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Abstract

The management of patients over a prolonged period of time is a complicated task in-
volving both diagnostic and prognostic reasoning with incomplete and often uncertain
knowledge. Various formalisations of this type of task exist, but these often conceal
one or more essential ingredients of the problem. This article explores the suitability
of partially observable Markov decision processes to formalising the planning of clinical
management. These processes allow for explicit representation of clinical states of the
patient, the management strategy employed, the objectives of treatment, and the role of
time and change in reasoning. However, practical application is hampered by their coarse
representational granularity and complex formulation. It is discussed how probabilistic
network representations can be used to alleviate these obstacles. The resulting method is
illustrated with a real-world example from the domain of paediatric cardiology.

Keywords: Decision-theoretic planning; Markov decision processes; Probabilistic net-
works; Paediatric cardiology

1 Introduction

The planning of therapy over a prolonged period of time often requires the ability to predict
the interplay between the natural history of disease and effects of clinical actions. Contro-
versies about therapy are frequently rooted in prognosis, as most predictions cannot be made
with certainty, and trade-offs have to be made between the expected outcomes of current de-
cisions and future decision-making opportunities. A typical example of this situation is found
in the field of paediatric cardiology. In the management of patients with a congenital cardiac
anomaly, there is always a trade-off between the benefits gained by waiting before surgical
intervention in the hope that the patient’s condition will improve, and the risks caused by the
natural history of these disorders [19]. Furthermore, over the last decade, improved methods
for non-invasive diagnostic testing have questioned the self-evidence of conducting invasive
tests.

Although the need for decision support in this domain is recognised by paediatric cardiol-
ogists, no system currently exists to support the treatment-planning process. A few systems
exist to help the clinician reaching a diagnosis for children with congenital heart disease
[32, 30, 28]. A larger number of systems have been built to support the management of
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patients with acquired cardiovascular disorders, most notably ischemic heart disease. In this
application field, the emphasis has also been on data interpretation and diagnosis, but re-
cently some systems (e.g., the Heart Disease Program [17]) have a component for reasoning
about the expected effects of therapy.

In this article, we present a formalisation of the problem of patient management over
a prolonged period of time. This is the problem of taking appropriate clinical action at
appropriate points in time, where the effects of actions cannot be predicted with certainty.
Furthermore, knowledge concerning the disease state will generally be limited, and diagnostic
tests will have to be considered repeatedly. In general terms, this problem may be charac-
terised as prognostic assessment and time-critical action planning under uncertainty. As a
case study we have selected the congenital cardiac anomaly of ventricular septal defect. The
formalisation serves as the basic representation for a system under construction that is aimed
to provide the cardiologist with interactive and transparent decision support. This goal re-
quires the formalisation to reveal the structure of the management problem as apprehended
by clinicians in the field; essential ingredients of the problem will need explicit representation.

Throughout the history of AI in medicine, a large amount of research work has been
devoted to formalising decision problems under uncertainty. The focus of work in this area
has gradually shifted from models with static features to ones that emphasise the dynamic
aspect of clinical decision-making problems. The integrated approach to time-critical decision
making under uncertainty has been termed decision-theoretic planning [8]. Although various
formalisations of this type of planning have been proposed, it is now widely acknowledged
that the theory of Markov decision processes (MDPs) [11] provides a suitable unifying frame-
work in this field. Markov decision processes are models for sequential decision making under
uncertainty, taking into account both the outcomes of current decisions and future decision-
making opportunities. The generalisation to partially observable Markov decision processes
(POMDPs) [2] allows for the expression of many different decision-making scenarios, includ-
ing reasoning with incomplete information, and planning of both information-gathering and
intervening actions.

The present work explores the applicability of POMDPs in the formalisation and solu-
tion of time-critical management problems in medicine. Although the expressive power of
POMDPs permits the explicit formulation of most ingredients of complex decision-theoretic
planning problems, the framework is seldomly applied in practice. This is due to two reasons.
First, for some types of knowledge involved in these problems, little organisational support
is provided by POMDP models. And second, the complexity of the approach, both in rep-
resentational and computational respects, hampers efficient application. Qur formalisation
incorporates a solution to these deficiencies, as recently proposed in the literature, based on
probabilistic network representations [22, 7].

This article is organised as follows. In Section 2, we discuss the problem of clinical treat-
ment of children with a ventricular septal defect. This problem is further analysed in Section 3.
Section 4 reviews Markov decision process models and associated solution techniques. In Sec-
tion 5, we discuss the representation of Markov decision processes in probabilistic networks.
The resulting representation method is then compared to related approaches to sequential
decision making under uncertainty in Section 6. The paper is completed with a discussion in
Section 7.



