Lattice basis reduction and integer programming

Karen Aardal*

Lattice basis reduction has played an important role in the theory of integer program-
ming. It was first introduced by H. W. Lenstra, Jr. in 1983 [32] who proved that the integer
programming problem can be solved in polynomial time for a fixed number of variables.
The proof was algorithmic and consisted of two main steps: a linear transformation, and
Lovész’ basis reduction algorithm [31]. Later, Grotschel, Lovéasz, & Schrijver [17], Kannan
[25], and Lovész & Scarf [35] developed algorithms using similar principles to Lenstra’s al-
gorithm. In computational integer programming, however, basis reduction has received less
attention. One of the few implementations that we are aware of is reported on by Cook,
Rutherford, Scarf, & Shallcross [10] in which some difficult, not previously solved, network
design problems were solved using the generalized basis reduction algorithm of Lovész and
Scarf. Recently Aardal, Hurkens, & Lenstra [2], [3] developed an algorithm for solving a
system of diophantine equations with bounds on the variables. They used basis reduction
to reformulate a certain integer relaxation of the problem, and were able to solve several
integer programming instances that proved hard, or even unsolvable, for several other al-
gorithms. Their algorithm was partly inspired by algorithms used in cryptography to solve
subset sum problems that occur in knapsack public-key cryptosystems. In the area of cryp-
tography, basis reduction has been used successfully to solve such subset sum problems, see
for instance the survey article by Joux & Stern [21].

The purpose of this section is to review and explain how basis reduction can be used
both theoretically and computationally in integer programming. To begin with, we define
a lattice and a lattice basis. A reduced basis is a basis with relatively short and nearly
orthogonal vectors. Two algorithms for finding a reduced basis are described in Section 1.
First, the reduction algorithm by Lovész, as presented by Lenstra, Lenstra, & Lovész [31],
is described in Section 1.1. Lovész’ algorithm works with Euclidean norms, whereas the
algorithm by Lovész & Scarf [35], presented in Section 1.2, works with a norm related to a
given convex set. In Section 1 we also discuss some recent implementations.

The main ideas behind the integer programming algorithms by Lenstra [32], Grotschel,
Lovész, & Schrijver [17], Kannan [25], and Lovész & Scarf [35] described in Section 2 are
as follows. A lattice is contained in countably many parallel hyperplanes. If one wants
to decide whether or not a certain polyhedron contains an integral vector, then one can
enumerate some of these lattice hyperplanes. To avoid an unnecessarily large enumeration
tree one wants to find a representation of the lattice hyperplanes such that the distance
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between them is not too small. In particular, for given dimension n one should only need
to enumerate a polynomial number of hyperplanes. To find a suitable representation of the
lattice, basis reduction is used.

The use of basis reduction in cryptography will be briefly discussed in Section 3 since
several interesting theoretical and computational results have been obtained in this area
using basis reduction, and since the lattices and the bases that have been used in attacking
knapsack cryptosystems are related to the lattice used by Aardal et al. [2], [3]. Their algo-
rithm is outlined in Section 4. The basic idea behind the algorithms discussed in Sections
3 and 4 is to reformulate the problem as a problem of finding a short vector in a certain
lattice. One therefore needs to construct a lattice in which any feasible vector is provably
short.

It should be pointed out that basis reduction has been used in other fields such as
computational algebra and number theory, but reviewing these other topics is outside the
scope of our chapter.

For the reader wishing to study lattices and integer programming in more detail we refer
to the articles mentioned in this introduction, to the survey article by Kannan [24], and to
the textbooks by Lovdsz [34], Schrijver [44], Grotschel, Lovasz, & Schrijver [18], Nemhauser
& Wolsey [37], and Cohen [8]. In these references, and in the article by Lenstra, Lenstra,
& Lovész [31], several applications of basis reduction, other than integer programming,
are mentioned, such as finding a short nonzero vector in a lattice, finding the Hermite
normal form of a matrix, simultaneous diophantine approximation, factoring polynomials
with rational coefficients, and finding Q-linear relations among real numbers a1, a1, . .., ap.

A slightly different version of this manuscript will appear as part of the survey paper
by Aardal, Weismantel and Wolsey [4].

1 Two basis reduction algorithms

1.1 Lovasz’ basis reduction algorithm

Given a set of [ linearly independent vectors by, ...,b € R* with [ < n, let B be the matrix
with column vectors by,...,b;.

Definition 1 The lattice L spanned by by, ..., b; is the set of vectors that can be obtained

by taking integer linear combinations of the vectors by,..., b,
l
L:{m:m:Zajbj, a; €Z, 1 <j<I}. (1)
=1

The set of vectors b1, ...,b; is called a basis of the lattice.
Definition 2 An integer nonsingular matriz U with det(U) = %1 is called unimodular.

The following operations on a matrix are called elementary column operations:

e exchanging two columns,

e multiplying a column by —1,



e adding an integral multiple of one column to another column.

Theorem 1 An integral matriz U is unimodular if and only if U can be derived from the
identity matriz by elementary column operations.

A lattice may have several bases.

Observation 1 If B and B’ are bases for the same lattice L, then B' = BU for some | x|
unimodular matriz U.

Lovész’ basis reduction algorithm [31] consists of a series of elementary column oper-
ations on an initial basis B for a given lattice and produces a so-called reduced basis B’
such that the basis vectors b/, ..., b} are short and nearly orthogonal, and such that b} is
an approximation of the shortest vector in the lattice. So, B’ is obtained as B’ = BU for
some unimodular matrix U. Given a basis B one can obtain orthogonal vectors by applying
Gram-Schmidt orthogonalization. The Gram-Schmidt vectors, however, do not necessarily
belong to the lattice, but they do span the same real vector space as b1,...,b;, so they are
used as a “reference” for the basis reduction algorithm. Let || || denote the Euclidean length
in R, and let 27 denote the transpose of the vector z such that 2Ty is the inner product
on R" of the vectors z and y.

Definition 3 The Gram-Schmidt process derives orthogonal vectors by, 1 < j <, from
independent vectors b;, 1 < j < I. The vectors b;-, 1 < j5 <1, and the real numbers
Wik, 1 <k <j <, are determined from b;, 1 < j <1, by the recursion

bi =b (2)
7j—1
by =b;— > mirbp, 2<j<n (3)
k=1
b7z
Hik = T 1<k <G <. (4)
LAl

Example 1 Here we illustrate the Gram-Schmidt vectors obtained by applying the orthog-
onalization procedure given in Definition 3 to the vectors

2 2 -1
b1 = 0 ; b2 = 2 5 b3 = 1
0 1 2

shown in Figure 1 a.
We obtain po; =1, usg; = —%, U3z = %a and

2 0 0
bi=bi=| 0|, by=by—pnbi=| 2 |, b5=bs—pnbi—pxpbs=| -3
0 1 g
The Gram-Schmidt vectors are shown in Figure 1 b. |
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Figure 1:

As mentioned above, the vectors b7, ... ,bj, span the same real vector space as the vectors

bi,...,bj, 1 < j < n. The vector b; is the projection of b; on the orthogonal complement
of Zi;ll Rby, i.e., b} is the component of b; orthogonal to the real subspace spanned by
bi,...,bj—1. Thus, any pair b;, b} of the Gram-Schmidt vectors are mutually orthogonal.
The multiplier p;; gives the length, relative to b7, of the component of the vector b; in
direction by. The multiplier u; is equal to zero if and only if b; is orthogonal to by.

Definition 4 [31]. A basis by, ba,...,b; is called reduced if

1
|ujk\S§f07“1Sk<jSl, (5)

N

115 + g —1b5 4 [ > 27 4|7 for 1 < j <L (6)
Before interpreting Conditions (5) and (6) we define [a] as [a| = [a — 17, i.e., [a] is the
nearest integer to a, where we round up if the fraction is equal to one half. A reduced basis
according to Lovasz is a basis in which the vectors are short and nearly orthogonal. Below
we explain why vectors satisfying Conditions (5) and (6) have these characteristics.
Condition (5) is satisfied if the component of vector b; in direction b is short relative
to by. This is the case if b; and bj are nearly orthogonal, or if b; is short relative to by.
If condition (5) is violated, i.e., the component of vector b; in direction b} is relatively
long, then Lovész’ basis reduction algorithm will replace b; by b; — [ |bg. Such a step is
called size reduction and will ensure relatively short basis vectors. Next, suppose that (5) is
satisfied because b; is short relative to by, k < j. Then we may end up with a basis where
the vectors are not at all orthogonal, and where the first vector is very long, the next one
relatively short compared to the first one, and so on. To prevent this from happening we
enforce Condition (6). Here we relate to the interpretation of the Gram-Schmidt vectors
above, and notice that the vectors b} + puj;—1b7_; and bj_; are the projections of b; and
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bj 1 on the orthogonal complement of ch;zl Rb;. Consider the case where k = j — 1, i.e.,
suppose that b; is short compared to b;_l, which implies that b;f is short compared to b;_l
as [|b}|| <|b;||.- Suppose we interchange b; and b;_1. Then the new b;_; will be the vector
bj + pj,—1bj_1, which will be short compared to the old bj_,, i.e., Condition (6) will be
violated. To summarize, Conditions (5) and (6) ensure that we obtain a basis in which
the vectors are short and nearly orthogonal. To achieve such a basis Lovész’ algorithm
applies a sequence of size reductions and interchanges in order to reduce the length of
the vectors, and to prevent us from obtaining non-orthogonal basis vectors of decreasing
length, where the first basis vector may be arbitrarily long. The constant % in inequality (6)
is arbitrarily chosen and can be replaced by any fixed real number i < y < 1. In a practical
implementation one chooses a constant close to one.

