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Abstract

Let A and B be two connected, closed, and bounded sets in E¢. Let A@® B denote the
Minkowski sum (that is, the vector sum) of A and B. We prove two results concerning
the fatness of A @ B. First, we prove that

fatness(A @ B) > min(fatness(A), fatness(B)).

In addition, we show that if diam(.A) > diam(B), where diam() denotes the diameter,
then we have

diam(A) -t
fatness(A @ B) > fatness(A) - diam(A) + diam(B) '

Both bounds are tight in the worst case.
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1 Introduction

The Minkowski sum [4] of two sets A and B, which we denote by A& B, is the vector sum of

the two sets:
A®B:={a+b:a€ Aandbe€ B},

where a+b denotes the vector sum of @ and b. Minkowski sums play an important role in many
areas. One example is motion planning [7], where the forbidden space of a translating robot
R can be described as the union of the Minkowski sums of the obstacles in the scene with —R
(a copy of R reflected in the origin). Another example comes from image processing [9, 10]:
the dilation of a set A with a so-called structuring element B is just the Minkowski sum of
A and B. The structuring element is usually a simple figure like (in the plane) a square or a
disc. In Geographic Information Systems (GIS) the term buffer is often used to denote the
Minkowski sum of a given set with a disc [5].

The goal of taking Minkowski sums with a disc can be to ‘round’ objects, that is, to get
rid of small details like slivers in the image. In this case the Minkowski sum operation is
usually followed by an operation called erosion to reduce the size of the shape to roughly
its original size. The motivation for our research stems from this type of applications: we
want to quantify the statement that taking the Minkowski sum with a disc rounds an object.
As a measure for the roundness of an object we use the concept of fatness. There are many
different definitions of fatness [1, 2, 6, 8], which are all more or less equivalent—at least for



convex objects. We shall use the definition proposed by de Berg et al. [3], which is similar to
the one used in van der Stappen’s thesis [11]. The reason to choose this definition is that it
is one of the most general ones: it can be used for objects in any dimension, and the objects
need not be convex or polygonal.

The definition is as follows. Let vol(.A) denote the volume of an object A. Here and in
the sequel we use the term object to denote a connected, closed, and bounded set in E%.

Definition 1.1 Let A C E¢ be an object. Define U(.A) as the set of all balls centered inside A
whose boundary intersects A. The fatness of A, denoted fatness(\A), is defined as

vol(A N B)

fatness(A) := Bgllfl&) vol(B)

In words, the fatness of an object is determined by the emptiest ball centered inside the
object and not fully containing it in its interior. The fatness of an object is invariant under
translation and rotation; it is purely a function of the shape of the object. The fatness of
an object can be seen as a measure for its ‘sliveriness’: if it contains thin slivers its fatness
will generally be close to zero, whereas fairly round objects have large fatness. (In the plane
‘large’ means ‘close to 1/4’, because the fattest object in the plane, the disc, has fatness 1/4.)

Our results show that the fatness of an object indeed increases when we take the Minkowski
sum with a disc. In fact, our result is a lot more general. For two connected, closed, and
bounded sets A and B in E? we prove that

fatness(A @ B) > min(fatness(.A), fatness(B)).

Since the global shape of A @ B is to a large extent determined by the shape of the larger of
A and B, we also study how the fatness of A ® B depends on the fatness of the larger of A
and B. In particular, we show that if diam(.A), the diameter of A is larger than or equal to
diam(B), the diameter of B, then we have

. d—1
fatness(A & B) > fatness(A) - (diam(iﬁ(ilmw)) '

As a result we have fatness(A® B) > fatness(A)/2¢ 1. All bounds are tight in the worst case.

2 A bound in terms of the least fat object

Let A and B be two objects—connected, closed bounded sets—in E?. We want to prove that
the minimum of the fatness of A and the fatness of B is a lower bound on the fatness of their
Minkowski sum. Before we can do so, we need to introduce some notation and give some
preliminary lemmas.

