Sizes of decision tables and decision trees

Hans Zantema and Hans L. Bodlaender
Department of Computer Science, Utrecht University
Padualaan 14, P.O. box 80.089, 3508 TB Utrecht
The Netherlands

e-mail: hansz@cs.uu.nl, hansb@cs.uu.nl

Abstract

Decision tables provide a natural framework for knowledge acquisition
and representation in the area of knowledge based information systems.
Decision trees provide a standard method for inductive inference in the
area of machine learning. In this paper we show how decision tables can
be considered as a special kind of decision trees. On the other hand every
decision tree can be represented as a decision table, but we show that in
worst case the size of this decision table is exponential in the size of the
decision tree.

Our main result states that finding a decision table of minimal size
that represents the same function as a given decision table is an NP-hard
problem; in earlier work we obtained a similar result for decision trees.

1 Introduction

The concept of a decision tabel is best explained by an example. Assume an
order comes in from a client, and the company has to decide whether to execute
this order or not. It has to be executed only if the stock is sufficient, and either
the client pays in advance or he had never paying problems before. This can be
described by the following decision table:

stock sufficient? yes no
pays in advance? || yes no -
paying problems? | - | yes ‘ no | -

‘ execute order? H yes ‘ no ‘ yes ‘ no ‘

The meaning of such a decision table is clear: handle the questions from up to
down and choose the column with the correct answer. In case a bar (-) appears
the question may be omitted. Finally the resulting action is found in the lowest
line of the corresponding column.

Exactly the same can be described by a decision tree. Using the abbreviations
ss, pa and pp for the three questions to be asked, and using the convention that
the left branch means ‘yes’ and the right branch means ‘no’, we obtain:

SS

Y

/N,
VAN

no yes

Every decision table can be presented in this way as a decision tree, where the
columns of the decision table have a one-to-one correspondence to the paths from
the root to a leaf in the decision tree. Conversely one can wonder whether every
decision tree can be expressed as a decision table. This is not the case: if in one
path of the decision tree the question p is above the question ¢, and in another
path it is the other way around, no straightforward decision table representation
is possible. It is possible to represent the same function by a decision table,
but we prove that in worst case the size of this decision table is exponential in
the size of the original decision tree. Here the size of a table or a tree means
the total number of decisions occurring in the structure: for a decision tree this
is the number of internal nodes and for a decision table this is the number of
splitting points. Through the rest of this paper we consider a decision table to
be a decision tree in which the questions in a path from the root to a leaf occur
in a fixed order.

An earlier comparison of decision tables and decision trees has been given
in [7, 8]. However, there the emphasis is on the conceptual level and theoret-
ical questions are not posed. Both notions appear in quite separated areas of
research. Decision tables provide a natural framework for knowledge acquisition
and representation in the area of knowledge based information systems. Decision
trees provide a standard method for inductive inference in the area of machine
learning ([6, 5]).

Two decision tables are called decision equivalent if they represent the same
function, i.e., they yield the same result for every possible input. As soon as the
order in which the questions have to occur is fixed, it is easy to find a minimal
representation for a corresponding decision table, simply by omitting all redun-
dant questions. However, if this order is not yet fixed it is a hard problem to
find a small decision table that is decision equivalent to a given one. Our main
result states that given a decision table and a number, to decide if there is a
decision equivalent decision table of size at most that number is NP-complete.

This already holds for decision tables with only binary questions and a binary
result value. As a consequence, finding a decision table of minimal size that is
decision equivalent to a given decision table is an NP-hard problem. A similar
result for decision trees was obtained in [10].

2 Basic definitions and properties

We restrict to the case of binary questions and binary result values. The binary
questions are called attributes, and the set of attributes is denoted by A. A
decision tree over A is a binary tree in which every internal node is labelled by
an attribute and every leaf is labelled either 1 or 0. More formally, the set D of
decision trees is defined to be the smallest set of strings satisfying

e 1D, and
e 0 D, and
e ifpec Aand T,U € D then p(T,U) € D.