A brief outline of Lovész’ basis reduction algorithm is as follows. For precise details
we refer to [31]. First compute the Gram-Schmidt vectors b}, 1 < j <[ and the numbers
Mik, 1 < k < j < 1. Initialize 7 := 2. Perform, if necessary, a size reduction to obtain
|pii—1| < 1/2. Update ; ;1. Then check whether Condition (6) holds for j = i. If Condition
(6) is violated, then exchange b; and b;_1, and update the relevant Gram-Schmidt vectors
and numbers ;. If i > 2, then let 4 := i — 1 Next, achieve |pim| < 1/2 for m =14 —2,i —
3,...,1. If i = n, stop. Otherwise, let 7 := 14 + 1.

From this short description, it is not obvious that the algorithm is efficient, but as the
following theorem states, Lovéasz’ basis reduction algorithm runs in polynomial time.

Theorem 2 [31]. Let L C Z" be a lattice with basis bi,...,by, and let 5 € R, § > 2, be
such that ||b;||> < B for 1 < j < n. Then the number of arithmetic operations needed by
the basis reduction algorithm as described in [31] is O(n*log B), and the integers on which
these operations are performed each have binary length O(nlog ().

In terms of bit operations, Theorem 2 implies that Lovasz’ basis reduction algorithm has
a running time of O(n%(log3)3) using classical algorithms for addition and multiplica-
tion. There are reasons to believe that it is possible in practice to find a reduced basis
in O(n(log B)) bit operations, see Section 4 of Kaltofen [22], and Odlyzko [38].

Example 2 Here we give an example of an initial and a reduced basis for a given lattice.
Let L be the lattice generated by the vectors

(1) (1)

The Gram-Schmidt vectors are b} = by and b} = by — g b} = (1,1)T — %b{ = %7(—3, 12)T,
see Figure 2 a. Condition (5) is satisfied since b, is short relative to b]. However, Condition
(6) is violated, so we exchange b; and by, giving

(1) w- (1)

We now have b] = b1, po1 = g and by = %(3, —3)7, see Figure 2 b.
Condition (5) is now violated, so we replace by by by — 2b; = (2, —1)*. Conditions (5)
and (6) are satisfied for the resulting basis

(1) v ()



Figure 2:

and hence this basis is reduced, see Figure 3.

Figure 3: The reduced basis.

Let W be the vector space spanned by the lattice L, and let By be an orthonormal
basis for W. The determinant of the lattice L, det(L), is defined as the absolute value of the
determinant of any nonsingular mapping W — W that maps By on a basis of L. Below
we give three different formulae for computing det(L). Let B = (by,...,b,,) be a basis for
the lattice L C R", with m < n, let b],...,b}, be the vectors obtained from applying the

Gram-Schmidt orthogonalization procedure, see Definition 3, to by, ..., by,.
det(L) = [[b]] - [[b3]] - --- - [[b7,]], (7)
det(L) = /det(b7b;); (8)

o HzeL:al <}
det(L) = Bm “—0B )




where vol(By,(r)) is the volume of the m-dimensional ball with radius r. If L is full-
dimensional, det(L) can be interpreted as the volume of the parallelepiped 2?21[0, 1)b;.
In this case the determinant of the lattice can be computed straightforwardly as det(L) =
|det(by,...,by)|. Note that the determinant of a lattice depends only on the lattice and not
on the choice of basis (cf. Observation 1, and expression (9)). The determinant of Z" is
equal to one.

In Propositions 3 and 5 below we assume that the lattice L is full-dimensional.

Proposition 3 [31]. Let by,...,b, be a reduced basis for the lattice L C R™. Then,
det(L) < TI7_||bs|| < c1 - det(L), (10)

where ¢; = 2Mn—1)/4

The first inequality in (10) is the so called inequality of Hadamard that holds for any basis of
L. Hadamard’s inequality holds with equality if and only if the basis is orthogonal. Hermite
[19] proved that each lattice L C R™ has a basis bi,..., b, such that II?_, ||| < c-det(L),
where ¢ is a constant depending only on n. The basis produced by Lovasz’ basis reduction
algorithm yields the constant ¢ = ¢; in Proposition 3. Better constants than ¢; are possible,
but the question is then whether the basis can be obtained in polynomial time.

A consequence of Proposition 3 is that if we consider a basis that satisfies (10), then
the distance of the basis vector b, to the hyperplane generated by the reduced basis vectors
bi,...,bp—1 is not too small as stated in the following Corollary.

Corollary 4 [32]. Assume that by,...,b, is a basis such that (10) holds, and that, after
possible reordering, ||by|| = maxi<;j<n{||bj||}. Let H = Z?;ll Rb; and let h be the distance
of basis vector b, to H. Then

et bl < B < [[ball, (11)
where ¢; = on(n—1)/4
Proof: Let L' = Y.7| Zb;. We have

det(L) = h - det(L’). (12)
Expressions (10) and (12) give

I17_,||bj|| < c1-det(L) =c¢1-h-det(L') <ci-h- H?;11||bj|\, (13)

where the first inequality follows from the second inequality of (10), and where the last
inequality follows from the inequality of Hadamard (first inequality of (10)). From (13) we
obtain h > ¢7!||by||. From the definition of h we have h < ||by||, and this bound holds with
equality if and only if the vector b, is perpendicular to H. |

The lower bound on h given in Corollary 4 plays a crucial role in the algorithm of H.
W. Lenstra, Jr., that is described in Section 2.1.



Proposition 5 [31]. Let L C R" be a lattice with reduced basis by,...,b, € R". Let

T1,...,2¢ € L be linearly independent. Then we have
|1b1]|? < 2" Y||z||? for all z € L,z # 0, (14)
165117 < 2"~ max{[[a |2, [, 2]} for 1 <G <. (15)

Inequality (14) implies that the first reduced basis vector b; is an approximation of the
shortest nonzero vector in L. Kannan [25] presents an algorithm based on Lovisz’ basis
reduction algorithm that computes the shortest nonzero lattice vector in polynomial time
for fixed n. It is not known whether the problem of finding the shortest nonzero vector in
a given lattice is NP-hard. Micciancio [36] showed that computing the approximate length
of the shortest vector in a lattice within a factor less than +/2 is NP-hard for randomized
problem transformations. In his proof he used a randomized transformation from a variant
of the so-called closest vector problem to the shortest vector problem. The closest vector
problem is defined as follows. Given n linearly independent vectors aq,...,a, € Q*, and a
further vector b € Q", find a vector z in the lattice generated by ai,...,a, with ||b — z||
minimal. Van Emde Boas [15] showed that finding the shortest vector with respect to the
maximum norm in a given lattice is NP-hard, and that the closest vector problem is NP-
hard for any norm. Just as the first basis vector is an approximation of the shortest vector
of the lattice (14), the other basis vectors are approximations of the successive minima of
the lattice. The j* successive minimum of || || on L is the smallest positive value v; such
that there exists j linearly independent elements of the lattice L in the ball of radius v;
centered at the origin.

Proposition 6 [31]. Let vi,...,v; denote the successive minima of || || on L, and let
bi,...,b; be a reduced basis for L. Then

2012 < ||by]| < 20V20; for 1< j < 1. (16)

In recent years several new variants of Lovasz’ basis reduction algorithm have been de-
veloped and a number of variants for implementation have been suggested. We mention
a few below, and recommend the paper by Schnorr & Euchner [42] for a more detailed
overview. Schnorr [40] extended Lovdsz’ algorithm to a family of polynomial time algo-
rithms that, given € > 0, finds a non-zero vector in an n-dimensional lattice that is no
longer than (1 + €)™ times the length of the shortest vector in the lattice. The degree of the
polynomial that bounds the running time of the family of algorithms increases as € goes to
zero. Seysen [45] developed an algorithm in which the intermediate integers that are pro-
duced are no larger than the input integers. Seysen’s algorithm performs well particularly
on lower-dimensional lattices. Schnorr & Euchner [42] discuss the possibility of computing
the Gram-Schmidt vectors using floating point arithmetic while keeping the basis vectors
in exact arithmetic in order to improve the practical performance of the algorithm. The
drawback of this approach is that the basis reduction algorithm tends to become unstable.
They propose a floating point version with good stability, but cannot prove that the algo-
rithm always terminates. Empirical studies indicate that their version is stable on instances
of dimension up to 125 having input numbers of bit length as large as 300. Our experience



is that one can use basis reduction for problems of larger dimensions if the input numbers
are smaller, but once the dimension reaches about 300-400 basis reduction will be slow.
Another version considered by Schnorr and Euchner is basis reduction with deep insertions.
Here, they allow for a vector by to be swapped with a vector with lower index than k — 1.
Schnorr [40], [41] also developed a variant of Lovdsz’ algorithm in which not only two vec-
tors are interchanged during the reduction process, but where blocks b;,b;1,...,bj45-1 of
3 consecutive vectors are transformed so as to minimize the j*! Gram Schmidt vector b.
This so called block reduction produces shorter basis vectors but needs more computing
time. The shortest vector b} in a block of size (3 is determined by complete enumeration of
all short lattice vectors. Schnorr & Hoérner [43] develop and analyze a rule for pruning this
enumeration process.