2 Treatment planning for VSD

Ventricular septum defect (VSD) is a relatively well-understood disorder with many clinical
features that are characteristic for congenital heart disease in general. Anatomically speaking,
VSD is a hole in the ventricular septum, the fibromuscular wall that separates the left and the
right ventricle. The main pathophysiological consequence of the defect is blood flow (“shunt”)
from the left to the right ventricle due to ventricular pressure differences. The shunt size, i.e.,
the amount of blood flowing through the defect, depends primarily on the size of the defect and
the pulmonary vascular resistance. During the fetal stage, the muscular pulmonary arteries
are small in diameter with a thick smooth muscular wall, thus preventing massive shunting
by their high resistance. In the first weeks following birth, the arteries change to thin-walled
structures with increased internal diameter. These changes are accompanied by a decline in
pulmonary vascular resistance, resulting in an increased shunt size.

Left-to-right shunting causes oxygenous blood to be pumped into the lungs again. As a
result, the pulmonary vascular pressure will rise, and systemic cardiac output will decrease.
The latter effect usually causes the patient to look pale and to be easily sweating. With large
defects, the high pulmonary arterial pressure (pulmonary hypertension) may lead to heart
failure. Heart failure accounts for most of the typical symptoms associated with VSDs, such
as shortness of breath, feeding problems, oedema, and growth arrearage. Severe heart failure
may result in cardiomegaly (enlarged heart), hepatomegaly (enlarged liver), and oedema.

About 70% of all VSDs close spontaneously due to normal growth of tissue [14]. The
majority (54%) closes in the first two years of life, but spontaneous closures have been reported
to occur up to the age of 31 years; the rate of closure appears to follow an exponential
decay rate. With small defects, the clinical course is favourable throughout infancy and
childhood [13]. Patients with moderate-sized defects may develop large left-to-right shunts
and associated complications in infancy, but the majority of this group can be managed
medically without surgical intervention. Patients with large defects are more difficult to
manage, because of the risks of mortality in the first year of life due to heart failure and
associated pulmonary infections. Furthermore, elevated pulmonary vascular resistance may
develop over time as a response to continuous pulmonary overflow and hypertension [9];
this is termed Fisenmenger’s complex. As a result, the shunt size will decrease and the
symptoms of heart failure will vanish. However, Eisenmenger’s complex eventually leads to
severe, irreversible damage to the pulmonary arteries (arteriopathy); this is accompanied by
a reversal of the shunt direction, which can be recognised by cyanosis (a bluish tint to the
skin). Early surgical intervention is therefore strongly recommended for these patients, but
once the pulmonary arteries are damaged by the Fisenmenger reaction, surgical closure of
the VSD will only worsen the condition of the patient. The majority of patients with repair
of uncomplicated VSD in infancy or early childhood have an excellent result with no clinical
signs or symptoms and apparently normal life-expectancy [21].

For the clinician, the main problem is to decide if and when to submit a patient to
surgery. Usually, the patient’s condition is monitored without surgical intervention during
the first year of life. During this period, non-invasive diagnostic tests such as auscultation and
echocardiography are conducted repeatedly, and when necessary, medical treatment is given
to reduce the effects of shunting and improve the overall condition of the patient. Sometimes,
X-ray images of the chest are made to inspect the size of the heart and pulmonary arteries.
After the first year of life, the risks associated with surgical intervention have dropped, and
a decision whether surgery is necessary has to be made. In cases of doubt concerning shunt



size and the state of the pulmonary arteries, cardiac catheterisation or pulmonary biopsy
may be performed prior to that decision to obtain more information. Therapy is considered
completed after closure of the defect, either spontaneously or by surgical intervention.

In general terms, this problem may characterised as prognostic assessment and action
planning under uncertainty, where the timing of actions is essential. A trade-off is required
between the benefits gained by waiting before intervention in the hope that the patient’s
condition will improve, and the risks caused by natural history. Careful timing of clinical
investigations can improve the ability to predict the future course of disease. Furthermore,
risks and costs! of invasive testing have to evaluated against their potential information gain.

3 Formalising the treatment-planning problem

In this article, we develop a formalisation of the prognosis and treatment planning problem
for VSD patients. Our aim is to provide automated support for the paediatric cardiologist
who has to decide upon therapy for individual patients. Interviews with field experts have led
us to the conviction that this is best accomplished by a “white-box” system, in which the user
can perceive what is going on, and can interact by proposing alternatives or adjust admissible
plans. This implies that we will have to use a formalisation that reveals the structure of the
problem as apprehended by clinicians in the field.

