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Abstract 
 

Sedimentation-diffusion (SD) equilibria from analytical ultracentrifugation of well-characterized 

charged silica spheres in ethanol deviate strongly from a barometric profile and demonstrate the 

existence and substantial effects of a recently predicted internal macroscopic electric field (R. van Roij, 

J. Phys: Cond. Mat. 15, S3569 (2003)). Experimental SD-profiles yield the spatial gradient of the 

electrostatic potential energy of the colloids, which clearly manifests an almost homogeneous 

macroscopic electric field. Electrochemical Donnan potential measurements confirm a difference in 

electrical potential between top and bottom of the profiles. A ‘non’-barometric’ limiting law derived 

from electroneutrality explains trends in SD-profiles quite well. Our analysis of osmotic pressures 

(obtained from integrating SD-profiles) beyond this simple law includes, among other things, colloid-

ion attractions and extra volume terms in the free energy. 

 
 

I. Introduction 
 
The sedimentation-diffusion (SD) equilibrium of colloids corresponds to a 

concentration profile resulting from the competition between Brownian motion and 

sedimentation in a gravitational or centrifugal field. The SD-equilibrium is an 

important source of thermodynamic information about the colloids under study, 

because the profile is directly related to the osmotic equation of state. A classical 

example is Perrin’s determination [1] of the Boltzmann constant from a measured SD-

profile of non-interacting colloids in a gravitational field. For non-interacting colloids 

the profile is expected to be an exponential Boltzmann distribution (the ‘barometric 

profile’), so for colloids of known weight, the Boltzmann constant is obtained from a 

logarithmic plot of colloid number density versus height. Conversely, the thermal 

energy kT is the only parameter needed to determine an unknown colloid weight, 

provided the SD-profile is the barometric profile expected at sufficiently low colloid 

densities. This expectation is in general only justified for uncharged colloids: for 

charged colloids [2-6] pronounced deviations from the barometric profile may occur 

even at very low colloid concentrations. 

This non-barometric behavior is explained by recent theory [2,5] and 

simulations [6] as a manifestation of a macroscopic electric field in the SD-profile 

which reduces the effective colloidal mass. In a recent experimental study on charged 

silica spheres in ethanol [4], the presence of an electric field was mentioned as one of 
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the few options left to explain the enormous spatial extension of SD-profiles of the 

colloids under study, even at the very low densities where only a barometric 

distribution on a much smaller length scale was expected. Deviations from the 

barometric profile and the possibility of an electric field have been reported earlier for 

charged latex spheres at high ionic strength [7]. Biben and Hansen [2] and Van Roij 

[5] have provided the first clear theoretical explanation of the electric field and its 

effect on SD-profiles, an effect which may be drastic, as is also confirmed by recent 

simulations [6]. Ref. [5] analyzes the three characteristic regions that can be identified 

[5] in the SD-profile: region I – an exponential tail of the profile with a decay length 

as if particles were uncharged (the ‘barometric’ part), region III which is also an 

exponential one but with a decay length increased by a factor of the order of z (the 

colloidal charge), and an intermediate region II where, quite surprisingly, the 

concentration profile is linear in height. A homogeneous electric field is predicted to 

be present in regions II and III (in region I it is negligible), where the colloids are 

lifted upwards against gravity. In region II, it is argued [5], the effective colloid mass 

is nearly zero because there the electric field almost cancels the very gravity that 

causes its existence. Ref. [5] derives separate expressions for the three regions from 

the Donnan equilibrium, supplementing the analysis by including the electrical 

(Maxwell) stress in the force balance on the particles to account for the charge 

separation (formation of a macroscopic condenser), responsible for the homogeneous 

electric field in regions II and III. It has also been shown [8], that the Donnan 

equilibrium, without any additional assumptions, entails limiting laws for both the 

entire SD-profile and the accompanying electric field with the three regions referred 

to above as asymptotic solutions. 

 Recently the first experimental evidence for the existence and effects of the 

electric field was reported in an analytical ultracentrifugation (UC) study on SD-

profiles of charged silica spheres in ethanol [9]. In the present paper, we not only 

present additional UC measurements on the same silica dispersions but also provide a 

more extended analysis of SD-profiles to obtain, among other things, the osmotic 

pressure as a function of silica concentration. Moreover, since the electric field is 

identified [5,8] as a gradient in the Donnan potential, it is clearly of interest to 

compare the overall electric potential jump determined from the SD-profiles to direct 

electrochemical measurements of the Donnan potentials of silica dispersions. Such 
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measurements have not been performed earlier, so in the experimental Section III 

Donnan potential measurements on silica alcosols are explained in some detail.  In 

section II we recapitulate a derivation of the non-barometric SD-profile in a 

centrifugal field [9] also to illustrate that it is a limiting law which solely relies on the 

assumptions of macroscopic charge neutrality for colloids plus ideal ions. Results are 

discussed in section IV, for reasons of clarity figure by figure, followed by a general 

discussion in section V, which also includes a comparison between experimental 

equations of state of the silica spheres, to osmotic pressure calculations beyond the 

model outlined below. 

 
II. Non-barometric SD-profiles 
 
Sedimentation of charged colloidal particles involves both colloids and ions in the 

dispersion which form a system of three interpenetrating fluids, or a mixture of three 

species, namely colloidal particles with number density ρ each carrying z elementary 

charges,  monovalent cations with concentration c+, and monovalent anions with 

concentration c-. The dispersion is considered in osmotic equilibrium with a large salt 

reservoir with a total concentration of ions 2cs. At equilibrium, the forces acting on 

any volume element of the three fluids must be in balance for each fluid. Here we 

consider sedimentation in a centrifugal field; the case of gravitational settling is 

discussed in [5,8]. Because of the huge mass difference between ions and colloids, the 

centrifugal field produces spatial separation between them, which is responsible for 

the formation of the macroscopic electric field.  