For the reader interested in using a version of Lovdsz’ basis reduction algorithm there
are some useful libraries available on the Internet. Two of them are LiDIA - A C++ Library
for Computational Number Theory [33], developed at TH Darmstadt, and NTL - A Library
for doing Number Theory [46], developed by V. Shoup, IBM, Ziirich.

1.2 The generalized basis reduction algorithm

In the generalized basis reduction algorithm a norm related to a full-dimensional compact
convex set C' is used, instead of the Euclidean norm as in Lovasz’ algorithm. A compact
convex set C' € R" that is symmetric about the origin gives rise to a norm F(c) = inf{\ >
0:c/X € C}. Lovasz & Scarf [35] call the function F' the distance function with respect to
C. As in Lovész’ basis reduction algorithm the generalized basis reduction algorithm finds
short basis vectors with respect to the chosen norm. Moreover, the first basis vector is an
approximation of the shortest nonzero lattice vector.

Given the convex set C' we define a dual set C* = {y : yTc < 1forallc € C}. We
also define a distance function associated with a projection of C. Let b1,...,b, be a basis
for Z", and let C; be the projection of C' on the orthogonal complement of b1,...,b;_;.
We have that ¢ = B;b; + --- + Bpub, € Cj if and only if there exist a1,...,aj—1 such that
c+aiby +---+ aj_1bj_1 € C. The distance function associated with C; is defined as:

F](C) = min F(C +aiby 4+ + aj—lbj—l)- (17)

Q ey —1
Using duality, one can show that expression (17) is equivalent to the following problem:
Fj(c) =max{c’z:2€ C*, bl 2z =0,... ,b?_lz = 0}. (18)

In expression (18), note that only vectors z that are orthogonal to the basis vectors by, ..., bj_1
are considered. This is similar to the role played by the Gram-Schmidt basis in Lovasz’ basis
reduction algorithm. Also, notice that if C is a polytope, then (18) is a linear program, which
can be solved in polynomial time. The distance function F' has the following properties:

e F' can be computed in polynomial time,
e F'is convex,

e F(-2) = F(x),



o F(tz) =tF(z) for t > 0.
Lovasz and Scarf use the following definition of a reduced basis.

Definition 5 A basis by,...,b, is called reduced if

Fj(bjy1+ pbj) > Fj(bj41) for 1 < j<n—1 and all integers p, (19)

Fj(bjt1) 2 (1 —€)Fj(b;) for 1<j<n-—1 (20)
where € satisfies 0 < € < %

Definition 6 A basis by, ...,b,, not necessarily reduced, is called proper if

Fk(bj + pbg) > Fk(bj) for1<k<j<n. (21)

Remark: The algorithm is called generalized basis reduction since it generalizes Lovasz’
basis reduction algorithm in the following sense. If the convex set C is an ellipsoid, then a

proper reduced basis is precisely a reduced basis according to Lenstra, Lenstra, & Lovész
[31] (cf. Definition 4).

An important question is how to check whether Condition (19) is satisfied for all integers
u. Here we make use of the dual relationship between formulations (17) and (18). We have
the following equality: minyer Fj(bj+1 + abj) = Fjt1(bj+1). Let o denote the optimal «
in the minimization. The function Fj is convex, and hence the integer p that minimizes
F;(bj41+ pbj) is either [a* | or [a*]. If the convex set C is a rational polytope, then o* € Q
is the optimal dual variable corresponding to the constraint bJTz = 0, which implies that
the integral p that minimizes F;(bj;1 + pub;) can be determined by solving two additional
linear programs, unless * is integral.

Condition (21) is analogous to Condition (5) of Lovész’ basis reduction algorithm, and is
violated if adding an integer multiple of by, to b; yields a distance function value Fj,(b; + puby,)
that is smaller than Fj(b;). In the generalized basis reduction algorithm we only check
whether the condition is satisfied for £k = j — 1 (cf. Condition (19)), and we use the value
of p that minimizes Fj(bj11 + pub;) as mentioned above. If Condition (19) is violated we do
a size reduction, i.e., we replace bji1 by bjy1 + ub;.

Condition (20) corresponds to Condition (6) in Lovéasz’ algorithm, and ensures that the
basis vectors are in the order of increasing distance function value, aside from the factor
(1 — ¢€). Recall that we want the first basis vector to be an approximation of the shortest
lattice vector. If Condition (20) is violated we interchange vectors b; and bj. ;.

The algorithm works as follows. Let bi,...,b, be an initial basis for Z™. Typically
bj = e;, where ¢; is the 4™ column of the identity matrix. Let j be the first index for which
Conditions (19) or (20) are not satisfied. If (19) is violated, we replace b1 by bj1 + ub;
with the appropriate value of u. If Condition (20) is satisfied after the replacement, we let
j = j + 1. If Condition (20) is violated, we interchange b; and bj;1, and let j := j — 1 if
j > 2. If j =1, we remain at this level. The operations that the algorithm performs on the
basis vectors are elementary column operations as in Lovéasz’ algorithm. The vectors that

10



we obtain as output from the generalized basis reduction algorithm can therefore be written
as the product of the initial basis matrix and a unimodular matrix, which implies that the
output vectors form a basis for the lattice Z". The question is how efficient the algorithm
is.

Theorem 7 [35]. Let € be chosen as in (20), let v =2+ 1/log(1/(1 —¢€)), and let B(R) be
a ball with radius R containing C. Moreover, let U = max; Fj(a;), where ai,...,an is the
initial basis, and let V = 1/(R(nRU)™ 1).

The generalized basis reduction algorithm runs in polynomial time for fited n. The maz-
imum number of interchanges performed during the execution of the algorithm is

(=) (st ) &

It is important to notice that, so far, the generalized basis reduction algorithm has been
proved to run in polynomial time for fized n only, whereas Lovasz’ basis reduction algorithm
runs in polynomial time for arbitrary n (cf. Theorem 2).

We now give a few properties of a Lovasz-Scarf reduced basis. If one can obtain a basis
bi,..., by, given C, such that Fy(b) < Fa(be) < --- < Fy(by), then one can prove that by
is the shortest integral vector with respect to the distance function. The generalized basis
reduction algorithm does not produce a basis with the above property, but it gives a basis
that satisfies the following weaker condition.

Theorem 8 [35]. Let 0 < e < %, and let by, ..., b, be a Lovdsz-Scarf reduced basis. Then

Fjoi(bjar) > (% —e)F(b;) for1<j<n-1. (23)

We can use this theorem to obtain a result analogous to (14) of Proposition 5.
Proposition 9 [35]. Let 0 < e < %, and let by, ...,b, be a Lovdsz-Scarf reduced basis. Then

1
F(b) < (5 — &)V "F(z) for all x € Z™ x # 0. (24)
We can also relate the distance function F}(b;) to the j™ successive minimum of F on
the lattice Z™ (cf. Proposition 6). v1,...,v, are the successive minima of F on Z" if there
are vectors 21, ..., T, € Z" with v; = F(z;), such that for each 1 < j < n, z; is the shortest
lattice vector (with respect to F') that is linearly independent of z1,...,2;_1.

Proposition 10 Let vy,...,v, denote the successive minima of F' on the lattice Z", let

0<e< %, and let by, ..., b, be a Lovdsz-Scarf reduced basis. Then

. 1 .

