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Phase Behavior and Structure of Binary Hard-Sphere Mixtures
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By integrating out the degrees of freedom of the small spheres in a binary mixture of large and small
hard spheres, we derive an explicit effective Hamiltonian for the large spheres. Using the two-body
(depletion potential) contribution to this effective Hamiltonian in simulations, we find stable fluid-solid
and both metastable fluid-fluidnd solid-solid coexistence in a mixture with size ratjo= 0.1. For
q = 0.05 the solid-solid coexistence becomes stable. [S0031-9007(98)07074-4]

PACS numbers: 61.20.Gy, 64.70.—p, 82.70.Dd

Understanding the structure and phase equilibria of biterms of effective potentials between the large spheres,
nary hard-sphere mixtures is a long-standing problem irand for ¢ = 0.1 we expect the pairwise contribution to
liquid state physics. These idealized systems provide dominate. The pairwise (depletion) potential is essentially
natural reference system for determining the propertieattractive, and arises from an unbalanced osmotic pressure
of more realistic models of mixtures of simple (atomic) of the “sea” of small spheres when the surface-surface
fluids, of colloids and polymers, and of other colloidal separation of two large spheressso, [3].  Provided
systems. A contentious issue, which attracts much atterthe attraction is sufficiently strong and of sufficient range,
tion, is whether fluid-fluid phase separation occurs in thist might drive fluid-fluid phase separation—in keeping
model system. A classic study [1], based on the Percuswith the classical van der Waals picture of vapor-liquid
Yevick approximation, showed that hard spheres mix ateparation in a simple fluid. On the other hand, when
all state points, for any ratio of diameteys= o,/0o;. the range of the attraction is much smaller than that of
In 1991, improved integral equation studies provided evithe repulsion, it is known that the vapor-liquid transition
dence for a spinodal instability whep= 0.2 [2]. The becomes metastable with respect to (w.r.t.) the fluid-
main reason for the subsequent interest resides in the fasolid [9] and that for very short-ranged attraction an
that any mechanism for a demixing transition in hard-isostructural solid-solid transition can appear in the phase
sphere systems must be purely entropic. In Ref. [2] thaliagram of a simple model fluid [10]. Since the range
depletion effect was identified as the mechanism behindf the attraction in the depletion potential & o, and
the possible instability. This effect, which was first in- that of the repulsion igr;, one might hope to find solid-
voked to explain phase separation in colloid-polymer mix-solid, in addition to fluid-fluid and fluid-solid coexistence,
tures [3], is based on the idea that clustering of the largén hard-sphere mixtures withh = 0.1. We investigatall
spheres allows more free volume for the small ones whiclof these possibilities using Monte Carlo simulations for
may lead to an increase of the entropy. A scaled parthe effective one-component fluid.
ticle theory for the free volume yielded a fluid-fluid spino- We considerN; large and Ny small hard spheres
dal [4]. The weakness of the integral equation and thavith diameter ratiog in a macroscopic volumé/ at
free volume theories lies in the sensitivity of the exis-temperaturd’. The total Hamiltonian consists of (trivial)
tence and location of the spinodal instability to fine de-kinetic energy contributions and interaction terfs=
tails of the theory [5]. Moreover, experimental work on H; + H;; + Hj. Itis convenient to consider the system
colloidal systems indicates that any demixing is stronglyin the (N;,z,,V,T) ensemble, in which the fugacity
coupled to the freezing transition [6,7], whereas bothz; of the small spheres is fixed. The Helmholtz free
types of theories are not designed to deal with solicenergyF of this system can be written as ¢xpBF] =
phases—see Ref. [8], however. One might suppose thdlr; exd — BHesr ], WhereHs = H; + Q is the effective
the issue could be settled by computer simulations; howHamiltonian of the large spheres apd= 1/kgT. Here,
ever, direct simulations of a highly asymmetric binary() is the grand potential of the fluid of small spheres
mixture are prohibited by slow equilibration. It there- in the external field of a fixed configuration a¥,
fore remains an open question as to whether or ndarge spheres with coordinatéR;};i = 1,2,...,N;, and
(meta)stable fluid-fluid phase separation does occur ands given by exp—BQ] = ng:o N Tryexd —B(H, +
indeed, just what the phase diagram of the binary hardH,,)]. The trace Ty is short for1/N,! A3V times the
sphere mixture is when the size ratias small. volume integral over the coordinates of the particles of

