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  ABSTRACT 

  Automatic milking systems (AMS) generate alert 
lists reporting cows likely to have clinical mastitis 
(CM). Dutch farmers indicated that they use non-AMS 
cow information or the detailed alert information from 
the AMS to decide whether to check an alerted cow 
for CM. However, it is not yet known to what extent 
such information can be used to discriminate between 
true-positive and false-positive alerts. The overall 
objective was to investigate whether selection of the 
alerted cows that need further investigation for CM 
can be made. For this purpose, non-AMS cow informa-
tion and detailed alert information were used. During 
a 2-yr study period, 11,156 alerts for CM, including 
159 true-positive alerts, were collected at one farm in 
the Netherlands. Non-AMS cow information on parity, 
days in milk, season of the year, somatic cell count 
history, and CM history was added to each alert. In 
addition, 6 alert information variables were defined. 
These were the height of electrical conductivity, the 
alert origin (electrical conductivity, color, or both), 
whether or not a color alert for mastitic milk was given, 
whether or not a color alert for abnormal milk was 
given, deviation from the expected milk yield, and the 
number of alerts of the cow in the preceding 12 to 96 
h. Subsequently, naive Bayesian networks (NBN) were 
constructed to compute the posterior probability of an 
alert being truly positive based only on non-AMS cow 
information, based on only alert information, or based 
on both types of information. The NBN including both 
types of information had the highest area under the 
receiver operating characteristic curve (AUC; 0.78), 
followed by the NBN including only alert information 
(AUC = 0.75) and the NBN including only non-AMS 
cow information (AUC = 0.62). By combining the 2 
types of information and by setting a threshold on the 
computed probabilities, the number of false-positive 

alerts on a mastitis alert list was reduced by 35%, and 
10% of the true-positive alerts would not be identified. 
To detect CM cases at a farm with an AMS, check-
ing all alerts is still the best option but would result 
in a high workload. Checking alerts based on a single 
alert information variable would result in missing too 
many true-positive cases. Using a combination of alert 
information variables, however, is the best way to select 
cows that need further investigation. The effect of add-
ing non-AMS cow information on making a distinction 
between true-positive and false-positive alerts would be 
minor. 
  Key words:    clinical mastitis ,  detection ,  automatic 
milking ,  dairy cow 

  INTRODUCTION 

  Mastitis is one of the most frequent and costly dis-
eases in dairy cows (e.g., Halasa et al., 2007). Detection 
of clinical mastitis (CM) is important to maintain a 
high standard of milk quality. With conventional milk-
ing systems, detection of CM is based on visual inspec-
tion of the milk during milking, whereas farmers with 
an automatic milking system (AMS) have to rely on 
mastitis alert lists from the AMS for information on 
the udder health status of their cows (Hogeveen and 
Ouweltjes, 2003). These alert lists are generated from 
sensor measurements during milking [e.g., electrical 
conductivity (EC) and color measurements] and report 
the cows suspected of having CM. A general complaint 
of dairy farmers working with an AMS is the relatively 
large number of false-positive alerts on the mastitis 
alert lists. Several detection models were developed 
with the aim of reducing the number of false-positive 
alerts (e.g., de Mol and Ouweltjes, 2001; Cavero et al., 
2008; Kamphuis et al., 2010). The sensitivity (Se) and 
specificity (Sp) of these models, however, remain too 
low to substantially reduce the number of false-positive 
alerts and at the same time retain a sufficient detection 
of true cases. 

  Deciding on which alerts have the highest priority to 
be visually checked is difficult. In essence, all mastitis 
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alerts given by an AMS have to be visually checked. 
Because of lack of time and the large number of fruit-
less visual checks, however, farmers do not check all 
alerts in practice (Claycomb et al., 2009; Neijenhuis et 
al., 2009). Results of a recent large survey on Dutch 
dairy farms using AMS showed that most farmers 
(65%) do not use any explicit rules for deciding upon 
which cows to check visually for CM (Neijenhuis et 
al., 2009). These farmers thus make their inspection 
decisions based on intuition. Furthermore, 12% of the 
farmers used cow information, such as a cow’s SCC and 
CM history, and 23% of the farmers used alert informa-
tion, such as the absolute EC value, to decide whether 
to check a particular cow (Neijenhuis et al., 2009). To 
what extent non-AMS cow information, alert informa-
tion, or both can be used to discriminate between the 
true-positive and false-positive alerts of a mastitis alert 
list is unknown.