(5 — ey < F(by) < (3 —ef My forl<j<m (25)
The first reduced basis vector is an approximation of the shortest lattice vector (Propo-

sition 9). In fact the generalized basis reduction algorithm can be used to find the shortest

vector in the lattice in polynomial time for fixed n. This algorithm is used as a subroutine of

Lovész and Scarf’s algorithm for solving the integer programming problem “Is X NZ" # (7"
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described in Section 2.3. To find the shortest lattice vector we proceed as follows. If the basis
bi,...,by, is Lovasz-Scarf reduced we can obtain a bound on the coordinates of lattice vec-
tors ¢ that satisfy Fy(c) < Fj(b1). We express the vector ¢ as an integer linear combination
of the basis vectors, i.e., ¢ = aiby + -+ + auby, where a; € Z. We have

Fi(b1) > Fi(c) = Fu(c) = Fu(anbn) = |an|Fn(bn), (26)

where the second inequality holds since Fj(c) is more constrained than Fj(c), the first
equality holds due to the constraints biTz =0, 1 <i<n-—1, and the second equality holds
as F(tz) = tF(z) for t > 0. We can now use (26) to obtain the following bound on |ay,|:

lon | < (27)

where the last inequality is obtained by applying Theorem 8 iteratively. Notice that the
bound on «,, is polynomial for fixed n. In a similar fashion we can obtain a bound on
aj for n —1 > j > 1. Suppose that we have chosen multipliers oy, ..., ;41 and that we
want to determine a bound on «;. Let v* be the value of v that minimizes Fj(onbn +
--+ + ajq1bjy1 + vbj). If this minimum is greater than F(b;), then there does not exist
a vector ¢, with ap,...,a;j41 fixed such that Fi(c) < Fi(b1), since in that case Fi(b) <
Fj(anby + -+ 4+ oj11bj 41 +7*b;) < Fj(onby + - -+ + ab;) = Fj(c) < Fi(c), which yields a
contradiction. If the minimum is less than or equal to Fi(b;), then we can obtain the bound:

Fy(by) 2

a; — 7 <2 < —
| J | F](b]) (%—E)J_l

(28)
Hence, we obtain a search tree that has at most n levels, and, given the bounds on the
multipliers «;, each level consists of a number of nodes that is polynomial if n is fixed.

The generalized basis reduction algorithm was implemented by Cook, Rutherford, Scarf,
& Shallcross [10], and by Wang [47]. Cook et al. used generalized basis reduction to derive
a heuristic version of the integer programming algorithm by Lovdsz and Scarf (see Section
2.3) to solve difficult integer network design instances. Wang solved both linear and non-
linear integer programming problems using the generalized basis reduction algorithm as a
subroutine.

An example illustrating a few iterations of the generalized basis reduction algorithm is
given in Section 2.3.

2 Integer programming in fixed dimension

Let A be a rational m X n-matrix and let d be a rational m-vector. We consider the integer
programming problem in the following form:

Does there exist an integral vector z such that Az < d? (29)

Karp [28] showed that the zero-one integer programming problem is NP-complete, and
Borosh & Treybig proved that the integer programming problem (29) belongs to NP. Com-
bining these results implies that (29) is NP-complete. The NP-completeness of the zero-one
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version is a fairly straightforward consequence of the proof by Cook [9] that the Satisfiability
problem is NP-complete. An important open question was still: Can the integer program-
ming problem be solved in polynomial time in bounded dimension? If the dimension n =1
the affirmative answer is trivial. Some special cases of n = 2 were proven to be polynomi-
ally solvable by Hirschberg & Wong [20], and by Kannan [23]. Scarf [39] showed that (29),
for the general case n = 2, is polynomially solvable. Both Hirschberg & Wong, and Scarf
conjectured that the integer programming problem could be solved in polynomial time if
the dimension is fixed. The proof of this conjecture was given by H. W. Lenstra, Jr. [32].
Below we first illustrate in Example 3 why linear programming based branch-and-bound is
not a polynomial algorithm for n = 2. Next we describe three algorithms for solving the in-
teger programming problem in fixed dimension: Lenstra’s algorithm [32] and the algorithm
of Grotschel, Lovész, & Schrijver [17], which are both based on Lovész’ basis reduction
algorithm [31], and, finally, the algorithm of Lovész & Scarf [35], which is based on the
generalized basis reduction algorithm.

It is worthwhile pointing out here that Barvinok [5] showed that there exists a polynomial
time algorithm for counting the number of integral points in a polyhedron if the dimension
is fixed. Barvinok’s result therefore generalizes the result of Lenstra. Barvinok, however,
based his algorithm on an identity by Brion for exponential sums over polytopes. Later,
Dyer & Kannan [14] developed a simpler algorithm for counting the number of integral
points in fixed dimension. Their algorithm uses only elementary properties of exponential
sums. To describe Barvinok’s result and the improvement by Dyer and Kannan is outside
the scope of this chapter.

Example 3 Consider the 2-dimensional polytope in Figure 4. If we use branch-and-bound

T+ T2

Figure 4: A difficult type of instance for branch-and-bound
on this instance with objective function max x1 + z2, then we see that the variables z;

and zo alternately attain fractional values, which forces us to branch. If we extend the
polytope arbitrarily far, then the branch-and-bound tree will become arbitrarily deep. It
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is easy to construct an example that is equally bad for branch-and-bound in which the
polytope contains an integer vector. |

2.1 Lenstra’s algorithm

We pose the integer programming problem in a slightly different way from (29). Let X =
{z € R" : Az < d}. The question we consider is:

Is X NZ" # 07 (30)

An observation made by Lenstra was that “thin” polytopes as in Example 3 were “bad”
from the worst-case perspective. He therefore suggested to transform the polytope using a
linear transformation 7 such that the polytope 7X becomes “round” according to a certain
measure. Assume without loss of generality that the polytope X is full-dimensional and
bounded, and let B(p,z) = {z € R" : ||z — p|| < z} be the closed ball with center p and
radius z. The transformation 7 that we apply to the polytope is constructed such that
B(p,r) C 7X C B(p, R) for some p € 7X and such that

~—

S C2, (31)

RAR=~

where c; is a constant that depends only on the dimension n. Relation (31) is the measure of
“roundness” that Lenstra uses. For an illustration, see Figure 5. Once we have transformed

Figure 5:

the polytope, we need to apply the same transformation to the lattice, which gives us the
following problem:

Is7Z"N7X #£ 07 (32)

Note that problems (30) and (32) are equivalent. The vectors 7ej, 1 < j < n, where e; is
the 7' column of the identity matrix, form a basis for the lattice 7Z™. If the polytope X
is thin, then this will translate to the lattice basis vectors 7e;, 1 < j < n in the sense that
these vectors are long and non-orthogonal. This is where lattice basis reduction becomes
useful. Once we have the transformed polytope 7X, Lenstra uses the following Lemma to
find a lattice point quickly.
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Lemma 11 [82]. Let by, ..., b, be any basis for L. Then for all x € R™ there exists a vector
y € L such that

(I[Ba][? + -~ + [[ba][?). (33)

] =

llz —yl|* <

The proof of this lemma suggests a fast construction of the vector y € L given the vector zx.

Next, let L = 7Z", and let by,...,b, be a basis for L such that (10) holds. No-
tice that (10) holds if the basis is reduced. Also, reorder the vectors such that ||b,|| =
maxi<;<n{||bj||}. Let = p where p is the center of the closed balls B(p,r) and B(p, R).
Apply Lemma 11 to the given z. This gives a lattice vector y € 7Z" such that

1 1
[lp = lI* < Z(Ulball” + -+ |[bal[*) < 3 - 72 [[Bnll” (34)

in polynomial time. We now distinguish two cases. Either y € 7X or y ¢ 7X. The first
case implies that 7X is relatively large, and if we are in this case, then we are done, so
we assume we are in the second case. Since y € 7X we know that y is not inside the ball
B(p,r) as B(p,r) is completely contained in 7X. Hence we know that |[p —y|| > r, or using
(34), that

1
r< gV lball- (35)

We now create t subproblems by considering intersections between the polytope 7X with ¢
parallel hyperplanes containing the lattice L. Each of these subproblems has dimension at
least one lower than the parent problem and they are solved recursively. The procedure of
splitting the problem into subproblems of lower dimension is called “branching”, and each
subproblem is represented by a node in the enumeration tree. In each node we repeat the
whole process of transformation, basis reduction and, if necessary, branching. The enumer-
ation tree created by this recursive process is at most n deep, and the number of nodes at
each level is polynomially bounded by a constant that depends only on the dimension. The
value of ¢ will be computed below.
Let H, h and L' be defined as in Corollary 4 and its proof. We can write L as

L=1L'+7b, C H+ Zb, = Upeg(H + kby,). (36)

So the lattice L is contained in countably many parallel hyperplanes. For an example we
refer to Figure 6. The distance between two consecutive hyperplanes is h, and Corollary 4
says that h is bounded from below by a constant depending only on n, which implies that
not too many hyperplanes intersect 7X. To determine precisely how many hyperplanes
intersect 7X, we approximate 7X by the ball B(p, R). If ¢ is the number of hyperplanes
intersecting B(p, R) we have

2R
t-1< =, (37)

Using the relationship (31) between the radii R and r we have 2R < 2rcy < cov/nl|by|l,
where the last inequality follows from (35). Since h > ¢ !||by|| (cf. Corollary 4), we get the
following bound on the number of hyperplanes that we need to consider:

2R
t—1< T < 0102\/5, (38)
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Figure 6:

which depends on the dimension only. The values of the constants ¢; and ¢y that are used by
Lenstra are: ¢; = 2" 1/% and ¢, = 2n%/2. Lenstra [32] discusses ways of improving these
values. To determine the values of &k in expression (36), we express p as a linear combination
of the basis vectors by, ...,b,. Recall that p is the center of the ball B(p, R) that was used
to approximate 7.X.