3.1 Basic ingredients

There are three key concepts as revealed in the description of the VSD domain that need
distinction: (1) the clinical state of the patient and its development over time, (2) the man-
agement strategy employed by the clinician, and (3) the overall objective of management.
Parts of the clinical state of the patient pertain to symptoms and signs associated with the
disease, and are readily observable by the clinician. Other parts pertain to pathophysiological
parameters hidden from direct observation, though some of these parameters may be mea-
sured by clinical investigations. Furthermore, clinical states exhibit internal structure relating
the various parts, and subsequent states in time are related by natural development of the
disease. An analysis of the second concept, the management strategy, makes clear that this
can be considered as composed of series of decisions. Here, each decision to conduct some
clinical action has test and treatment effects. Test effects pertain to observations regarding
the state of the patient yielded by performing the action, whereas treatment effects pertain
to expected changes to that state caused by the action. The third concept, the objective of
the management strategy, addresses the trade-off between benefits and costs associated with
conducting clinical actions on the one hand, and the risks caused by natural history of the
disease on the other. The notion of time is essential for each of these ingredients and therefore
needs to be made explicit in a formalisation as well.

3.2 Clinical state

To describe the clinical state of the patient we have chosen to use a set of 62 stochastic
variables. These variables and their respective value ranges were assessed in co-operation

!Throughout this article, we will use the term “costs” for both financial and non-financial consequences
(e.g., pain, stress) of clinical actions.



| Variable | Interpretation | Domain |
size defect (VSD) size null, small, moderate, large
shunt shunt size none, small, large, reversed
res relative pulmonary vascular resistance | normal, increased, high, very_high
fail heart failure absent, mild, moderate, severe
symp heart failure symptoms absent, mild, moderate, severe
pmhyp | pulmonary hypertension absent, mild, moderate, severe
pmart | pulmonary arteriopathy absent, mild, moderate, severe
cyan central cyanosis false, true
death death false, true

Table 1: Stochastic state variables for the VSD domain.

with a domain expert and by studying a collection of medical records of VSD patients. They
can be divided in five groups, according to their role in clinical reasoning;:

1. Primary pathophysiology (size and location of the VSD, pressure and resistance gradi-
ents in heart and great vessels, shunt direction and size);

2. Complications (heart failure, pulmonary infections, cardiomegaly);
3. Signs and symptoms (shortness of breath, feeding problems, oedema, growth arrearage);

4. Clinical findings (results of cardiac ultrasound imaging, catheterisation, X-ray imaging
and taking pulmonary biopsies); and

5. Risks (mortality and morbidity).

We will use a subset of nine variables from this set in the illustrations throughout this
article; these variables, and their possible value sets, are listed in Table 1. The majority
of the selected variables actually pertain to continuous entities. For instance, the shunt
direction and size, usually expressed as the ratio of pulmonary and systemic blood volumes,
may range from 1 : 1 (the normal situation, no shunt) to 2 : 1 or greater with large left-to-
right shunts; furthermore, a ratio of slightly less than 1 : 1 is found with right-to-left shunts.
Nevertheless, discretised value ranges are generally believed to provide sufficient level of detail
for decision-making tasks in this field. Our choice was therefore to take over commonly used
discretisations, which facilitated communication with domain experts and using results from
clinical trials reported in the literature. Returning to the example, we thus only distinguish
absence of shunting (1 : 1), small left-to-right shunting (1 : 1 — 2 : 1), large left-to-right
shunting (> 2 : 1), and reversed (i.e., right-to-left) shunting (< 1:1).

3.3 Actions

The available clinical actions for the VSD domain, their effects to state variables, and their
associated observations are summarised in Table 2. Medical treatment may be used to control
heart failure, and surgery may be used to close the defect. Information concerning the clinical
state of the patient may be obtained by making echocardiographic images, chest X-ray images,
cardiac catheterisation, and taking pulmonary biopsies. Unfortunately, the latter three of
these test actions carry adverse effects and/or expose the patient to mortality risks; their



| Action | Interpretation | Effects | Observations |

echo | echocardiography - size
med medical treatment fail -
xray chest X-ray imaging - pmhyp
cath cardiac catheterisation death shunt
biop | pulmonary biopsy - pmart
surg | perform surgery size, death size

Table 2: Available treatment actions for the VSD domain.

deployment is therefore subject to a trade-off.

The next step in the formalisation is now to make an integrated, formal description of the
potential temporal developments of clinical states, the interaction between actions and clinical
states, and the long-term objective of action planning. A suitable framework to provide such
a description is found in the theory of Markov decision processes. We elaborate on this theory
in the next section.

