
Chapter 1

Introduction and Preliminaries

1.1 Motivation

The American put option problem

The valuation of contingent claims has been a widely known topic in the theory
of modern finance. Typical claims such as call and put options have been playing
significant role not only in the theory but also in the real financial markets. A put
(call) option is the “right” but not the obligation to sell (buy) a certain asset at a
specified price until or at a predetermined maturity date in the future. If the option
specifies that the option holder may exercise this right only at the given future date,
the claim is termed European.

The pricing of European puts and calls on stocks has an interesting history, dating
back to the work of Bachelier [9]. In 1900 Bachelier was the first to use a linear
Brownian motion to model the movement of stock price fluctuations. The theory
reaches a milestone with the celebrated papers of Black and Scholes [18] and Merton
[83] in which the principles of hedging and arbitrage-free pricing were introduced for
the first time. These idea were formalized and extended further by Harrison and Kreps
[56] and Harrison and Pliska [57] by applying the fundamental concepts of stochastic
integrals and the Girsanov theorem in stochastic calculus. Based on the important
principle of hedging, Black and Scholes [18] derived the now famous formula for the
value of the European call option, which bears their name and which was extended by
Merton [83] in a variety of very significant ways. For this foundational work, Robert
Merton and Myron Scholes were awarded the 1997 Nobel Prize in economics.

It is worth noting that most of the traded options, however, are of American
style (or in the sequel, American options)-that is, the holder has the right to exercise
an option at any instant before the option’s expiry. It is the added feature of early
exercise which makes the American options more interesting and complex to evaluate.
According to the theory of modern finance1, the arbitrage-free price of the American

1See for instance Karatzas and Shreve [66] and Myneni [90] for extensive review of the theory
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put option with strike price K coincides with the value function V of an optimal
stopping problem with payoff function G(x) = (K − x)+. That is to say that the
arbitrage-free price of the American put option is given by

V (t, x) = sup
0≤τ≤t

E
(
e−rτ

(
K − Sτ (x)

)+
)
, (1.1.1)

for all (t, x) ∈ [0, T ]× R+, where T is the maturity of the option and τ is a stopping
time of the stock price process S the evolution of which is given by exponential of a
linear Brownian motion

St(x) = xe(r+ω)t+σBt , (1.1.2)

taken under a chosen martingale measure P (with associated expectation operator E)
under which S0 = x. The parameter ω is chosen to be − 1

2σ2 so that the discounted
stock price process e−rtSt(x) is P-martingale, implying that

E
(
e−rtSt(x)

)
= x.

Although the American put option problem was treated as an optimal stopping
problem, a financial justification using hedging arguments was given only later by
Bensoussan [12] and Karatzas [64], [65]. The optimal stopping time in the American
put option problem (1.1.1) is the first time when the stock price process S goes below
a time-dependent boundary b. When the maturity time T of the option is finite, the
problem (1.1.1) is essentially two-dimensional in the sense that it consists of finding the
value function V and the optimal stopping boundary b simultaneously; that is to say
that the value function can be seen as a function of the unknown stopping boundary.
Therefore, from an analytical point of view, solving the problem is difficult.

The first and one of the most penetrating mathematical analysis of the prob-
lem (1.1.1) was due to McKean [82]. There the problem was transformed into a free
boundary problem for the value function V and the boundary b. Solving the free
boundary problem, McKean obtained the American option price explicitly in terms
of the boundary. McKean’s work was taken further by van Moerbeke [86]. Motivated
by the physical problem of the condition of heat balance (i.e., the law of conservation
of energy), van Moerbeke [86] introduced a so-called the smooth pasting condition to
determine the boundary and specify the value function. This condition dictates that
the value and the payoff functions must join smoothly at the boundary.

The derivation of the smooth pasting condition for diffusion processes are given
by Grigelionis and Shiryaev [55], Shiryaev [113], Chernoff [30], McKean [82] and My-
neni [90] using Taylor approximation of the value function around the boundary and
by Bather [11] and van Moerbeke [86] using Taylor expansion of the payoff function
around the boundary plus the assumption that the boundary is regular2 for the inte-
rior of the stopping region for the underlying process. Since the value function is not

and methods of pricing American type options for diffusion processes.
2Starting at the boundary, the underlying process makes an immediate visit to the interior points

of the stopping region. See Definition 2.1.3 in Chapter 2.
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known a priori, the approach of Bather [11] and van Moerbeke [86] is more satisfactory
than the others.