So far we have not mentioned how to determine the transformation 7 and hence the
balls B(p,r) and B(p, R). We give the general idea here without going into detail. First,
determine an n-simplex contained in X. This can be done by repeated calls to the ellipsoid
algorithm. The resulting simplex is described by its extreme points vy, ..., v,. By applying
the ellipsoid algorithm repeatedly we can decide whether there exists an extreme point x of
X such that if we replace v; by x we obtain a new simplex whose volume is at least a factor
of % larger than the current simplex. We stop the procedure if we cannot find such a new
simplex. The factor % can be modified, but the choice will affect the value of the constant
c2, see [32] for further details. We now map the extreme points of the simplex to the unit
vectors of R*t! so as to obtain a regular n-simplex, and we denote this transformation by
7. Lenstra [32] shows that 7 has the property that if we let p =1/(n+1) Z?:o e;, where e;
is the 5" column of the identity matrix (i.e., p is the center of the regular simplex), then
there exists closed balls B(p,r) and B(p, R) such that B(p,r) C 7X C B(p,R) for some
p € 7X, and such that R/r < cs.

Kannan [25] developed a variant of Lenstra’s algorithm. The algorithm follows Lenstra’s
algorithm up to the point where he has applied a linear transformation to the poytope X
and obtained a polytope 7X such that B(p,r) C 7X C B(p,R) for some p € 7X. Here
Kannan proceeds as follows. He applies a reduction algorithm to a basis of the lattice 772"
that produces a “reduced” basis in a different sense compared to Lovdsz’ reduced basis. In
particular, in Kannan’s reduced basis the first basis vector is the shortest nonzero lattice
vector. As in Lenstra’s algorithm two cases are considered. Either 7X is relatively large
which implies that 7X contains a lattice vector, or 7X is small, which means that not too
many lattice hyperplanes can intersect 7.X. Each such intersection gives rise to a subproblem
of at least one dimension lower. Kannan’s reduced basis makes it possible to improve the
bound on the number of hyperplanes that has to be considered to O(n5/ 2). As far as we
know, no implementation of Lenstra’s or Kannan’s algorithms has been reported on in the
literature.
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2.2 The algorithm of Grotschel, Lovasz, and Schrijver

Grotschel, Lovész, & Schrijver [17] used ellipsoidal approximations of the feasible set X and
derived an algorithm based on the same principles as Lenstra’s algorithm. Here we will give
a sketch of their approach. Assume without loss of generality that X = {z € R" : Az < d}
is bounded and full-dimensional. The key idea is to rapidly find a vector y € Z", as Lenstra
does through Lemma 11, and if y does not belong to X, to find a nonzero integral direction ¢
such that the width of the polytope X in this direction is bounded by a constant depending
only on n. This is expressed in the following theorem.

Theorem 12 [17]. Let Az < d be a system of m rational inequalities in n variables, and
let X = {z : Az < d}. There ezists a polynomial algorithm that finds either an integral
vector y € X, or a vector ¢ € Z"\ 0 such that

max{c'z:z € X} —min{c'z: z € X} < 2n(n + 1)27n~D/4 (39)

Remark: Grotschel, Lovész, and Schrijver in fact gave the polytope {z : Az < d} in terms
of a separation oracle, and not by an explicit description. This gives rise to a slightly more
involved proof. Here we follow the presentation of Schrijver [44]. Notice that the algorithm
referred to in Theorem 12 is polynomial for arbitrary n.

Here we will not make a transformation to a lattice 7Z", but remain in the lattice Z". The
first step is to find two ellipsoids; one contained in X, and one containing X. Let D be
a positive semidefinite n x n-matrix, and let p € R™. The ellipsoid associated with p and
D is defined as E(p,D) = {z € R* : (z — p)TD~}(z — p) < 1}. The vector p is called
the center of the ellipsoid E(p, D). Goffin [16] showed that it is possible to find ellipsoids
E(p,(1/(n +1)?)D), E(p,D) in polynomial time such that

Next, we apply basis reduction, but instead of using the Euclidean norm to measure the
length of the basis vectors, as described in Section 1.1, we use a norm defined by the
positive definite matrix D! describing the ellipsoids, see Schrijver [44] Chapters 6 and 18.
The norm // // defined by the matrix D! is given by //z// = V2T D~ 'z. Given a positive
definite rational matrix D~!, we can apply basis reduction to the unit basis to obtain a
basis by, ..., b, for the lattice Z™ in polynomial time that satisfies (cf. the second inequality

of (10))
T, b)) < 200 D/ /Tei(DT). (a1)

Next, reorder the basis vectors such that //b,// = maxi<j<n{//bj//}. After reordering,
inequality (41) still holds. Suppose that the vector y € Z", which can be found by ap-
plying Lemma 11 with z = p, does not belong to X. We then have that y ¢ E(p,
(1/(n+1)2)D) as this ellipsoid is contained in X, which implies that //p —y// > 1/(n+ 1).
Using (34) we obtain 1/2v/n//b,// > //p—vy// > 1/(n+ 1) which gives the following bound
on the length of the n'" basis vector:

2 1
//bnl] > vn(n+1) > n(n+1)

(42)
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Choose a direction ¢ such that the components of ¢ are relatively prime integers, and such
that ¢ is orthogonal to the subspace generated by the basis vectors by, ...,b,—1. One can
show, see Schrijver [44] pp 257258, that if we consider a vector z such that 2D 1z <1,
then

lez| < V/det(D)/fbr/] - -+ - [fbu—rf] < 2V by /7T < m(n1)20 DM (43)

where the second inequality follows from inequality (41), and the last inequality follows from
(42). If a vector z satisfies 2 D~'z < 1, then z € E(p, D), which implies that |c(z — p)| <
n(n 4 1)277=1/4_ We then obtain

max{c'z:z € X} —min{c'z: 2z € X} (44)

< max{c'z:z € E(p,D)} —min{c" z : z € E(p,D)} < 2n(n + 1)2""1/4,

which gives the desired result.

Lenstra’s result that the integer programming problem can be solved in polynomial time
for fixed n follows from Theorem 12. If we apply the algorithm implied by Theorem 12, we
either find an integral point y € X or a thin direction c. Assume that the direction c is the
outcome of the algorithm. Let 4 = [min{c’z : z € X}]. All points in X NZ™ are contained
in the parallel hyperplanes cz = t where t = p, ..., + 2n(n + 1)24"=D/4 5o, if n is fixed
we get polynomially many hyperplanes, each giving rise to a subproblem of dimension less
than or equal to n — 1: does there exist an integral vector z € {X : cx = t}7 For each of
these lower-dimensional problems we repeat the algorithm of Theorem 12. The search tree
has at most n levels and each level has polynomially many nodes if the dimension is fixed.

2.3 The algorithm of Lovasz and Scarf

The integer programming algorithm of Lovasz & Scarf [35] determines, in polynomial time
for fixed n, whether there exists a thin direction for the polytope X. If X is not thin
in any direction, then X has to contain an integral vector. If a thin direction is found,
then one needs to branch, i.e., divide the problem into lower-dimensional subproblems,
in order to determine whether or not a feasible vector exists, but then the number of
branches is polynomially bounded for fixed n. If the algorithm indicates that X contains
an integral vector, then one needs to determine a so-called Korkine-Zolotarev basis in order
to construct a feasible vector. The Lovasz-Scarf algorithm avoids the approximations by
balls as in Lenstra’s algorithm, or by ellipsoids as in the algorithm by Grotschel, Lovész,
and Schrijver. Again, we assume that X = {z € R" : Az < d} is bounded, rational, and
full-dimensional.

Definition 7 The width of the polytope X in the nonzero direction c is determined as
max{c'z: z€ X} —min{cfz: z€ X} =max{c (z —y):z € X, y € X}. (45)

Let (X —X)={(z—y):z € X, y € X)} be the difference set corresponding to X. Recall
that (X — X)* denotes the dual set corresponding to (X — X), and notice that (X — X)*
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is symmetric about the origin. The distance functions associated with (X — X)* are:

Fj(C) = min F(C + Ol1b1 +---+ Otj_lbj_l) (46)

A1y Qj—1 E@

= max{cl(z—y):z€ X, ye X, bl(z—y) = 0,...,bJT_1(w —y) =0}, (47)

(cf. expressions (17) and (18)). Here, we notice that F(c) = Fi(c) is the width of X in the
direction c. From the above we see that a lattice vector ¢ that minimizes the width of the
polytope X is a shortest lattice vector for the polytope (X — X)*.

To outline the algorithm by Lovész and Scarf we need the results given in Theorem
13 and 14 below, and the definition of a so-called generalized Korkine-Zolotarev basis. Let

bj, 1 < j < n be defined recursively as follows. Given by,...,b;_1, the vector b; minimizes
F;(z) over all lattice vectors that are linearly independent of by,...,b;_1. A generalized
Korkine-Zolotarev (KZ) basis is defined to be any proper basis b}, ...,b associated with

bj, 1 < j < n, see Definition 6 for the definition of a proper basis. The notion of a generalized
K7 basis was introduced by Kannan & Lovész [26], [27]. Kannan & Lovdsz [26] gave an
algorithm for computing a generalized KZ basis in polynomial time for fixed n.

