as the cache e�ect� In

Section �	 we draw our conclusions and discuss future work�

�



���� The fast Fourier transform� The DFT of a complex vector z of size N is de�ned

as the complex vector Z	 also of size N 	 with components

Zk �
N��X
j��

zje
��ijk
N � � � k � N� �����

The inverse DFT	 which transforms the complex vector Z back into the vector z	 is then

de�ned by

zj �
�

N

N��X
k��

Zke
�

��ijk
N � � � k � N� �����

Alternatively	 the DFT can be seen as a matrix
vector multiplication�

Z � FN � z� �����

The complex matrix FN is known as the N �N Fourier matrix � it has elements �FN�jk �

wjk
N 	 where

wN � e
��i
N � �����

Though it is possible to develop FFT algorithms that compute the DFT of a vec


tor of arbitrary size	 the radix
� FFT algorithm only works for N �s that are powers of

two� For simplicity	 we will restrict our discussion to such values of N � The sequen


tial iterative radix
� FFT algorithm starts with the so
called bit reversal permutation

of the input vector �see Section ����	 and proceeds in log�N butter�y stages	 numbered

K � �� �� �� � � � � N 	 which modify the vector� Each butter�y stage consists of N�K times

a butter�y computation��
� zt�j

zt�j�K��

�
A�

�
� zt�j � wj

K � zt�j�K��

zt�j � wj
K � zt�j�K��

�
A � for j � �� �� � � � � K��� �	 ���
�

where t � �� K� � � � � N � K indicates the beginning of a butter�y block in the vector�

These operations cost one complex multiplication and two additions	 or �� real �oating

point operations ��ops�	 per pair� The total �op count of the radix
� FFT is therefore

CFFT���N� � �� � K
�
� N
K
� log�N � 
N log�N�

Algorithm ��� is an in
place version of this algorithm�
�



Algorithm ��� Sequential radix
� FFT algorithm�
CALL Seq FFT�N�y��

ARGUMENTS

N � Vector size� N is a power of � with N � ��
y � �yin� � � � � � yinN���� Complex vector of size N �

OUTPUT y� �yout� � � � � � youtN���� where y
out
k �

PN��
j�� yinj exp���ijk�N��

DESCRIPTION

	� Perform a bit reversal on y�
�� Perform log�N butter
y stages AK�N on y�

K � �
while K � N do

for t � � to N �K step K do

for j � � to K�� � 	 do

a� wj
K � yt�j�K��

yt�j�K�� � yt�j � a
yt�j � yt�j � a

K � � �K

Following van Loan�s matrix approach ����	 Algorithm ��� can be described as a se


quence of sparse matrix
vector multiplications which correspond to the following decom


position of the Fourier matrix�

FN � AN�N � � �A	�NA
�NA��NPN � �����

where PN is the N�N permutation matrix corresponding to the bit reversal permutation

�step � of Algorithm ����	 and the N � N matrices AK�N correspond to the butter�y

stages �step � of Algorithm ����� The block structure of the butter�y stages leads to

block
diagonal matrices of the form

AK�N � IN�K �BK � �����

which is shorthand for a block
diagonal matrix diag�BK � � � � � BK� with N�K copies of the

K � K matrix BK on the diagonal� The symbol � represents the direct �or Kronecker�

product of two matrices	 which is formally de�ned at the end of this subsection� The

matrix BK is known as the K �K ��butter�y matrix which corresponds to the butter�y

�Actually� the matrix decomposition corresponding to the algorithm of Cooley and Tukey ��� is FN �

PN �AN�N � � �

�A��N
�A��N

�A��N � where �AK�N � P��N AK�NPN �

�



computation ���
�� This matrix can be written as

BK �

�
� IK�� �K��

IK�� ��K��

�
� � �����

Here	 the matrix IK�� is the K�� � K�� identity matrix and �K�� is the K�� � K��

diagonal matrix

�K�� � diag�w�
K� w

�
K� � � � � w

K����
K �� �����

Later on we will also need generalized versions of AK�N �

A�
K�N � IN�K �B�

K � ������

where B�
K is the generalized K �K ��butter�y matrix ��	 
	 ���

B�
K �

�
� IK�� ��

K��

IK�� ���
K��

�
� � ������

which has the same form as the original BK 	 but the weights wj
K in ����� are replaced by

wj��
K 	 where � can be any real number�

In practice	 often a radix
� FFT is used� A radix
� algorithm can be derived com


pletely analogously to the radix
� algorithm	 yielding a similar matrix decomposition�

The algorithm starts with a reversal of pairs of bits instead of a reversal of single bits	

and proceeds in log
N ��butter�y stages which involve quadruples of vector components

instead of pairs� Since �� �ops are performed per quadruple	 this brings the �op count

down to

CFFT�
�N� � �� � K
�
� N
K
� log
N � ���
N log�N�

The resulting algorithm has the disadvantage that either it must be assumed that N is a

power of four	 or special precautions must be taken which complicate the algorithm�

We take a slightly di�erent approach� wherever possible we take pairs of stages AK�NAK���N

together and perform them as one operation� Our K�K ��butter�y matrix has the form

DK � BK�I� � BK��� �

�
������
IK�
 ��

K�
 �K�
 ��
K�


IK�
 ���
K�
 i�K�
 �i��

K�


IK�
 ��
K�
 ��K�
 ���

K�


IK�
 ���
K�
 �i�K�
 i��

K�


�
					� � ������

�



where �K�
 is the K���K�� diagonal matrix

�K�
 � diag�w�
K� w

�
K� � � � � w

K�
��
K �� ������

This matrix is a symmetrically permuted version of the radix
� butter�y matrix ������ This

approach gives the e�ciency of a radix
� FFT algorithm	 and the �exibility of treating a

parallel FFT within the radix
� framework� For example	 if we wish to permute the data

sometime during the computation	 for reasons of data locality	 this can happen after any

stage	 and not only after an even number of stages�

An algorithm for the inverse FFT is obtained using the following property�

F��
N �

�

N
�FN �

�

N
�AN�N � � � �A
�N

�A��NPN � ������

The backward algorithm is basically the same as the forward one	 the only di�erence

being that the powers of wK are replaced by their conjugates and that the �nal result is

rescaled�

Now	 we de�ne the direct product of two matrices and give some properties that will

be used in the course of the paper�

De�nition ��� �Direct product�� Let A be a q � r matrix and B be an m � n matrix�

Then the direct product �or Kronecker product� of A and B is the qm�rn matrix de�ned

by

A� B �

�
����
a���B � � � a��r��B

���
� � �

���

aq����B � � � aq���r��B

�
			� �

As one would expect	 the direct product is associative	 but it is not commutative�

Lemma ��� summarizes some direct product properties that follow directly from the def


inition� �See ���	 ��� for other useful properties��

Lemma ��� �Properties of the direct product�� The following holds�

�� �A� B��C �D� � �AC�� �BD�� as long as the products are de�ned�

�� �Im � In� � Imn�

�In verifying this� note that van Loan de�nes the weights to be wK � exp�� ��i
K
��

�



�� If A and B are square matrices of order m and n� respectively�

then �A� In��Im � B� � �A� B� � �Im �B��A� In��

�� If A and B are square matrices of order n such that AB � BA�

then �Im � A��Im �B� � �Im � B��Im � A��

���� The bulk synchronous parallel model� The BSP model ���� is a parallel pro


gramming model which gives a simple and e�ective way to produce portable parallel

algorithms� It does not depend on a speci�c computer architecture	 and it provides a sim


ple cost function that enables us to choose between algorithms without actually having to

implement them� In the BSP model	 a computer consists of a set of p processors	 each with

its own memory	 connected by a communication network that allows processors to access

the private memories of other processors� Accessing local memory �the processor�s own

memory� is faster than accessing remote memory �memory owned by other processors�	

but access time is considered to be independent from the computer architecture� In this

model	 algorithms consist of a sequence of supersteps and synchronization barriers� The

use of supersteps and synchronization barriers imposes a sequential structure on parallel

algorithms	 and this greatly simpli�es the design process�

The variant of the BSP model that we use is a single program multiple data �SPMD�

model	 i�e�	 each one of the p processors executes a copy of the same program	 though each

has its own data� The program distinguishes between the processors through a parameter

s �the processor identi�cation number�� Special cases are treated using �if� statements�

In our model	 a superstep is either a computation superstep	 or a communication super�

step� A computation superstep is a sequence of local computations carried out on data

already available locally before the start of the superstep� A communication superstep

consists of communication of data between processors� To ensure the correct execution

of the algorithm	 global synchronization barriers �i�e�	 places of the algorithm where all

processors must synchronize with each other� precede and or follow a communication

superstep�

A BSP computer can be characterized by four global parameters�

� p	 the number of processors�

� v	 the computing velocity in �op s�
�



� g	 the communication time per data element sent or received	 measured in �op time

units�

� l	 the synchronization time	 also measured in �op time units�

Algorithms can be analyzed by using the parameters p� g	 and l� The parameter v is

used to estimate the total execution time after the cost function has been computed�

The �op count of a computation superstep is simply the maximum amount of work �in

�ops� of any processor� The �op count of a communication superstep is hg � l or hg � �l

�depending on the number of global synchronizations�� Here h is the maximum number

of data elements sent or received by any processor� The cost function of an algorithm

can be obtained by adding the �ops of the separate supersteps� This yields an expression

of the form a � bg � cl� For further details and some basic techniques	 see ��	 ���� The

second reference describes BSPlib	 a standard library de�ned in May ���� which enables

parallel programming in BSP style� The Paderborn University BSP �PUB� library ��� is

another library that permits programming in BSP style� it provides the extra feature of

subset synchronization�

���� Parallel radix�� FFTs� Since the introduction of parallel computers	 and even

before that	 methods for parallelizing FFT algorithms have been proposed ����� The ear


liest methods produced parallel algorithms that	 using p processors	 carry out an FFT

of size N in O�log p� computation supersteps	 which are interleaved by O�log p� commu


nication supersteps that need to communicate O�N
p
� data elements per processor �see

e�g� ��	 ��	 �
�� and hence have cost O�N
p
g� l�� Such methods appeared as a direct conse


quence of the divide
and
conquer structure of the radix
� FFT algorithm� The paper ���

by Chu and George discusses several existing parallel algorithms of this type and three

variants of their own� Restricting the discussion to vector sizes that are powers of two	

they present a common framework in which all the algorithms they discuss are reorderings

of one another in the following sense�

Each butter�y stage K of an FFT of size N 	 performs pairwise operations that combine

elements j and j � K�� from the vector being transformed using the weight wjmodK
K �

Writing j in its binary representation j � �jm��� � � � � j���	 where m � log�N 	 we observe

that elements j and j�K�� di�er only in bit log�K�� and that wjmodK
K � w

�jlog�K�������j���
K �

If the ordering of the vector is changed	 so that original element j is stored as element
�



l	 the butter�y stages must be modi�ed to carry out the same operations� If we can

represent the new ordering using a permutation of the original bits	 it is easy to know

which elements to combine and which weights to use� For example	 if N � �� a possible

reordering of the input vector could be l � �j�� j�� j�� j���	 where j � �j�� j�� j�� j���� The

butter�y stage corresponding to K � �� should then combine elements l � �j�� j�� j�� ���

with l � � � �j�� j�� j�� ��� using weights w
�j��j��j���
�� �

In the parallel scenario	 any group of log� p bits can be used to represent the processor

number	 while the remaining log��N�p� bits are used to represent the local index� If the

bit corresponding to the next butter�y stage is one of the log��N�p� bits that represent

the local index	 then that stage is local	 otherwise communication is needed�

Swarztrauber ��
� carries out a similar discussion� He starts with a more general for


mulation of the problem	 where N is not restricted to powers of two	 but when discussing

the distributed memory framework	 he only considers FFTs on a hypercube	 restricting

both p and N to powers of two� The problem of the algorithms discussed in ��	 ��	 �
� is

that reorderings are carried out by means of exchanging one bit at a time� Since there are

log� p bits in the processor part	 log� p communication supersteps of size O�N
p
g � l� are

needed� A less expensive solution to the problem is to exchange all the processor bits with

a group of local bits corresponding to butter�y stages that have already been performed�

Since the communication cost of the permutation that exchanges many bits is of the same

order O�N
p
g � l� as for exchanging one bit	 the reduction in the communication cost is

huge�

The basic idea for such algorithms already appears in the original Cooley and Tukey

paper ���� In their derivation of the FFT algorithm	 they start by considering the case

where N can be decomposed as N � N�N�	 and rewrite ����� as

Zk��k� �
N���X
j���



N���X
j���

zj��j�w
j�k�N�

N

�
w
j��k�N��k��
N � � � k� � N�� � � k� � N�� ����
�

where Zk��k� � Zk�N��k� � Zk	 and zj��j� � zj�N��j� � zj� Since w
j�k�N�

N � wj�k�
N�

	 the inner

sum of ����
� corresponds to a DFT of size N�	 which can be computed by the same

process as before if N� is not prime� They remark that this process can be applied to

any possible factorization of N 	 N � N� � � � NH�� and that	 if N is composite enough	

real gains �over the O�N�� direct approach� can be achieved� Afterwards they derive the
	



radix
� algorithm by choosing N to be a power of two� If instead of decomposing N

into its prime factors	 we stop at a higher level	 we obtain a decomposition of the FFT

into a sequence of shorter FFTs that	 in the parallel case	 can be spread out over the

processors� This is what happens in our FFT algorithm presented in the next section

and in algorithms based on the �
pass approach and the related transpose approach �see

e�g� ��	 �	 ��	 �
	 �����

�� The parallel algorithm

���� Group�cyclic distribution family and the parallel FFT� Since our parallel

FFT algorithm is based on the radix
� decomposition ����� of the Fourier matrix	 N must

be a power of two� For practical reasons N�p must be integer and therefore p must also be

a power of two� Our parallel FFT algorithm makes use of the data distributions de�ned

below�

De�nition ��� �Cyclic distribution in r groups	 Cr�p�N��� Let r	 p	 and N be integers

with � � r � p � N 	 such that r divides p and N � Let f be a vector of size N to be

distributed over p processors organized in r groups� De�ne M � N�r to be the size of

the subvector of a group and u � p�r to be the number of processors in a group� We say

that f is cyclically distributed in r groups �or r�cyclically distributed� over p processors if	

for all j	 the element fj has local index j � � �j mod M� div u	 and is stored in processor

s� � s�	 where s� � �j divM� � u is the number of the �rst processor in the group �i�e�	

the processor o�set� and s� � �j modM� mod u is the processor identi�cation within the

group�

We use the name group�cyclic distribution family to designate all the r
cyclic distri


butions generated by the same N and p� This family includes the well
known cyclic

distribution �C��p�N�� and block distribution �Cp�p�N�� as extreme cases�

The parallel FFT algorithm works as follows� A total of H � dlog�N� log��N�p�e �

dlogN
p
Ne phases is performed� �The number of phases is the largest integer H for which

�N�p�H�� � N �� In phase �	 the algorithm uses the block distribution to perform the �rst

log��N�p� butter�y stages	 i�e�	 those involving butter�ies with K � N�p �which we call

short distance butter�ies�� Afterwards	 in each intermediate phase � � J � H � � it uses

the r
cyclic distribution	 with r � p��N�p�J 	 to perform a group of log��N�p� butter�y
�
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Figure �� Butter�y operations using the group
cyclic distribution fam


ily Cr�p�N� � Cr��� ���� �A� Logical view	 �B� storage view� The short

distance butter�ies �A���� and A
���� are performed using the C	��� ��� dis


tribution �block distribution�� The medium distance butter�ies �A	��� and

A������ are performed using the C���� ��� distribution� The long distance

butter�ies �A������ are performed using the C���� ��� distribution �cyclic

distribution�� For clarity	 not all butter�y pairs are shown�

stages with �N�p�J � K � �N�p�J�� �the medium distance butter�ies�� Finally	 in phase