For any decision tree T let attr(T") be the set of attributes occurring in T,
defined inductively by
attr(1) = attr(0) = 0,

attr(p(T,U)) = {p} Uattr(T) U attr(U) forallpe A and all T,U € D.
The size #71 of a decision tree T is defined to be the number of internal nodes
of T', inductively defined by
H#O0=#1=0, #p(T,U)=1+#T + #U.

Every attribute can have either the value 1 or the value 0. If every attribute
has such a value we speak about an instance, Introducing the convention that in
a decision tree the left branch of a node p corresponds to p taking the value 1
and the right branch corresponds to 0, a boolean value ¢(7, s) can be assigned
to every decision tree 1" and every instance s, inductively defined as follows

¢(1,5) = 1
=0

)
¢(p(T,U),8) = d)(T,S) ifs(p):
U),s) = o¢U,s) if s(p)

Alternatively, in propositional notation the last two lines can be written as
o((T,U),s) = (s(p) No(T,5)) V (=s(p) A p(U, 5)),

or equivalently as ¢(p(T,U),s) = (s(p) = o(T,s)) A (=s(p) = (U, s)).

1
0.

3

Definition 1 Two decision trees T and U are called decision equivalent, or
shortly equivalent, denoted as T ~ U, if

o(T,s)=o(U,s) foralls: A— {1,0}.
In [9] it was proved that the equations

p(r,z) = z
p(a(z,y),q(z,w)) = q(p(z,2),p(y, w))
p((),Z) = p(ﬂ?,Z)
p(z, (y,Z) = p(z,2)

for all p,q € A comprise a sound and complete finite equational axiomatization
for decision equivalence. Also a quadratic algorithm was given for determining
whether two decision trees are equivalent.

Definition 2 A decision tree T is called compatible with a total order < on
attr(T') if for every non-root node of T its label is bigger than the label of its
parent with respect to <.

A decision tree T is called a decision table if there exists a total order < on
attr(7T") such that T is compatible with <.

A set {Ty,...,T,} of decision tables is called compatible if there exists a total
order < on Ul attr(T;) such that T; is compatible with < restricted to attr(T;),
foralli=1,...,n

For a decision tree 7" and an attribute p € attr(7') we define inductively:

0P = 0

R = 1

p(T,U)P = TP,

(T, U)P = (TP, UP) for q # p;
0P = 0

1%’]) — 1.

p(T,U)?? = U™
q(T,U)7? = q(T™P,UP) for q #p.

Hence TP is obtained from 7" by removing all occurrences of p and their right
arguments, while 777 is obtained from 7' by removing all occurrences of p and
their left arguments.

For a decision tree T and a total order < on a set A of attributes satisfying
attr(7") C A we define inductively its normal form N (T, <):

N(0,<) = 0;
N(1,<) = 1,
N(T.<) = p(N(TP,<), N(T~7,<)) if N(TP, <) £ N(T~7, <);
N(T,<) = N(T*?,<) if N(T<?, <) = N(T™?, <);

where in the last two lines p denotes the smallest element of attr(7") with respect
to the order <.

Clearly N(T, <) is a decision table equivalent to 7" and compatible with <,
and it is the smallest decision table having this property.

The following theorem states that for every total order on the attributes the
normal form is a unique representative for the equivalence class of a decision tree.
In order to prove it we need a lemma.

Lemma 3 Let decision trees T' and U satisfy T ~ U, and let p be an attribute.
Then TSP ~UP and T7P ~ UP.

Proof: By symmetry it suffices to prove TP ~ U“P. Let s be an arbitrary
instance. Define instance s; by s1(p) = 1 and s,(¢) = s(q) for ¢ # p. Then

H(T*,5) = ¢(T,51) = ¢(U, 51) = p(U?, 5).

Theorem 4 Let < be a total order on the set of attributes. Then
e N(T,<) ~T for every decision tree T;
o T ~U if and only if N(T, <) = N(U, <) for decision trees T,U.