In 2 recent Danish studies, non-AMS cow information 
in addition to sensor measurements was taken into ac-
count for the detection of CM (Chagunda et al., 2006; 
Friggens et al., 2007). Steeneveld et al. (2010) presented 
a method in which a prior probability of CM (based 
on parity, DIM, season, SCC history and CM history) 
was combined with the test characteristics (Se and Sp) 
of the AMS detection system to discriminate between 
alerts in their likelihood of being a true-positive alert. In 
these studies, however, the additional value of non-AMS 
cow information to discriminate between true-positive 
alerts and false-positive alerts was not investigated. It 
has not yet been investigated whether the detailed alert 
information itself can be used to discriminate between 
true-positive and false-positive alerts.

The overall objective of the current study was to 
investigate whether alerted cows that need further 
investigation for CM could be selected. For this pur-
pose, Bayesian networks were used; Bayesian networks 
are readily constructed and allow easy computation of 
posterior probabilities (Jensen, 2001). For our study, 
several Bayesian networks were constructed to compute 
the posterior probability of an alert being truly posi-
tive based on non-AMS cow information only, based 
on alert information only, and based on both types of 
information.

MATERIALS AND METHODS

Data Collection and Herd Description

From October 1, 2007, to October 1, 2009, data were 
collected at the Dutch research farm Waiboerhoeve 
(Lelystad, the Netherlands). During this period, the 
average herd size was approximately 500 cows. From 

the herd, 250 cows were milked with 4 AMS (Lely In-
dustries N.V., Maassluis, the Netherlands). The other 
cows were milked in another barn with a conventional 
milking system. Because of different experiments on the 
farm, cows frequently changed between the 2 barns. All 
cows were housed in a free-stall barn and were of the 
Holstein Friesian breed. The average 305-d milk yield 
was 9,500 kg/cow, and the average bulk milk SCC dur-
ing the study period was 185,000 cells/mL.

In the 2-yr study period, data were collected from all 
milkings of all cows milked with an AMS. These data 
included quarter-based EC and milk color reflection 
measurements (red, green, and blue; Lely Industries 
N.V.). Information on milk yield was available at the 
cow level. The EC measurements represented the mean 
value of the 20 highest measurements of a quarter 
milking and were available as index values. The color 
measurements represented the mean value of the milk-
ing. In addition to these sensor measurements, for each 
milking, information was collected about whether the 
quarter milking was alerted for mastitis based on EC, 
color measurement, or both. An EC alert was given for 
a quarter if the EC of the milk was 20% higher than 
that from the lowest quarter (interquarter ratio of 1.20) 
in 2 consecutive milkings. In addition, the interquarter 
ratio of the running average over the last 3 milkings 
had to exceed 1.20. Based on milk color measurements 
by the color sensor (Espada and Vijverberg, 2002), a 
quarter could receive the following color alerts: abnor-
mal milk, mastitic milk, colostrum, or milk with blood. 
No color alerts for colostrum and milk with blood were 
given during the study period; therefore, only the alerts 
for abnormal milk and mastitic milk were used in the 
current study.

For all cows at the farm, information was collected 
about the occurrence of CM within the study period 
and in the preceding year. For the cows milked with 
the AMS, herd employees were instructed to check 
alerts twice a day. Cows appearing on the alert list were 
eligible for inspection. There was, however, no explicit 
protocol to guide employees in their decisions of which 
alerted cows to check visually. The employees used trig-
gers other than the mastitis alert list to check cows 
for CM. These included clots on the filter sock and 
long milking intervals. These other triggers occasionally 
resulted in the detection of CM in cows for which no 
alert was given by the AMS detection system. Eight 
employees were involved in visually checking alerts. If 
CM was confirmed by obvious signs of wateriness or 
clots in any quarter or by other signs of CM such as 
swelling or redness, the infected quarter was treated 
with antibiotics. Immediately after detection of CM, 
the infected cow was removed from the AMS barn to 
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the sick cow pen and was milked twice daily with the 
conventional milking system for an initially unknown 
period.

For all cows at the farm, the Dutch national milk 
production recording system (CRV, Arnhem, the Neth-
erlands) provided information from the four-weekly 
milk recordings, which included date of milk recording, 
test-day milk yields (kg of milk, fat, and protein), and 
SCC measurements (cells/mL). Data from the milk 
production recording system were available from the 
study period and from the preceding year.

Data Preparation

During the study period, information from 511,744 
milkings of 602 cows was collected. Milkings without 
any recorded milk yield (n = 2,842) were excluded from 
the data. In total, 227 CM cases were recorded for 148 
different cows milked with the AMS.

