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Phase Behavior and Structure of Binary Hard-Sphere Mixtures
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By integrating out the degrees of freedom of the small spheres in a binary mixture of large and
hard spheres, we derive an explicit effective Hamiltonian for the large spheres. Using the two-
(depletion potential) contribution to this effective Hamiltonian in simulations, we find stable fluid-s
and both metastable fluid-fluidand solid-solid coexistence in a mixture with size ratioq ­ 0.1. For
q ­ 0.05 the solid-solid coexistence becomes stable. [S0031-9007(98)07074-4]

PACS numbers: 61.20.Gy, 64.70.–p, 82.70.Dd
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Understanding the structure and phase equilibria of b
nary hard-sphere mixtures is a long-standing problem
liquid state physics. These idealized systems provide
natural reference system for determining the properti
of more realistic models of mixtures of simple (atomic
fluids, of colloids and polymers, and of other colloida
systems. A contentious issue, which attracts much atte
tion, is whether fluid-fluid phase separation occurs in th
model system. A classic study [1], based on the Percu
Yevick approximation, showed that hard spheres mix
all state points, for any ratio of diametersq ; ssysl .
In 1991, improved integral equation studies provided ev
dence for a spinodal instability whenq # 0.2 [2]. The
main reason for the subsequent interest resides in the f
that any mechanism for a demixing transition in hard
sphere systems must be purely entropic. In Ref. [2] th
depletion effect was identified as the mechanism behi
the possible instability. This effect, which was first in
voked to explain phase separation in colloid-polymer mix
tures [3], is based on the idea that clustering of the lar
spheres allows more free volume for the small ones whi
may lead to an increase of the entropy. A scaled pa
ticle theory for the free volume yielded a fluid-fluid spino
dal [4]. The weakness of the integral equation and th
free volume theories lies in the sensitivity of the exis
tence and location of the spinodal instability to fine de
tails of the theory [5]. Moreover, experimental work on
colloidal systems indicates that any demixing is strong
coupled to the freezing transition [6,7], whereas bo
types of theories are not designed to deal with sol
phases—see Ref. [8], however. One might suppose t
the issue could be settled by computer simulations; ho
ever, direct simulations of a highly asymmetric binar
mixture are prohibited by slow equilibration. It there
fore remains an open question as to whether or n
(meta)stable fluid-fluid phase separation does occur a
indeed, just what the phase diagram of the binary har
sphere mixture is when the size ratioq is small.

In this Letter, we take advantage of the large siz
asymmetry, and integrate out the degrees of freedom
the small spheres to obtain an effective Hamiltonian fo
the large ones. The depletion effect is now described
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terms of effective potentials between the large spher
and for q # 0.1 we expect the pairwise contribution to
dominate. The pairwise (depletion) potential is essentia
attractive, and arises from an unbalanced osmotic press
of the “sea” of small spheres when the surface-surfa
separation of two large spheres is# ss [3]. Provided
the attraction is sufficiently strong and of sufficient rang
it might drive fluid-fluid phase separation—in keepin
with the classical van der Waals picture of vapor-liqu
separation in a simple fluid. On the other hand, wh
the range of the attraction is much smaller than that
the repulsion, it is known that the vapor-liquid transitio
becomes metastable with respect to (w.r.t.) the flu
solid [9] and that for very short-ranged attraction a
isostructural solid-solid transition can appear in the pha
diagram of a simple model fluid [10]. Since the rang
of the attraction in the depletion potential is# ss, and
that of the repulsion issl , one might hope to find solid-
solid, in addition to fluid-fluid and fluid-solid coexistence
in hard-sphere mixtures withq # 0.1. We investigateall
of these possibilities using Monte Carlo simulations f
the effective one-component fluid.

We consider Nl large and Ns small hard spheres
with diameter ratioq in a macroscopic volumeV at
temperatureT . The total Hamiltonian consists of (trivial)
kinetic energy contributions and interaction termsH ­
Hll 1 Hls 1 Hss. It is convenient to consider the system
in the sNl , zs, V , T d ensemble, in which the fugacity
zs of the small spheres is fixed. The Helmholtz fre
energyF of this system can be written as expf2bFg ­
Trl expf2bHeffg, whereHeff ­ Hll 1 V is the effective
Hamiltonian of the large spheres andb ­ 1ykBT . Here,
V is the grand potential of the fluid of small sphere
in the external field of a fixed configuration ofNl

large spheres with coordinateshRij; i ­ 1, 2, . . . , Nl, and
is given by expf2bVg ­

P`
Ns­0 zNs

s Trs expf2bsHls 1

Hssdg. The trace Trn is short for 1yNn! L3Nn
n times the

volume integral over the coordinates of the particles
speciesn, whereLn is the thermal wavelength.