Proof: The first assertion follows by induction on the structure of 7', using that
T ~p(T<?, T7P) and T ~ p(T,T) for all T p.

The ‘if’-part of the second assertion follows from the first assertion.

For the ‘only if’-part of the second assertion we apply induction on the num-
ber of attributes occurring in 7" and U. First assume that the smallest occur-
ring attribute p occurs both in 7" and in U. From 7" ~ U we conclude from
Lemma 3 that TP ~ U“P and T7? ~ UP; from the induction hypothe-
sis we conclude N(T¥?,<) = N(U?,<) and N(T7?,<) = NU?,<). If
N(T*P?,<) = N(T7?P,<) we also have N(U?,<) = N(U?,<), hence

N(T,<)=N(T?,<)=N({U?,<)=N(U,<);
if not then
N(Ta <) = p(N(Tepa <)a N(T_)pa <)) = p(N(U(_p, <)a N(U_)pa <)) = N(Ua <)'

In both cases we have N(T, <) = N(U, <), which we had to prove.

In the remaining case the smallest occurring attribute p occurs only in one
of the two decision trees 7" and U. By symmetry we may assume that p occurs
in T and p does not occur in U. Since T ~ U we obtain from Lemma 3 that
TP ~UP =U = U7P ~T7P. From the induction hypothesis we conclude that

5

N(T*<P,<) = N(T7?,<). From the definition of N and the induction hypothesis
applied on TP ~ U we obtain

N(T,<) = N(T“P,<)=N(U,<),

which we had to prove. O

3 Comparing sizes of tables and trees

Since every decision tree can be considered as a decision table, clearly every
decision table can be represented as a decision tree of the same size. In this
section we address the converse question: given a decision tree of some size, what
can be said about the size of an equivalent decision table? It turns out that in
worst case the minimal size of an equivalent decision table is exponential in the
size of the original decision tree. In order to prove this for any natural number
n we choose distinct attributes pi,po,...,Pn, 41,92, ---,¢n, 7 and we inductively
define

To=Uy =0, T;,=pi(q(1,0),T;=1), U;=q(pi(1,0),U;_1),

fori=1,...,n,and V = r(T,,U,). Clearly V is a decision tree of size #V =
4n+1, but V is not a decision table. In fact, we will show that for every decision
table that is equivalent to V' the size exceeds a function that is exponential in n.
First we need a lemma.

Lemma 5 LetT be a decision table compatible with an order < on the attributes
satisfying T ~T;. Let k = #{j € {1,...,i}|¢; <p;}. Then #T > 2~ —1.

Proof: We apply induction on i. For i = 0 we have k = 0 and #7 > 0 = 2F — 1.
Assume ¢ > 0. Then the root of T is either p,, or ¢, for some m € {1,...,i}.
Assume the root of T is p,,. Then T = p,,(T",T"), where T" ~ T, 'P™ by

Lemma 3. Since T; P™ equals T;_; up to renaming of indices of p and ¢, we may

apply the induction hypothesis on 7”. Since p,, is the smallest attribute with

respect to <, omitting m from {1,...,i} does not affect the corresponding value
of k. Hence by the induction hypothesis we have #71" > 2*¥ — 1. We conclude

#T > #T" > 2F — 1.

For the remaining case assume the root of 7" is g,,. Then T = ¢, (T",T"),
where 7" ~ T;7% and T" ~ T, by Lemma 3. Since (1, ™)7Pm = (T, 9™)7Pm
equals T; 1 up to renaming of indices of p and ¢, we may apply the induction hy-
pothesis on both T"7P™ and T"7P=. Now the corresponding value for k& decreases

by one since p,, and ¢, satisfying ¢,, < p,, have been removed. By the induction
hypothesis we obtain #77'7Pm > 2k=1 _ 1 and #7"P= > 2k=1 _ 1. We conclude

#T:1+#T,+#T” 2 1_+_#TI—>pm_+_#TII—)pm 2 1+2*(2k—1_1) :2k_1

O

Theorem 6 Let the decision tree V' of size 4n+ 1 be defined as above and let T
be a decision table satisfying T ~ V. Then #T > 2"/2.