The effect of the centrifugal field on ions is negligible (in comparison to that on 

colloids), so the equilibrium condition for ions is: 

0=±− ±
± Eec

dr
dckT , (1) 

where E is the internal macroscopic electric field, related to the electrostatic potential 

ψ by E=-dψ/dr, r is the radial coordinate, and e is the proton charge. Introducing the 

dimensionless electrostatic potential: 

kT
eψφ = , (2) 

the distribution of ions in the SD profile, given by eq.(1), becomes: 

)exp( φ∓scc =± . (3) 
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For the case of the much heavier colloids, the equilibrium equation is: 
 

02 =+−− rmEze
dr
dkT c ρωρρ , (4) 

where mc is the particle mass corrected for buoyancy and ω is the angular frequency 

of rotation. We remark that the electric field term in eq. (4) must be accompanied by 

the centrifugal field term: if the centrifugal field vanishes, the electric field must 

vanish too. To derive the colloid profile from eq.(4), one more equation is needed 

which we find from the macroscopic neutrality condition (the colloid charge is 

negative as in the experiments):  

0=−+− −+ cczρ . (5) 

By combining eqs. (3) and (5) one obtains: 

)sinh(φ−=y , (6) 

where y is the non-dimensional number density of colloidal particles: 

sc
zy
2

ρ
= . (7) 

From eq. (6) it clearly follows that an electric field is only present in the case of a 

sedimented dispersion, i.e., for a concentration profile of colloidal particles. The 

validity of the neutrality condition (5) holds for volumes much larger than the volume 

with dimensions of the order of the Debye screening length. Equation (5) is 

macroscopic and is consistent with the (macroscopic) fluid model, but it disregards 

details in the electric fields on a local scale comparable to the Debye length. Using the 

neutrality condition in the fluid equations, but assuming (on a smaller scale) ∇ , 

is known as the plasma approximation [10]. The presence of an electric field due to 

charge separation, incidentally, is actually well-known in plasma physics: a typical 

plasma consists of electrons and ions, which have very different masses. The electric 

field appears in various phenomena like wave propagation and ambipolar diffusion 

[10]. 

0≠⋅ E

 From equations (4) and(6), after integration, the equation for the SD-profile is 

found to be: 

( ) const
2

)arcsinh(ln 2

2

+=+
ωL

ryzy . (8) 

Lω is the so-called centrifugal length given by: 
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where ρp is the mass density of the colloidal particles, ρs is the mass density of the 

solvent, and v is the volume of one particle. The non-barometric term z arcsinh(y) in 

Eq. (8) is the direct contribution of the electric field to the profile and adds to the 

barometric term ln(y), just as in the case of one-dimensional sedimentation under 

gravity [8]. Only if the former term is negligible, the barometric profile holds (see eq. 

(10)), and Lω has the meaning of the effective spatial extension of the profile. The 

three regions found in [5] are asymptotic solutions of the equivalent of eq. (8) for 

gravitational settling. For a centrifugal field, they are given by: 
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The three regimes, referred to as region I, II, and III, occur under the following 

conditions [5]. Region I is the barometric profile and it corresponds to the case zy<1. 

The intermediate region II is in the centrifugal field a parabola and occurs if zy>1 but 

y<1. The third region is also exponential but with an inflated decay length in 

comparison to that of the barometric exponential and can be observed experimentally 

if y>1. In eqs. (10)-(12) r1 and r2 are the crossover coordinates between the regions I 

and II, and II and III, respectively. In eq. (12) we prefer to use rb instead of r2, where 

rb is the radial coordinate of the bottom of the centrifuge sedimentation cell. In [5] it 

was also shown that: 

z
ry
ry

=
)(
)(

1

2 ,  (13) 

which provides an alternative to estimate the particle charge and at the same time a 

possibility of verifying the fitting results. We note here that the 1+z reduction of the 

molar mass as in regio III was already discussed by the pioneers of ultracentrifugation 

(Svedberg, Tiselius; see the brief historical review in Ref [8]). 
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 In our experiments, the salt reservoir is actually the top of the profile (referred 

to as the supernatant), which has a very low particle concentration and occupies a 

significant part of the sedimentation cell.  Initially, samples without added salt were 

measured. The total ion concentration in the supernatant is identified as 2cs and can be 

calculated by extrapolating the measured colloid volume fraction (Φ) dependence of 

the ion concentration to Φ=0. The presence of ions in our dispersions is mainly due to 

ionization of colloid surface groups and dissociation of solvent molecules, 

supplemented by residual ions resulting from the chemical synthesis of the silica 

dispersion. The concentration of ions of the latter type was minimized by dialysis of 

the stock dispersion against pure ethanol. 

 
III. Experimental 
 
III.1 Colloidal dispersions 

Dispersions of negatively charged silica particles (SiA) in ethanol were investigated at 

different silica volume fractions Φ and at low ion concentration 2cs, as well as at fixed 

volume fraction of particles (Φ=0.3%) with increasing amounts of added salt (LiNO3). 

Amorphous silica spheres, with properties presented in Table I, were synthesized by 

polymerization of (hydrolyzed) tetraethoxysilane in an ethanol-ammonia mixture 

[11]. The silica surface was modified by covalent reaction with 3-

Methacryloxypropyltrimethoxysilane (TPM) during distillation, simultaneously 

transferring the silica spheres to absolute (analytical grade) ethanol [11]. The stock 

dispersion for the ultracentrifugation experiments was free from contaminants such as 

polymeric species or secondary silica particles, which might affect SD-profiles [4]. 

TPM-coated silica spheres do not aggregate in ethanol and are well-documented 

model particles for the study of charge-stabilized colloids [11,12]. Particle 

characterization (Table I) was performed on the same samples as used for 

ultracentrifugation. 

We have also measured the sedimentation profiles of uncharged particles for 

comparison. Commercially available silica particles (Ludox HS-40, DuPont), initially 

dispersed in water, were coated with octadecylalcohol and redispersed in cyclohexane 

as described elsewhere [13]. The average radius of these particles, determined from 

dynamic light scattering measurements, is 18 nm. 
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III.2 Experimental techniques 

Analytical ultracentrifugation. Ultracentrifugation was performed using a Beckman 

Optima XL-A analytical ultracentrifuge and sector-shaped sedimentation cells, 

thermostatically controlled at T=298.0 K. The ultracentrifuge is equipped with an 

optical scanning system, which measures the transmittance H through the sample 

against a reference of pure ethanol as a function of the radial coordinate at a chosen 

wavelength.  The results are converted to attenuance A defined by A=ln(1/H). The 

attenuance (also known as extinction) is in our case due to the Rayleigh scattering by 

silica particles, as confirmed by wavelength scans: the attenuance varied with λ-4, 

where λ is the wavelength of the incident light. Consequently, the range of linear 

dependence of attenuance on the particle volume fraction Φ limited due to the 

influence of the structure factor at higher concentrations. Our measurements (Fig. 1) 

show that the linear dependence is valid up to silica volume fractions of 

approximately 2.5%. Consequently, only for profile segments with volume fractions 

below 2.5% a direct conversion to silica concentration is possible. For samples with 

an initial volume fraction up to 0.5% (that is the volume fraction of the homogeneous 

sample before centrifugation) the whole profile can be rescaled in terms of particle 

number density by determining the extinction coefficient from Fig. 1. At higher initial 

volume fractions, only the upper part of the profiles can be rescaled in this manner.  