For each milking, it was determined if any quarter of 
the cow had an alert based on EC, color, or both. For 
11,314 milkings, at least one quarter milking received 
an alert based on EC or color measurements (abnormal 
milk or mastitic milk). The average number of alerts 
per day was 15, with a minimum of 1 and a maxi-
mum of 48. For each of these alerts, it was determined 
whether it was a true-positive, a false-positive, or an 
inconclusive alert for CM. If a cow had a single alert 
on the day on which CM was recorded, then that alert 
was assigned to be a true-positive alert. If a cow had 
multiple alerts on the day on which CM was recorded, 
then only the last alert of that day was assigned to be 
a true-positive alert. Because not all alerts are visually 
checked, it was not possible to know whether the other 
alerts during the 24 h preceding the true-positive alert 
were true-positive or false-positive alerts. Therefore, 
these alerts were considered inconclusive and excluded 
from the final data set (n = 110). Some cows with CM 
were detected in the early morning without having been 
milked yet on that day. If such a cow had an alert on 
the previous day, the last alert of that previous day was 
assigned to be a true-positive alert and the remaining 
alerts of that previous day were considered inconclusive 
and were again excluded from the final data set (n = 
48). All other alerts from the data set were defined to 
be false-positive alerts.

In the resulting data set, information from 508,744 
milkings was available. A total of 11,156 milkings were 
alerted for CM, of which 159 were true-positive alerts 
and 10,997 were false-positive alerts. For 68 CM cases, 
no alert was given by the AMS. The CM detection 
performance of the AMS can thus be summarized as 
having Se of 70%, Sp of 97.8%, and a predictive posi-
tive value of 1.4% (Table 1). Because not all milkings 

were checked, it must be noted that the Se and Sp 
values were not the exact values.

Six variables were defined to describe the detailed 
alert information. Only variables that were readily avail-
able and directly usable from the alert lists currently 
presented to dairy farmers using AMS were defined. 
First, for each alert, the highest EC of the 4 quarters 
was determined and classified into the intervals ≤80, 
81–90, 90–100, and >100. Second, for each alert it was 
determined whether it originated from an increased 
EC, from a deviated color measurement, or from both. 
If, for instance, one quarter of a cow was alerted based 
on EC and another quarter was alerted based on color, 
then that alert was defined as being based on both 
EC and color. Third, for each alert, it was determined 
whether a color alert for mastitic milk was given. The 
fourth variable describes whether a color alert for ab-
normal milk was given. Fifth, for each alert, the devia-
tion from the expected milk yield was determined. To 
determine the expected milk yield, the milk yield per 
hour was calculated by dividing the milk yield during a 
milking by the time since the last milking of a cow. The 
deviation from the expected milk yield was determined 
by comparing the milk yield per hour of the current 
milking with the mean milk yield per hour of the last 5 
d. The deviation from the expected milk yield was clas-
sified into the intervals >40%, 30–40, 20–30, 10–20, or 
<10% less milk than expected. Finally, for each alert, 
the number of alerts (0, 1, 2, 3, ≥4) for that cow in the 
preceding 12 to 96 h was determined. A time-window 
starting with 12 h was chosen because herd employees 
were instructed to check alerts twice a day. Therefore, 
it was assumed that alerts in the 12 h before the cur-
rent alert were checked at the same time as the current 
alert.

Non-AMS cow information was added to each alert in 
the data set, as suggested by Steeneveld et al. (2010). 
The parity of the cow, DIM, season of the year, SCC in 
the previous 30 d, SCC in the 30 d before the previous 
30 d, and, for multiparous cows, the geometric mean 
SCC from all available test-day records from the previ-
ous lactation were added to each alert. In addition, the 
accumulated number of CM cases of the cow in the 
previous 30 d and the accumulated number of CM cases 
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Table 1. Clinical mastitis detection performance of the automatic 
milking system (AMS) 

AMS alert

Clinical mastitis

TotalYes No

Yes 159 10,997 11,156
No 68 497,520 497,588
Total 227 508,517 508,744



of the cow in the days before the previous 30 d were 
added to each alert.

Logistic regression was used to determine whether 
true-positive and false-positive alerts differed in their 
non-AMS cow information and in their alert informa-
tion. Each variable was investigated individually us-
ing a random cow effect to account for the repeated 
measurements on cows. Data preparation and logistic 
regression were performed using SAS version 9.1 (SAS 
Institute Inc., Cary, NC).