We let the diameter of an object A, denoted by diam(A), be the largest distance between
two points in A. Throughout the entire paper, the diameter of an object will serve as a
measure for its size. We define wy to be the volume of the d-dimensional unit ball. (For
even dimensions wy = 7%2/(d/2)! and for odd dimensions wy = 2(27)L%/2] /d!!, where d!! =
d-(d—2)-...-3-1))

Lemma 2.1 gives a bound on the volume of an object given its fatness and diameter.



Lemma 2.1 Let A be a d-dimensional object. Then vol(A) > wy - fatness(A) - diam(A)?,
with equality for convex A.

Proof: There exist two points m, m' € A that are a distance diam(A) apart. The boundary
of the ball B with radius diam(.A) centered at m intersects A (in m’). As a result, the ball
B belongs to U(A) and therefore satisfies fatness(.A) < vol(.A N B)/vol(B). We have that
vol(A) > vol(AN B) > fatness(A) - vol(B) = fatness(A) - wq - diam(A)?. For convex A, the
ball B turns out to be the emptiest ball [11]. O

The shape of the Minkowski sum depends on the shapes of A and B and on their orienta-
tions, but it is invariant under translation: the Minkowski sum of translated copies of A and
B is a translated copy of the Minkowski sum of .4 and B. Since we are interested in the fatness
of Minkowski sums, which is invariant under translations, we can (and will throughout the
entire paper) assume that objects A and B are placed such that they both contain the origin,
which we denote by O. We denote by A(p) the copy of A obtained by translating A along a
vector p € E?, so A(p) = A® p. (Given a set A and a point (or vector) p, we write A @ p
as a shorthand for A @ {p}.) Similarly, B(p) is obtained by translating B along p. With this
notation we have the following observation, which follows immediately from the definition of
Minkowski sums.

Observation 2.2 A® B = ,c5AP) = U 4 B(a)

This observation implies that for any point m € A @ B we can place a copy A(p) of A with
p € B (or a copy B(q) of B with g € A) that contains m and is contained in A & B. Given
a copy A(p) with p € B, we observe that B(—p) satisfies A(p) ® B(—p) = AP B as well as
O € B(—p).

Our proof relies on the Brunn-Minkowski Inequality [12] which is given below as Lemma 2.3
for the particular case of two objects; it provides a lower bound on the volume of a Minkowski
sum in terms of the volumes of its constituents.

Lemma 2.3 Let A and B be objects in EX. Then

{/vol(A @ B) > {/vol(A) + /vol(B).

We are now ready to bound the fatness of the Minkowski sum A & B.
Theorem 2.4 Let A and B be objects in E*. Then

fatness(A @ B) > min(fatness(.A), fatness(B)).

This bound is tight in the worst case.

Proof: Let B € U(A @ B) be such that fatness(A @ B) = vol((A & B) N B)/vol(B) and
let 7 be the radius of B. The center m of B is contained in a copy A = A(p) of A for some
p € B. From Observation 2.2 we know that there exists a copy B of B satisfying O € B
and A @ B = A @® B—see the text below the observation. The latter equality implies that
fatness(A @ B) = vol((A @ B) N B) /vol(B).

If the boundary of B intersects A then B € U(A). We have

fatness(A @ B) = VOI((éoigg nB) > voi(o.,;l(ll’;)B) > fatness(A) = fatness(A)




& 0

Figure 1: The Minkowski sum of the shaded shapes A and B’ = BN B, fits completely inside
the emptiest ball B. The lower bounds on the volumes of A and B’ and the Brunn-Minkowski
Inequality imply a lower bound on the volume of A @ B’, and, hence, of (A @ B) N B.

and we are done.

Alternatively, A is completely contained in B. We define B; to be the largest ball con-
centric with B whose boundary intersects A. Notice that no point of A lies outside B;—see
Figure 1. Let 7| be the radius of B;. We have r; < diam(A) = diam(.A).