A first series of measurements was performed at 1100 rpm (which corresponds 

to an acceleration of 88 g in the center of the cell) for a period of up to 7 days to 

achieve equilibrium profiles of sufficient thickness, which nevertheless fully decay 

within the available (radial) space to the supernatant depleted of particles (within the 

limits of the instrument accuracy). The state of equilibrium was checked by 

subtracting the data recorded at intervals of 24 hours. The reproducibility of the 

profiles was very good (a few percent) when the measurements were repeated after 

the cell content was homogenized by stirring it for 15 minutes. This reproducibility 

also confirms that the silica spheres do not aggregate in the centrifugal field.  

A second series of measurements was performed at 2200 rpm for low volume 

fraction samples and even at higher rotation velocities for more concentrated samples.  
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Donnan potential measurements.  Donnan potential measurements, in particular on 

non-aqueous dispersions, are rather uncommon.  Therefore we describe experimental 

aspects of the method in detail, referring to Overbeek [14-15] and Lyklema [16] for 

extensive discussion of theoretical aspects. The aim is to measure the electrical 

potential difference between top and bottom fractions of a centrifuged dispersion, 

using two electrodes to probe the electrical potentials. 

Salt bridges are necessary for the electrochemical measurement of Donnan 

potentials [14-15]. An incorrect approach would be to measure the voltage between 

two reversible electrodes without salt bridges, for instance two platinum electrodes, 

because the potential difference between two reversible electrodes must be zero at 

thermodynamic equilibrium [14-17] (a reversible electrode is one for which electron 

transfer is unimpaired to and from the electrolyte solution, so that the electrode 

potential is completely determined by the composition of the electrolyte solution 

[15]). A major drawback of salt bridges, however, is that they contaminate the sample 

dispersions with salt, causing a decrease of the Donnan potential. In our experiments, 

the salt bridge solutions leaked at about 5 µL per hour into the samples. This is quite a 

complication, because (a) our sample volumes are small, (b) their salt concentrations 

are very low (≈ 30 µM) and must remain unchanged, and (c) the maximum expected 

signal is small, of the order of 10 mV, so that weak artifacts may have an important 

influence on the measurements. 

One way to limit contamination of the samples is to use dilute salt bridge 

solutions. However, unless salt bridge solutions are much more concentrated than the 

sample dispersions under study (at least by a factor of 10), the liquid junction 

potentials at the salt bridges may dominate the measured potential [17-21], thwarting 

the measurement of the Donnan potential. These liquid junction potentials result from 

different concentrations and mobilities of the ions. Another way to limit salt 

contamination is to minimize the leakage rate, although “a constant and substantial 

flow rate is probably the most critical factor for obtaining reproducible junction 

potentials” [18]. Moreover, the leakage rate also affects the measurement by causing a 

streaming potential, approximately proportional to the flow rate [15,16,21-23]. Such a 

streaming potential arises from the pressure applied on the porous plug at the bottom 

of the salt bridge by the column of salt bridge solution, causing a flow of the mobile 

part of the electrical double layer at the surface of the capillaries in the porous plug 
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relative to the stationary part of the double layer. Preliminary experiments indicated a 

dependence of 1 mV/cm on the height of the column of salt bridge solution. 

In our measurements, we attempted to equalize the leaking rates of the two 

electrodes, by using two commercial electrodes of the same type, filled to the same 

height with the same salt solution, and introduced at the same height in the two 

sample dispersions. To evaluate the effect of differences in liquid junction potential 

between the two electrodes, their salt bridges were filled with a series of different 

LiCl concentrations ranging from 10 µM to saturation. Each time the LiCl 

concentration of the two salt bridges was changed, a constant potential difference 

between the two electrodes in a salt solution was obtained after a few days of 

equilibration. Before and after measuring the sample dispersions, their conductivity 

was measured, to evaluate the effect of leakage from the salt bridges. Another 

measure taken to equalize the liquid junction potentials of the electrodes was to 

employ salt bridge solutions made from the same solvent as the sample solutions; 

using a different solvent would have an unpredictable, possibly large effect [24]. 

Figure 2 gives a schematic illustration of our setup for measuring Donnan 

potentials. The voltage was measured between two ethanolic calomel electrodes 

[25,26]. Each electrode, prepared by removing the aqueous salt bridge solution of a 

REF921 from Radiometer Analytical, consisted of a glass tube containing a calomel-

covered mercury element immersed in a solution of LiCl in ethanol (which will be 

referred to as “salt bridge”); the LiCl solution could be replaced through a filling hole 

and was in contact with the sample dispersion by way of a porous plug. The mercury 

was in contact with the external electrical circuit (the mercury was contained in a 

smaller concentric internal glass tube with a second porous plug, not shown in Fig. 2). 

The two calomel electrodes were introduced in two sample dispersions separated by a 

dialysis membrane (Spectra/Por Type 6, MWCO:50000, Biotech). Screw-caps were 

used to prevent loss of ethanol from the samples due to evaporation. Voltages were 

measured using the electrometer of an Autolab electrochemical instrument (Eco 

Chemie, input impedance > 100 GΩ). The membrane cell and the electrodes were in a 

grounded Faraday cage, which is crucial for reliable measurements. 

The dispersions in the two sample compartments were 3 mL fractions from the 

top and bottom of a 0.2 vol.% silica dispersion (SiA, see table 1) centrifuged for 2 

hours at 7000 rpm (acceleration: 6000 g; total volume: 35 mL) in a preparative 
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ultracentrifuge. In this way, the bottom fraction had a background salt concentration 

of the same order as the top fraction but a silica concentration higher by about a factor 

of 10. 