Construction of a Naive Bayesian Network

Bayesian networks allow different graphical struc-
tures of varying complexity. Naive Bayesian networks 
(NBN) are the simplest type of Bayesian network. In 
veterinary research, they were described, for example, 
by Steeneveld et al. (2009). An NBN consists of a single 
output variable that represents the possible classes for 
the dependent variable of a study and a set of feature 
variables modeling the levels of the study’s independent 
variables. An NBN further includes arrows from the 
output variable to each feature variable to describe 
the dependence of the latter on the output variable 
(Friedman et al., 1997). In the current study, the vari-
able capturing whether a CM alert was a true-positive 
or a false-positive alert was the output variable. The 
variables describing detailed alert information and the 
variables capturing non-AMS cow information were 
feature variables.

Naive Bayesian networks are typically constructed 
from data that consists of determining prior probabili-
ties for the output variable and of estimating condi-
tional probabilities for the feature variables given the 
possible classes of the dependent variable. In this study, 
the prior probabilities for the output variable reflect the 
probability of an alert being a true-positive alert. Like 
these prior probabilities, the conditional probabilities 
for the feature variables are based on frequency counts 
in the data. For instance, the conditional probability of 
EC >100 given that the alert is truly positive; that is, 
the probability Pr (EC >100 | true-positive alert), was 
computed as the proportion of alerts with an EC >100 
among the true-positive alerts.

In essence, all available feature variables can be in-
cluded in an NBN. Methods exist, however, for select-
ing only those feature variables that best discriminate 
between the different classes of a dependent variable, 
thereby forestalling overfitting of the data (Langley 
and Sage, 1994). In the present study, wrapper-based 
backward elimination was used for selecting appropri-
ate feature variables from all defined variables (Kohavi 
and John, 1997). With this method, feature variables 
were selected to optimize the area under the receiver 

operating characteristic (ROC) curve (AUC) (these 
will be described in more detail in the next section) of 
the NBN under construction. The method started with 
an NBN including the output variable and all feature 
variables. In each subsequent step, a single feature vari-
able was removed. The variable chosen to this end was 
that which served to improve the AUC of the NBN the 
most, if any. The removal of feature variables was con-
tinued until the AUC of the NBN no longer improved.

To determine which information (non-AMS cow in-
formation, alert information, or both) was the most 
valuable for discriminating between true-positive and 
false-positive alerts, different NBN were constructed. 
These were an NBN with only feature variables with 
non-AMS cow information, an NBN with only feature 
variables with alert information, and an NBN with fea-
ture variables capturing both types of information.

For the purpose of constructing and subsequently 
validating the NBN, the available data set was split 
into a construction set and a validation set. From 
the data set, the alerts of two-thirds of the cows were 
selected randomly for construction; the alerts of the 
remaining cows were included in the validation data 
set. Constructing the different NBN, which included 
performing backward elimination and estimating prior 
and conditional probabilities, was done by using the 
Bayesian-network editing package Dazzle (Schrage et 
al., 2005).

Validation

For each alert from the validation data set, the 
constructed NBN was used to calculate the posterior 
probability of the alert being truly positive, given the 
available non-AMS cow information or the alert infor-
mation. For computing posterior probabilities, an NBN 
builds upon Bayes’ rule together with the assumption 
that all feature variables are mutually independent 
given the output variable (Friedman et al., 1997). More 
specifically, for computing the posterior probability Pr 
(c1 | f1, …, fn) of the output c1 given levels f1,…,fn for 
its n feature variables, the model uses

 Pr( | ,..., )
Pr( | ) Pr( )

Pr( | ) Pr( )

c f f
f c c

f c c
n

ii

n

i j ji

n
1 1

1 11
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∏∏∑
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2
, [1]

where Pr(c1) is the overall prior probability of an alert 
being truly positive and Pr(c2) is the prior probability 
of an alert being a false-positive alert. The probabilities 
Pr(fi | c1) are the conditional probabilities of finding the 
level fi for the ith selected feature variable given that 
the alert is a true-positive alert. Note that the prior 
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probabilities Pr(cj) and the conditional probabilities 
Pr(fi | cj) for all levels have already been estimated from 
the data upon constructing the NBN and are therefore 
readily available in the NBN for the computation of 
the posterior probabilities using formula [1]. Comput-
ing the posterior probabilities was done using Dazzle 
(Schrage et al., 2005).

To evaluate the performance of the different con-
structed NBN, the posterior probabilities obtained for 
the validation data set were used to calculate the Se 
and Sp of the NBN over the whole range of possible 
threshold probabilities for classification. Receiver oper-
ating characteristic curves were constructed to visualize 
the performance. A ROC curve is a graphic representa-
tion of the Se versus 1 − Sp over the whole range of 
classification thresholds. To summarize the ROC curves 
into a single quantity, the AUC was computed (e.g., 
Detilleux et al., 1999; Dohoo et al., 2003). In the cur-
rent study, the AUC can be interpreted as the probabil-
ity that a randomly selected true-positive alert has a 
higher posterior probability to be truly positive than a 
randomly selected false-positive alert. The ROC curves 
were visualized using TIBCO S+ version 8.1 (TIBCO 
Software Inc., Palo Alto, CA) and the AUC using the 
trapezoidal rule were calculated in SAS (%roc macro: 
http://support.sas.com/kb/25/017.html).