H � �	 it uses the cyclic distribution to perform the remaining butter�y stages	 i�e�	 those

involving butter�ies with K � �N�p�H�� �the long distance butter�ies��

Figure � illustrates the use of the group
cyclic distribution family in our parallel FFT�

The same operations are illustrated in two ways� �A� using the logical view	 and �B� using

the storage view� The logical view emphasizes the logical sequence of the elements in the

vector while the storage view emphasizes the way the elements are actually stored� For

the block distribution	 both views are the same�

Our algorithm has onlyO�logN� log�N�p�� communication supersteps of sizeO�N
p
g � l�	

which is a signi�cant improvement over the O�log p� communication supersteps also of
��



size O�N
p
g � l� of the algorithms discussed in the previous section� McColl ���� outlined

a parallel FFT algorithm which is a special case of the FFT algorithm we present here�

His algorithm only works for N � �N�p�H � Furthermore	 his algorithm sends the indices

corresponding to the weights together with the data vector	 increasing the communication

costs unnecessarily� In the original BSP paper ����	 Valiant already discussed the FFT

and mentioned the order of the communication cost that can be achieved�

���� Permutations and permutation matrices� Let u	 v	 and N be positive integers

such that u divides v and v divides N � We de�ne the following permutation�

�u�v�N � f�� � � � � N � �g � f�� � � � � N � �g

j � j� �M � j� � u� j� 	� l � j� �M � j� � N
v

� j��
�����

where M � N
v
u	 j� � j divM 	 j� � �j mod M� div u	 and j� � j mod u� Note that

���
u�v�N � �N

v
�N
u
�N and that ���v�N � �u�N�N is the identity permutation� Permuting a vector

of size N by �u�v�N can be achieved by dividing the vector into v�u subvectors of size

M � Nu�v and then performing a �perfect� shu!e permutation �u�M �

�u�M � f�� � � � �M � �g � f�� � � � �M � �g

j 	� k � �j mod u� � M
u

� j div u�
�����

on each of the subvectors�� This relation can be expressed by

�u�v�N�j� � j divM �M � �u�M�j modM�� �����

which implies that �u�u�N � �u�N �

In the case that p divides N 	 redistributing a vector of size N from block distribution

to r
cyclic distribution over p processors is equivalent to permuting it by �u�p�N 	 where

u � p�r� Using matrix notation	 this permutation can be expressed by the N � N

permutation matrix�

�"u�p�N�lj �

�
�

�
�� if l � �u�p�N�j��

�� otherwise�
�����

�The shu�e permutations �p�N �j� and �N
p
�N�j� can be used to permute a vector of size N distributed

over p processors from block to cyclic distribution and vice�versa�

��



Multiplying a vector y by "u�p�N results in a vector with components �"u�p�Ny�l � y���
u�p�N �l�	

for all l� in other words	 this multiplication corresponds to redistributing the vector from

block distribution to cyclic distribution in r � p�u groups� Note that "u�p�N � Ir�Su�N
p
u	

cf� ������ The matrix corresponding to the inverse permutation ���
u�p�N is "��

u�p�N � "T
u�p�N �

"N
p
�N
u
�N � From now on	 we use the abbreviations "u and �u to denote "u�p�N and �u�p�N 	

respectively� We restrict the use of subscripts p and N to cases where they are not obvious

from the context� We also use Su�M to denote "u�u�M �

���� Decomposition of the Fourier matrix� To obtain the parallel FFT algorithm	

we modify the original radix
� decomposition of the Fourier matrix ����� by inserting

identity permutation matrices IN � "��
u "u corresponding to the changes of distribution	

and regrouping the matrices in the resulting decomposition� In the case that p � p
N

this is done as follows�

FN � "��
p "p � AN�N � "��

p "p � � �"��
p "p � A�N

p
�N � "��

p "p � AN
p
�N � � � A��NPN

� "��
p �"pAN�N"

��
p � � � � �"pA�N

p
�N"

��
p �"p � AN

p
�N � � � A��NPN �

���
�

By de�ning

#Ak�u�p�N � "u�p�NAku�N"
��
u�p�N � �����

and using the fact that "� is the identity matrix	 we can rewrite ���
� as

FN � "��
p � #AN

p
�p�p�N � � � #A� N

p�
�p�p�N� �z �

phase �

�"p"
��
� � #AN

p
���p�N � � � #A����p�N� �z �

phase �

�"�PN � �����

As we did with the permutation matrices "	 from now on we denote #Ak�u�p�N by #Ak�u	

reserving the indices p and N for when they are not obvious from the context and for

stand
alone de�nitions� In the general case	 not restricted to p � p
N 	 we arrive at the

following decomposition of the Fourier matrix�

FN � "��
p

#AN
p
�p � � �

#A
� �N�p�

H��

p
�p� �z �

phaseH��

"p � "��

�N
p
�H��

#AN
p
��N
p
�H�� � � � #A���N

p
�H��� �z �

phaseH��

"�N
p
�H�� � � � �

� � � � "��
N
p

#AN
p
�N
p
� � � #A��N

p� �z �
phase �

"N
p
� "��

�
#AN
p
�� � � �

#A���� �z �
phase �

"� � PN � �����

��
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Figure �� �A� Structure of the N � N matrix #Ak�u � Ir �
diag�A

��u
k�n � A

��u
k�n � � � � � A

�u����u
k�n �� Example with N � ���	 p � �	 r � �	

k � �	 and hence u � � and n � ��� �For clarity	 the A�
k�n are depicted

as A�
k � �B� Matrix diag�A

��u
k�n � A

��u
k�n � � � � � A

�u����u
k�n �� �C� Matrices B

s��u
k 	 with

s� � �� � � � � u� ��

The matrices #Ak�u are block diagonal matrices with block size N
p
�

#Ak�u�p�N � Ir � diag�A
��u
k�n � A

��u
k�n � � � � � A

�u����u
k�n �� �����

where r � p�u	 n � N�p	 and A�
k�n was de�ned previously	 cf� ������� Figure � exampli�es

the structure of the matrix #Ak�u� We shall formally state this as Corollary ��� which

follows from Theorem ����

Theorem ���� Let u� M � and k be powers of two such that � � k �M�u� De�ne n �

M�u� Then

Su�MAku�MS
��
u�M � diag�A

��u
k�n � A

��u
k�n � � � � � A

�u����u
k�n ��

��



Proof� See Appendix A�

Corollary ���� Let r� p� and N be powers of two with � � r � p � N � De�ne u � p�r

and n � N�p� Let k be a power of two with � � k � n� Then

#Ak�u�p�N � Ir � diag�A
��u
k�n � A

��u
k�n � � � � � A

�u����u
k�n ��

Proof� De�ne M � N�r� Then

#Ak�u�p�N � "u�p�NAku�N"
��
u�p�N � �Ir � Su�M��Ir � Aku�M��Ir � S��

u�M�

� Ir � �Su�MAku�MS
��
u�M� � Ir � diag�A

��u
k�n � A

��u
k�n � � � � � A

�u����u
k�n ��

Starting from the Fourier matrix decomposition �����	 it is easy to develop a parallel