 

Electrophoresis and electrical conductivity measurements were performed with a 

DELSA 440SX (Coulter) at T=298 K on the same samples used in the ultracentrifuge. 

In the case of electrophoretic measurements, the samples were filtered prior to the 

measurements to remove dust.  The mobility was determined from a Lorentzian fit to 

the measured peaks at four scattering angles and further used to estimate the number 

of elementary charges z of the particles as described in section IV. Conductivities 

obtained from DELSA were used to estimate the total concentration of ions. 

 
IV. Results 
IV.1. Analytical ultracentrifuge measurements 

In this section, experimental data are discussed in terms of the non-barometric law eq. 

(8) and its consequences eqs. (10)-(12). A more general discussion beyond the 

validity of Eqs. (10)- (12) follows in section V. 

For the case of the uncharged silica particles SiL in cyclohexane, the expected 

barometric profile (eq.(10)) is obtained (Fig. 3), with a centrifugal length in 

reasonable agreement with the colloid weight. For the case of the charged silica 

spheres SiA in ethanol, all measured profiles deviate from the barometric one. An 

example of theoretical prediction for the effect of the internal macroscopic electric 

field on profiles in centrifugal field, according to eqs. (10)-(12), is presented Figure 4. 

The centrifugal length and charge of particles correspond to our particles (see below). 

At high enough volume fraction of colloids and low salt concentration, all three 

regions are seen in one and the same profile. The region III expands when the volume 

fraction of colloids increases; the same behavior is predicted if the volume fraction is 

fixed but the salt concentration decreases. 

In Figure 5a, the measured profiles at very low initial volume fractions of SiA 

particles at 1100 rpm are presented. For the sample with an initial silica volume 

fraction of 0.015%, further referred to as the “0.015% sample”, the barometric part of 

the profile (region I) dominates, but nevertheless a significant deviation is observed 
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close to the bottom of the cell. The non-barometric part of the profile for this sample 

as well as for the 0.030% sample are not well described by eqs. (11) and (12). 

However, in the case of the 0.045% sample, all three regions expected from eqs. (10)-

(12) can be clearly distinguished in the profile. 

The barometric part of these three curves yields practically the same 

centrifugal length Lω (see Table II). For the mass density of silica in Table I, eq. (9) 

yields an average particle radius of 19.3 nm. This value is smaller than the average 

TEM radius by 12%, probably because the smaller particles of the size distribution are 

present in the top of the profile (which has to be used for the determination of Lω).  

The regions II and III were fitted with eqs. (11) and (12), respectively, to find 

the number of elementary charges z on the colloids (further referred to as particle 

charge). From region III, the charge z(III) is determined directly as a fit parameter, 

using the value of Lω from region I (see Table II). The values of Lω determined from 

region I of each profile, incidentally, are used in all cases discussed in this paper. 

From region II, z(II) can be determined if the measurements are rescaled in 

terms of particle number density ρ, and if the ion concentration in the supernatant 2cs 

is known. The determination of the crossover coordinate r1 was done directly from the 

logarithmic plot. The particle number density is determined by using a calibration plot 

appropriate for this sample (like the one in Fig. 1 but at λ=240 nm), and volume 

fraction of particles written as Φ=δv. The volume of a particle v was calculated using 

the average TEM diameter. The total ion concentration for the homogeneous 

dispersion was estimated from: 

)( −+ +
≈

µµ
σ

e
ctot , (14) 

 
where σ is the electrical conductivity. This simple equation is expected to give at least 

the correct order of magnitude when both the ion concentration and the particle 

concentration are very low. Consequently, the proton mobility in ethanol at infinite 

dilution µ+= m8101.6 −×

≈

2 V-1 s-1   was used, and an order of magnitude for the mobility 

of negative ions µ− 
8102 −× m2 V-1 s-1 was assumed. The results are presented in 

Table II.  We do not expect more than the correct order of magnitude from eq.(14). 

We may have different types of ions in our sample - see the discussion in section II: 

protons with concentration cH
+ (counterions) produced by the colloids as well as 

positive and negative ions with concentrations cp and cm (assumed monovalent) so 
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that . Consequently, we have +≠=
Hmp ccc )( −−+ ++= + µµµσ mpH

ccce .  If we 

assume an average mobility of ions <µi> for these three species, then the total ion 

concentration is c )/( ><= ietot µσ , which agrees in order of magnitude with eq.(14). 

The total ion concentration ctot was estimated from conductivity data for all analyzed 

samples (see Table II). From extrapolation to Φ=0, the value  µM162 ≈sc  was 

obtained and assumed to be the same for all samples.  

)κR+1(4 0 ζεπε Rr

3µηζ =

ζ

[ 0
1 /(r kTεεκ =−

The charge z was estimated from electrophoretic mobility measurements, 

using the Debye-Hückel approximation [27], according to ref. [28], from the equation: 

ze = , (15) 

where ε0  and εr are the electrical permittivities of vacuum and ethanol respectively. 

This method is justified because of the relatively small radius R of particles and large 

Debye length κ−1, as shown below. We replaced here the surface potential by the zeta 

potential ζ, which is a reasonable approximation since the electrical potential around 

silica spheres in ethanol decays only weakly because of the large Debye length. The 

zeta potential was determined in our case from Hückel’s equation: )2/( 0 rεε . 

Here µ is the measured electrophoretic mobility of particles (see Table I) and η the 

viscosity of solvent. We found =−76.6 mV. Using the total ion concentrations 

obtained with eq.(14), the Debye length was estimated from ] 2/12 )totce , 

(see Table II). Since κR<1, a reasonable estimation of the particle charge via eq. (15)

and Hückel’s equation can be expected. The measured electrophoretic mobility was 

practically independent of the volume fractions of particles. Consequently we assume 

the value z≈50, determined from the 0.3% sample, as the order of magnitude of 

particle charge for all samples in this study. 

Finally, the ratio y(r2)/y(r1) of the non-dimensional particle number densities 

(See eq. (13)) at crossovers was estimated from Fig. 5a and presented in Table II.  