As an alternative to the Taylor expansion method, Peskir [98] introduced a prob-
abilistic approach to prove the smooth pasting condition. The main approach of the
proof is based on a change of variable formula with local time-space on curves which
he derived recently in [97]. This formula extends further the Itô-Tanaka formula for
convex functions (see for instance Revusz and Yor [106]). Using the change of variable
formula and the free boundary problem, Peskir [98] derived the smooth pasting con-
dition. (See also Peskir and Shiryaev [99] for more discussion on recent development
of local time-space calculus in the theory of optimal stopping.)

Based on the free boundary problem formulation of the optimal stopping problem
(1.1.1), with continuous and smooth pasting conditions in place, and combining with
the Itô-Doob-Meyer decomposition of the value function of the problem (1.1.1) into
martingale and potential processes, van Moerbeke [86], Myneni [90], El Karoui and
Karatzas [45], Jacka [62], Carr et al. [23], and later Peskir [98] showed that the optimal
stopping boundary can be characterized as a solution to a nonlinear integral equation.
Such an equation was already obtained earlier by Friedman [51] in 1959 for a one-
dimensional free boundary problem of ice melting. This nonlinear integral equation for
the optimal boundary is known as the Riesz decomposition for the value function of
the problem (1.1.1) and has a clear economical meaning to the early exercise premium
representation of the value function. We refer among others to Kim [67], Myneni [90]
and Carr et al. [23] and the literature therein for details.

The existence and local uniqueness of a solution to the nonlinear integral equation
for the boundary was proved by Friedman [51] and van Moerbeke [86] using the fixed
point theorem (contraction principle) first for a small time interval and extending it
to any interval of time using induction arguments. The result of applying the fixed
point theorem is that the nonlinear equation involves continuous differentiability of
the curve boundary, a condition that is needed to be proved a priori, and results in
a long computation and strong condition imposed on the boundary. In contrast to
the fixed point method, Jacka [62] and later Peskir [98] introduced a probabilistic
approach to prove the existence and uniqueness of a solution to the nonlinear integral
equation. The key ingredient of the proof is based on the smooth pasting condition
and the Itô-Doob-Meyer decomposition of the value function of the optimal stopping
problem (1.1.1). (Note that the Itô-Doob-Meyer decomposition underlies the basic
principle of the theory of optimal stopping developed earlier by Snell [115], Dynkin
[39] and Dynkin and Yushkevich [41].) However, the incorporation of the smooth
pasting condition in the proof was made clear by Peskir [98] using his change of
variable formula.
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Alternative modelling for underlying processes

Until now we have discussed exponential of a linear Brownian motion as the continuous
time model for the evolution of the stock price process (1.1.2). In recent years, there
has been a lot of interest in looking for alternative models for the evolution of the stock
price process which gives a better fit to the real data. Empirical study of financial
data reveals the fact that the distribution of the log-return of stock price exhibits
features which cannot be captured by the normal distribution such as heavy tails and
asymmetry. For the purpose of replicating more effectively these features, there has
been a general shift in the literature to modelling with exponential Lévy process as
an alternative to exponential of a linear Brownian motion.

A Lévy process is a stochastic process with stationary independent increments
whose paths are right-continuous and have left limits. Most recent examples of Lévy
processes used in modelling the evolution of the stock price process we refer among
others to the normal inverse Gaussian model of Bandorff-Nielsen [10], the hyperbolic
model of Eberlein and Keller [42], the variance gamma model of Madan and Seneta
[80], the CGMY model of Carr et al. [24], and tempered stable process first introduced
by Koponen [68] and extended further by Boyarchenko and Levendorski [21].

Working with a Lévy process leads to many intriguing mathematical issues which
need to be resolved to completely settle the problem of valuing American options. In
a market where the underlying dynamics for the stock price process is driven by the
exponential of a linear Brownian motion, as discussed before, the valuation is trans-
formed into a free boundary problem. The critical value (the stopping boundary) of
the stock price process is determined by imposing continuous and smooth pasting
conditions as optimality criterion for choosing the stopping boundary. However, by
allowing jumps in the sample paths of the underlying dynamics of the stock price pro-
cess, the smooth pasting may break down at the stopping boundary as the stock price
process may jump over the boundary. As a result, the continuous pasting condition
is perhaps the only criterion for determining the stopping boundary.