Proof: Let < be the order on the attributes such that 7" is compatible with <. By
symmetry between p’s and ¢'s and between T,, and U, without loss of generality
we may assume that k = #{j € {1,...,n}¢; < pj} > n/2. From Lemma 3 we
obtain 7" ~ V¢7 = T,,. From Lemma 5 we conclude #7¢" > 2k -1 > 27/2 _1.
Since T ~V = r(T,,U,) and T,, # U, the symbol r occurs in 7. Hence

HT > 14 #T7 > 27/2,

4 Finding small decision tables is hard

Theorem 7 Given a number Ty, ..., T, of compatible decision tables and a num-
ber k, it is NP-complete to decide whether a total order < on Ui, attr(1;) exists
satisfying

Y #N(T;, <) < k.

=1

Proof: Clearly, the problem belongs to NP.

To prove that the problem is NP-complete, we use a transformation from the
Feedback Arc Set problem. In this problem, we ask for a given directed graph
G = (V, E) without self-loops and an integer K, whether there exists a subset of
arcs E' C FE with |E'| < K, such that every directed cycle in G contains at least
one arc in E'. This problem was proved to be NP-complete by Karp in 1972 [3].

Suppose we are given a directed graph G = (V, E) without self-loops, i.e.,
(v,v) € E for all v € V, and an integer K. Let n = |E|. We will create a
collection 7 = {T1,...,T,} of decision tables, in the following way. Each vertex
in V corresponds to one attribute to be used in the tables. In addition, we have
one attribute p & V.

For every edge (v,w) € E we define T, ,, = v(w(p(0,1),0),1) as shown left
in Figure 1 and T7,) = w(v(p(0,1),1),v(0,1)) as shown right in Figure 1. Note
that T3,y ~ T3, ,)-

Figure 1: Decision tables T(%),w) and T(zv’w)

For every edge (v, w) € E we construct one table 7; in the collection 7. This
construction depends on a fixed arbitrary total order < on V. If v < w, then we
choose T; to be T(lv,w), otherwise, if w < v, we choose T; to be T2v,'u))' Note that
every T; is a decision table compatible with <, where < is extended to V{p}
by defining v < p for all v € V. Hence T = {T1,...,T,} is a compatible set of

decision tables.

Claim 8 Let for an arbitrary directed graph G = (V, E) without self-loops the
set T = {T1,...,T,} be defined as above. Then the following statements are
equivalent.

1. There is a set E' C E, such that |E'| < K, and every directed cycle in G
contains at least one vertex from E'.

2. There is a total order < on the vertices of V', such that

{(v,w) € E | w=<v}| <K.

n

3. There exists a total order < on U], attr(T;), satisfying

n

S #N(T;,<) <3-|E|+ K.

i=1

Proof: (1) = (2): Remove all edges from E’. Then the remaining graph (V, E \
E') is acyclic. Topological sorting of this remaining graph yields a total order
< on V satisfying v < w for all (v,w) € E\ E'. Since |E'| < K we obtain
Hw,w)e E|w=<v} <K.

(2) = (1): Define E' = {(v,w) € E | w < v}. Assume there is a cycle
v1, Vg, ... Vg, U1 DOt containing an edge from E’. Since the graph does not con-
tain self-loops and the order < is total we obtain v; < vy < - < v, < vy,
contradiction.

(2) = (3): Note that U}, attr(T;) = V U {p}. Suppose < is a total order on
V with [{(v,w) € E | w < v}| < K. Now, take the total order < on attribute
set V U {z}, by taking for each pair v,w € V, v < w < v < w, and for each
v € V, v < z. For arbitrary 7T; € T let T; correspond to edge (v,w). By
definition T; is either T}, or T(, ,»; from the definition of N(—, <) we obtain

that N(T;, <) = Tj,,, if v < w,(an)d N(T;, <) = 17,) if v > w. As the latter
case occurs at most K times, and #T(lv’w) = 3 and #T(%’w) = 4 we have that
S1 L #N(T, <) < 3+ |E| + K.