�BSP� FFT algorithm� Since all the matrices #Ak�u are block diagonal matrices with

block size equal to N�p	 any multiplication #Ak�u � y can be handled locally	 provided

that the vector y is in the block distribution� This property guarantees that matrix

decomposition ����� detaches communication and computation completely� On the one

hand	 each generalized butter�y phase � #AN
p
�u � � �

#A��u��y	 is a strict computation superstep�

On the other hand	 each permutation "u is a strict communication superstep� In the next

section we give a complete description of the resulting parallel algorithm�

�� Implementation of the parallel algorithm

We present our algorithm in the form of templates	 which are high level of detail algo


rithms	 ready to be implemented	 though not necessarily completely optimized� In the

list that follows we introduce the terminology used in our parallel algorithms�

� Supersteps� Each superstep is numbered textually and labeled according to its

type� �Comp� computation superstep	 �Comm� communication superstep	 �CpCm� sub


routine containing both computation and communication supersteps� Global syn


chronizations are explicitly indicated by the keyword Synchronize� Supersteps inside

loops are executed repeatedly	 though they are numbered only once�

� Indexing� All the indices of vectors or array structures are global� This means that

array elements have a unique index which is independent of the processor that owns

it� This property enables us to describe variables and gain access to arrays in an

unambiguous manner	 even though the array is distributed and each processor has
��



only part of it� �In an actual implementation	 it is more convenient to convert the

indexing scheme to a local one��

� Communication� Communication between processors is indicated using

gj � Put�pid� n� fi�

This operation puts n elements of array f 	 starting from element i	 into processor

pid and stores them there in array g starting from element j� Subscripts are not

needed when the �rst element of the array is � or when communicating scalars� When

communicating more than one element	 we use boldface to emphasize that we are

dealing with a vector and not a scalar� All puts are assumed to be bu�ered	 so that

they are safely carried out	 even if f and g happen to be the same�

Algorithm ��� is a direct implementation of the matrix decomposition ������ The input

vector y is transformed in place� Superstep � permutes the input vector by a bit reversal�

y� PN �y� Superstep � carries out the short distance butter�ies� y� �AN
p
�N � � � A��N� �y�

�Since �� is the identity permutation	 #Ak�� � Ak�N 	 for k � �� � � � � N�p�� Superstep �

permutes y to the r
cyclic distribution	 with r � max��� p��N�p��� y � "p�r � y�
Each time superstep � is executed	 it computes a group of medium distance butter


�ies� y � � #AN
p
��N
p
�J � � �

#A���N
p
�J � � y� � � J � H � �� Superstep 
 prepares the vec


tor for the next butter�y phase by permuting it to the r
cyclic distribution	 with r �

max��� p��N�p�J���� y� �" p
r
"��

�N
p
�J
� �y� Superstep � carries out the long distance butter


�ies� y� � #AN
p
�p � � �

#A
�
�N�p�H��

p
�p
� � y� Finally	 superstep � permutes the vector back to the

block distribution� y � "��
p � y� Note that	 to obtain the normalized inverse transform	

the output vector must be divided by N � The subroutines used in the FFT template are

described in the following subsections�

���� Generalized butter�ies� The subroutine BTFLY �Algorithm ���� is a sequential

subroutine that multiplies the input vector by A�
n�n � � � A

�
k��n

A�
k����n

� Step � performs

pairs of generalized butter�y operations� The k
th iteration of the outermost while


loop performs the pair of generalized butter�ies stages A�
k�nA

�
k���n	 the t
th iteration of

the intermediate for
loop corresponds to the t
th repetition of the generalized ��butter�y

D�
k � B�

k �I� � B�
k���	 cf� ������	 which is computed by the innermost for
loop� Step �

��



Algorithm ��� Template for the parallel fast Fourier transform	 using the group
cyclic

distribution family�
CALL BSP FFT�s� p� sign�N�y��

ARGUMENTS

s� Processor identi
cation� � � s � p�
p� Number of processors� p is a power of � with p � N �
sign� Transform direction� �	 for forward� �	 for backward�
N � Transform size� N is a power of � with N � ��
y � �yin� � � � � � yinN���� Complex vector of size N �block distributed��

OUTPUT y� �yout� � � � � � youtN���� where y
out
k �

PN��
j�� yinj exp�sign � ��ijk�N��

DESCRIPTION

	CpCm Parallel bit reversal permutation�
BSP BitRev�s� p�N�y�

�Comp Short distance butter
ies�

BTFLY��� sign� Np � ��ysN
p

�

�CpCm Permutation to Cmax���p��N�p���p�N� distribution�

BSP BlockToCyclic�s� s mod N
p � s mod N

p �min�p� Np ��
N
p �y�s�smodN

p
�N
p

�

H � dlogN
p
Ne

for J � 	 to H � � do
�Comp Medium distance butter
ies�

BTFLY� smod�N�p�J

�N�p�J
� sign� Np � ��ysN

p

�

�Comm Permutation to Cmax���p��N�p�J����p�N� distribution�
BSP CyclicToCyclic�s� p�N� �N�p�J �min�p� �N�p�J����y�

�Comp Long distance butter
ies�

BTFLY� sp � sign�
N
p � �

�N�p�H��

p �ysN
p

�

�CpCm Permutation to block distribution�

BSP CyclicToBlock��� s� p� Np �y�

is only executed if the number of butter�y stages is odd� It computes the last general


ized �
butter�y A�
n�n� The FFT algorithm computes the desired �short	 medium	 or long

distance� butter�y stages corresponding to phase J 	 � � J � H	 by de�ning the input

parameter � � �s mod u��u	 where u � min�p� �N�p�J�	 and performing the generalized

butter�y stages on the local part of the vector y �i�e�	 the subvector ysN
p
of size N�p that

starts at element sN�p��

If the needed weights are stored in a lookup table	 the cost of an A�
k�nA

�
k���n butter�y

operation is �� � k


� n
k
� �


�
n� Summing over all pairs A�

k�nA
�
k���n and adding 
n �ops for

��



Algorithm ��� Template for the sequential generalized butter�y operations�
CALL BTFLY��� sign� n� k��y��

ARGUMENTS

�� Butter
y parameter� used to compute the correct weights� � � � � 	�
sign� Transform direction� �	 for forward� �	 for backward�
n� Vector size� n is a power of � with n � ��
k�� Smaller ��butter
y size� k� is a power of � with � � k� � �n�
y � �y�� � � � � yn���� Complex vector of size n�

OUTPUT

y� A�
n�n � � � A

�
k��n

A�
k����n

y for forward� and

y� �A�
n�n � � �

�A�
k��n

�A�
k����n

y for backward�

DESCRIPTION

	� Perform pairs of butter
y stages A�
k�nA

�
k���n�

k � k�
while k � n do

for t � � to n� k step k do
for j � � to k��� 	 do

yw	� w
sign��j���
k � yt�j�k��

yw�� w
sign���j���
k � yt�j�k�


yw�� w
sign���j���
k � yt�j��k�


a� yt�j � yw�
b� yt�j � yw�
c� yw	 � yw�
d� yw	� yw�
yt�j � a� c
yt�j�k�
 � b� sign � id
yt�j�k�� � a� c
yt�j��k�
 � b� sign � id

k � � � k
�� Perform the last butter
y stage A�

n�n�
if k � �n then

for j � � to n��� 	 do

a� w
sign��j���
n � yj�n��

yj�n�� � yj � a
yj � yj � a

the last butter�y �if necessary� gives a cost of

CBTFLY�n� k�� �

�
��

�
n � ��log� n� log� k� � �� div �� � 
n � ��log� n� log� k� � �� mod ��

�
��

�
n � �log� n� log� k� � �� �

�

�
n � ��log� n� log� k� � �� mod �� �

�����

for the generalized butter�y algorithm �Algorithm �����
��



The total computation cost of our parallel FFT �Algorithm ���� is obtained by adding

the costs of the butter�y phases�

CBTFLY�
N

p
� �� �

��

�

N

p
log�

N

p
�

�

�

N

p
�log�

N

p
mod ���

for phases J � � to H � �	 where H � dlogN
p
Ne	 and for the last phase H � � if

�N�p�H�� � p	 i�e�	 H � logN
p
N � Otherwise	 the cost for the last phase is

CBTFLY�
N

p
� �

�N�p�H��

p
� �

��

�

N

p
�log�N mod log�

N

p
�

�
�

�

N

p
��log�N mod log�

N

p
� mod ���

This gives

CFFT�par�Comp�N� p� �
��

�

N

p
log�N �

�

�

N

p
��log�

N

p
mod ���log�N div log�

N

p
�

� �log�N mod log�
N

p
� mod ���

�����

where the second term corresponds to the extra cost we have to pay for performing