Theorem 13 [27]. Let F(c) be the length of the shortest lattice vector ¢ with respect to the
set (X — X)*, and let pxz = E?Zl Fj(b;), where b}, 1 < j < n is a generalized Korkine-
Zolotarev basis. There exists a universal constant cg such that

F(e)pkz <co-n-(n+1)/2. (48)

To derive their result, Kannan and Lovasz used a lower bound on the product of the volume
of a convex set C' C R" that is symmetric about the origin, and the volume of its dual C*.
The bound, due to Bourgain and Milman [7], is equal to c%—#, where cgy is a constant
depending only on n. In Theorem 13 we have ¢y = ﬁ. See also the remark below.

Theorem 14 [27]. Let by,...,b, be any basis for Z", and let X be a bounded convez set
that is symmetric about the origin. If p = Z?:l F;(b;) < 1, then X contains an integral
vector.

The first step of the Lovasz-Scarf algorithm is to compute the shortest vector ¢ with
respect to (X — X)* using the algorithm described in Section 1.2. If F((c) > ¢p-n-(n+1)/2,
then pkz < 1, which by Theorem 14 implies that X contains an integral vector. If F'(c) <
¢p-n-(n+1)/2, then we need to branch. Due to the definition of F'(¢) we have in this case that
max{c’z:z € X} —min{c’z:2 € X} <cg-n-(n+1)/2, which implies that the polytope
X in the direction ¢ is “thin”. As in the algorithm by Groétschel, Lovasz, and Schrijver, we
create one subproblem for every hyperplane cx = p,...,cx = p+co-n- (n+ 1)/2, where
p = [min{c'z : £ € X}]. Once we have fixed a hyperplane cx = t, we have obtained a
problem in dimension n — 1, and we repeat the process. This procedure creates a search
tree that is at most n deep, and that has a polynomial number of branches at each level.
The algorithm called in each branch is, however, polynomial for fixed dimension only. First,
the generalized basis reduction algorithm runs in polynomial time for fixed dimension, and
second, computing the shortest vector ¢ is done in polynomial time for fixed dimension. An
alternative would be to use the first reduced basis vector with respect to (X — X)*, instead
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of the shortest vector c. According to Proposition 9, F(b;) < (3 —£)' "™ F(c). In this version
of the algorithm we would first check whether F(b1) > ¢o-n-(n+1)/(2(3 —)'™"). If yes,
then X contains an integral vector, and if no, we need to branch, and we create at most
co-n-(n+1)/ (2(% — €)™ 1) hyperplanes. We again obtain a search tree of at most n levels,
but in this version the number of branches created at each level is polynomially bounded
for fixed n only.

If the algorithm terminates with the result that X contains an integral vector, then
Lovéasz and Scarf describe how such a vector can be constructed by using the Korkine-
Zolotarev basis (see [35], proof of Theorem 10).

Remark: Lagarias, Lenstra, & Schnorr [29] derive bounds on the Euclidean length of
Korkine-Zolotarev reduced basis vectors of a lattice and its dual lattice. Let W be the
vector space spanned by the lattice L. The lattice L* dual to L is defined as L* = {w € W :
w’'v is an integer for all v € L}. The bounds are given in terms of successive minima, of L
and L*. These bounds, in turn, imply bounds on the product of successive minima of L and
L*. Later, Kannan & Lovész [26], [27] introduced the generalized Korkine-Zolotarev basis
(using more general distance functions instead of Euclidean length) and derived bounds
such as described in the paper by Lagarias et al. These bounds were used to study covering
minima of a convex set with respect a lattice, such as the covering radius, and the lattice
width. An important result by Kannan and Lovéasz is that the product of the first successive
minima of the lattices L and L* is bounded from above by ¢y - n. This improves on a similar
result of Lagarias et al. and implies Theorem 13 above. There are many interesting results
on properties of various lattice constants. Many of them are described in the survey by
Kannan [24], and will not be discussed further here.

Example 4 The following example demonstrates a few iterations with the generalized basis
reduction algorithm. Counsider the polytope X = {z € R2>0 txy + Ty > 7, 201 + Txg <
14, =5z +4z9 < 4}. Let j =1 and ¢ = %. Assume we want to use the generalized basis
reduction algorithm to find a direction in which the width of X is small. Recall that a
lattice vector ¢ that minimizes the width of X is a shortest lattice vector with respect to
the set (X — X)*. The first reduced basis vector is an approximation of the shortest vector
for (X — X)* and hence an approximation of the thinnest direction for X. The distance

functions associated with (X — X)* are

Fi(c) =max{c'(z —y):z€ X, ye€ X, b (x—y)=0,1<i<j—1}.

=(3) ()

We obtain Fy(b1) = 7.0, Fi(by) = 1.8, Fy(ba) = 0.9, p = 0, and F(bs + 0b) = 1.8, see
Figure 7. Notice that the widths F; are not the geometric widths, but the widths with
respect to the indicated directions.

Checking Conditions (19) and (20) shows that Condition (19) is satisfied as Fy (bo+0b1) >
F(b2), but that Condition (20) is violated as Fi(b2) 7 (3/4)F1(b1), so we interchange b;
and by and remain at j = 1.

The initial basis is
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T2

Fi(b2)

Z1

Now we have j =1 and

Fi(b2)

Figure 8:

Condition (19) is violated as Fy(by + 4b1) # Fi(b2), so we replace by by by + 4b; = (1,4)7.
Given the new basis vector by we check Condition (20) and we conclude that this condition

1s satisfied. Hence the basis
b = 0 by = 1
1=\1 27\ 4

is Lovész-Scarf reduced, see Figure 9. The vectors b; and by indicate directions in which the
polytope X is thin.
|
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Figure 9:

3 Basis reduction and knapsack cryptosystems

Basis reduction has been used successfully to find solutions to subset sum problems arising
in knapsack cryptosystems. For a recent excellent overview we refer to Joux and Stern [21].
A sender wants to transmit a message to a receiver. The plaintext message of the sender
consists of a 0-1 vector z1,...,x,, and this message is encrypted by using integral weights
ai,-..,a, leading to an encrypted message ag = 2?21 a;z;. The coefficients a;, 1 < j < n,
are known to the public, but there is a hidden structure in the relation between these
coefficients, called a trapdoor, which only the receiver knows. If the trapdoor is known,
then the subset sum problem:
n
Determine a 0-1 vector z such that Zajxj = ayg (49)
j=1
can be solved easily. For an eavesdropper that does not know the trapdoor, however, the
subset sum problem should be hard to solve in order to obtain a secure transmission.
The density of a set of coefficients a;, 1 < j < n is defined as
d(a) = d({a1,-..,an}) =

.~ (50)
log, (max; a;)

The density, as defined above, is an approximation of the information rate at which bits are
transmitted. The interesting case is d(a) < 1, since for d(a) > 1 the subset sum problem (49)
will in general have several solutions, which makes it unsuitable for generating encrypted
messages. Lagarias and Odlyzko [30] proposed an algorithm based on basis reduction that
often finds a solution to the subset sum problem (49) for instances having relatively low
density. Earlier research had found methods based on recovering trapdoor information. If the
information rate is high, i.e., d(a) is high, then the trapdoor information is relatively hard
to conceal. The result of Lagarias and Odlyzko therefore complements the earlier results by
providing a method that is successful for low-density instances. In their algorithm Lagarias
and Odlyzko consider a lattice in Z"*! consisting of vectors of the following form:

Laay = {(x1,---,2n, (az —aoy))’} (51)
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where y is a variable associated with the right-hand side of az = ag. Notice that the lattice
vectors that are interesting for the subset sum problem all have y = 1 and ax — apy = 0. It
is easy to write down an initial basis B for L, 4,:

() nx1)
B:(I 0 ) (52)

4] —ag

where I(™) denotes the n-dimensional identity matrix, and where 0" denotes an (n x 1)
matrix (i.e. a column vector) consisting only of zeros. To see that B is a basis for L, 4,, we
note that taking integer linear combinations of the column vectors of B generates vectors
of type (51). Let z € Z™ and y € Z. We obtain

(o Zo ) =2(5): (53)

The algorithm SV (Short Vector) by Lagarias and Odlyzko consists of the following
steps.

1. Apply Lovész’ basis reduction algorithm to the basis B (52), which yields a reduced
basis B’.

2. Check if any of the columns by = (b}, ..., b)) has all b =0 or A for some fixed
constant A, for 1 < j < n. If such a reduced basis vector is found, check if the vector

Tj = ;-k/)\ is a solution to Z] 1a;xj = ag, and if yes, stop. Otherwise go to Step 3.