In this Letter, we take advantage of the large sizespecies’, whereA, is the thermal wavelength.
asymmetry, and integrate out the degrees of freedom of Once (), and thusH., are known for all values of
the small spheres to obtain an effective Hamiltonian forz, the thermodynamics and the phase behavior of the
the large ones. The depletion effect is now described imixture can be determined. To this end, we expand
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exgd—BQ] in terms of the Mayer functions associated In what follows, we setQ), =0 for n = 3. The
with the pair-potentialsp;; and ¢,,. After taking the neglect of 3-body and higher potentials can be supported
logarithm, and using standard diagrammatic techniqueby geometric arguments fgr < 0.154, since then three or
[11,12], the resulting terms of the diagrammatic expansiomore nonoverlapping large spheres cannot simultaneously
of —BQ can be classified according to the numberoverlap with a small one [15,18]. Moreover, analysis
n=0,1,2,...,N; of large hard spheres that interact of simulation data [15] implies that pairwise additivity
simultaneously with the sea of small spheres, so thathould be an excellent approximation fgr= 0.1, even
BQ = Zflv;ogﬂn_ We give expressions fogQ, for  for high packing fractionsy; of the large spheres. We
n =0,1,and2, and argue that higher order (3-body, thus arrive at the effective one-component Hamiltonian
4-body, etc.) terms should not be important for highly He;s = Hy + Zf-véj deti(Rij), where Hy = —p(z,) (1 —
asymmetric binary hard-sphere mixtures. n)V + y(zs)mrlzNz + KN, is irrelevant for the phase
Qo = —p(z,)V is the grand potential of a pure system equilibria, although it does contribute to the pressure
of small spheres at fugacity in a volumeV, wherep(z;)  of the mixture. The effective pair-potential ides; =
is the pressure of that system. We can also show thap, + ¢4.,. Note that the formalism of mapping the
Q,/N; is the grand-potential difference between a systemwo-component system onto an effective one-component
in a volumeV at fugacity z, with and without a large system is not restricted to hard spheres.

sphere at the origin. An accurate approximation ¢br At first sight, one might think that the phase behav-
is given in [13]. This consists of a volume, a surface,jor of this effective one-component system can be deter-
and a termK which is independent otr;: /N, =  mined by standard perturbation theory based on the pure

p(z)mal /6 + y(z)mai + K(z;), where y(z,) is the  hard-sphere reference system. Indeed this was the ap-
surface tension of the small hard-sphere fluid at a har@roach adopted in earlier studies [3,18] of colloid-polymer
spherical wall of diameter;. Explicit scaled particle mixtures based on the Asakura-Oosawa resultsgigy .
results are given fop,y, and K in Ref. [13]. Within  Using first order theory fog = 0.1, we do not find any
the same formalism(), can be written as a sum of pair- indication for a fluid-fluid spinodal (see also [16]). How-
potentials(), = Zi-v<’j ¢acp(Rij; zs), where we can show ever, when simulations are performed usigg.,, we
that¢q.p is the grand potential difference between a sea ofind that the radial distribution functiog(r) differs enor-
small spheres at fugacity, containingtwo large spheres mously from that of the reference hard-sphere fluid. This
separated by a distandg; = |R; — R;| and by infinite s illustrated in Fig. 1, where we plai(r) for »; = 0.35
distance. It follows that¢e, can be identified with and n; = 0.25 [19]. We find thatg(o;) ~ 42, which

the standard definition of the depletion potential [14,15].should be compared with the much lower contact value,
Several theories and approximations exist &, and  ~3, for the hard-sphere reference system at the same
these are summarized in Ref. [16]. Recently, Ma@l.  Similar large contact values, or strong tendencies for clus-
[17] used a virial expansion to calcula#.,, within the  tering, have been observed in previous simulation and
Derjaguin approximation. Faj = 0.1 and for values of integral equation studies [15,20], as well as in experi-
n! as high as 0.37 their results at third ordemifiwere in  ments on colloidal hard-sphere mixtures [21]. The vast
remarkable agreement with those of a simulation [15] for

separations in the important depletion range:< R;; <

o) + os. Heren! is the packing fraction of a reservoir 3 =0
of small hard spheres at fugacity. We use a simpler a0 L
third order expression, derived in [16], which provides an 0L

equally accurate account of the simulation data: 5 20 L

10

1 +
Bpacp(Rij) = _?‘1[3/\2% + (91 + 12A4%) (n")?

+ (364 + 30A%) (9))*]
for —1<A<0, (2)
where A = R;;/o; — 1/g — 1. This form describes a

with repulsive barrier

deep and very narrow potential well close to the surface of —— = without

the large sphere, whose depth increases with increaging 01 0 15 2‘0 o5
followed by a small repulsive barrier. We sét, = 0 ' ' ' )

for R;; > o, + o, neglecting any weak oscillations in r/0/

this range [15,17]; we expect these to be unimportant fo : o :

fche phase behavior of the mixture. Note that the fir_st te.rngf(g'ct}\',e gﬂg_cﬁﬂﬁ‘éngﬁtl‘;ﬁ'@% \];yi?hdboanégliirn/ggi‘gaéggng;e
in (1) corresponds to the Asakura-Oosawa approximatiog 3s, »” = 0.25, and size ratiog = 0.1 using bacp (1), With
to d)dep. and without the small repulsive barrier.
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difference betweeg(r) of the reference hard-sphere sys-
tem and that of the effective system signals the breakdown
of perturbation theory, and we thus resort to full numeri-
cal simulations for the free enerdy of the effective sys-
tem. Before describing the results, we compate for a
depletion potential with and without the repulsive barrier.
Figure 1 shows that the contact value and most other fea-
tures are not sensitive to the barrier. The small well near
r = 1.070; does reflect the presence of the barrier, but
the free energies calculated from the two potentials differ
only slightly. We conclude that small differences in the
choice of depletion potential should not have a drastic ef-
fect on the resulting phase equilibria.