4 Markov decision processes

Markov decision processes (MDPs) [11, 26] are models for sequential decision making under
uncertainty, which take into account both immediate and long-term consequences of decisions.
Basically, the theory assumes that a person, called the decision maker, is charged with the
respounsibility of choosing a sequence of actions in order to influence a stochastic process. The
immediate result of each action choice is that the process under consideration evolves to a new
state according to a probability distribution determined by the action choice. Furthermore,
the decision maker receives an immediate reward reflecting the desirability of the new state
compared to other possible states. The goal is to optimise some function of the overall reward
sequence that expresses the decision maker’s intertemporal trade-offs. Partially observable
Markov decision processes (POMDPs) [2] are a generalisation of Markov decision processes
where the decision maker has limited knowledge concerning the process state, and action
choice determines the acquisition of state information. Consequently, in POMDP problems
the trade-off between actions does not only concern their immediate and long-term effects,
but also their information-gathering properties. The generalisation to POMDPs is significant
in problem settings where state uncertainty is a central issue that cannot be discarded; we
note that this holds for most domains in clinical medicine, including for the VSD domain.

4.1 POMDP model
Formally, a POMDP model is a tuple (T, X, A, P,w, R), where

e T is a set of decision moments,
e X is a set of stochastic state variables, jointly defining the set of states,
e A is a set of available actions,

e P is a set of transition probability functions,



e w is an observation function, and
e R is a set of reward functions.

The basic form of the model is quite general and the literature on POMDPs provides a
plethora of possible choices for each of the elements. The qualifier “Markov” refers to the
fact that the transition probability, observation and reward functions depend on the past only
through the current process state and the most recent action selected by the decision maker.
Below, we discuss the appropriate choices for each of the model elements from the perspective
of clinical VSD management.

The set T' of decision moments denotes the points in time where the decision maker is
expected to choose an action. As the duration of patient management in our problem domain
is typically bounded to the first years of life, we will confine ourselves to the case where
T is finite; one then speaks of a finite-horizon process. Standard POMDP theory requires
us to fix the timing of decisions in advance for a given problem domain. However, in the
clinical practice of VSD treatment, decision moments are established by the cardiologist in
due course. Therefore, we use the set T" as a grid of decision moments, where each time point
t € T is a potential decision moment. We take T'= {0,1,2,..., N} C N, where ¢t € T denotes
the age of the patient expressed as number of life months. We adopt the convention that no
action is chosen at the last potential decision moment ¢ = N: this moment is included for
evaluation of the final state only.

The state space of a POMDP model is characterised by a finite set X = {X1,...,Xn}
of discrete, stochastic variables. For the VSD domain example in this article, we have that
m = 9; the variables are listed in Table 1. A proposition of the form X; = z (i.e., variable
X; € X has value z) will be called a configuration of variable X;; the set of all configurations
of variable X; is denoted by C'y . As the configuration of state variables may change over time,
we will use superscripts to distinguish specific configurations at different time points; e.g., ¢ )t(z
denotes the configuration of variable X; at time point ¢ € T. The set of all configurations of a
subset X’ = {Xj;,,... X;, } C X of state variables now is defined as C'y, = X, X e X CXik'

Consequently, the state space of a POMDP (i.e., the set of potential clinical states) equals
Cx = Cx, %X...xCx . POMDP theory does not prohibit us from using a single state variable
(capturing all the relevant information on the patient in condensed form), but a state space
characterised by multiple stochastic variables offers several advantages from a representational
perspective; we return to this subject in Section 5.

For the set A of available actions in the VSD domain we refer to Table 2. Our approach
differs from the standard model presented in the literature in that we allow for multiple,
simultaneous actions at each potential decision moment ¢ € T. That is, the clinician is
expected to choose a subset a C A of actions to be performed, where choosing the empty
set & is interpreted as a skip-action, i.e., deciding to refrain from action at that point in
time. Using this action, the clinician can make decisions at irregular time points (by skipping
intermediate points) and ‘fill up’ the remaining time when some satisfactory state is reached.
The dynamics of the decision process, given a sequence of action choices, are schematically
depicted in Figure 1.

Treatment effects of actions are described by the set P = {p¢ : Cx x Cx — [0,1]|t €
T, C A} of time- and action-dependent transition probability functions, where p@(cif® | ck)
denotes the probability of arriving at state cg;rl after performing action set & C A in state c
at moment ¢. Test effects are modelled by the observation function w : A — (X)), where w(a)
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Figure 1: Dynamics of Markov decision processes.

denotes the set of state variables whose current values can be observed by the decision maker
when action a has just been performed. For an action set o C A, we define w(a) = [J,¢, w(a)
to be the observable set. The sets of observable state variables for the VSD domain are listed
along with the available actions in Table 2.