3. Repeat Steps 1 and 2 for the basis B with ag = >."

j—14j — ag, which corresponds to
complementing all x;-variables.

Algorithm SV runs in polynomial time as Lovasz’ basis reduction algorithm runs in poly-
nomial time. It is not certain, however, that algorithm SV actually produces a solution to
the subset sum problem. As Theorem 15 below shows, however, we can expect algorithm
SV to work well on instances of (49) having low density Consider a 0-1 vector z, which we
will consider as ﬁxed We assume that Z Y :c] %. The reason for this assumption is that
either 7%, z; < §,or 370, 2} < 3, where T = (1 — z;), and since algorithm SV is run
for both cases, one can perform the analysis for the vector that does satisfy the assumption.
Let ¢ = (x1,...,%n,0). Let the sample space A(A4,z¢) of lattices be defined to consist of
all lattices L, q, generated by the basis (52) such that

1<a; <A, forl1<j<n, (54)

and
n
ag = Z a;Ts. (55)
7j=1

There is precisely one lattice in the sample space for each vector a satisfying (54). Therefore
the sample space consists of A™ lattices.
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Theorem 15 [30]. Let z¢ be a 0-1 vector for which Z?Zl 6 < 5. IfA= 267 for any
constant 3 > 1.54725, then the number of lattices Ly q, in A(A, x¢) that contain a vector v

such that v # kz® for all k € Z, and such that ||v||> < 2 is
04"~ ") (log 4)?), (56)
where c1(B) =1 — 1'5‘;# > 0.

For A = 28" the density of the subset sum problems associated with the lattices in the
sample space can be proved to be equal to B~!. This implies that Theorem 15 applies to
lattices having density d(a) < (1.54725) ! = 0.6464. Expression (56) gives a bound on the
number of lattices we need to subtract from the total number of lattices in the sample
space, A", in order to obtain the number of lattices in A(A, z¢) for which z¢ is the shortest
non-zero vector. Here we notice that the term (56) grows slower than the term A™ as n
goes to infinity, and hence we can conclude that “almost all” lattices in the sample space
A(A,z¢) have z¢ as the shortest vector. So, the subset sum problems (49) with density
d(a) < 0.6464 could be solved in polynomial time if we had an oracle that could compute
the shortest vector in the lattice L, q,. Lagarias and Odlyzko also prove that the algorithm
SV actually finds a solution to “almost all” feasible subset sum problems (49) having density
d(a) < (2 —¢)(log(3)) 'n~! for any fixed & > 0.

Coster, Joux, LaMacchia, Odlyzko, Schnorr, & Stern [13] proposed two ways of improv-
ing Theorem 15. They showed that “almost all” subset sum problems (49) having density
d(a) < 0.9408 can be solved in polynomial time in presence of an oracle that finds the short-
est vector in certain lattices. Both ways of improving the bound on the density involve some
changes in the lattice considered by Lagarias and Odlyzko. The first lattice Lﬁz,ao e Qrtt
considered by Coster et al. is defined as

1

1
L;,ao = {(iL'l - Ey’ <oy Ty — Eya N(GI.’L' - a’()y))T}a (57)

where N is a natural number. The following basis B spans L':
_ Im  (=1)nx1)
B = 2 .
( Na —N ag (58)

Here (—1)("*1) denotes the (n x 1)-matrix consisting of elements —3 only. As in the
analysis by Lagarias and Odlyzko, we consider a fixed vector z € {0,1}", and we let

z¢ = (x1,...,2Tpn,0). The vector z¢ does not belong to the lattice L', but the vector
w = (wi,...,wn,0), where w; = z; — 1, 1 < j < n does. So, if the reduced basis B, ob-
tained by applying Lovédsz’ basis reduction algorithm to B, contains a vector (ws, ..., wy,0)

with w; = {—%,2}, 1 < j < n, then the vector (w; + 3), 1 < j < n solves the subset sum
problem (49). By shifting the feasible region to be symmetric about the origin we now look
for vectors of shorter Euclidean length. Coster et al. prove the following theorem that is
analogous to Theorem 15.

Theorem 16 [13]. Let A be a natural number, and let a1, ... ,a, be random integers such
that 1 < aj < A, for 1 < j < n. Let x = (x1,...,2,), ; € {0,1}, be fized, and let
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ayg = Z?:l ajz;. If the density d(a) < 0.9408, then the subset sum problem (49) defined by
a1,...,a, can “almost always” be solved in polynomial time by a single call to an oracle
that ﬁnds the shortest vector in the lattice Ly ;-

Coster et al. prove Theorem 16 by showing that the probability that the lattice Lg,ao contains
a vector v = (v1,...,Up41) satisfying

v # kw for all k € Z, and ||v||> < ||w]||? (59)
is bounded by

n(4ny/n + 1)

for ¢ = 1.0628. Usmg the lattice L, note that ||w||?> < %. The number N in basis (58) is
used in the following sense. Any vector in the lattice L' is an integer linear combination
of the basis vectors. Hence, the (n + 1)** element of such a lattice vector is an integer
multiple of N. If N is chosen large enough, then a lattice vector can be “short” only if
the (n + 1) element is equal to zero. Since it is known that the length of w is bounded
by %\/ﬁ, then it suffices to choose N > % n in order to conclude that for a vector v to
be shorter than w it should satisfy v,11 = 0. Hence, Coster et al. only need to consider
lattice vectors v in their proof that satisfy v,+1 = 0. In the theorem we assume that the
density d(a) of the subset sum problems is less than 0.9408. Using the definition of d(a)
we obtain d(a) = n/log,(max; a;) < 0.9408, which implies that max; a; > 27/0-%408 giving
A > 29" For A > 2°7" the bound (60) goes to zero as n goes to infinity, which shows that
“almost all” subset sum problems having density d(a) < 0.9408 can be solved in polynomial
time given the existence of a shortest vector oracle. Coster et al. also gave another lattice
L"(a,ap) € Z™"? that could be used to obtain the result given in Theorem 16. The lattice
L"(a,a) consists of vectors

L"(a,a9) = (61)

9con

(60)

3
3

(n+ Dz — Zxk—y, ,(n+ Dxy, Zxk—y,(n+1)y—2xj, N(az — apy)

k=1 j=1
lc 7 1 k#n
and is spanned by the basis
(n+1) -1 -1 e -1
~1  (n+1) -1 - -1
: : (62)
-1 .- -1 (n+1) -1
_]_ . e - _]_ (n _|_ 1)
N(J,l NG,Q NG,n —NG,()
Note that the lattice L"(a,ap) is not full dimensional as the basis consists of n+ 1 vectors.
Given a reduced basis vector w = (w1, ..., wp4+1,0), we solve the system of equations
w; = (n+ 1)z Zxk—y,1<3<n wpt1 = (n+ 1)y Zw]
E=1
k]
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and check whether y = 1, and the vector z € {0,1}. If so, z solves the subset sum problem
(49). Coster et al. show that for z € {0,1}, y = 1, we obtain |jw|? < %3’ and they indicate
how to show that most of the time there will be no shorter vectors in L"(a, ag)-

4 Solving diophantine equations using basis reduction

Aardal, Hurkens, & Lenstra [2], [3] considered the following integer feasibility problem:
Does there exist a vector z € Z" such that Az =d, | <z < u? (63)

Here A is an m X n-matrix, with m < n, and the vectors d, [, and u are of conformable
dimensions. We assume that all input data is integral. Problem (63) is NP-complete, but
if we remove the bound constraints [ < z < u, it is polynomially solvable. A standard way
of tackling problem (63) is by branch-and-bound, but for the applications considered by
Aardal et al. this method did not work well. Let X = {z € Z" : Az =d, | < z < u}.
Instead of using a method based on the linear relaxation of the problem, they considered
the following integer relaxation of X, Xig = {z € Z" : Az = d}. Determining whether
X1r is empty can be carried out in polynomial time for instance by generating the Hermite
normal form of the matrix A. Let x4 be an integral vector satisfying Azy = d, and let
Xo be an n X (n — m)-matrix consisting of integer, linearly independent column vectors
7}, 1 <j <n—m,such that Az} =0 for 1 < j < n —m. We can now rewrite Xy as

Xir={z€Z":2=x4+ X\, A€ Z" ™}, (64)

that is, we express any vector z that satisfies Az = d as a vector x4, satisfying Azy = d,
plus an integer linear combination of vectors that form a basis of the lattice Ly = {z € Z™ :
Az = 0}. Since a lattice may have several bases, reformulation (64) is not unique.

The intuition behind the approach of Aardal et al. is as follows. Suppose that we are
able to obtain a vector z4 that is short with respect to the bounds. Then, we may hope that
x4 satisfies | < x4 < u, in which case we are done. If x4 does not satisfy the bounds, then
we observe that A(z4 + Azg) = d for any integer multiplier A and any vector z( satisfying
Azxy = 0. Hence, we can derive an enumeration scheme in which we branch on integer linear
combinations of vectors xg satisfying Azy = 0, which explains the reformulation (64) of Xg.
Similar to Lagarias and Odlyzko, we choose a lattice, different from the standard lattice
Z™, in which solutions to our problem (63) are relatively short vectors, and then apply basis
reduction to the initial basis of the chosen lattice.