We calculateF’ from Monte Carlo simulations using the
thermodynamic integration technique [9]. For a given
i.e., a givenn!, the integration path starts at a hard-sphere
fluid or solid (fcc) at the requireg;, proceeds by gradually
switching on the depletion potential (1), and finishes at the

full effective one-component system. For the free energy -20 e ———
of the hard-sphere reference system, we use the Carnahan- 0.0 0.2 0.4 0.6 0.8
Starling expression for the fluid, and the equation of state n/

proposed by Hall [9] for the solid phase. In the latter

case, an integration constant was determined such that tif¢G. 2. Reduced free energy BF* = B[F — (o +
known fluid-solid coexistence of the pure hard-sphere sysf)lo;/V versusn, for ¢ = 0.1 at severaly;. The curves
tem is ecovereq [22], Simulatons were perormed n o3 7 > .35 ¥S, I, ok daneies: e e s o
similar_fashion to those in Ref. [9]. In Fig. 2, we plbtas for n! 7]=l 0.31. For clarity, we subtracted a linear fit i, to

a function ofn; at several forg = 0.1. Forng > 0.06  the data fory” = 0.31 (see inset).

we find that the solid branch @f becomes nonconvex, in-

dicative of a spinodal instability. Fag, > 0.29 another  of small spheres ta)}, we usedV, = —dBF/dlogz, ~
spinodal instability is found on the fluid branch. This in- —98(Qq + Q,)/dlogz,, and scaled particle expressions
stability can be seen clearly in the inset of Fig. 2, wherdfor p(z;) and y(z;) [13]. (The details and accuracy of
n! = 0.31. Note that subtracting a linear function gf  this procedure will be discussed elsewhere.) The follow-
does not affect the common tangent construction. Thisng correlations are striking: (i) The crosses [denoting a
simultaneous existence of a fluid-fluahd a solid-solid (meta)stable fluid state] and the dashed line (the experi-
spinodal instability has not been observed before for bimental estimate of the binodal) are, fgpf < 0.12, close
nary hard-sphere mixtures. We fitted polynomialsfto to our stable fluid phase boundary. At highgr, there is
and computed the pressure and chemical potential at eaehsubstantial deviation. Further details and a discussion of
n;. The densities of two coexisting phases can then be dehe origin of this deviation will be given elsewhere [12];
termined by equating the pressures and chemical potentials) the open squares, denoting state points that correspond
in the two phases. In Fig. 3, we show the resulting phaséo fluid-solid coexistence, are well inside our fluid-solid
diagram. Atxn, = 0, we find the usual freezing transi- coexistence region, and these appear to extend to large val-
tion of the pure hard-sphere system. AS increases, a ues ofy; provided there is no intervening metastable fluid-
widening of the fluid-solid transition occurs, implying that fluid or solid-solid binodal; (iii) the triangles, denoting the

a fluid with a low packing fraction of large spheres coexistsglassy states, are all within or close to the metastable fluid-
with a dense crystal. This observation is consistent witHluid or solid-solid binodal. A similar correlation between
results of a perturbation theory [18] and with experimentghe formation of nonequilibrium phases and the presence
on colloids, where adding small amounts of small spheresf metastable phase coexistence has been observed in ex-
induces a rapid decrease in the lattice constant of the crystperiments on colloid-polymer mixtures [23]. We also hote
[7]. The results of free energy calculations reveal that bothhat the state pointy; = 0.1, ] ~ 0.367) investigated in

the isostructural solid-solid and the fluid-fluid transitionsthe effective one-component simulations of Ref. [15] lies
are metastable with respect to the wide fluid-solid coexiswell inside our metastable fluid-fluid binodal, which might
tence, although the critical point of the solid-solid spinodalexplain the observed two-stage demixing dynamics. Itis
nearn; = 0.63, n, = 0.06 is close to the stable fluid-solid tempting to argue that the rapid clustering at the first stage
phase boundary. In Fig. 3, we also plot experimental stateeflects the fluid-fluid binodal, while the subsequent slow
points for a colloidal hard-sphere system wjth~ 0.1075  relaxation of clusters reflects the ultimate crystallization
[7]. In order to convert the experimental packing fractionprocess.
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0.35 N o In conclusion, we have shown that our effective one-
X YN component treatment predicts that a binary hard-sphere
030 f S=— AT 1 mixture with size ratiog = 0.10 exhibits a stable fluid-
N DD solid, a metastable fluid-fluid, and a metastable solid-solid
025 \ D ] coexistence. Fog = 0.05, the solid-solid coexistence
0.0 | %\ . | becomes s_table vy.r.t. quid—soI[d neg’ = 0.05, while
n, KJr S\ the fluid-fluid coexistence remains metastable.
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