Finally, the immediate costs and benefits associated with clinical states and action choices
are described by the reward functions r; : C'y x p(A) — R for time points ¢t = 0,...,N —1,
and ry : Cx — R for time point ¢ = N. Here, rt(cjf, «) denotes the reward received when,
at time point 0 < ¢ < N — 1, the current state is ¢}, € C'y and action set @ C A is chosen by
the decision maker. This reward value reflects the relative (un)desirability of that state and
action choice only; potential future developments are disregarded. The value r N(c% ) denotes
the final reward received when the process ends in state ¢ € Cy (recall that there is no
action choice at the last point in time ¢ = N); with this reward, we do take into account
potential future developments and life-expectancy of the patient. For the VSD domain, we
can apply several reductions to the general form of the reward functions, stemming from the
following observations. Given a VSD patient, we are primarily concerned with the patient’s
life-expectancy; our secondary interest is to minimise the accumulated costs over the course
of therapy. As in our domain the patient’s clinical state after therapy includes a description
of survival so far, and gives the best indication for future life-expectancy, the reward model
for t =0,...,N — 1 can be simplified to r; : p(A) — R. At time point ¢ = N, the relevant
variables are those describing the current survival of the patient and the state of the pulmonary
arterioles. The reward function for the final moment therefore equals ry : C {death,pmart} R.
We note that these reductions crucially depend on the fact that the normal life-expectancy
(i.e., that of healthy persons) greatly exceeds the planning horizon in our domain.

4.2 Optimisation criterion

To complete the specification of the decision problem at hand, a utility function v : RVt 5 R
is specified, reflecting the decision maker’s intertemporal trade-offs. We say that u(rg,...,7n)
is the wtility associated with the reward sequence rg,...,rn. Solving a sequential decision
problem involves repeatedly applying maximisation and expectation to the utility function.
These operators have special properties when applied to utility functions that are time-
separable. Time-separable utility functions allow maximisations and expectations to be per-
formed over separate rewards in the sequence, thus requiring only a subspace of the utility
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function to be examined when solving the decision problem. This significantly reduces the
dimensionality of the solution operations. The most popular choice for the function u is linear
additive utility, i.e., u(rg,...,rn) = Zfi o Ti; it reflects the preferences of a risk-neutral deci-
sion maker. It is the form of utility that is convenient for our purposes in the VSD domain,
given that the final reward takes into account the life-expectancy of the patient.

4.3 Solving a POMDP

A POMDP problem specification now consists of a POMDP model, an initial probability
distribution on the state space, and a utility function. The sequential decision problem is to
choose, prior to the first decision, a decision-theoretic plan to maximise expected utility. Such
a plan provides the decision maker with a prescription for choosing an action set at each point
in time, given the history of past actions and observations. The majority of POMDP research
(e.g., [18, 16]) focuses on finding stationary Markovian plans that maximise expected utility;
this type of plan neglects the timing of actions and considers the most recent observation
for the action choice only. We believe, however, that these limited plans are not suited for
medical decision problems that require the clinician to carefully trace out a course of action
over a longer period of time; non-Markovian plans are preferred for such problems. A natural
representation of non-Markovian plans is found in rooted trees, where the nodes represent
action set choices, and the links stand for possible observations. Figure 2 depicts an example
treatment plan for the VSD domain that covers the first three decision moments.

Generally speaking, the complexity of finding utility-maximising (non-Markovian) plans
depends on the size of the state space, the number of available actions, and the horizon length.
For finite-state (fully observable) MDP problems, efficient solution methods exist, based on
the principle of dynamic programming [3, 26]. Unfortunately, this does not hold for problems
involving partial observability. Solving a POMDP problem directly necessitates keeping track
of entire process histories, of which the sizes grow exponentially in the size of the state space
and action sets. A more promising approach is based on transforming the POMDP model
to an equivalent MDP model (called the belief MDP) in which process states are probability
distributions on the state space of the original POMDP model [2]; transition probabilities
for the belief MDP are derived through Bayes’ rule. Dynamic programming techniques can
then be applied on the belief MDP to solve problems for the original POMDP, but because



of the continuity of the belief state space, algorithms are complicated and limited. Solving
POMDPs with a short, finite planning horizon is nevertheless feasible [18].

We conclude that POMDPs provide a powerful framework for sequential decision-making
problems where both uncertainty in action outcome and imperfect observability are essential.
When we reconsider the ingredients of the VSD treatment-planning problem as distinguished
in Section 3, we find that most of them are formally described in the POMDP model. The
notion of clinical development of the patient over time is modelled by successive configurations
of the state variables, clinical actions with their test and treatment effects are described by
the transition probability and observation functions, and the objective of therapy is captured
by the reward and utility functions. However, the internal structure of clinical states and
the relations between individual state variables cannot be captured by POMDP models. In
other words, the granularity of the POMDP representation is too coarse to allow knowledge
to be expressed at the level of individual variables. Furthermore, the POMDP formulation
becomes impractical as the number of potential clinical states increases, because the number
of transition probabilities that must be assessed grows exponentially in the size of the state
space. To provide for these deficiencies, it has been suggested to augment these models with
a factorised representation of the transition probability functions in probabilistic networks
[5]. In the next section, we explore this possibility in more detail.