When maturity T is infinite and the underlying is a general Markov process, the
optimal stopping problem (1.1.1) could be solved without necessarily being trans-
formed into a free boundary problem and using the smooth pasting condition. The
solution can be obtained using probabilistic approach. This approach was first intro-
duced by Darling et al. [33] for random walks and was extended further using similar
arguments in [33] to continuous time among others by Mordecki [87], Asmussen et
al. [6], and Alili and Kyprianou [3]. Taking the result of Mordecki [87], it was shown
recently by Alili and Kyprianou [3] that the existence of the smooth pasting condi-
tion for the problem (1.1.1) is determined by the regularity of the sample paths of
the underlying process; for the problem considered there the smooth pasting occurs
if and only if 0 is regular for the lower half-line (−∞, 0) for the process itself.

However, the solution to a perpetual optimal stopping problem with a more general
payoff function was not discussed by the aforementioned authors. This problem was
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addressed by Boyarchenko and Levendorski [21]. There they considered the problem of
solving perpetual optimal stopping for payoff functions with exponential growth. Their
approach is much more sophisticated in which potential theory of Lévy processes and
the theory of pseudo-differential operators are heavily used to solve the problem. See
for instance [20] for recent work in this direction. Working under a particular class of
Lévy processes with stable like characteristic exponent, Boyarchenko and Levendorski
[21] gave an integral test for the smooth pasting condition to occur.

1.2 The main contribution of this thesis

This section outlines the main contribution of this thesis to the theory of optimal
stopping problems driven by Lévy processes. The aim is to propose a framework by
which semi-explicit solutions can be obtained. The solutions are given for both finite
and infinite maturity and are obtained without using the continuous and smooth
pasting conditions. Using the semi-explicit solutions in the problems we consider, we
give sufficient and necessary conditions for the pasting conditions to be fulfilled.

The thesis consists of seven self-contained chapters. The content of the chapters
is outlined in what follows.

Chapter 1 This chapter overviews some past and recent developments in the
theory of optimal stopping and outlines some points that have not been discussed
in the literature. The missing gaps in the theory are explained in this chapter and
constitute the main source of motivation of the writing of this thesis.

Chapter 2 This chapter provides a brief introduction to Lévy processes and the
Wiener-Hopf factorization formula which underlies the fluctuation theory of Lévy
processes and forms one of the two main principles for solving an infinite horizon
optimal stopping problem under Lévy processes. We also discuss in this chapter some
important classes of Lévy processes for which the two factors of the Wiener-Hopf fac-
torization have explicit expressions. Among theses classes, we use spectrally negative
Lévy processes for the numerical computation performed in the last four chapters.

Chapter 3 In this chapter we establish a change of variable formula for ‘ripped’
time-space functions of Lévy processes of bounded variation at the cost of an addi-
tional integral with respect to local time-space in the formula. Roughly speaking, by a
ripped function, we mean here a time-space function which is C1,1 on either side of a
time dependent barrier and which may exhibit a discontinuity along the barrier itself.
Such functions have appeared in the theory of optimal stopping problems for Markov
processes of bounded variation (cf. Peskir and Shiryaev ([95], [96]), Chan ([26], [27]),
Avram et al. [7]. This result complements the recent work of Föllmer et al. [50], Eisen-
baum ([43], [44]) and Peskir ([97], [98]) and Elworthy et al. [46] in which generalized
versions of Itô’s formula were established with local time-space. Using the change of
variable formula, we address the finite maturity American put option problem where
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the evolution of the stock price process is driven by a bounded variation Lévy pro-
cess. Combining this with Itô-Doob-Meyer decomposition of the value process of the
American put option problem into martingale and potential processes, we show that
the optimal stopping boundary can be characterized as a solution to a nonlinear inte-
gral equation. Taking account of the continuous pasting condition, we show using the
change of variable formula that such integral equation admits, under some conditions,
an unique solution for the optimal boundary. By the uniqueness of such solution, we
show that the value function of the American put option problem and the optimal
stopping boundary represent an unique pair solution to a free boundary problem of
parabolic integro-differential type.

Chapter 4 This chapter discusses a relatively new optimal stopping problem
where the payoff is an integer power function. This problem was first introduced by
Novikov and Shiryaev [91] for random walks based on other similar examples given
by Darling et al [33]. We give the analogue of their results when the random walks
are replaced by Lévy processes. The main ingredient of solving this problem is central
to using Appell polynomials and fluctuation theory of Lévy processes.