Subsequently, using the validation data set with the 
computed posterior probabilities, different threshold 
values on these probabilities were set such that 95, 
90, and 80% of all true-positive alerts ended up being 
alerted. The effect of setting these thresholds on the 
number of false-positive alerts was investigated.

RESULTS

The descriptive statistics of the true-positive alerts 
and false-positive alerts are given in Tables 2 and 3. 
Most alerts were given for older cows and for cows later 
in lactation. From the non-AMS cow information, only 
the distribution of DIM was found to be significantly 
different between true-positive and false-positive alerts 
(P = 0.002). The SCC information captured in the 3 
SCC variables did not significantly differ between true-
positive and false-positive alerts. For instance, although 
30% of the true-positive alerts were from cows with an 
SCC >500,000 cells/mL in the last 30 d, the same in-
formation was found in 24% of the false-positive alerts 
(P = 0.135; Table 2).

The distributions of 5 of the 6 variables capturing 
the detailed alert information were significantly (P < 
0.05) different between true-positive and false-positive 
alerts. The single exception was the variable whether a 
color alert for abnormal milk was given (Table 3). For 
instance, although 45% of the true-positive alerts had 

an EC value >100, this information was found in just 
20% of the false-positive alerts. Although 40% of the 
true-positive alerts had a decreased milk production of 
more than 30%, just 9% of the false-positive alerts had 
such a large decrease in milk production compared with 
expected milk yield.

Upon constructing the 3 NBN, backward elimination 
resulted in the removal of feature variables. From the 
NBN with only non-AMS cow information, only the 
variable capturing the season of the year was removed. 
From the NBN containing alert information only, the 
variable capturing the number of alerts for the cow in 
the preceding 12 to 96 h and the variable describing 
whether a color alert for abnormal milk was given were 
removed. From the NBN containing both types of infor-
mation, 2 variables were removed by backward elimina-
tion. These were the variable capturing the mean SCC 
in the previous lactation and the variable whether a 
color alert for abnormal milk was given.

The ROC curves of the 3 constructed NBN are 
presented in Figure 1. The AUC of the 3 NBN are 
reported in Table 4. The combination of non-AMS cow 
information and detailed alert information resulted in 
the highest AUC. The difference in AUC between the 
NBN with alert information only (AUC = 0.7499) and 
the NBN containing both information sources (AUC = 
0.7792) was not significant (P = 0.210), but both dif-
fered significantly from the AUC of the NBN containing 
cow information only (AUC = 0.6175, P = 0.014 and 
<0.0001 respectively).

The validation data set contained 52 true-positive 
alerts and 3,636 false-positive alerts. Table 5 summa-
rizes the classification results from the 3 NBN for these 
alerts, by using threshold values for which at least 95, 
90, and 80% of all true-positive alerts were identified, 
respectively. A threshold value on the posterior prob-
ability computed from the NBN containing both cow 
and alert information, for example, for which at least 
95% of all true-positive alerts were identified, resulted in 
2,527 false-positive alerts. Compared with the original 
3,636 false-positive alerts, this was a reduction of 31%. 
A threshold value set such that at least 95% of all true-
positive alerts were identified but this time using the 
NBN with non-AMS cow information only resulted in 
3,493 false-positive alerts—a reduction of 4%. A thresh-
old value on the posterior probability computed from 
the NBN containing both types of information for which 
at least 80% of all true-positive alerts were identified re-
sulted in 1,568 false-positive alerts—a reduction of 57% 
compared with the original 3,636 false-positive alerts.

DISCUSSION
The test characteristics of the AMS in the current 

study were an Se of 70% and an Sp of 97.8%. Because an 
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Se of at least 70% combined with an Sp of at least 99% 
is desired (Mein and Rasmussen, 2008), the CM detec-
tion performance of this AMS is suboptimal. Although 
new detection models were developed in several previ-
ous studies (e.g., de Mol and Ouweltjes, 2001; Cavero 
et al., 2008; Kamphuis et al., 2010), these models were 
unable to improve detection performance to the extent 
that the detection of CM cases remained satisfactory 
and the number of false-positive alerts was reduced to 
a reasonable level. Because of the suboptimal detection 
performance, and particularly the unsatisfactory Sp, 
interpretation of the alert lists is difficult. For instance, 
the current alert lists contain a large number of false-
positive alerts and it is not possible to select those cows 
that have priority for visual checking. In our study, no 
new detection model was developed. The aim was to 
investigate whether cows needing further investigation 
for CM can be selected from the alert lists based on 

non-AMS cow information, on alert information, or on 
both.