5 Graphical representations of POMDPs

In the characterisation of the state space of a POMDP, we choose to use multiple variables
instead of a single variable. Multiple variables provide more structure, and thus help to
simplify the state descriptions; such a state space characterisation is therefore called structured
[5]. The main advantage of structured state space is that they offer the possibility to factorise
the transition probability distributions describing the effects of actions. Factorisation of a
joint probability distribution is based on conditional independence relations induced by the
distribution, and allows for a reduction in the required number of model parameters, and for
more efficient probabilistic inferences. Bayesian belief networks [22] provide for a concise,
graphical representation of factorised joint probability distributions. More recently, the belief
network framework was extended to cope with dynamic stochastic systems [7, 6], where
the joint probability distribution on the variables in the network evolves over time. These
networks are generally referred to as temporal belief networks. Temporal belief networks have
been suggested as a suitable way to express the dynamics of POMDP models [5], equally
facilitating the solution methods by exploiting independencies between state variables, and
by making explicit persistence of states and ramification of action effects [7].

5.1 Two-stage temporal belief networks

Now, let X (t) denote the set of state variables at time point ¢. A two-stage temporal belief
network (2TBN) [5] is a belief network with two sets of variables X (¢) and X (¢ + 1), where
each arc is drawn either a variable from X (¢) to a variable from X (¢ + 1), between two
variables both from either X (¢) or X (¢ + 1). The former type of arc is called a temporal
dependency; the latter is called an atemporal, or synchronic, dependency. 2TBNs allow for a
compact representation of probabilistic state transitions, where temporal dependencies model
the direct effects of actions, and synchronic dependencies model intra-stage correlations. We
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Figure 3: Synchronic belief network for the VSD domain.

assume that both inter-stage transition rates and intra-stage correlations may vary over time,
but that probabilistic independence relations do not. In other words, the structure of the
2TBN is similar for all time points.

5.2 Belief networks for the VSD domain

A belief network for the VSD domain has recently been constructed with aid of a domain
expert [24]; a simplified version of the atemporal part of this network is shown in Figure 3.
For X = {X1,...,Xn}, let I'y = {y, : Coxiy) X Cx, = [0,1] | 2 = 1,...,m} be the set of
synchronic probability assessment functions associated with the belief network at time point
t € T, where o(X;) denotes the parent set of variable X; in the synchronic dependency graph;
%,z’(C;(i | c;( Xi)) denotes the probability of variable X; having configuration cg(i at time point
t € T, given the configuration cg( X5) of its parents. The synchronic probability assessment
functions for time point ¢ = 0 are taken to represent the initial probability distribution on
the state space in the POMDP problem specification.

We distinguish two kinds of temporal dependency: those induced by action choices (ez-
ogenous change) and those stemming from persistence or action-independent change of state
variables (endogenous change). Both kinds of dependency can be modelled using 2TBNs,
comprising only those state variables that are directly relevant. Figure 4a shows the 2TBN
modelling endogenous change due to Eisenmenger’s complex: pulmonary arteriopathy may
result from left-to-right shunts. This process is progressive, and therefore we also take into
account the former state of the pulmonary arteries. Figure 4b shows the 2TBN modelling
exogenous change due to surgery. The surgery action itself is depicted by a square box, called
an action node. Successful surgery results in a closed defect (i.e., size = null). However, the
chances of success equally depend on the size of the existing defect: large defects are more
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Figure 4: 2TBN models.

difficult to patch. Furthermore, a small risk is associated with the operation. The twisted arc
here indicates that there is also a path in the synchronic dependency graph from size to death.
If we merge the atemporal belief network and each of the 2TBNs modelling endogenous and
exogenous change, a complete graphical model for transitions and observations is obtained.
This model is shown in Figure 5.

Formally, let 7(X;) be the set of temporal predecessors of node X; € X in the complete
model, that is, there is an arc from X;(t) to X;(t+1) for every X; € 7(X;), and let A; C A be
the set of actions directly affecting XZ, i.e. there is an arc from action node a to X; for every
a € A;. Furthermore, let Ay = {d;; : Co(x;) X Cr(x;) X 9(4i) X Cx; = [0,1] [i =1,...,m} be
the set of transition probability assessment functions associated with the complete graphical

model at time t; &;;(c’{ t"'l | ct+)1( X ﬁ( Xi) , ;) denotes the probability of X; having configuration
t4+1

cy, at timet+1 given that its synchronic predecessors then have configuration c?(')l(i),

poral predecessors had configuration ci( X5) at the previous moment ¢, and subsequently action
set choice o; C A; was made. We assume that d; Z(ct+1 |ct+)1( X ck, @) =, z'(ct+1 | ctJrl )) ie.,

synchronic probability assessment functions are used when there are no temporal predecessors
and no action is selected that directly affects variable X;. In the VSD example, this holds for
five or six variables, depending on the action set choice. Two variables, size and pmart are
subject to endogenous change connected to the natural course of disease.