Chapter 5 In this chapter, we generalize the recent work of Boyarchenko and
Levendorski [21] on a perpetual optimal stopping problem under Lévy processes. Un-
like their approach, we do not appeal to the theory of pseudo-differential operators to
solve the problem. We work with a more general class of Lévy processes and we allow
for a more general class of payoffs. The solution is obtained by reducing the problem
into an averaging problem from which we obtain, using the Wiener-Hopf factoriza-
tion, a fluctuation identity for overshoots of Lévy processes. This fluctuation identity
relates the solution of the averaging problem with the expected value of discounted
payoff function up to a first passage time and is the key element in obtaining the value
function and the optimal boundary of the stopping problem. Using our approach, we
are able to verify the smooth pasting condition analytically and to reproduce the
special results of those discussed among others by Darling et al. [33], Mordecki [87],
Boyarchenko and Levendorskii [21], Alili and Kyprianou [3], Novikov and Shiryaev
[91], and Kyprianou and Surya [73] (also presented in Chapter 4). Furthermore, as-
suming that the moment generating function of the underlying Lévy process exists on
an open set containing zero, we obtain a lower and upper bounds for the arbitrage-free
price of the finite maturity American put option in terms of the value function of the
perpetual American put option problem.

Chapter 6 In this chapter we consider an endogenous bankruptcy problem. This
problem is closely related to a perpetual type optimal stopping problem which pri-
marily deals with finding an optimal bankruptcy level VB of a firm which keeps a
constant level of its debt and chooses its bankruptcy level endogenously so that the
value of its equity is maximized. The firm declares bankruptcy when the value of its
asset goes below the level VB . This problem has been investigated by Leland and
Leland and Toft in a sequence of their papers in [77] and [76], respectively. The work
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of Leland and Toft was extended further from diffusion to a Lévy process which is
the independent sum of a linear Brownian motion and a compound Poisson process
with one-sided exponential jumps by Hilberink and Rogers [58]. As it was suggested
by Leland and Toft [76] and later by Hilberink and Rogers [58] that, subject to the
limited liability constraint3 of the equity value, the smooth pasting condition is used
for optimality criterion for choosing the bankruptcy level VB . In other recent work,
Chen and Kou [29] generalized the works of Leland and Toft [76] and Hilberink and
Rogers [58] by adding a two-sided exponential jumps compound Poisson process to
a linear Brownian motion. They succeeded in proving that the optimal bankruptcy
level is obtained by using the smooth pasting condition for the case considered there.

The main purpose of this chapter is threefold. Firstly to revisit the previous works
of Leland and Toft [76] and Hilberink and Rogers [58] and show that the issue of
choosing an optimal endogenous bankruptcy level can be dealt with analytically and
numerically when the underlying source of randomness for the value of the firm’s asset
is replaced by a general Lévy process with no positive jumps. Secondly, by working
with the latter class of Lévy processes we bring to light a new phenomenon, namely
that, depending on the nature of the small jumps, the optimal default level may
be determined by a principle of continuous pasting as opposed to the usual smooth
pasting. Thirdly, we are able to prove the optimality of the default level according to
the appropriate choice of pasting. This improves on the results of Hilberink and Rogers
[58] who were only able to give a numerical justification for the case of smooth pasting.
Our calculations are greatly eased by the recent perspective on fluctuation theory of
spectrally negative Lévy processes in which many new identities are expressed in
terms of the so called scale functions. To finish this chapter, we study analytically
and numerically the behaviour of the term structure of credit spreads for very short
maturity bonds when we allow the firm’s assets to be driven by a general Lévy process
with no positive jumps. The study reveals the fact that the credit spreads have strictly
positive values, a feature typically observed in the financial market.

Chapter 7 In this chapter we discuss a robust numerical method to numerically
produce the q-scale function {W (q)(x) : q ≥ 0, x ∈ R} of a general spectrally negative
Lévy process (X,P). The method is based on the Esscher transform of measure Pν

under which X is taken and the scale function is determined. This change of measure
makes it possible for the scale function to be bounded and hence makes numerical
computation easier, fast and stable. Working under the new measure Pν and using
the method of Abate and Whitt [1] and Choudhury et al. [31], we give a fast stable
numerical algorithm for the computation. The algorithm has been extensively used
to give numerical verification of the main results presented in this thesis.

3Equity must worth non-negative for all values V of the firm’s asset bigger than equal to the

bankruptcy level VB .
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1.3 Publication details

The material presented in this thesis has resulted in the following research papers.

(i) Kyprianou, A. E. and Surya, B. A. A note on the change of variable for-
mula with local time-space for bounded variation Lévy processes. To appear in
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