We consider B, which is known to contain O. Let Bs be the ball with center O and radius
r —r1. The object B cannot lie entirely in the interior of By, because then A & B would be
completely in the interior of B; @ By and thus be completely in the interior of B, contradicting

BeU(A®B) =U(A® B). We conclude that By € U(B). Defining B’ = BN By, we obtain
vol(B') = vol(B N By) > fatness(B) - vol(Bs) = wy - fatness(B) - (r — r1)%.

The Minkowski sum .{l@g' is clearly a subset of A® B. Since it lies entirely inside B; @ By,
the Minkowski sum A @ B’ is also completely contained in B. Using Lemmas 2.1 and 2.3, and
letting f 4 := fatness(A) and fp := fatness(B), we have

fatness(A® B) = vol((A® B) N B)/vol(B)
> vol(A@ B')/vol(B)
> ((/vol(/i) + i vol(l§'))d/vol(B)
> ((/wd - fa - diam(A)¢ + ‘\i/‘*’d fee(r— Tl)d>d : (wdrd)_l
> ({/wd -min(fa, f5) -4 + {fwa - min(fa, fi) - (r - m)d)d : (wdrd)_l

— 1 (Yo mna ) - ()
= min(fa4, fB),

which is the desired result.



An easy example shows that the bound is tight: the Minkowski sum of two balls A and
B is again a ball and as such equally fat as both A and B. O

3 A bound in terms of the largest object

We now deduce a bound on the fatness of the Minkowski sum of two objects A and B that
depends only on the fatness of the larger of A and B. The constant of proporionality in this
bound is determined by the diameters of A and B. By leaving the fatness of the smaller of
A and B out of our considerations, we can no longer use Lemma 2.1 to get a lower bound on
the volume of this object. Instead we will use the elementary observation that any connected
part of the smaller object contains a curve whose diameter is at least the diameter of the
part. Lemma 3.1 provides a lower bound on the volume of the Minkowski sum of an object
and a curve in terms of the diameter of the curve and the volume, diameter, and fatness of
the object.

Lemma 3.1 Let A be an object and s be a curve in E*. Then
vol(A @ s) > vol(A) + wq - fatness(A) - diam(s) - diam(A)4~".

Proof: Let p and ¢ be two points on s that are diam(s) apart. For ease of discussion we
simultaneously rotate and translate s and A until p = (0,0, ...,0) and ¢ = (diam(s),0,...,0);
this does not affect the fatness of A @ s.

Let P[c| denote the plane z1 = ¢ and let I be the interval on the z;-axis consisting of all
¢ for which AN P[c] # 0. Note that length(I) < diam(A). We claim that there exists a ¢ € T
such that the (d — 1)-dimensional volume of A N PJc], denoted by vol;_1(A N PJ[c]), satisfies

volg—1 (A N Plc]) > wq - fatness(A) - diam(A)4~1.

Assume, for a contradiction that voly_1(A N P[z1]) < wy - fatness(A) - diam(A)41, for all
x1 € I. Then

vol(A) = /Ivold_l(AﬂP[:vl])dxl

< wy-fatness(A) - diam(A)4"1 . /d:cl
I

< wq - fatness(A) - diam(A)¢,

contradicting the lower bound on vol(.A) given by Lemma 2.1.
We now translate A such that

volg_1(A N P[0]) > wq - fatness(A) - diam(A)4~1.

See Figure 2(a). Let A~ = {(z1,...,24) € Alz1 < 0} and A" = {(z1,...,2q4) € Alz1 > 0}.
We partition E¢ into a slice S~ : 21 < 0, a slice S : 0 < z; < diam(s), and a slice ST : z; >
diam(s), and bound the volume of the intersection of A @ s with each of S, S, and ST—see
Figure 2(b).
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Figure 2: (a) The bold vertical segment, which corresponds to A N P[0], partitions A into a
left part A~ and a right part A*. (b) The volume of the Minkowski sum A @ s is at least
the sum of the volume of the grey shapes inside S~ and S™ and the volume bounded by the
upper and lower curves inside S.