 The profiles obtained for SiA colloids at slightly higher concentrations, 

centrifuged at 1100 rpm, are presented in Fig. 5b. They all show the three regions in 

each profile, in very good qualitative agreement with eqs.(10)-(12). An example of 

the very good fits of the data in the region II and III with eqs. (11) and (12), 

respectively, is given in Fig. 6 A, B. The determined values of Lω, z(II), and z(III) for 
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each sample are presented in Table II. In the case of the 0.48% sample, region III 

shows a small distortion anticipating the results presented in Fig. 9 (see below). 

 At increasing salt concentration, the effect of the internal electric field is 

progressively reduced (together with the extent of regions II and III) until the 

barometric part dominates the profile (Fig. 7). Note that only little salt is needed to 

change the profiles substantially. 

 We will now process the experimental SD-profiles further to obtain explicit 

information about the electric field as proposed in [8]. The barometric exponential 

part is present in all experimental profiles, so it can be easily extracted from the data 

by multiplying the normalized non-dimensional profile y(r)/y(rb) by 

, where y(r)]2/()(exp[ 22
1

2
ωLrr −− b) is the non-dimensional concentration of particles 

at the bottom of the cell. If eq. (8) holds, the logarithm of this product should equal 

zφ. The results for three volume fractions are presented in Fig. 8a, clearly manifesting 

the linear change in φ, i.e. the homogeneous electric field. Corresponding to the 

region III of the profile, in the limit z>>1, one obtains the following equation: 

2

22
)(

2 ω

φ
L

rrz bIII −
−≈ . (16) 

It can be seen from Fig. 8a that, indeed, the curves stay superimposed close to the 

bottom of the cell while they flatten at different levels upon entering the region I, 

where the electrical potential approaches its constant value in the supernatant. 

Equation (16), in principle, provides of the electrostatic potential φ if z is accurately 

known from separate measurements. Taking into account the relationship between the 

electrostatic potential and field strength, the ratio between the electric and centrifugal 

force acting on a colloidal particle becomes: 

dr
zd

r
L

rm
zeE

c

)(2

2

φ
ω

ω−= . (17) 

Using the slope of the quasi-linear region III as plotted in Fig. 8a, eq. (17) yields a 

value close to unity for the ratio of the two forces, as expected from the discussion in 

Ref. [5]: the electric field indeed virtually balances the weight of the colloids in the 

centrifugal field. Note that the value of z is not needed for the evaluation of this force 

ratio. 

 By identifying the particle concentration corresponding to each value of r, we 

can convert Fig. 8a to Fig. 8b. The curves do not overlap in this case since the initial 
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slope (see eq.(6)) depends on z2 which, if eqs. (11) and (12) are correct, apparently 

depends on the volume fraction (see Table II).  

 When the sedimentation equilibrium measurements were performed at 2200 

rpm, the shape of SD-profiles clearly changed (Fig. 9a,b). The changes are substantial 

at higher initial volume fractions of colloids, as can be seen in Figure 9b, which 

shows an intermediate ‘plateau’ instead of region III, followed by a steep increase in 

concentration of particles near the bottom. A similar trend (even at lower velocities) is 

observed if the initial volume fraction is increased beyond those analyzed so far (Fig. 

9c). At lower velocities the plateau is quite extended, but it disappears if the rotor 

speed is high enough, leading to a very steep profile close to the bottom. At 

significantly higher velocities this sediment is simply compressed towards the bottom 

of the cell. The compressed profiles in Fig. 9, in which colloidal interactions must be 

quite significant, clearly fall outside the range of validity of eq.(8). Further work will 

be needed to explain, for example, the peculiar plateau in Fig. 9. 

 

IV.2. Donnan potential measurements 

Figure 10 shows a series of time-dependent measurements for determining the 

Donnan potential difference between bottom and top fractions of a centrifuged silica 

dispersion (see experimental). Before and after measuring the sample dispersions, the 

potential difference was measured between the two calomel electrodes with 1 mM 

LiCl salt bridges contacting the same 1 mM LiCl solution; the resulting signal of –0.4 

mV indicates that the two electrodes were almost identical and not altered due to 

contact with the sample dispersions (no electrical effect due to irreversible adsorption 

of silica particles, for example). The connections of the electrodes to the voltmeter 

were kept unchanged during the following measurements. The electrodes were 

removed from the LiCl solution (t ≈ 800 s in Fig. 10) and introduced in a cell 

containing the bottom and top fractions obtained by centrifugation of the silica 

dispersion (see Fig. 2). The voltage indicates that the potential of the bottom fraction 

was –13 mV compared to the top fraction (the voltage went off scale for about 100 s, 

when the electrical circuit was open during transfer and ethanol rinsing of the 

electrodes). In case of negligible or equal liquid junction potentials at the salt bridges, 

exchanging the electrodes between the two sample compartments should simply 

change the sign of the voltage, not the magnitude, and this was indeed observed (t ≈ 
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1200 s in Fig. 10). A few minutes were required to obtain a constant voltage, after 

which its magnitude started to decrease, mainly because of the increasing salt 

concentration near the electrode inserted in the bottom fraction. In the time of the 

measurements in Fig. 10, the salt concentration of the sample dispersions increased by 

about 5 %. From the measurement in Fig. 10, it is concluded that the difference in 

Donnan potential between bottom and top fractions is –12.9 ± 0.5 mV. 

The measured Donnan potential has the expected sign, negative like the 

surface charge of the colloidal silica particles. The value is also plausible compared to 

the theoretical prediction of –9 mV calculated from eqs. (6) and (7), where z ≈ 50 is 

the colloid charge from electrophoresis, ρ ≈ 0.49 µM at the bottom (1.3 vol.%) and ρ 

≈ 0.046 µM at the top (0.12 vol.%), and cs ≈ 30 µM (salt concentration determined for 

the top fraction). As expected, the Donnan potential was found to decrease upon 

increasing the salt concentration cs at constant silica concentration or upon decreasing 

the silica concentration ρ at constant salt concentration. For instance, similar amounts 

of LiCl were added to the two compartments studied in Figure 10, using the steady 

stream of LiCl solution from two salt bridges, and this led to an increase of the salt 

concentration of the top fraction compartment by about a factor of 4 and a decrease of 

the Donnan potential by a similar factor (it became –3 mV). When the silica 

concentration was decreased by a factor of 2, by mixing the two dispersions of Figure 

10, the Donnan potential difference with the initial top fraction also decreased by a 

factor of 2. 