�
butter�ies� The communication and synchronization costs of our parallel FFT are dis


cussed in Section ��
 after we discuss the parallel permutation subroutines�

���� Parallel bit reversal� The bit reversal matrix PN is de�ned by

�PN�jk �

�
�

�
�� if j � revN�k��

�� otherwise�
�����

Here	 revN is the bit reversal permutation

revN � f�� � � � � N � �g � f�� � � � � N � �g

j �
m��X
l��

bl�
l 	� k �

m��X
l��

bm�l���
l�

�����

where m � log�N and �bm�� � � � b��� is the binary representation of j� Note that rev��
N �

revN 	 which means that P��
N � PN �

The bit reversal permutation has the following very useful property�

Lemma ���� Let u � �q� N � �m� with q � m� Then

revN�j� � revN
u
�j div u� �

N

u
� revu�j mod u�� � � j � N�

�	



Proof� Let d � m� q	 so that N
u
� �d� If the binary representation of j is �bm�� � � � b���	

then

j � j mod u� u � �j div u� �
q��X
l��

bl�
l � �q

d��X
l��

bl�q�
l�

Now	

revN�j� �
m��X
l��

bm�l���
l �

d��X
l��

bm�l���
l � �d �

q��X
l��

bq�l���
l � a�

N

u
� b�

If we show that a � revN
u
�j div u� and b � revu�j mod u�	 we are done� In fact	

a �
d��X
l��

bm�l���
l �

d��X
l��

bm�q�l���q�
l � �substituting cl � bl�q�

�
d��X
l��

cd�l���
l � revN

u



d��X
l��

cl�
l

�
� revN

u



d��X
l��

bl�q�
l

�
� revN

u
�j div u�

and

b �

q��X
l��

bq�l���
l � revu



q��X
l��

bl�
l

�
� revu�j mod u��

Corollary ���� Let u � N be powers of two� Then

PN � �Iu � PN
u
��Pu � IN

u
�Su�N

Proof� The matrix �Iu � PN
u
��Pu � IN

u
�Su�N corresponds to a sequence of three permuta


tions�

�� j � l � �u�N �j� � j mod u � N
u
� j div u

�� l� t � revu�l div
N
u
� � N

u
� l mod N

u
� revu�j mod u� � N

u
� j div u

�� t� k � t div N
u
� N
u
�revN

u
�t mod N

u
� � revu�j mod u� � N

u
� revN

u
�j div u� � revN �j�

Let y be a vector of size N � �m block distributed over p � �q processors� Suppose that

we want to permute it by a bit reversal permutation	 i�e�	 perform y� PN � y� Applying
Corollary ��� with u � p	 it is possible to split the parallel bit reversal permutation in

two parts as follows�
�




�� y� �Pp� IN
p
�Sp�N �y	 which is a global permutation that sends the elements to the

�nal destination processors	 but with local indices still in the original order�

j � t � revp�j mod p�� �z �
Proc�t�

�N
p

� j div p� �z �
t�

�

Having as basis the block distribution	 from now on	 we use Proc�k� � k div N
p
to

denote the processor in which element k is stored	 and k� � k mod N
p
to denote the

local index of the element�

�� y� �Ip � PN
p
� � y	 which is a local bit reversal permutation in the local index t��

t� � k� � revN
p
�t��

Algorithm ��� carries out a parallel bit reversal using this idea� If we combine the local bit

reversal �superstep � of Algorithm ���� with the short distance butter�y phase �superstep

� of Algorithm ����	 we obtain a complete local sequential FFT� This means that we can

easily replace the two supersteps by any optimized FFT subroutine we can lay our hands

on�

Algorithm ��� Template for the parallel bit reversal�
CALL BSP BitRev�s� p� n�y��

ARGUMENTS

s� Processor identi
cation� � � s � p�
p� Number of processors� p is a power of � with p � N �
N � Vector size� N is a power of � with N � ��
y � �y�� � � � � yN���� Complex vector of size N �block distributed��

OUTPUT y� PNy�

DESCRIPTION

	Comm Global permutation�

for j � sNp to sNp � N
p � 	 do

dest� revp�j mod p�
xdest�N

p
�j div p � Put�dest� 	� yj�

Synchronize
�Comp Local bit reversal�

for t� � � to N
p � 	 do

ysN
p
�revN

p
�t�� � xsN

p
�t�

If p � N�p	 it is possible to optimize communication superstep � of Algorithm ��� by

sending packets of data� This is done in a similar way as when permuting from block to
��



cyclic distribution �see Section ����� the only di�erence is in the destination processor	

which is revp�j mod p� instead of j mod p�

���� Permutations within the group�cyclic distribution family� Permuting a vec


tor from the Cr��p�N� distribution to the Cr��p�N� distribution	 where r� � p�u� and

r� � p�u� may be any possible group sizes	 not necessarily powers of two	 can be done as

follows� �rst	 use ���
u� to permute the vector to the block distribution	 and then use �u�

to permute it to the Cr��p�N� distribution� This operation is expensive if performed in

parallel	 because all the data have to be moved twice around the processors� The best

approach is to combine both permutations into one�

�u�u� � f�� � � � � N � �g � f�� � � � � N � �g

j 	� l � �u���
��
u�

�j���
���
�

�Note that ��u�u� �
�� � �u�u� 	 and that �u�u� is an abbreviation for �u�u��p�N �� In the general

case	 there is no simple formula for computing the destination index l� Algorithm ��� is

a template for this case� Some combinations of the parameters r�� r�� p� and N 	 however	

lead to simpler expressions for the destination index� The simplest case is when r� or r� is

equal to p	 i�e�	 one of the distributions involved is the block distribution� This situation

occurs in supersteps � and � of the FFT algorithm �Algorithm ���� and is discussed in

Section ����

���� Permutation from block to cyclic distribution� The permutations �p�N and

���
p�N are the permutations that convert a vector from block to cyclic distribution and vice

versa� In the case that p � b � N�p	 both �p�N and ���
p�N can be optimized by sending

packets of size b�p �here we assume that p divides b	 but nothing more��

For �p�N 	 this is done as follows� First perform a local permutation �p�b on the local

index j �	

j � � t� � j � mod p � b
p
� j � div p�

Then perform a global cyclic permutation of packets on the global index t � j div b�b�t� �
t� � b� t� � bp � t�	

t� k � t���z�
Proc�k�

�b� t� � b
p
� t�� �z �

k�

� �����

��



Algorithm ��� Template for the parallel permutation from r�
cyclic to r�
cyclic distri


bution�
CALL BSP CyclicToCyclic�s� p�N� u�� u��y��

ARGUMENTS

s� Processor identi
cation� � � s � p�
p� Number of processors� p � N �
N � Vector size�
u�� Number of processors in the old group� u� � p�r��
u�� Number of processors in the new group� u� � p�r��
y � �y�� � � � � yN���� Complex vector of size N �block distributed��

OUTPUT y� �u��
��
u� � y�

DESCRIPTION

	Comm Global permutation �u�u� �

for j � sNp to sNp � N
p � 	 do

l � �u�u� �j�
proc� l div N

p

yl � Put�proc� 	� yj�
Synchronize

The resulting global index k is then

k � j � mod p � b� j div b � b
p
� j � div p

� j mod p � b � j div b � b
p
� �j mod b� div p

� j mod p � b � �j div b � b� j mod b� div p

� j mod p � b � j div p�

which is indeed �p�N�j�	 see Figure ��

Subroutine BSP BlockToCyclic �Algorithm ��
� with s� � s and s� � � carries out

the permutation �p�N � The subroutine performs the permutation on a vector y of size

N � pb which is block distributed over p processors� This is done in superstep � ot the