Both the sets A and A & g are by definition completely contained in A @ s. We have that
ANS =A and (A®q)NST = AT & q. Hence,

vol((A@s)N (S~ UST)) = vol(A™) + vol(AT @ q) = vol(A~) + vol(A1) = vol(A).

The Minkowski sum of the (d — 1)-dimensional set AN P[0] and s lies entirely inside S. Since
any intersection of A @ s with a plane P[z1] for 0 < 21 < diam(s) contains (A N P[0]) & z;
we have

diam(s)
vol((A@s)NS) > / voly_1((A @ s) N Plz1])dz;
0
diam(s)
> / voly_1 (AN PJ0]) ® 1) da
0

diam(s)
_ / voly_1 (A N P[0])dz:
0
= wy - fatness(A) - diam(A)*! - diam(s)

Combining the bounds for S~ U St and S yields the claimed result. m

The role of Lemma 3.1 in the proof of Theorem 3.2 is similar to that of Lemma 2.3 in the
proof of Theorem 2.4.

Theorem 3.2 Let A and B be objects in E?* with diam(A) > diam(B). Then

diam(A) 1
fatness(A @ B) > fatness(A) - diam(A) + diam(B) .

This bound is tight in the worst case.

Proof: A large part of the proof proceeds in the same way as the proof of Theorem 2.4.
That is, we take a ball B determining the fatness of A @ B, and we let A and B be such
that A ® B = A ® B, the center of B is contained in A, and O € B. If the boundary of B



intersects A we are again done. Otherwise A is completely contained in B, and we define B;
to be the largest ball concentric with B whose boundary intersects A. We also define B, to
be the ball with center O and whose radius is 7 — 71, where r and r; are the radii of B and
Bj, respectively. We now consider a subshape of B contained in By. The definition of the
subshape is the first point where we deviate from the proof of Theorem 2.4: instead of using
BN By, we now take a curve s C B connecting O to the boundary of By. Such a curve exists
because By € U(B) and B is connected. Notice that diam(s) > r —r1.

The Minkowski sum A @ s is clearly a subset of both A® B and B. Let f4 := fatness(.A).
Using Lemmas 2.1 and 3.1 along with the inequality r < diam(.A) + diam(B), we find

fatness(A® B) = vol((A® B) N B)/vol(B)

> vol(A @ s)/vol(B)

> (vol(A) 4 wq - fatness(A) - diam(s) - diam(A)¢~1) /vol(B)

> (wd - fa - diam(A)? + wy - fa - diam(s) - dia,m(.A)d_l) . (wdrd)_l
> wa- fa- diam(A) - (diam(A) + diam(s)) - (war) "

> wg fa-diam(A)4Lr. (wdrd) -

> fa-diam(A)41. @D

> fa-diam(A)%! . (diam(A) + diam(B)) @Y.

This proves the upper bound.

To show that the bound is tight we let A = [0, L 4] x[0,1]4~! and B = [0, Lg] x0%~!, leading
to A® B =[0,L4+ Lg] x [0,1]4"1. Note that diam(A)> = L% +d — 1 and diam(B) = Lg.
Furthermore diam(A @ B)? = (L4 + Lg)? + d — 1. By Lemma 2.1 we have that

fatness(A) = L4/ (wq - diam(A)?)
and
fatness(A @ B) = (L4 + Lg)/(wq - diam(A & B)?).

When L 4 tends to infinity, then L 4 approaches diam(A) and diam(A @ B) goes to diam(A) +
diam(B). As a result, fatness(A) and fatness(A @ B) go to wq - diam(A)~(¢=1 and wq -
(diam(A) + diam(B)) (@1 respectively. O
The ratio of diameters attains its smallest value when diam(B) = diam(.A). As a consequence,
we have fatness(A @ B) > fatness(.A)/2¢7L.
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