(3) = (2): Let < be a total order on U}, attr(7;) with Y7 | #N(T;, <) <
3-|E|+ K. Let < be the total order on V with for all v,w € V: v < w &
v < w. For every edge (v,w) € E corresponding to tree T; € T, we have that
#N(T;,<) > 3, as N(T;, <) must contain attributes v, w, and p. Now consider
edge (v,w) € F with w < v. Let T; be the corresponding decision tree in 7.
There are three cases: p < w < v, w < p < v, and w < v < p, respectively
yielding N(T;, <) = p(v(0,1),w(1,0(0,1))), N(T;, <) = w(p(v(0,1),1),v(0,1))
and N(T;,<) = w(v(p(0,1),1),v(0,1)). In all of these cases we have #N(T;, <
) = 4. We obtain

3-E|+ [{(v,w) e E|w=< v} <Y #N(T;,<) <3-|E|+ K,

i=1
hence |{(v,w) € E | w < v} < K. 0

From the equivalence (1) < (3) from this claim, the NP-completeness of the
Feedback Arc Set problem, and the fact that the construction of the tables can
be done in polynomial time, Theorem 7 now follows. d

In order to prove that for a single decision tree 7' and a number k it is
NP-complete to decide whether a total order < exists satisfying #N(T,<) <
k, we give a construction to code the number 77,...,7;, of decision trees in a
single decision tree. In order to show that the extra attributes for giving this
construction do not affect the desired sizes of decision tables we give a number
of lemmas.

Lemma 9 Let T be a decision table having py(0,1) as a subtable for a particular
attribute py and in which no other occurrence of py exists. Let < be a total order
on attr(T). Let <’ be the total order on attr(T) obtained from < by forcing py to
be the greatest element, more precisely: q <' r if and only if

(r=poANqg#po)V(g<rANg#p#r).
Then #N(T,<') < #N(T,<).

Proof: We apply induction on #attr(T). If #attr(T) = 1 then T = py(0, 1) and
<=<', hence #N(T,<') = #N(T, <).

For the induction step write N(T, <) = q(T1,T5).

First assume g # po. Then ¢(N(T%9,<'), N(T7,<")) is a decision table
compatible with <’ and equivalent to T, hence #N(T,<') < #q(N(T*? <
), N(T7%,<")). If py occurs in 79 we may apply the induction hypothesis
on T yielding #N (T, <") < #N(T9,<). If py does not occur in 77
then N(T9 <') = N(T<%<). Hence in all cases we have #N (T <') <
#N(T<1 <). Similarly applying the induction hypothesis on 777 yields
#N(T79, <"y < #N(T79,<). Finally we have T} = N(T?, <) and Tp =
N(T77 <). Combining all these observations gives

#N(T,<') < #q(N(T9, <), N(T7, <))
< #q(N(T9, <), N(T™9, <))
= #q(T1,T3)
= #N(T’<)

which we had to prove.

In the remaining case we have N(T,<) = po(71,T3) and p, is the smallest
attribute with respect to <. Let r be the smallest but one attribute with re-
spect to <. First assume that both 77 and 75 have r as the root, then we can
write T} = r(Uy, V1) and Ty = (U, V2). Then po(Us, Us) is compatible with <
and equivalent to 7", hence #N(T“",<) < #po(U1,U;). The decision table
po(V1,Va) is compatible with < and equivalent to 77", hence #N(T7", <) <
#po(V1,Va). Since r(N(T*", <), N(T~",<')) is a decision table compatible with
<" and equivalent to 7" we have #N(T,<') < #r(N(T",<"), N(T~",<")). As
above we apply the induction hypothesis to obtain #N (7", <') < #N(T*", <)
and #N(T77,<") < #N(T7",<). Combining all these observations gives

#N(T, <') #T(N(T%r, <'), N(T_”", <'))
#r(N(T,<),N(T™", <))
#r(po(Ur, Uz), po(V1, V2))
#po(r(Ui, Vi), 7(Us, V2))
#N(T, <)

I IAIAIA

which we had to prove.