The transition probability distributions associated with the POMDP model can now be
factorised according to the independency relations portrayed by the graphical part of the
complete 2TBN (i.e., with all action nodes added). For each potential decision moment ¢ € T'
and each action set a C A, we have that the transition probability function pf* can be written
as

its tem-

PR k) = I bl XD | (0(X0), ek (r(X0)), N 4))

1=1,....,m

for each ck, i € Cx, where ck(X'), ¢4 (X") denote the configurations of X' C X within
ct and cH'l, respectlvely.
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¢ § t+1

Figure 5: Full 2TBN with action nodes for the VSD domain.

5.3 Representational complexity reduction

We will now provide theoretical bounds on the reduction in the number of probability es-
timates that have to be assessed for the model. Let d be an upper bound on the num-
ber of values that each state variable can take, i.e., |CXi| < d for each X; € X. So, for
X ={X1,Xs,..., X}, we have that |C | < d™. Furthermore, let |A| =k, so that there are
2k different action sets. Then, for each ¢ € T" and each o C A, we need at most d™ - d™ = d*™
transition probabilities, so for the POMDP model, the upper bound on the total number of
parameters needed per time point is d?™ - 2%,

In the graphical model, there are m state nodes, and with each node X; is associated
a transition probability assessment function d;; for which at most d - dlo(X)l . gl (X)l . gl Ail
probabilities have to be specified. If the numbers of synchronic and temporal predecessors
are bounded by I; and I, respectively, and the number of actions directly affecting X; is
bounded by ¢, for each X; € X, then the total number of parameters for the complete
model is at most m - d - dls - d% - 29 = d'*sth . 29, Note that in the most extreme case,
where I, = m — 1, [; = m and ¢ = k, we obtain the number m - d?*™ . 2¥. Fortunately, in
most practical applications, we have that I3 +; < 2m — 1 and ¢ < k. The reasons for
this are as follows. Reconsidering the division of state variables in Section 3.2, we see that
temporal dependencies are most likely to be found among variables in the first and last groups,
i.e., those pertaining to pathophysiological conditions and risks. Sometimes complications of
disease may also carry over time, but symptoms and clinical findings will typically depend on
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the current pathophysiology and complications only; they have no temporal predecessors in
the graphical model. Conversely, the number of synchronic predecessors of pathophysiological
variables will be small as these variables represent the causes of variables in other groups.
Similar observations hold for the number of variables affected by actions. Actions typically
affect risk variables, and one or more variables within another group.

In the example model for the VSD domain, we have 9 state variables (m = 9) with each at
most 4 configurations (d = 4), and 6 available actions (k = 6); the numbers of synchronic and
temporal predecessors in the 2TBN, however, are bounded by 2 (I = 2 and /; = 2), and each
action affects at most 2 state variables (¢ = 2). The reduction in the number of probabilities
required per time point is therefore in the order of 10°.

Summarising, 2TBNs with action nodes provide for a concise, graphical representation of
the dynamics of POMDP models. Concision is arrived at by exploiting both intra-stage and
inter-stage independencies between state variables, and explicitly representing the limitations
in the effects of actions. This allows for a representation of deterministic and probabilistic
relations at the level of individual state variables, and a reduction in the number of model
parameters that have to be assessed.

6 Comparison with related work

Decision theory is becoming increasingly popular as a mathematical foundation for building
planning systems in uncertain domains. This section briefly reviews representation formalisms
that have been applied to time-critical decision-theoretic planning problems in medicine.
The fundamental trade-off in this field is between representational expressiveness and model
transparency on the one hand, and efficiency of solution techniques on the other [15, 23].
Most formalisms impose a number of restrictive assumptions on the type of problem that
may be addressed, to enhance computational efficiency. Unfortunately, these assumptions are
not always made clear. Other formalisms are more general in nature, at the penalty of high
computational cost or even intractability.

The idea of using a temporal belief network to model the evolution of a process over
time has been applied in several medical treatment-planning systems. Andreassen et al.
[1] implemented a differential equation model of carbohydrate metabolism in the form of a
belief network with (Markovian) time slices for predictions of 24-hour blood glucose profiles.
Berzuini et al. [4] have proposed a general, temporal belief network model for monitoring and
controlling biomedical processes; the model was applied to the monitoring of cancer patients
receiving post-operative cytotoxic chemotherapy. In these applications, the emphasis is on
predicting future states of the patient. Actions may be selected to control one of the variables
in the network, but the problem of simultaneously planning investigative and intervening
actions is not addressed. The support provided by these systems is therefore restricted to a
single facet of patient management.