The influence of the salt bridge concentration on the Donnan potential 

measurements was studied systematically. Salt bridge concentrations below 1 mM 

LiCl did not lead to the correct sign of the Donnan potential and also were clearly 

unreliable for other reasons. With 10 µM LiCl salt bridges, the potential oscillated, an 

effect related to the high resistively of the system.  With 100 µM LiCl salt bridges, 

switching the two calomel electrodes between the two dispersion compartments not 

only changed the sign but also the magnitude of the measured voltages, by several 

mV. These observations agree with the recommendation that a salt bridge should be 

much more concentrated than a sample dispersion under study [18-22], in this case 

much more than 30 µM. Using salt bridges with 1, 10, and 100 mM LiCl, the sign and 

magnitude of the measured Donnan potential were as shown in Figure 10. However, 

the higher the salt bridge concentration, the faster the magnitude decreased due to 
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contamination from the leaking salt bridge. This means that with salt bridges 

containing 100 mM LiCl or more, a reliable value of the Donnan potential as in Fig. 

10 could not always be obtained. 

 

V. General discussion 
We have shown in section IV.1 that the SD-profiles of samples with an initial volume 

fraction between 0.045% and 0.48% exhibit all three predicted regions [5] and that the 

profiles could be very well fitted with eqs. (10)-(12), derived from the non-barometric 

formula (8). There is, nevertheless, a quantitative discrepancy: the charge determined 

from region II agrees in order of magnitude with that obtained from electrophoretic 

mobility measurements, but the charge z(III) determined from region III of the profiles 

is much lower and rather agrees with that obtained from the ratio y(r2)/y(r1), according 

to eq.(13). Several factors may contribute to, or account for, this discrepancy:  

(a) deviation from the model in section 2 which relates the electric field to the particle 

number density (6), only on the basis of the neutrality condition (5), 

(b) size polydispersity of particles, 

(c) counterion condensation on colloids in region III (where both particle and 

counterion concentration are relatively high) or any other mechanism which makes z 

concentration dependent, 

(d) colloid-colloid interactions, beyond the level assumed in eq.(8). 

With respect to (a), it should be noted that eq. (6) for the electrostatic potential 

assumes local charge neutrality, i.e. it ignores charge inhomogeneities that are 

certainly present on a length scale comparable to the Debye length. A more elaborate 

version of the theory would relate the electric charge density ρEL(r) to the electric field 

gradients by the Poisson law EL 0( ) ( )E r rρ ε∇ ⋅ = . This was actually done in Ref [5], 

where it was shown that the charge density may be nonzero over macroscopic 

distances in the vicinity of the crossover from one region to another. In these 

crossover regions the electric field is not constant, and therefore affects the density 

profile. 

Neglecting size polydispersity might indeed lower the determined value z(III): 

we used Lω obtained from region I for charge determination. If this value of Lω is 

replaced with a smaller value which would correspond to larger particles of the 

determined size distribution, z(III) could roughly increase by a factor of 2. However, 
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the size polydispersity is, for given surface charge density, accompanied by charge 

polydispersity, which opposes the particle separation with different sizes in the 

centrifugal field, because it is the charge-to-mass ratio that counts. The electric force 

acting on larger particles with higher charge is also stronger and pushes the particles 

to the top of the region II. There are no noticeable changes, however, in the 

centrifugal length along the region III (except of the 0.48% sample as discussed in the 

previous section), so it is unlikely that size polydispersity has a substantial effect on 

the value of z(III). 

In the case (c) the discrepancy between z from electrophoresis measurements 

and z(III) may be explained as follows: electrophoresis employs an external field which 

pulls the opposite charges apart while in the centrifuge there is only attraction 

between colloids and counterions which may lead to counterion condensation and 

charge decrease. However, the change from z(II) to z(III) is too abrupt (at the crossover 

between the two regions), which is hard to be explained in this way. Concentration 

dependence of the charge z on the silica particles is certainly a realistic option. For 

silica the surface charge is due to adsorption of OH- or a release of protons by –SiOH 

groups. This surface charge is known to depend on ionic strength [34] but may also be 

influenced by other colloids. Biesheuvel [35] recently incorporated the effect of this 

latter ‘charge regulation’ on SD-profiles and concludes that at the higher volume 

fractions (φ > 0.1%), it improves data fits in comparison to the constant-charge model 

of section 2. 

With respect to the effect of colloid-colloid interactions on SD-profiles, it is 

important to notice that in the derivation of eq. (8) they are not a priori excluded. The 

equilibrium condition eq. (4) for the colloids not only contains the ideal dρ/dr term, 

but also the ρ-dependent electrical field E, which is responsible for the inverse 

hyperbolic sine term in eq. (8). Stated differently, the logarithmic (barometric) term in 

eq. (8) is equivalent to Van ‘t Hoff’s law P = ρkT for non-interacting, uncharged point 

particles and any additional (non-linear) ρ-term is a correction to this law and 

therefore somehow harbours an interaction effect. For example, in region II (fig. 11b) 

a second virial term appears in the osmotic pressure. Its interpretation, which is not 

straight forward, requires an analysis of the Donnan equilibrium which is beyond the 

scope of this paper. We refer here to elaborate studies of osmotic virial coefficients in 

the framework of the Donnan membrane equilibrium [36-39]. Here we will merely 
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compare our data to various osmotic pressure calculations and specify in each case 

which interactions are included in the free energy. 

Fig. 11a shows osmotic pressures directly obtained from SD-profiles, 

determined by numerical integration, according to [7]. In the case of a centrifugal 

field the force balance on the colloids reads: 2/dP dr m r r( )ω ρ= . Hence, the pressure 

follows from: 

∫=
r

rtop

dxxx
L
kTP )(2 ρ

ω

, (18) 

where rtop is the radial coordinate at the top of the profile where 0≈ρ , P is the 

osmotic pressure for the colloid number density ρ(r) at radial coordinate r, and x is the 

integration (radial) variable. It should be noted that the resulting equation of state 

P=P(ρ) is equivalent to the SD-profile without any additional assumptions about the 

colloid interactions. The results, however, are influenced by the chosen value for 

Lω (taken from Table II in our case). The results for three samples are presented in 

Fig. 11a. The apparent differences in charge and ion concentration between these 

samples may lead to distinct curves in the corresponding regions II and III. All three 

regions can be easily identified by comparing the data to the equations for osmotic 

pressure in the various regions as derived in [5]. For the 0.48% sample, the region III 

is clearly the dominant one (and slightly distorted according to the discussion on the 

corresponding profile). In Fig. 11b, regions I and II together with their linear and 

quadratic fits as predicted in [5], respectively, are presented for the 0.045% sample.   