In the remaining case we have that not both 7} and 75 have r as the root.
If none of them has r as the root then r does not occur in N(7,<) and T
is equivalent to a decision table in which r does not occur, hence N(T,<) =
N(T¢", <) and N(T,<') = N(T*",<'). Applying the induction hypothesis on
T yields

#N(T, <') = #N(T*",<') < #N(T", <) = #N(T, <).

In the remaining case one of 77 and 75 has r as the root and the other has
not. By symmetry we may assume it is 77, hence we may write 77 = r(Uy, V1)

10

and r does not occur in Ty. So 7 occurs in N (7?0, <) = T} and r does not occur
in N(T7?, <) = Ty. Hence in all occurrences of 7 in 7770 the left argument is
equivalent to the right argument, while this does not hold for all occurrences of
r in T<Po_ Since T*P° is obtained from T by replacing the single occurrence of
po in T by 0 and T7P° is obtained from 7" by replacing the single occurrence of
po in T by 1, we conclude that there is an occurrence of r in 7" such that the
single occurrence of py in 7' is either in the left or in the right argument of that
occurrence of r. Hence either pg is not in 7" or pg is not in 7", which is the
last case analysis to conclude the proof.

Assume that pg is not in 77, Since T<" ~ po(Uy,T) we conclude that
Uy ~ T,. Now r(U;, N(T7",<")) is a decision table compatible with <’ that
is equivalent to T, hence #N(T,<") < #r(U;, N(T7",<')). Applying the in-
duction hypothesis yields #N(T7",<') < #N(T7",<). Since po(V1,Ts) is a
decision table compatible with < and equivalent to 77" we obtain #N(T7", <
) < #po(V1,T,). Combining these observations gives

#N(Ta <I) #T(Ula N(T_W’ <,))

#r(Uy,, N(T™", <))
#r (U1, po(V1, T3))
#po(r (Ui, V1), T3)
#N(T, <)

A IAIA

which we had to prove. In the last case where pg is not in 77" we similarly obtain

#N(T, <)

VARVARVAN
=

A/i/\

S =2z

I
3
=

concluding the proof. ad

Let {Ti,...,T,} be a set of compatible decision tables. Let pg,p1,...,p, be
attributes not occurring in U7 attr(7;). Define inductively

SO = pO(Oal)a
Sk = pk(Sk_l,Tk) fOI"k:L...,’I’L.

Lemma 9 shows that in a decision table equivalent to .S,, the attribute pg can
be thrown downwards without increase of size. The following lemma states that
in a decision table equivalent to S,, the attribute p, can be forced to occur only
as the root without increase of size.

Lemma 10 Let {T1,...,T,} be a set of compatible decision tables for n > 1 and
let S, be defined as above. Let < be a total order on attr(S,) for which py is the

11

greatest element. Let < be the total order on attr(S,) obtained from < by forcing
P, to be the smallest element, more precisely: g<r if and only if

Q=P AT #DP)V(g<TANG# D #T).
Then #N(Sp, <) = 1+ #N(Sn 1, <) + #N (T, <) < #N(S, <).

Proof: We apply induction on #attr(S,,). If #attr(S,) = 1 then < =< and the
statement clearly holds.

Let #attr(S,) > 1. Let ¢ be the root symbol of N(S,,<). If ¢ = py then
N(Sn, <) = po(0,1) since pg is the greatest element with respect to <. This is
not true since S, is not equivalent to py(0,1). Hence we have ¢ # py.

By definition we have N(S,,<) = ¢(N(S59,<),N(S;’%,<)). A number of
times we will apply the following claim that is immediate from the definition:

Claim: If r is the smallest attribute with respect to <, then for every
decision tree U we have

#N(U, <) <1+ #NUT, <)+ #NU™, <),
while equality holds if U“" 2 U™".

As a consequence of this claim and the definition of S, we obtain the required
equality
#N(Sn, <) = L+ #N(Sn-1, <) + #N(Tn, <).