For farmers milking with an AMS, handling the mas-
titis alert lists generated by the AMS is daily practice. 
Most Dutch farmers milking with an AMS make their 
inspection decisions based on intuition. Only a minority 
of farmers indicated that they use non-AMS cow infor-
mation or detailed alert information to decide which 
cows to check visually (Neijenhuis et al., 2009). Results 
of our study show that checking alerts based on a single 
alert variable is not satisfactory. For instance, visual 
checking of just the alerts with an EC over 100 would 
result in missing 55% of the true-positive alerts; and 
checking of just the newly alerted cows without any 
alerts in the preceding 12 to 96 h would result in missing 
50% of the true-positive alerts (Table 3). The results of 
our study show that a combination of variables captur-
ing alert information is necessary to make a meaningful 
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Table 2. Number of true-positive (tp) and false-positive (fp) alerts for different levels of cow information 

Cow information
tp alerts, n (%) 

(n = 159)
fp alerts, n (%) 
(n = 10,997) P-value1

Parity   0.121
 1 8 (5) 941 (9)  
 2 58 (37) 3,541 (32)  
 3 45 (28) 3,325 (30)  
 ≥4 48 (30) 3,190 (29)  
DIM   0.002
 1–30 9 (6) 273 (3)  
 31–60 18 (11) 477 (4)  
 61–90 18 (11) 726 (7)  
 91–120 13 (8) 664 (6)  
 121–150 12 (8) 733 (7)  
 151–180 12 (8) 883 (8)  
 181–210 24 (15) 822 (7)  
 ≥211 53 (33) 6,419 (58)  
Season   0.518
 January–March 48 (30) 2,818 (26)  
 April–June 31 (20) 2,374 (21)  
 July–September 37 (23) 2,650 (24)  
 October–December 43 (27) 3,155 (29)  
SCC in last 30 d   0.135
 <500,000 cells/mL 79 (70) 6,911 (76)  
 ≥500,000 cells/mL 34 (30) 2,183 (24)  
SCC before last 30 d   0.864
 <500,000 cells/mL 94 (73) 7,049 (77)  
 ≥500,000 cells/mL 35 (27) 2,091 (23)  
Mean SCC previous lactation   0.501
 <500,000 cells/mL 132 (89) 9,045 (93)  
 ≥500,000 cells/mL 17 (11) 708 (7)  
CM2 cases in last 30 d   0.054
 0 148 (93) 10,271 (93)  
 1 10 (6) 654 (6)  
 2 1 (1) 72 (1)  
CM cases before last 30 d   0.158
 0 84 (53) 5,026 (46)  
 1 39 (24) 3,413 (31)  
 2 36 (23) 2,558 (23)  

1Indicates whether the distribution over the levels for a cow information variable is different between true-
positive and false-positive alerts.
2CM = clinical mastitis.



selection of alerts for visual checking. In fact, using a 
combination of 4 alert variables (height of EC, alert 
origin, color alert for mastitic milk, and expected milk 
production) proved to be very useful in discriminat-
ing between the true-positive and false-positive alerts 
from a mastitis alert list. This combination resulted 
in a reduction of the number of false-positive alerts by 
33% at the cost of missing or detecting later 10% of 
the true-positive alerts (Table 5). Combining both non-
AMS cow information and detailed alert information 
served to reduce further the number of false-positive 
alerts (Table 5).

Using only non-AMS cow information to discriminate 
between alerts was not very useful (Tables 4 and 5). The 
idea of using non-AMS cow information to discriminate 
between alerts originated from the observation that 
cows having CM differ in several aspects from cows 
not having CM (e.g., Barkema et al., 1998; Steeneveld 
et al., 2008, 2010). Based on that finding, we expected 
better performance from the NBN with only non-AMS 
cow information than was actually found in the pres-
ent study. The true-positive alerts indeed differed in 
their cow information from the true-negative milk-
ings. In particular, the SCC history was found to be 

significantly different between true-positive and true-
negative milkings (data not shown). Within the group 
of alerted cows, however, the SCC histories of the true 
CM cases and of the false alerts proved to be no longer 
significantly different (Table 3). Most likely, the AMS 
had given many alerts for cows with subclinical mas-
titis. These alerts were not given without reason, but 
these cows were not (yet) clinically diseased. The lack 
of significant differences in non-AMS cow information 
between the true-positive and false-positive CM alerts 
explains the relatively low AUC of the constructed 
NBN based on non-AMS cow information only.