To further analyse the experimental osmotic pressure we first attempt an 

effective hard-sphere model using the Carnahan-Starling equation [30]: 

3

32

)1(
1

φ
φφφρ

−
−++

= kTP , (19) 

i.e., the well-known semi-empirical equation of state for uncharged hard spheres. It is 

evident from Fig. 11a, as expected, that the colloid charge substantially increases the 

osmotic pressure in comparison to the case of hard spheres. This increase, however, 

cannot be modeled with an effective diameter: a rescaling of the hard-sphere radius to 

R+κ−1  in the Carnahan-Starling equation of state to match the experimental pressure 

generally fails. Figure 11a shows a typical example of discrepancy between the 

pressure of effective hard spheres and our charged silica spheres.  
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 In figures 11c and 11d, the experimentally determined osmotic pressure is 

compared to a theoretical equation of state calculated within three different 

approximations. The value of z considered for calculation is the corresponding value 

z(II) for each sample, given in Table II. 

The first approximation is the Donnan model for the osmotic pressure [5,8,36-

39]: 

)2( sccckTP −++= −+ρ ,  (20) 

with c+ and c- given in terms of Donnan potential by eq.(3), and the Donnan potential 

in terms of colloid density and reservoir salt concentration by eqs. (6) and (7). The 

Donnan model clearly overestimates osmotic pressures. The model applies to the 

osmotic pressure of an electroneutral bulk phase with a homogeneous distribution of 

all ions [36-39]. Thus all local details of the distribution of ions and electrical 

potentials are disregarded (just as in section 2) which presumably is responsible for 

the discrepancy between the Donnan model and our data in Fig. 11A. 

In the second approximation, the effect of pairwise repulsions between the 

colloids are added to the Donnan  pressure given by Eq.(20). These repulsions consist 

of hard-sphere and screened-Coulomb (DLVO) interactions. We employ here the 

Gibbs-Bogolyubov inequality to obtain the Helmholtz free energy of the DLVO 

dispersion on the basis of an effective hard-sphere reference system as described in 

[31]. The osmotic pressure contribution then follows from a volume derivative of the 

free energy. We assume that the Debye screening length that determined the range of 

the interactions depends on the colloid density (due to the variation in salt 

concentration), yielding an additional volume dependence of the free energy and 

hence an extra osmotic pressure contribution.  

In the third approximation, the Donnan osmotic pressure as well as the hard-

sphere and screened-Coulomb repulsions are taken into account, as in the second 

approximation.  However, we now also include so-called volume terms to the total 

free energy, which have been argued to be relevant for systems with low ion 

concentrations [31,32].  One of these volume terms consists of the ideal-gas free 

energy of the salt ions, and gives rise to an ionic osmotic pressure contribution as in 

eq.(20), i.e. it has already been taken into account in the first and second 

approximation. The most important new volume-term contribution that is taken into 

account in the third approximation involves the (density dependent) self energy of the 
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colloids due to the double layer potential well in which they reside. The remaining 

contributions to the volume terms describe (a) the effects of the exclusion of ions 

from the cores of the particles and (b) corrections for the mean-field contributions of 

the colloidal DLVO repulsions. The last term originates from the average electric 

potential due to the ions, which almost cancels the mean-field potential due the 

colloids because of charge neutrality. In other words, the so-called ‘full linear theory’ 

includes the Donnan pressure, the ideal Van ‘t Hoff law, the DLVO repulsions, and 

the effect of all the remaining volume terms. The exact expression used for the 

volume terms is the grand-canonical version of expression (61) of [31], which will be 

discussed and derived in detail elsewhere [33]. It can be seen in Figs. 11c and 11d, 

where the osmotic pressures that results from the ‘full linear theory’ are shown, that 

the addition of all the volume terms accounts for a significant decrease in the osmotic 

pressure compared to the pressure within the one-component “DLVO” picture. This 

might provide part of the explanation for the much too low charge determined from 

region III on the basis of the Donnan model, and is a topic for future work. 

It can also be observed from Fig. 11c and 11d that the region II of the 

experimental osmotic pressure has a smaller spatial extention than the predicted one, 

which leads to a smaller slope of the linear region III of the determined pressure and 

results thus in the underestimation of z(III). The insets of these two figures show the 

‘full linear theory’ calculated for different values of z. Even though the values of the 

calculated pressure at lower z are closer to the data in region III, the shape of the 

calculated pressure does not match that of the data and the overall agreement with the 

data cannot be seen. There is very likely more than one phenomenon to be considered 

in order to explain the discrepancies discussed in this section. 

It should be noted that the electrochemically measured Donnan potentials 

correspond to the macroscopic electrical potential, irrespective of interparticle 

interactions. The measurements agree in sign and order of magnitude with voltages 

expected on basis of the UC profiles (Fig. 8a) and with Donnan potentials calculated 

from the colloid and salt concentrations in the electrochemical cell and from the 

electrophoretically determined charge of z≈50.  

 A further confirmation of the presence and effects of the internal electric field 

in SD-profiles can be found in the confocal microscopy study of Royall et al. [40] on 

latex dispersions. 
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VI. Conclusions 
We have experimentally demonstrated the existence of a macroscopic electric field, 

producing strongly non-barometric sedimentation-diffusion (SD) profiles of charged 

colloidal dispersions. The unusual shape of experimental SD-profiles and its 

sensitivity to added salt agree qualitatively with eq. (8) (and its asymptotic forms 

eqs.(10)-(12)) . 

The region II of the profiles yields a value of the number of elementary 

charges per particle which agrees in order of magnitude with the value estimated from 

electrophoresis. Even though in region III the electric field is also expected to 

dominate the profiles, the obtained value of z is significantly lower than expected 

from electrophoresis and than in region II.  