Once V, and thusHeff, are known for all values of
zs, the thermodynamics and the phase behavior of
mixture can be determined. To this end, we expa
© 1998 The American Physical Society
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expf2bVg in terms of the Mayer functions associate
with the pair-potentialsfls and fss. After taking the
logarithm, and using standard diagrammatic techniqu
[11,12], the resulting terms of the diagrammatic expansi
of 2bV can be classified according to the numbe
n ­ 0, 1, 2, . . . , Nl of large hard spheres that interac
simultaneously with the sea of small spheres, so th
bV ­

PNl
n­0 bVn. We give expressions forbVn for

n ­ 0, 1, and2, and argue that higher order (3-body
4-body, etc.) terms should not be important for high
asymmetric binary hard-sphere mixtures.

V0 ­ 2pszsdV is the grand potential of a pure system
of small spheres at fugacityzs in a volumeV , wherepszsd
is the pressure of that system. We can also show t
V1yNl is the grand-potential difference between a syste
in a volumeV at fugacity zs with and without a large
sphere at the origin. An accurate approximation forV1
is given in [13]. This consists of a volume, a surfac
and a termK which is independent ofsl : V1yNl ­
pszsdps

3
l y6 1 gszsdps

2
l 1 Kszsd, where gszsd is the

surface tension of the small hard-sphere fluid at a ha
spherical wall of diametersl . Explicit scaled particle
results are given forp, g, and K in Ref. [13]. Within
the same formalism,V2 can be written as a sum of pair-
potentialsV2 ­

PNl
i,j fdepsRij ; zsd, where we can show

thatfdep is the grand potential difference between a sea
small spheres at fugacityzs containingtwo large spheres
separated by a distanceRij ; jRi 2 Rjj and by infinite
distance. It follows thatfdep can be identified with
the standard definition of the depletion potential [14,15
Several theories and approximations exist forfdep and
these are summarized in Ref. [16]. Recently, Maoet al.
[17] used a virial expansion to calculatefdep, within the
Derjaguin approximation. Forq ­ 0.1 and for values of
hr

s as high as 0.37 their results at third order inhr
s were in

remarkable agreement with those of a simulation [15] f
separations in the important depletion range:sl , Rij ,

sl 1 ss. Herehr
s is the packing fraction of a reservoir

of small hard spheres at fugacityzs. We use a simpler
third order expression, derived in [16], which provides a
equally accurate account of the simulation data:

bfdepsRijd ­ 2
1 1 q

2q
f3l2hr

s 1 s9l 1 12l2d shr
s d2

1 s36l 1 30l2d shr
s d3g

for 21 , l , 0 , (1)

where l ­ Rijyss 2 1yq 2 1. This form describes a
deep and very narrow potential well close to the surface
the large sphere, whose depth increases with increasinghr

s ,
followed by a small repulsive barrier. We setfdep ­ 0
for Rij . sl 1 ss, neglecting any weak oscillations in
this range [15,17]; we expect these to be unimportant
the phase behavior of the mixture. Note that the first te
in (1) corresponds to the Asakura-Oosawa approximati
to fdep.
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In what follows, we setVn ­ 0 for n $ 3. The
neglect of 3-body and higher potentials can be suppor
by geometric arguments forq , 0.154, since then three or
more nonoverlapping large spheres cannot simultaneou
overlap with a small one [15,18]. Moreover, analys
of simulation data [15] implies that pairwise additivity
should be an excellent approximation forq # 0.1, even
for high packing fractionshl of the large spheres. We
thus arrive at the effective one-component Hamiltoni
Heff ­ H0 1

PNl
i,j feffsRijd, where H0 ­ 2pszsd s1 2

hldV 1 gszsdps
2
l Nl 1 KNl is irrelevant for the phase

equilibria, although it does contribute to the pressu
of the mixture. The effective pair-potential isfeff ­
fll 1 fdep. Note that the formalism of mapping the
two-component system onto an effective one-compon
system is not restricted to hard spheres.