Aardal et al. [3] suggested a lattice L4 4 € Z™"T™ ! that contains vectors of the following
form:

("ET’ le’ NQ(al-'E - dly)a .. aNQ(ama" - dmy))T7 (65)

where a; is the i*® row of the matrix A, where N1 and Ny are natural numbers, and where
1y, as in Section 3, is a variable associated with the right-hand side vector d. The basis B
given below spans the lattice L4 4:

1 olnx1)
B = 0(1><n) Nz . (66)
Ny A —Nad
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The lattice Ly g C Z™++1 s not full-dimensional as B only contains n + 1 columns. The
numbers N7 and Ny are chosen so as to guarantee that certain elements of the reduced basis
are equal to zero (cf. the different role of the number N used in the bases (58) and (62)).
The following proposition states precisely which type of vectors we wish to obtain.

Proposition 17 The integer vector xq satisfies Axg = d if and only if the vector

wQMﬁWmsz(?) (67)

belongs to the lattice L, and the integer vector xq satisfies Axg = 0 if and only if the vector

(ﬁmﬂ“msz(?) (68)

belongs to the lattice L.

Let B be the basis obtained by applying Lovéasz’ basis reduction algorithm to the basis B,
and let b = (blj, bn+m+1,]) be the j™ column vector of B. Aardal et al. [3] prove that
if the numbers Ny and N, are chosen appropriately, then the (n —m + 1)* column of B
is of type (67), and the first n — m column of B are of type (68), i.e., the first n — m + 1
columns of B are of the following form:

Xénx(n—m)) g

0(xm-m) pn; | . (69)

o(mx(n—m)) 0

This result is stated in the following theorem.

Theorem 18 [3]. Assume that there ezxists an integral vector x satisfying the system Az =
d. There exist numbers Ny1 and Nyg such that if N1 > Np1, and if No > 2”‘"le2 + Npo,
then the vectors b; € Zntm L of the reduced basis B have the following properties:

1. I;n+1,j:Ofor1 <j<n-—-m,
2. bj=0forn+2<i<n+m+landl<j<n—m+1,
3. |i)n+1,n—m+1‘ = Ni.
Moreover, the sizes of Ny1 and Noo are polynomially bounded in the sizes of A and d.

In the proof of Properties 1 and 2 of Theorem 18, Aardal et al. make use of inequality (15)
of Proposition 5.

Once we have obtained the matrix Xy and the vector x4, we can derive the following
equivalent formulation of problem (63):

Does there exist a vector A € Z" ™ such that | < 24+ XoX < u? (70)

Aardal, Hurkens, & Lenstra [3], and Aardal, Bixby, Hurkens, Lenstra, & Smeltink [1] in-
vestigated the effect of the reformulation on the number of nodes of a linear programming
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based branch-and-bound algorithm. They considered three sets of instances: instances ob-
tained from Philips Research Labs, the Frobenius instances of Cornuéjols, Urbaniak, Weis-
mantel, & Wolsey [12], and the market split instances of Cornuéjols & Dawande [11]. The
results were encouraging. After transforming problem (63) to problem (70), the size of for
instance the market split instances that could be solved doubled. Aardal et al. [1] also in-
vestigated the performance of integer branching. Let P = {\ € Z" ™ : [ < x4+ XoA <
u}. At node k of the enumeration tree they choose a unit vector e;, 1 < j < n —m
that has not yet been chosen at any of the predecessors of node k. Then, they compute
pr = [min{e;‘-r)\ : A € PN {)\;’s fixed at predecessors of k}}| and vy, = [max{ejT)\ P A€
P N {\;’s fixed at predecessors of k}}|. At node k, 74 — px + 1 subproblems, or branches,
are created by fixing \; to ug,pr + 1,...,. Different strategies for choosing a unit di-
rection e; were considered. This branching scheme can be viewed as a heuristic version of
the integer programming algorithms described Section 2. Instead of using vectors that give
provably thin directions, only unit vectors were used. The experiments indicated that the
unit vectors yield good directions, i.e., only few nodes were created at each branch, and
typically, at a modest depth of the search tree only one branch was created. One way of
explaining why the reformulated problem was so much easier to solve is that the index of the
lattice Lo = {z € Z" : Az = 0} in Z" is, in general, larger than one. Let A be a sublattice
of the lattice M. The index I of A in M is defined as I = det(A)/det(M). If the index of A
in M is large, then M contains a large number of vectors that are different from the vectors
in A, which means that a certain “scaling effect” is obtained. We illustrate this effect in the
following example.

Example 5 Consider the polytope X = {zx € R? : 221 + 4x5 + 523 = 8, 0 < z; <1, 1<
j < 3}. The set X, is illustrated in grey in Figure 10. The question is: does X contain
an integral vector? To use branch-and-bound we need to introduce an objective function.

T3

Z2

A

Figure 10:

Here we have chosen min (z; + 22 + x3). The optimal solution to the linear relaxation of

this instance is z = (0, %, 1)T. Two branch-and-bound nodes are created by adding the
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constraints o = 0 and zo2 = 1. The subproblem implied by z2 = 0 is infeasible, but if we

impose z2 = 1 we obtain the solution z = (0, 1, %), and we need to branch on variable xj3.
A2
1
~. Al
1
2
- -1

Figure 11:

If we reformulate the integer feasibility problem according to (70) we obtain, through
basis reduction, the vector z4 = (0,2,0)7 and the matrix

—2 1
Xo = 1 2
0 -2

The question is: does there exist a vector A € Z?2 such that A € P, where P = {\ € Z? :
0< =2X\1+X <1, —2< A1 +2X < -1, 0 < -2\ < 1}. The linear relaxation of P is
given in Figure 11. If we use min (A; + A2) as objective function, we obtain the fractional
point A = (—3,—3)T, but, the subproblems created by branching on A; as well as on Ao
are infeasible. In fact, regardless of the objective function that is used, integer infeasibility
is detected at the root node. This example is of course so small that it is hard to draw
any conclusions, but if we draw the coordinate system corresponding to the formulation in
A-variables in the coordinate system of the z-variables, we can observe the scaling effect
discussed above. This is done by translating the lattice Ly = {x € Z3 : 2x1 +4z5 + 523 = 0}
to the point x4, i.e., the origin of the A-coordinate system is located at the vector 4. The unit
vector A = (—1,0)T corresponds to the vector z = (2,1,0), and the vector A = (0, —1)T
corresponds to the vector z = (—1,0,2)%, see Figure 12. The determinant of the lattice Lg

is equal to /45, whereas the determinant of Z3 is equal to 1. |

The computational study by Aardal et al. [1] indicated that integer branching on the
unit vectors in the space of the A-variables taken in the order j = n — m,...,1 was quite
effective, and in general much better than the order 1,...,n — m. This can be explained as
follows. Due to Lovasz’ algorithm, the vectors of Xy are more or less in order of increasing
length, so typically, the (n —m)™ vector of Xj is the longest one. Branching on this vector
first should generate relatively few hyperplanes intersecting the linear relaxation of X, if
this set has a regular shape. Note, that to branch on the j' vector of X corresponds to
branching on the j*™ unit vector in the space of the A-variables.
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Figure 12:

5 Discussion

One important question is whether there exist versions of the integer programming algo-
rithms presented in Section 2 that can be used with good results in practice. It should be
noted that the main purpose of the algorithms by Lenstra [32], and by Lovéasz & Scarf
[35], was to prove a theorem. No particular care was taken to ensure good performance in
practice. We do believe, however, that some of the concepts discussed in this chapter can be
used to design effective practical integer programming algorithms, and the studies by Cook
et al. [10], and by Aardal et al., [1], [3] support this belief. We want to emphasize two such
concepts here; branching on hyperplanes, and considering sublattices.

Branching on hyperplanes, or “integer branching”, in directions in which the polytope
is thin may reduce the number of nodes that one needs to evaluate in an enumeration tree
quite drastically. One problem that needs to be dealt with is the amount of effort spent in
each node. To compute search directions that are provably thin is quite time consuming, so
heuristic algorithms are needed.

One of the features of the approach by Aardal et al. [3] is to consider a sublattice of Z™.
Combining this idea with integer branching led to a decrease in the number of enumeration
nodes of up to a factor of 10*, compared to the number of nodes needed using branch-and-
bound on the original formulation, [1].

The instances tackled by Cook et al. [10], and by Aardal et al. [1], were relatively small.
If one applies Lovdsz’ algorithm to such instances to obtain a reformulation such as (70),
then the reduction only takes a couple of seconds. Therefore, the branching phase is the
bottleneck. If one wants to solve medium sized instances, then the reduction phase will be
time consuming using the current versions of Lovasz’ algorithm. A faster basis reduction
algorithm that can give similar guarantees as Lovasz’ algorithm would be extremely useful.
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