Several factors may account for the deviation from the ‘non-barometric’ SD-

profile according to eq. (8): inter-particle repulsive interactions of the DLVO type and 

the volume terms, counterion condensation, effect of details on electric field on the 

scale of ions and particles, and particle size polydispersity. It seems that in particular 

the volume terms in the free energy, which significantly decrease the osmotic 

pressure, may partly account for the small values of z obtained from region III. Also 

charge regulation [35] likely suppresses to some extent the determined particle 

charge. Clearly further theory is needed to improve the quantitative analysis of the 

experimental SD-profiles beyond eq. (8). The electrical potential difference between 

top and bottom of SD-profiles, estimated on the basis of eq. (8), nevertheless, agree 

quite well with direct electrochemical measurement on silica dispersions, assuming 

the particle charge of z ≈ 50 which is also found from electrophoreses. 

At silica volume fractions exceeding 0.5%, the shape of the profiles, measured 

at the same centrifugal field as for lower volume fractions, completely deviates from 

the profile predicted by eq. (8). To elucidate these marked deviations clearly requires 

future experimental and theoretical study of concentrated regions of SD-profiles, 

which may contain important information about interacting charged colloids. 
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Figure legends 
 
 
Fig. 1: Attenuance measured by the analytical ultracentrifuge for different volume 

fractions of colloids at a wavelength of 325 nm. Up to 2.5 vol% a linear dependence is 

observed. 

 

Fig. 2: Schematic illustration of the setup used to measure Donnan potentials. 

 

Fig. 3: Profile produced by uncharged silica particles SiL in cyclohexane with an 

initial volume fraction of 0.2%. The measured attenuance is plotted versus the radial 

coordinate with the origin in the center of rotation. As expected, the profile is 

barometric. 

 

Fig. 4: Non-dimensional concentration profiles predicted by Eq. (8). yb is the non-

dimensional concentration at the bottom of the cell (rb=7.15 cm). The centrifugal 

length is Lω=0.36 cm and the charge z=50. These numerical values correspond to the 

values encountered in our measurements. 

 

Fig. 5 a,b: Experimental sedimentation-diffusion equilibrium profiles of charged 

silica spheres SiA plotted as attenuance versus the square of the radial coordinate, for 

different volume fractions of particles. 

Fig. 6: Examples of fit analysis of the experimental profile of the 0.30% sample (Fig. 

5). a, A nearly perfect quadratic fit to the data extracted from region II, which clearly 

confirms the decay predicted for this region (see eq. (11))). b, A nearly perfect 

exponential fit to the data extracted from region III of the same sample (see eq.(12)), 

resulting in a different centrifugal length than that of region I.  

Fig. 7: Representative experimental profiles for dispersions having a fixed initial 

silica volume fraction of 0.30%, at different salt concentrations. The total ion 

concentration is obtained by multiplying the salt concentration by 2. The background 

ion concentration is of the order of 0.016 mM. Increasing added amounts of LiNO3 

gradually compress the profile towards the barometric distribution I. 
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Fig. 8: The non-dimensional potential energy of particles in sedimented dispersions 

versus (a) the radial coordinate (b) the particle number density. The electrical 

potential gradient clearly shows the presence of an electric field as a function of r, 

which is quasi-homogeneous in the region III of profiles. Eq. (6) was used to perform 

the fit in plot b. 

Fig. 9: Examples of profiles which deviate from that described by the theoretical 

model (eqs.(10)-(12)). a&b, Profiles measured for some of the samples also 

presented in Fig. 5, but at a higher speed. c, Profiles measured for a more 

concentrated sample at different speeds.  

Fig. 10: Measurements performed to determine the Donnan potential difference 

between a 1.3 vol.% silica bottom fraction and a 0.12 vol.% silica top fraction of a 

centrifuged silica dispersion in ethanol (background salt concentration ≈ 30 µM). 

 

Fig. 11: a, Experimental osmotic pressures determined from the measured SD profiles 

for three different volume fractions of SiA dispersion and the calculated osmotic 

pressure using eq. (19). b, Determined osmotic pressure for the 0.045% sample at low 

particle number density and fits to region I and II with the indicated functions. c, 

Determined osmotic pressure for the 0.2% sample and calculated osmotic pressures 

within three different approximations for z=34. The inset contains the calculated 

osmotic pressures with the ‘full linear theory’ (see text) for different values of z. d, 

the same as c but for the case of the 0.48% sample and z=40.  
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Table I. Properties of charged silica spheres (SiA) dispersed in ethanol 

 

R1) 

(nm) 
P 

(%) 
Rh

2) 

(nm) 
δ3) 

(g cm-3) 

µ4) 

(µm cm V-1 
s-1) 

z5) 

21.9 11.6 30.0 1.6(±0.1) – 0.1(±0.10) ≈ 50 
 

1) radius and p the polydispersity of particles measured from transmission electron 

microscopy. 

2) radius from dynamic light scattering. 

3) mass density from [27]. 

4) electrophoretic particle mobility for silica volume fractions in the range 0.015%-

0.48%. 

5) number of elementary charges on silica particles, estimated from electrophoretic 

mobility. 
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Table II. Electrical conductivity, total ion concentration, Debye length, and results of 

profile analyses for charged silica particles SiA. 

 

Φ1) 

(%) 
Σ2) 

(µS/cm) 
ctot

3) 

(10-5 M)
κ−1 4) 

(nm)
Lω(I) 5)

(cm) z(II) 6) z(III) 7) y(r2)/y(r1)8) 

0.015 1.30 1.66 59 0.36 - - - 

0.03 1.36 1.73 58 0.37 - - - 

0.045 1.43 1.82 56 0.36 30 3 4 

0.06 1.55 1.97 54 0.36 27 3 4 

0.13 1.78 2.27 50 0.37 34 4 6 

0.2 2.00 2.55 47 0.39 34 4 5 

0.3 2.33 2.97 44 0.39 38 5 4 

0.48 2.92 3.72 39 0.37 40 8 7 
 
1) initial volume fraction of particles 
2) electrical conductivity 
3) total ion concentration estimated from conductivity measurements 
4) Debye length 
5) centrifugal length determined from region I of profiles 
6) number of elementary charges of particles determined from region II of the profiles  
7) number of elementary charges of particles determined from region III of the profiles 
8) ratio of non-dimensional particle concentrations at the crossovers between the three 

regions. 
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