Upon constructing the 3 NBN, backward elimina-
tion resulted in the removal of some variables from 
the NBN. For instance, from the NBN containing only 
alert information, the variable capturing the number of 
alerts for the cow in the preceding 12 to 96 h and the 
variable describing whether a color alert for abnormal 
milk was given were removed. Because these variables 
were the least significant in the univariate analysis 
(Table 3), it was not surprising that they were removed. 
The presence of all other feature variables in the NBN 
indicates that each of these variables, in the presence of 
the previously selected variables, served to contribute 
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Table 3. Number of true-positive (tp) and false-positive (fp) alerts for different levels of alert information 

Alert information
tp alerts, n (%) 

(n = 159)
fp alerts, n (%) 
(n = 10,997) P-value1

Electrical conductivity2   <0.0001
 ≤80 17 (11) 3,586 (33)  
 81–90 34 (21) 2,270 (21)  
 90–100 36 (23) 2,893 (26)  
 >100 72 (45) 2,248 (20)  
Alert origin   <0.0001
 Electrical conductivity 25 (16) 4,618 (42)  
 Color 73 (46) 5,548 (50)  
 Electrical conductivity + color 61 (38) 831 (8)  
Color alert: mastitic milk   <0.0001
 Yes 75 (47) 2,346 (21)  
 No 84 (53) 8,651 (79)  
Color alert: abnormal milk   0.685
 Yes 63 (40) 4,256 (39)  
 No 96 (60) 6,741 (61)  
Decreased milk production   <0.0001
 >40% 46 (29) 609 (6)  
 30–40% 17 (11) 303 (3)  
 20–30% 22 (14) 702 (6)  
 10–20% 24 (15) 1,770 (16)  
 <10% 50 (31) 7,613 (69)  
Alerts of cow in preceding 12–96 h   0.020
 0 80 (50) 3,856 (35)  
 1 26 (17) 1,790 (16)  
 2 19 (12) 1,291 (12)  
 3 16 (10) 980 (9)  
 ≥4 18 (11) 3,080 (28)  

1Indicates whether the distribution over the levels for an alert information variable differs between true-positive 
and false-positive alerts.
2Reported in standardized units of the automatic milking system.



to the model’s discriminative performance. It further 
indicates that the selected variables do not exhibit a 
large overlap in the information they contribute.

The method for discriminating between true-positive 
and false-positive alerts as presented in the current pa-
per is based on the use of a relatively simple Bayesian 
network. Bayesian networks have been studied exten-
sively and are being widely applied in human medicine 
(e.g., Chapman et al., 2005). Applications are not yet 
common in veterinary science, but they are gaining 
popularity (e.g., Otto and Kristensen, 2004; Jensen et 
al., 2009; Steeneveld et al., 2009). The NBN used in this 
study constitute the simplest type of Bayesian network. 
Despite their simplicity, these models are surprisingly 
effective, showing good classification performance even 
if the independence assumption for the feature vari-
ables does not hold in the data (Friedman et al., 1997). 
In the current study, Bayesian networks of increasing 
complexity were developed as well. More specifically, 
tree-augmented NBN, which include dependencies 
between the feature variables (Friedman et al., 1997), 
were constructed and validated. The more sophisti-
cated dependency structures, however, did not result in 
significantly higher AUC than the ones obtained with 
the simple NBN (data not shown).

The posterior probabilities computed from the NBN 
in this study can be combined with the current detec-
tion algorithms in several different ways. For instance, it 
is possible to add a posterior probability to each of the 

alerts currently given by the AMS. The farmer is then 
provided with additional information to decide which 
alerts have the highest priority for visual checking. An-
other possibility is to present only the alerts from the 
current alert lists that have a posterior probability of 
being truly positive above a particular threshold value. 
In this way, fewer alerts are presented to the farmer—
specifically fewer false-positive alerts. It is unavoidable 
that for some of the true CM cases no alert will be given 
; consequently, these CM cases will be missed or later 
detected by the farmer. The risk attitude of the farmer, 
with respect to missing CM cases versus checking large 
numbers of false-positive alerts, can be incorporated 
by allowing the farmer to adjust the threshold value. 
For instance, the threshold values can lowered if the 
bulk milk SCC is trending upwards (Claycomb et al., 
2009). For actual implementation, software is required 
to combine all available information into a posterior 
probability and subsequently comparing this probabil-
ity against a preset farmer-specific threshold value.