At first sight, one might think that the phase beha
ior of this effective one-component system can be det
mined by standard perturbation theory based on the p
hard-sphere reference system. Indeed this was the
proach adopted in earlier studies [3,18] of colloid-polym
mixtures based on the Asakura-Oosawa results forfdep.
Using first order theory forq ­ 0.1, we do not find any
indication for a fluid-fluid spinodal (see also [16]). How
ever, when simulations are performed usingfdep, we
find that the radial distribution functiongsrd differs enor-
mously from that of the reference hard-sphere fluid. Th
is illustrated in Fig. 1, where we plotgsrd for hl ­ 0.35
and hr

s ­ 0.25 [19]. We find thatgssld , 42, which
should be compared with the much lower contact valu
,3, for the hard-sphere reference system at the samehl.
Similar large contact values, or strong tendencies for clu
tering, have been observed in previous simulation a
integral equation studies [15,20], as well as in expe
ments on colloidal hard-sphere mixtures [21]. The va
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FIG. 1. The radial distribution functiongsrysld for the
effective one-component system with packing fractionshl ­
0.35, hr

s ­ 0.25, and size ratioq ­ 0.1 using fdep (1), with
and without the small repulsive barrier.
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difference betweengsrd of the reference hard-sphere sys
tem and that of the effective system signals the breakdo
of perturbation theory, and we thus resort to full numer
cal simulations for the free energyF of the effective sys-
tem. Before describing the results, we comparegsrd for a
depletion potential with and without the repulsive barrie
Figure 1 shows that the contact value and most other f
tures are not sensitive to the barrier. The small well ne
r ­ 1.07sl does reflect the presence of the barrier, b
the free energies calculated from the two potentials diff
only slightly. We conclude that small differences in th
choice of depletion potential should not have a drastic e
fect on the resulting phase equilibria.

We calculateF from Monte Carlo simulations using the
thermodynamic integration technique [9]. For a givenzs,
i.e., a givenhr

s , the integration path starts at a hard-sphe
fluid or solid (fcc) at the requiredhl , proceeds by gradually
switching on the depletion potential (1), and finishes at t
full effective one-component system. For the free ener
of the hard-sphere reference system, we use the Carna
Starling expression for the fluid, and the equation of sta
proposed by Hall [9] for the solid phase. In the latte
case, an integration constant was determined such that
known fluid-solid coexistence of the pure hard-sphere sy
tem is recovered [22]. Simulations were performed in
similar fashion to those in Ref. [9]. In Fig. 2, we plotF as
a function ofhl at severalhr

s for q ­ 0.1. Forhr
s . 0.06

we find that the solid branch ofF becomes nonconvex, in-
dicative of a spinodal instability. Forhr

s . 0.29 another
spinodal instability is found on the fluid branch. This in
stability can be seen clearly in the inset of Fig. 2, whe
hr

s ­ 0.31. Note that subtracting a linear function ofhl

does not affect the common tangent construction. Th
simultaneous existence of a fluid-fluidand a solid-solid
spinodal instability has not been observed before for b
nary hard-sphere mixtures. We fitted polynomials toF
and computed the pressure and chemical potential at e
hl . The densities of two coexisting phases can then be
termined by equating the pressures and chemical potent
in the two phases. In Fig. 3, we show the resulting pha
diagram. Athr

s ­ 0, we find the usual freezing transi-
tion of the pure hard-sphere system. Ashr

s increases, a
widening of the fluid-solid transition occurs, implying tha
a fluid with a low packing fraction of large spheres coexis
with a dense crystal. This observation is consistent w
results of a perturbation theory [18] and with experimen
on colloids, where adding small amounts of small spher
induces a rapid decrease in the lattice constant of the cry
[7]. The results of free energy calculations reveal that bo
the isostructural solid-solid and the fluid-fluid transition
are metastable with respect to the wide fluid-solid coex
tence, although the critical point of the solid-solid spinod
nearhl ­ 0.63, hr

s ­ 0.06 is close to the stable fluid-solid
phase boundary. In Fig. 3, we also plot experimental st
points for a colloidal hard-sphere system withq , 0.1075
[7]. In order to convert the experimental packing fractio
2270
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FIG. 2. Reduced free energy bFp ­ bfF 2 sV0 1

V1dgs3
l yV versushl for q ­ 0.1 at severalhr

s . The curves
for hl $ 0.54 are the solid branches, while the curves fo
lower hl are the fluid branches. Note the difference in sca
for hr

s ­ 0.31. For clarity, we subtracted a linear fit inhl to
the data forhr

s ­ 0.31 (see inset).