If ¢ = p, then < =< and we are done. For the remaining possibilities for ¢
we distinguish two cases: ¢ € {p1,...,p,_1} and g € U, attr(T3).
Assume q € {p1,...,pn_1}. Then we have

#N(S,, %)

< 2+ #N() + (M, <)+ #N(Th, <) (the claim)
< 2+ #N(Sy)+#N(S77q,<) + #N(T,, <)

= 2+ #N((SW)H’” Q)+ #N((S5) 7P, <) + #N(S;79,<) (def. of S,)
= 2+ #N((S5) P,) + #N((S59) 7P,) + #N(S,9, <)

= 14+ #N(S59,Z) + #N(S;9, <) (the claim)
< 1+ #N(S59, <)+ #N(S,74, <) (ind. hyp.)
= #N(Sna <)

For the remaining case we have ¢ € U], attr(7;). By the induction hypothesis
we both have #N(S59,<) < #N(S59,<) and #N(S;%,<) < #N(S;71,<).

12

Applying the claim a number of times we obtain

#N(Sn, <) < 1+#N(S;P, <)+ #N(S, 7, <)

3+#N((S57)7% <) + #N((5,7) 79, <)
+HN((S,7) 79, <) + #N((5,7") 7%, <)

3+HN((Sy)P, <) + #N((S59) 7P, <)
+HN((S79) P, <) + #N((5,79) 7P, <)

1+ #N(S59, <)+ #N(S,79, <)

1+ #N(S59, <)+ #N(S,9, <)

#N(Sna <)’

IN

IA -l

concluding the proof. O

Lemma 11 Let {Ti,...,T,} be a set of decision trees and let S, be defined as
above. Let < be an arbitrary total order on attr(S,) and let < be the total order
on attr(S,) defined by

Pn < Ppo1 < - <p1<q<po

for every ¢ € Ul attr(T;), and ¢ < r if and only if ¢ < r for every q,r €
U, attr(7;). Then
#N(S,, <) < #N(S,, <).

Proof: By Lemma 9 it suffices to prove this lemma for the case that p, is the

greatest element of attr(S,) with respect to <. By induction on j we prove that

#N(S;,<) < #N(S;,<) for every j = 0,...,n, from which the lemma follows

by taking j = n. For j = 0 this holds since then N (S}, <) = po(0,1) = N(S;, <).
For the induction step let 7 > 0. Then we obtain

#N(5;,<) = #p;(N(Sj-1,<),N(T},<))

#pj(N(Sj—l’ %)a N(TJ’ <))

1+ #N(S;_1,<) + #N(T};,<)

1+ #N(Sj—1,<)+#N(Tj,<) (ind. hypoth.)
#N(S;,<) (Lemma 10),

INIA I

concluding the proof. O

Lemma 12 Let {T1,...,T,} be a set of decision trees and let S, be defined as
above. Let < be a total order on attr(S,,) satisfying

Pn <DPp-1 <X <p1<¢qg=<DPo
for every q € U, attr(T;). Then

EN(Su <) =n+1+ 3 #N(T, <).

i=1

13

Proof: Observe that #N(Sp, <) = #po(0,1) = 1, and
#N(Sj’ <) = #pi(N(ijl’ '<)a N(T], <))1 + #N(ijl’ '<) + #N(TJ’ <)

for every j = 1,...,n By induction on j we obtain #N(S;,<) = j + 1+
I #N(T;, <) for every j = 0,...,n, from which the lemma follows by tak-
ing j = n. 0

Theorem 13 Let {T1,...,T,} be a set of decision trees and let S,, be defined as
above. Let k be a natural number. Then there is a total order < on Ul attr(T;)
satisfying o1 #N(T;, <) < k if and only if there is a total order < on attr(S,)
satisfying N(Sp, <) <n+1+k.