For 68 CM cases, no alert was given by the AMS 
(Table 1). Most of these cases were not alerted be-
cause of the use of a narrow time-window. Only the 
final alert on the day on which CM was recorded was 
considered as a true-positive alert. The definition of 
an appropriate time-window is difficult and still under 
debate (Sherlock et al., 2008). In our study, using a 
wider time-window resulted in more true-positive alerts 
and fewer CM cases without an alert. For instance, con-
sidering the alerts from the day before the day on which 
CM was recorded as true-positive alerts resulted in 28 
CM cases instead of 68 CM cases without an alert. We 
decided, however, to use a narrow time-window because 
of the systematic way of working on the research farm. 
Moreover, Sherlock et al. (2008) argued that using nar-
row time-windows for CM detection is more realistic 
and better for application in practice. The use of trig-
gers other than the alert list for visually checking cows 
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Table 4. Area under the receiver operating characteristic curve 
(AUC) with associated standard error and confidence interval of naive 
Bayesian networks including different types of information 

Type of information AUC SE 95% CI

Cow information 0.6175 0.0387 0.5416–0.6934
Alert information 0.7499 0.0379 0.6756–0.8243
Cow + alert information 0.7792 0.0342 0.7121–0.8463

Table 5. The effect of 3 probability threshold values on the number of true-positive (tp) and false-positive 
(fp) alerts1 

Value2

Cow information Alert information Cow + alert information

tp fp tp fp tp fp

Original number 52 3,636  52 3,636  52 3,636
Threshold value A 50 3,493  50 2,723  50 2,527

(4) (4) (4) (25) (4) (31)
Threshold value B 47 2,939  47 2,439  47 2,363

(10) (19) (10) (33) (10) (35)
Threshold value C 42 2,186  42 1,684  42 1,568

(19) (40) (19) (54) (19) (57)

1The percentage reduction in the number of tp and fp alerts compared with the original numbers is given in 
parentheses.
2Threshold values A, B, and C are the highest values such that at least 95%, 90%, and 80%, respectively, of 
all true-positive alerts were identified.



for CM explains the detection of the nonalerted CM 
cases.

The herd employees indicated that approximately 
40% of the alerts were visually checked. Because not all 
milkings and not all alerted cows were checked visually, 
it was not possible to calculate the exact values for Se 
and Sp. It is possible that nonalerted cows had CM and 
remained undetected. Therefore, in fact, some assigned 
true-negative milkings may have been false-negative. 
The herd employees did use triggers other than the 
alert list to detect CM, thereby minimizing the number 
of undetected CM cases. In addition, some true-positive 
alerts for CM may have been missed, and consequently, 
some alerts may have been incorrectly assigned as false-
positive alerts. Although there were some missed CM 
cases, the effect of these missed cases on the conclusions 
would be minimal. Moreover, we believe that the sys-
tematic way of working on this research farm and the 
serious consideration of the alert lists have minimized 
the missing of true-positive alerts.

Because our research farm was used for several stud-
ies, the proportion of cows at risk for CM may have been 
somewhat different from that on commercial Dutch 
farms. For instance, heifers were more frequently housed 
in the other barn, cows did not enter the AMS barn in 

the colostrum-feeding period, and cows detected with 
CM were removed from the AMS barn. These observa-
tions explain the relatively small numbers of heifers and 
cows in the first weeks of lactation with alerts (Table 
2). Most likely, the cows with chronic mastitis remained 
in the barn with the conventional milking system. In 
proportion, therefore, new CM cases occurred more 
frequently in cows milked with the AMS. Because of 
these specific characteristics of the research farm, it is 
not possible to generalize the developed model to other 
farms as it stands. For future implementation, it will be 
necessary to construct farm-specific models or a more 
generic model based on a variety of farms.

For the detection of CM cases on a farm milking 
with an AMS, checking all alerts is still the best option. 
Checking all alerts, however, is often not feasible because 
of the higher workload caused by the large number of 
false-positive alerts. Selecting alerts for visual checking 
based on a single alert information variable; for instance, 
only checking alerts with EC values >100, resulted in 
too many true-positive alerts being missed. To reduce 
both the workload and the annoyance of fruitless visual 
checks, selection of cows requiring further inspection is 
best based on a combination of alert information. The 
effect of using non-AMS cow information on making 
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Figure 1. Receiver operating characteristic curves for the 3 developed naive Bayesian networks including different types of information: cow 
information, alert information, and cow + alert information.



a distinction between true-positive and false-positive 
alerts proved to be minor in our study. Naive Bayesian 
networks can be used to combine the variables to select 
cows for visual checking.
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