FFT algorithm if p � N�p�

Subroutine BSP BlockToCyclic can also be used to carry out the permutation �p�rp�rN	

which is needed in superstep � of the FFT algorithm if p � N�p� This is possible because

permuting a vector of size rN by �p�rp�rN is the same as dividing it into r subvectors of

size N and then performing a shu!e permutation �p�N on each of the subvectors	 cf� ������

In this case s� � s mod p	 s� � s� s�	 and y is a subvector starting at element s�b of the

original vector�
��
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Figure �� Schematic representation of a two stage permutation from block

to cyclic distribution �storage view�� Example with N � �� and p � �� �A�

Local �
�	 permutation� �B� Global cyclic permutation of packets of size ��

The template for subroutine BSP CyclicToBlock	 which carries out ���
p�N and ���

p�rp�rN

is obtained in a similar way as the template for subroutine BSP BlockToCyclic� The

template starts by performing a global cyclic permutation of packets	 and then it carries

out a local permutation ���
p�b � �The template is not presented here� see ���� for more

details��

��
� BSP cost� To compute the total cost of our parallel FFT algorithm �Algorithm ����

we need to sum the computation	 communication	 and synchronization costs� The com


putation costs were already obtained in Section ���� To simplify the �nal result we only

include the higher order term of the total computation cost �����	

CFFT�par�Comp�N� p� �
��

�

N

p
log�N� �����

which is exact when only �
butter�ies are performed�

The communication and synchronization costs are the costs involved in performing

the bit reversal and the permutations related to the group
cyclic distribution family�

The maximum amount of data sent or received during a permutation involving complex

numbers is equal to N�p complex values �or �N�p real values�� If the permutation is

performed with puts	 the number of synchronizations is �	 giving a total cost of

Cpermut�N� p� � �
N

p
� g � l �����

��



Algorithm ��	 Template for the parallel permutation from block to cyclic distribution�
CALL BSP BlockToCyclic�s�� s�� p� b�y��

ARGUMENTS

s�� s�� Processor o�set and processor identi
cation within group� � � s� � p�
p� Number of processors in group�
b� Block size� p divides b� if p � b�
y � �y�� � � � � ypb���� Complex vector of size pb �block distributed within group��

OUTPUT y� Sp�pby�

DESCRIPTION

if p � b then
	Comm Global �p�pb permutation�

for j � s� � b to �s� � 	� � b� 	 do
dest� j mod p
ydest�b�j div p � Put�s� � dest� 	� yj�

Synchronize
else

�Comp Local �p�b permutation�
for j� � � to b� 	 do

k� � j� mod p � bp � j� div p

xs��b�k� � ys��b�j�
�Comm Global cyclic permutation of packets�

for proc � � to p� 	 do

yproc�b�s�� bp
� Put�s� � proc� bp � xs��b�proc� bp

�

Synchronize

for each of the dlogN
p
Ne � � permutations performed in the FFT algorithm� The total

cost of the FFT algorithm is

CFFT� par�N� p� �
��

�

N

p
log�N � �

N

p
�dlogN

p
Ne � �� � g � �dlogN

p
Ne � �� � l� �����

In Section 
	 we discuss the validity of cost function ����� as an accurate estimator of the

true cost of the FFT algorithm�

�� Variants of the algorithm

���� Parallel FFT using other data distributions� Up to now	 we discussed an FFT

algorithm where the input and output �I O� vector must be block distributed� There exist

applications of the FFT where it would be better if the I O vector would be distributed

by other distributions or where the distribution can be freely chosen �see e�g� ���	 ��	 ����

� Here	 we discuss how to modify our parallel FFT algorithm to accept I O vectors that

are not distributed by the block distribution�
��



The �rst and the last supersteps of Algorithm ��� are permutations� Because of this	

the algorithm can be modi�ed to accept any I O data distribution without any extra

communication cost	 or even at a smaller communication cost depending on the desired

distributions� If the input vector is not in the block distribution	 the algorithm is modi�ed

by combining the redistribution to block distribution with the bit reversal permutation� If

the output vector is expected to be in a distribution other than the block distribution	 this

is done by replacing the permutation from cyclic to block distribution by a permutation

from the cyclic to the desired distribution�

If the desired distribution for the output vector is the cyclic distribution	 the last

communication superstep can be completely skipped� The �rst permutation can also be

skipped if the input vector is already stored by the distribution associated with the bit

reversal permutation� Applications where the input vector is bit reversed and the output

vector is cyclically distributed are advantageous	 because	 in such cases	 two complete

permutations can be skipped�
 This saves two thirds of the total communication cost

in the common case that p � N�p	 leaving only one permutation in the middle of the

computation�

While the cyclic distribution is simple and widely used	 the distribution associated

with the bit reversal permutation is awkward� Fortunately	 it is possible to modify Algo


rithm ��� so that the cyclic distribution is a natural input distribution	 i�e�	 a distribution

that does not involve any communication as the �rst superstep� This is done as follows�

The �rst three supersteps of Algorithm ��� are described by the matrix decomposition

"u � AN
p
�N � � � A��N � PN � �����

where u � min�p�N�p�� Knowing that AK�N � Ip�AK�N
p
	 and that the bit reversal matrix

can be decomposed as PN � �Ip � PN
p
� � �Pp � IN

p
� � Sp�N �cf� Corollary ����	 we rewrite

�The idea of skipping permutations to save communication time or to reduce the overhead caused by

local permutations is known� Cooley and Tukey ��� already suggested this in order to save local bit rever�

sals� Other authors �e�g�� ���� ��� 

�� give examples where skipping permutations saves communication

time�

��



matrix ����� as

"u � �Ip � AN
p
�N
p
� � � � �Ip � A��N

p
� � �Ip � PN

p
� � �Pp � IN

p
� � Sp�N

� "u � �Ip � FN
p
� � �Pp � IN

p
� � Sp�N � "u � �Pp � IN

p
� � �Ip � FN

p
� � Sp�N � �����

Here we used Lemma ���� The �rst three supersteps of the parallel FFT algorithm derived

from this new decomposition are� ��Comm� permutation from block to cyclic distribution	

��Comp� local FFT	 ��Comm� permutation de�ned by "min�p�N�p� � �Pp � IN
p
�� In the case that

the input vector is already cyclically distributed	 the �rst superstep can be skipped�

���� Generalized butter�y phase with adjustable size� In our original algorithm	

we chose to insert the permutation matrices "u in the leftmost possible position� This

procedure corresponds to factoring N as N � N
�N�p�H�� �N�p�

H��	 and gives an algorithm

with a minimum number of permutations� However	 if p 
� �N�p�H��	 it is possible to

insert the permutation matrices at an earlier position without increasing the number of

permutations� The resulting algorithm would correspond to a di�erent factorization of

N �

We can use this �exibility to reduce the computation cost of some combinations of p

and N by inserting the permutations so that a maximal number of generalized butter�y

stages are paired o�� Another reason to permute the vector at an earlier stage is that

the sizes of the butter�y phases can be better balanced �so that all factors of N have

approximately the same size�� This would enhance the performance on a cache
sensitive

computer �see the discussion in Section 
�� An even a more e�ective way of enhancing the

performance on a cache
sensitive computer is to reduce the butter�y sizes so that they

always �t completely into the cache� We suggest a method in the following subsection�

���� Cache�friendly parallel FFT� Each computation superstep of our parallel FFT

algorithm performs a butter�y phase which consists of a sequence of generalized butter�y

stages represented by the operation y � R�
l�ny	 where l and n are powers of two with