of small spheres tohr
s , we usedNs ­ 2≠bFy≠ logzs ,

2≠bsV0 1 V1dy≠ logzs, and scaled particle expression
for pszsd and gszsd [13]. (The details and accuracy o
this procedure will be discussed elsewhere.) The follo
ing correlations are striking: (i) The crosses [denoting
(meta)stable fluid state] and the dashed line (the expe
mental estimate of the binodal) are, forhr

s , 0.12, close
to our stable fluid phase boundary. At higherhr

s , there is
a substantial deviation. Further details and a discussion
the origin of this deviation will be given elsewhere [12]
(ii) the open squares, denoting state points that corresp
to fluid-solid coexistence, are well inside our fluid-soli
coexistence region, and these appear to extend to large
ues ofhl provided there is no intervening metastable fluid
fluid or solid-solid binodal; (iii) the triangles, denoting the
glassy states, are all within or close to the metastable flu
fluid or solid-solid binodal. A similar correlation between
the formation of nonequilibrium phases and the presen
of metastable phase coexistence has been observed in
periments on colloid-polymer mixtures [23]. We also no
that the state point (hl ­ 0.1, hr

s , 0.367) investigated in
the effective one-component simulations of Ref. [15] lie
well inside our metastable fluid-fluid binodal, which migh
explain the observed two-stage demixing dynamics. It
tempting to argue that the rapid clustering at the first sta
reflects the fluid-fluid binodal, while the subsequent slo
relaxation of clusters reflects the ultimate crystallizatio
process.



VOLUME 81, NUMBER 11 P H Y S I C A L R E V I E W L E T T E R S 14 SEPTEMBER1998

-
re

id

-

e

s.

E
e

n

0.00 0.25 0.50 0.75
ηl

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

ηs

r

0.00 0.25 0.50 0.75
0.0

0.1

0.2

F
S

F + S

F + F

S + S

F+F

S+S

F+S

F S

FIG. 3. Phase diagram forq ­ 0.1 and q ­ 0.05 (inset)
in the hr

s 2 hl plane. F and S denote the stable fluid
and solid (fcc) phase.F 1 S, F 1 F, and S 1 S denote,
respectively, the stable fluid-solid, the metastable fluid-flui
and (meta)stable solid-solid coexistence regions. The triangl
open squares, and crosses are experimental state points ta
from Ref. [7], representing glassy states, fluid-solid demixin
and (meta)stable fluid, respectively. The thin dashed lin
denotes the fluid branch of the experimental binodal [7].

We used the same procedures to compute the ph
diagram for q ­ 0.05, which is also shown in Fig. 3.
The most striking feature is the downward shift of th
solid-solid binodal compared to that of the fluid-solid
This gives rise to a stable solid-solid coexistence in
small regime, wherehr

s , 0.05, whose critical point is
shifted towards close packing. Such a trend is consiste
with studies [10] for a square-well fluid in which the
width of the well is reduced. Note that decreasingq
is equivalent to decreasing the range of the attractio
Because the fluid-solid coexistence also shifts down
q is decreased, fluid-fluid coexistence remains metasta
at q ­ 0.05, and we find that forhr

s $ 0.11 coexistence
occurs between an extremely dilute fluid and a sol
whose density approaches that of close packing (h

cp
l ­

0.7405). Note that forq ! 0 the phase diagram should
approach that of the sticky-sphere model [15]. This mod
shows for finiteT , equivalent tohr

s . 0, coexistence of
an infinitely dilute gas and a close-packed solid, and
metastable solid-solid transition at close packing [10].

Finally, we note that recent simulations for the actu
two-component system have been carried out [20] f
severalq for the single state pointhl ­ hs ­ 0.1215,
which we convert tohr

s , 0.136. The results revealed
no, weak, and strong tendencies to demix forq ­
0.1, 0.05, and0.033, respectively. According to Fig. 3
for q ­ 0.05, the clustering observed in [20] should be
associated with crystallization rather than with fluid-fluid
demixing, since the state point falls outside the fluid-flui
but inside the fluid-solid binodal.
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In conclusion, we have shown that our effective one
component treatment predicts that a binary hard-sphe
mixture with size ratioq ­ 0.10 exhibits a stable fluid-
solid, a metastable fluid-fluid, and a metastable solid-sol
coexistence. Forq ­ 0.05, the solid-solid coexistence
becomes stable w.r.t. fluid-solid nearhr

s ­ 0.05, while
the fluid-fluid coexistence remains metastable.
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