Proof: For the ‘only if’-part let < be a total order on U}, attr(7;) satisfying
L #N(T;, <) < k. Define the total order < on attr(S,,) by

pn<pn71'<"'<p1'<q<p0

for every ¢ € U, attr(T;), and ¢ < r if and only if ¢ < r for every ¢,r €
Ui, attr(7;). Then by Lemma 12 we obtain

#N(Sn,<):n+1+i#(Ti,<):n+1+zn:#N(Ti,<)Sn+1+l€.

i=1 =1

Conversely, for the ‘if’-part let < be a total order on attr(S,) satisfying
N(Sn,<) < n+ 1+ k. Defining < as in Lemma 11 the order < satisfies the
requirements of Lemma 12. We obtain

n+1+0, #N(T;, <) #N(S,,<) (by Lemma 12)

< #N(S,,<) (by Lemma 11)
< n+1l+k
by which we obtain ", #N(T;, <) < k, concluding the proof. O

Combining Theorems 7 and 13 we now arrive at our main result.

Theorem 14 Given a decision table T and a number k, it is NP-complete to
decide whether a decision table U exists satisfying U ~ T and #U < k.

Proof: From the definition of normal form it is clear that a decision table U

exists satisfying U ~ T and #U < k if and only if a total order < on attr(7)
exists satisfying #N (T, <) < k. O

14

5 Concluding remarks

In this paper we showed how decision tables can be considered as a special kind
of decision trees. We showed that for a given decision tree the size of any decision
table representing the same function can be exponential in the size of the decision
tree. Our main result states that finding a decision table of minimal size that
represents the same function as a given decision table is an NP-hard problem; in
earlier work we obtained a similar result for decision trees.

If we allow sharing in the representation, i.e., we have dags instead of trees,
then the notion of decision tree correspond to the notion of binary decision di-
agram (BDD), while the notion of decision table corresponds to the notion of
ordered binary decision diagram (OBDD). For these notions we refer to [2, 4].
For both BDDs and OBDDs NP-hardness results for finding a minimal representa-
tion hold too: for BDDs this is straightforward from NP-hardness of satifiability;
for OBDDs this has been proved in [1].

References

[1] BoLLiGg, B., AND WEGENER, I. Improving the variable ordering of OBDDs
is NP-complete. IEEE Transactions on Computers 45 (1996), 993-1002.

[2] BRYANT, R. E. Graph-based algorithms for boolean function manipulation.
IEEFE Transactions on Computers C-35, 8 (1986), 677-691.

[3] KAarp, R. M. Reducibility among combinatorial problems. In Complexity
of Computer Computations (1972), R. E. Miller and J. W. Thatcher, Eds.,
Plenum Press, pp. 85 — 104.

[4] MEINEL, C., AND THEOBALD, T. Algorithms and Data Structures in VLSI
Design: OBDD — Foundations and Applications. Springer, 1998.

[6] MiTCHELL, T. M. Machine Learning. McGraw-Hill, 1997.

[6] QUINLAN, J. R. Induction of decision trees. Machine Learning 1 (1986),
81-106.

[7] SuBRAMANIAN, G. H., Nosek, J., RAGHUNATHAN, S. P., AND KAN-

ITKAR, S. S. A comparison of the decision table and tree. Communications
of the ACM 35, 1 (1992), 89-94.

[8] VANTHIENEN, J. A more general comparison of the decision table and tree.
Communications of the ACM 37, 2 (1994), 109-113.

15

[9]

[10]

ZANTEMA, H. Decision trees: Equivalence and propositional operations.
In Proceedings 10th Netherlands/Belgium Conference on Artificial Intelli-
gence (NAIC’98) (November 1998), H. L. Poutré and J. van den Herik,
Eds., pp. 157 — 166. Extended version appeared as report UU-CS-1998-14,
Utrecht University.

ZANTEMA, H., AND BODLAENDER, H. L. Finding small equiva-
lent decision trees is hard. Tech. Rep. UU-CS-1999-02, Utrecht Uni-
versity, Department of Computer Science, January 1999. Available via
http://www.cs.uu.nl/docs/research/publication/TechRep.html.

16