� � l � n	 and

R�
l�n � A�

n�n � � �A�
�l�nA

�
l�n� �����

is an n� n matrix� Suppose that the cache memory of a computer is such that the data

needed by a butter�y phase of size n�v	 where v � n is a power of two	 �ts totally in
��



the computer cache� We can view v as the number of virtual processors available in each

processor� If we decompose ����� into a sequence of smaller butter�y phases of size less

than or equal to n�v which can be carried out independently from each other	 we can get

the most out of the cache of the computer�

De�ne h � dlogn
v
ne and j � dlogn

v
le � �	 so that �n

v
�j � l � �n

v
�j��� Similarly to �����	

if we denote "u�v�n by "u	 we can write

R�
l�n � "��

v
#A�
n
v
�v � � � #A

�

�
�n�v�h��

v
�v� �z �

phase h�j��

"v � "��
�n
v
�h��

#A�
n
v
��n
v
�h�� � � � #A

�
���n

v
�h��� �z �

phase h�j��

"�n
v
�h�� � � � �

� � � � "��
�n
v
�j��

#A�
n
v
��n
v
�j�� � � � #A�

���n
v
�j��� �z �

phase �

"�n
v
�j�� � "��

�n
v
�j

#A�
n
v
��n
v
�j � � �

#A�
l

�n�v�j
��n
v
�j� �z �

phase �

"�n
v
�j � �����

where the n�n matrix #A�
k�u is an abbreviation for #A�

k�u�v�n � "u�v�nA
�
ku�n"

��
u�v�n� Generalized

versions of Theorem ��� and Corollary ��� can be used to prove that

#A�
k�u�v�n � I v

u
� diag�A

��u
k�n

v
� A

������u
k�n

v
� � � � � A

���u����u
k�n

v
�� ���
�

The matrix decomposition ����� can be used to construct an alternative �cache
friendly�

algorithm for the computation of the generalized butter�y phases� Note that if � � �

then the resulting algorithm can be used to construct a cache
friendly sequential FFT

algorithm�


� Experimental results and discussion

In this section	 we present results on the performance of our implementation of the

FFT� We implemented the FFT algorithm for the block distribution in ANSI C using the

BSPlib communications library ����� Our programs are completely self
contained	 and we

did not rely on any system
provided numerical software such as BLAS	 FFTs	 etc�

We tested our implementation on a Cray T�E with up to �� processors	 each hav


ing a theoretical peak speed of ��� M�op s� The accuracy of double precision ���
bit�

arithmetic is ���� ������ We also give accuracy results from calculations on a Sun Work


station using IEEE �
� �oating point arithmetic	 which has a double precision accuracy

of ���� �����	 and which is the standard used in many computers such as workstations�

To make a consistent comparison of the results	 we compiled all test programs using the

bspfront driver with options �O� �flibrary�level � �fcombine�puts and measured
��



the elapsed execution times on exclusively dedicated CPUs using the system clock� The

times given correspond to an average of the execution times of a forward FFT and a

normalized backward FFT�


��� Accuracy� We tested the overall accuracy of our implementation by measuring the

error obtained when transforming a random complex vector f with values Re�fj� and

Im�fj� uniformly distributed between � and �� The relative error is de�ned as jjF� �
Fjj��jjFjj�� where F� is the vector obtained by transforming the original vector f by a

forward �or backward� FFT	 and F is the exact transform	 which we computed using the

same algorithm but using quadruple precision� Here	 jj � jj� indicates the L�
norm�

Table � shows the relative errors of the sequential algorithm for various problem sizes�

Since the error for the forward and backward FFT are approximately the same	 we present

only the results for the forward transform� The errors of the parallel implementation are of

the same order as in the sequential case� In fact	 the error of the parallel implementation

only di�ers from the error of the sequential one if the butter�y stages are not paired in

the same way� This validates the parallel algorithm� The results also indicate that IEEE

arithmetic is superior to the CRAY
speci�c arithmetic�

Table �� Relative errors for the sequential FFT algorithm�

N CRAY T�E IEEE �
�


�� ���� ����� ���� �����

���� 
��� ����� ���� �����

���� ���� ����� ���� �����

���� ���� ����� ���� �����

���� ���� ����� ���� �����

����� ��
� ����� ���� �����

����� ���� ����
 ���� �����

�

�� ���� ����
 ���� �����


��� Performance of the sequential implementation� Our sequential FFT algorithm

was implemented using Algorithm ��� with � � �� Its e�ciency can be analyzed by looking

at its execution times or its FFT �op rates�

FFTrate�seq�N� �

N log�N

Time�seq�N�
� �
���

�	



where Time�seq�N� is the execution time of the sequential implementation� Analyzing

the performance of an FFT algorithm by using the number of �ops of the radix
� FFT as

basis is a standard and useful procedure� By doing so	 it is possible to compare di�erent

algorithms with di�erent cost functions and also evaluate the overall performance of the

algorithm as a function of N �

Table �� Timing results �in ms� and FFT �op rates �in M�op s� of the

sequential FFT on the Cray T�E�

N Time FFTrate

�� ���� ����

�� ���� 
���

��� ���� ����

�
� ���
 ����


�� ���� 
��


���� ���� ���


���� ���� ����

���� ���� ���


���� ����
 ����

����� 
���� ���


����� ������ ����

�

�� ������ ���


Table � gives timing results and FFT �op rates for various problem sizes� The �op rates

show that the performance of the algorithm increases until N � ����	 when it suddenly

drops� This sudden decrease in performance happens because the data space allocated by

the program becomes too large to �t completely in the cache memory of the CRAY T�E	�

which means that the computation becomes more expensive	 because more accesses to

the main memory are needed�


��� Scalability of the parallel implementation� The timing results obtained by our

parallel algorithm are summarized in Table �� We also present the theoretical predictions

using the cost function ����� and the values of the BSP parameters v	 g	 and l listed in

�The cache size of the CRAY T�E is �� Kbytes� which means that a sequential FFT of size up to

N � ���� �ts completely in the cache ��� Kbytes for the data vector � 
 Kbytes for the weights table��

�




Table �� Predicted and measured execution times �in ms� for the FFT on

a Cray T�E� Boldface entries indicate out
of
cache computations

p 
�� ���� ���� ����

pred exp pred exp pred exp pred exp

seq ��
� ���� ���
 ���� ���� ���� 
��� ����

� ��
� ���� ���� ���� ���� ���� ���� ���


� ���� ���� ���� ���� ���� ���� ���� ����

� ���
 ���� ���
 ���� ���� ���� ���� ����

� ���� ���� ���� ���� ��
� ���� ���� ����

�� ���� ���� ���
 ���� ���� ���� ���� ��
�

�� ���� ���� ���� ���� ���� ���� ���� ��
�

�� ���� ���� ���� ���� ��
� ��

 ���� ����

p ���� ����� ����� �

��

pred exp pred exp pred exp pred exp

seq ����� �
�
	 ����� 	��
� 
��� ��
�� ����� �����

� ����� �
�
	 ����� 	��
� ���� ��
�� ����� ��	��

� ���� ���� �
��� ����	 ���� �
�� ���� ��
��

� ���� ���� ���� ���� ���� �
�
 ���� �����

� ���� ���� ���� 
��� ��� ���
 ���� ���


�� ���� ���� ���� ���� ��� 
�� ��� ����

�� ���� ���
 ���� ���� ��
 ��� 
�� ���

�� ���� ���� ���� ���� ��
 ��� ��� ���

Table � which were obtained using a modi�ed version of the benchmark program from

BSPpack� �����

Except for the out
of
cache computations �boldface entries in the table�	 the timings

show that the BSP cost function predicts the behavior of the parallel implementation well�

The discrepancy between predicted and measured results for out
of
cache computations is

to be expected	 since the computation speed	 which we assumed to be constant	 suddenly

drops when the computations cannot be done completely in cache� These results show

that the BSP model is a valid tool for analyzing and predicting parallel performance�

�Available at http���www�math�uu�nl�people�bisseling�software�html

��



Table �� BSP parameters for the CRAY T�E	 with v � ���� M�op s� The

value of v is based on in
cache dot product computations�

p g l

��ops� �	s� ��ops� �	s�

� ���� ������� � ����

� ���� ������� ��� �����

� ���� ������
 �
� ���
�

� ���� ������� ���� �����

�� ���� ������� ��
� 
����

�� ���� ������� ���� 
����

�� ���
 �����
� ���� ������

A way of analyzing the scalability of a parallel implementation is to look at its absolute

e	ciency

Eabs�p�N� �
Time�seq�N�

pTime�p�N�
� �
���

as done in Figure �� In theory	 Eabs�p�N� � �	 and our goal is to achieve e�ciencies

as close to � as possible� The �gure shows moderate e�ciencies for small problem sizes