Another approach is based on extending the influence diagram representation [12, 29].
An influence diagram is a belief network augmented with decision nodes and a utility node;
it provides a compact way to encode both decision-theoretic plans and probabilistic domain
knowledge. The graphical structure allows representation of, and reasoning with, conditional
independences between random variables and locality of action effects. Quaglini et al. [27]
developed a system for managing anaemic patients in which a Markov node was added to
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the influence diagram representation for prognostic purposes. In a more general fashion,
influence diagrams can be extended with repeating network structure and a time-separable
utility function [31, 25]. A limitation of this approach is found in the fact that influence
diagrams correspond to the restricted class of symmetrical decision trees; this imposes various
restrictions on plan structure and flexibility.

A few applications of Markov decision processes to medical decision problems have been
developed. Magni and Bellazzi [20] apply MDPs with structured state spaces to the problem
of therapy planning for patients with hereditary spherocytosis. The optimal plan for their
model was compared with the recommendations yielded by a Markov decision tree, and found
to yield a slight improvement in life expectancy. Like in our method, the effects of actions
in their model are described in probabilistic networks; an important difference is that they
assume perfect observability of the system state at all times. Although this assumption yields
a significant reduction in the computational complexity of solution methods, it is not tenable
in most medical domains: the aspect of incomplete and noisy observation often plays an
essential in clinical decision making.

Hauskrecht [10] developed a POMDP model with a structured state space for the manage-
ment of patients with ischemic heart disease. The solution (plan) computed for this model was
not experimentally tested or compared to other models. It seemed, however, in most cases to
make reasonable therapeutic recommendations that are in concordance with clinical practice.
In some cases the recommendations were doubtful; this was attributed to simplifications in
the model and errors in the (subjectively estimated) model parameters.

In recent years, attempts have been made to develop a common vocabulary for comparing
the major approaches to decision-theoretic planning. These attempts generally take some
form of Markov decision process as the unifying mathematical framework, comparable to the
role of first-order predicate logic in analysing traditional knowledge-representation formalisms.
For instance, Leong [15] developed a formalism for time-critical decision-theoretic planning
that allows for multiple graphical perspectives (visualising the same information in different
ways) and incremental language extension (gradually expanding the scope of the problem
addressed). The underlying mathematical representation is a semi-Markov decision process;
in this type of process, state transitions are stochastic not only with respect to the resulting
state, but also regarding their time lapse. The formalism was applied to the problem of
managing patients with atrial fibrillation.

7 Discussion

The planning of clinical management requires the ability to predict the interplay between the
natural history of disease and effects of intervening actions over time. Often, such predictions
cannot be made with certainty, and trade-offs have to be made between the expected benefit
of current and future decisions. We have shown how partially observable Markov decision pro-
cesses can be used to formalise this type of problem, providing an explicit representation of
clinical states of the patient, the management strategy employed, and the objectives of treat-
ment. Augmented with structured state spaces and graphical representations of the transition
probability functions, the POMDP framework provides a powerful knowledge-representation
formalism for the problem of choosing an optimal course of action for a patient whose physi-
ological conditions may vary over time. We conclude the article with a discussion of some of
the potential weaknesses of this formalism, and how they can be coped with.
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The most prominent assumption underlying the POMDP framework is that the transition
probability, observation and reward functions obey the Markov property. That is, they depend
on the past only through the current process state and the most recent action choice. Although
this is a restriction on the temporal expressiveness of the formalism, one can often “work
around” it by adding state variables that repeat or abstract parts of the process history (e.g.,
trend variables). A further restriction stems from the fact that POMDPs model continuous
time through discretisation, and transitions are assumed to have fixed time duration. This can
be quite unnatural, especially when there are multiple pathophysiological developments that
may occur in parallel, but with different durations; this situation is found in the VSD domain.
A possible solution for this problem is the extension to semi-Markov decision processes, which
allow for transition times with variable duration.

Structured state spaces help us to simplify the description of possible states, and allow
for a concise, graphical representation of the transition probability functions. However, they
also tend to increase the size of the state space, as the space defined by multiple variables
often includes configurations that cannot occur in practice (e.g., contradictory value combina-
tions) or are redundant (when some variables become irrelevant given a specific configuration
of other variables). This is unadvantageous as the complexity of POMDP solution methods
critically depends on the size of the state space. A solution to this problem, recently proposed
by Hauskrecht [10], is to use state descriptions at different levels of detail. A variable at a
given level then represents one or more variables at lower levels. The structuring thus allows
one to characterise the state space using descriptions of different complexity and size.
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