�N � ������ ForN � ����	 e�ciencies of up to ��� are achieved� Such amazing e�ciencies

are possible because of the so called cache e�ect � when N � ���� the total amount of

memory needed by the FFT is too large to �t in the cache memory of one processor	 but	

if the problem is executed using a su�ciently large number of processors	 the memory

required by each processor becomes small enough to �t in the cache� This e�ect is welcome	

but it masks the real scalability of the algorithm�

Note that there is a sudden rise in the �op rate when the local problem size becomes

small enough to �t in the cache� In this way the cache e�ect can be easily spotted and

the scalability of the algorithm better judged� FFT sizes that �t completely in the cache

�N � ����� have a completely di�erent behavior than larger problems� For small sizes

�N � ����� the e�ciency decreases notably in going from one to two processors	 then it is

more or less constant up to �$�� processors and after that it decreases steadily� For large

sizes �N � ������ the �op rate is nearly constant	 both before and after the transition

out
of
cache in
cache	 indicating a good scalability� The cases ���� � N � ����� are

intermediate cases where there is an increase in the e�ciency in going from one to two
��
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Figure �� Absolute e�ciencies of the FFT on a Cray T�E�

processors	 but a deterioration of performance when the number of processors becomes

too large�

We can also examine the scalability of our parallel algorithm by increasing the problem

size together with the number of processors ���	 ���	 for instance by maintaining the local

problem size N�p constant and increasing p� In doing so	 we can learn about the asymp


totic behavior of our algorithm� Figure 
 shows the predicted and measured e�ciencies

as a function of p for various values of N�p� The predicted values converge to a horizontal

line as N�p increases which means that asymptotically the e�ciency can be maintained at

a constant level if N�p is maintained constant� The experimental results must be analyzed

keeping in mind the cache e�ect	 which causes the sudden increase in the e�ciency� It is

clear that e�ciency can be maintained at reasonable levels for N�p as small as �
�	 and

at very good levels for N�p � �����
��
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�� Conclusions and future work

In Section �	 we presented a new parallel FFT algorithm	 Algorithm ���� This algo


rithm is a mixed radix
� and radix
� FFT� It was derived from the matrix decomposition

corresponding to the radix
� algorithm by inserting suitable permutation matrices corre


sponding to the group
cyclic distribution family� The use of the group
cyclic distribution

family gives a parallel algorithm which is simple to understand and easy to implement�

The use of matrix notation proved to be a powerful tool for deriving and adapting the

parallel FFT algorithms to our needs� With the help of matrix notation	 we showed how

to modify our original algorithm to accept I O vectors that are not in block distribution	

without incurring extra communication cost� Indeed	 if the vector is cyclically distributed	

we showed how to eliminate the �rst and the last permutation altogether	 reducing the

communication to one third of the original cost� Since the cyclic distribution is simple

and widely used	 this property can be exploited to obtain faster applications� A prime

application of the cyclic distribution would be in the �eld of quantum molecular dynamics

where a potential energy operator is applied to the input vector representing a wave packet

and a kinetic energy operator is applied to the output vector ����� Since both operations
��



are componentwise	 any distribution can be chosen and hence the cyclic distribution is

preferred�

We presented results concerning the performance of our implementation of Algorithm ����

The tests were carried out on a Cray T�E with up to �� processors� Our implementation

proved to scale reasonably well for small problem sizes �N � ����� with up to � pro


cessors	 and to scale very well for larger problem sizes �N � ������� In part	 the very

favorable results obtained for larger N are due to the cache e�ect� Because of this e�ect	

we analyzed our results in terms of FFT �op rate per processor	 and also by using the

theoretical cost function� Both analyses con�rmed the previous results�

We also analyzed the asymptotic behavior of our algorithm by maintaining the local

problem size N�p constant and increasing p� We concluded that the e�ciency level is

maintained as long as N�p is large enough� A study of the experimental data obtained

on the Cray T�E indicates that reasonable e�ciency levels �E�p�N� � ��
� are already

maintained for N�p as small as �
�	 and good e�ciency levels are maintained for N�p �

�����

Because the cache
based architecture of the Cray T�E in�uences our results so much	

and there are many other computers with a similar architecture	 we proposed the use

of cache
friendly FFT algorithms� A cache
friendly sequential algorithm can be derived

from our parallel algorithm by substituting the processors by virtual processors� It is also

possible to derive a cache
friendly parallel algorithm by writing each generalized butter�y

phase as a sequence of smaller generalized butter�y phases� We expect the scalability of

such an algorithm to be similar to the theoretical scalability of our algorithm�

Appendix A� Proof of Theorem ���

The proof of Theorem ��� uses the following lemma�

Lemma A��� Let u� M � and k be powers of two such that u � M and � � k �M�u�

De�ne K � ku� Let j be an index� � � j � M � Then

�� If j mod K � K��� then �u�M�j� mod k � k���

�� If j �K�� � M � then �u�M�j �K��� � �u�M�j� � k���
��



�� If j� � j mod M
u
� and j� � j div M

u
� then

���
u�M�j� mod K

K
�
j� mod k � j��u

k
�

Proof� Part �� �u�M�j� mod k � �j mod u � M
u
� j div u� mod k � �j div u� mod k� Now	

j div u � �j divK �K � j mod K� div u � j divK � k��j mod K� div u� As a consequence

�u�M�j� mod k � �j mod K� div u � �K��� divu � k���

Part �� �u�M�j�K��� � �j�K��� mod u �M
u
��j�K��� divu � j mod u �M

u
�j div u�

k�� � �u�M�j� � k���

Part �� ���
u�M�j� mod K � �j mod M

u
� u � j div M

u
� mod K � �j� � u� j�� mod K �

�j� div k �K�j� mod k �u�j�� mod K � j� mod k �u�j�� which gives ����
u�M�j� mod K��K

� �j� mod k � u� j���K � �j� mod k � j��u��k�

Proof of Theorem ����

Proof� De�ne K � ku� To prove the theorem	 it is su�cient to prove that

Su�MAK�MS
��
u�My � diag�A

��u
k�n � � � � � A

�u����u
k�n �y� for all y�

First note that the vector AK�Mx can be described by

��
�

�AK�Mx�j � xj � wjmodK
K xj�K���

�AK�Mx�j�K�� � xj � wjmodK
K xj�K��� � � j mod K � K���

�A���

Let x � S��
u�My and Su�M�AK�Mx� � z	 and substitute xj � y�u�M �j� and z�u�M �j� �

�AK�Mx�j in �A���� This gives

��
�

z�u�M �j� � y�u�M �j� � wjmodK
K y�u�M �j�K����

z�u�M �j�K��� � y�u�M �j� � wjmodK
K y�u�M �j�K���� � � j mod K � K���

�A���

De�ning l � �u�M�j� and applying Lemma A�� to j gives the following� Part � of

Lemma A�� says that	 if j mod K � K�� then l mod k � k��� Furthermore	 by Part �	

�u�M�j � K��� � l � k��� Finally	 applying Part � to l gives wjmodK
K � w

���
u�M�l�modK

K �

w
u�l�modk��s�
K � w

l�modk�s��u
k � where l� � l mod M

u
and s� � l div M

u
�

��



Substituting the above results in �A��� gives the following description of vector z �

Su�MAK�MS
��
u�My���

�
zl � yl � w

l�modk�s��u
k yl�k���

zl�k�� � yl � w
l�modk�s��u
k yl�k��� � � l mod k � k���

�A���

Writing the index l � s� � n � �l� div k� � k � l� mod k	 it is easy to see that zl �

�diag�A
��u
k�n � A

��u
k�n � � � � � A

�u����u
k�n � � y�l	 proving the theorem� �See Figure �B��
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