SKIT, An Open Architecture for Courseware Authoring

Atze Dijkstra, Martijn Schrage and Doaitse Swierstra

{atze,martijn,doaitse }@cs.uu.nl

Department of Computer Science
Utrecht University
P.O. Box 80.089, 3508 TB
Utrecht, The Netherlands

Abstract - Transfer of knowledge is an essential ingredient
of the human way of living, necessary for survival in general
but even more so in our information oriented society.
Educational institutions make their best effort in offering
knowledge, hoping that students will acquire this knowledge
as efficiently as possible. The ways and means by which
knowledge is transferred do not restrict themselves to the
traditional ones anymore, but are becoming more varied
with the growth of the variation of media capable of storing
and transferring knowledge.

Within this context, research is often focussed on the
receiving side: how does a student (a receiver) receive
knowledge, what is a good way of presenting it, given a
certain model of learning? Other issues concern the
different technologies available to implement an educational
presentation for a receiver: text, images, sound, movie clips,
and interactions together designated by the term multimedia.
However, one issue is addressed less frequently, i.e. how do
we as authors (the creators) of such educational
presentations organize our view on the material. How is
material organized, grouped; how is this material annotated
with meta information normally only stored inside the mind
of authors?

This paper argues that especially these last issues
concerning the creating side are generally not well
supported in existing courseware authoring systems. Writing
courseware often involves writing a presentation to be used
by students, but in the process of creating such a
presentation the original insights, concerning design
decisions is lost. We argue that in order to deal with the
variations in the giving and receiving ends of knowledge
transfer, as well as the transfer itself, a full-fledged
development environment is needed.

Especially in the field of computer science, where
education faces the difficulty of a rapidly evolving
knowledge domain, a system that provides a road map on
the existing material will help to reduce time and effort
needed to keep course material up to date. Other advantages
include more uniformity in produced educational material,
by having the system provide templates for common patterns
in the material. The meta information present in the system
could also be used to create tailor made, possibly electronic,

presentations of the material, taking into account student-
specific properties and circumstances.

Such a development environment should support
specific development oriented requirements like versioning
and storing of created artifacts, but it should also cater for
the specific courseware authoring needs. We will compare
existing environments with a first prototype courseware
authoring and management system that we built. The
prototype system attempts to form a connection between a
traditional database layer and a powerful, intuitive user
interface environment for creating and managing large
bodies of objects and relations between these objects. Using
the results of this comparison, we propose an architecture
supporting the separately usable abstractions of data (i.e.
content) and relationships between data (i.e. structure).

Introduction

At the Department of Computer Science at Utrecht
University we experienced that our functional programming
courses did not achieve the effects on the students that we
hoped for. In an effort to improve the learnability of these
programming courses, we started a project named SKIT
(short for Structuring Knowledge transfer using Information
Technology) to reorganize the available course material. As
part of this effort, we also started to make a tool - a
courseware authoring system - which would support this
reorganization.

In this paper, we first describe the requirements of such
a courseware authoring system, followed by an examination
of what is already available. Then we will have a look at our
prototype system and the way educational material is
modeled and manipulated. We will conclude with a short
description of what - from our point of view - the
architecture of a courseware authoring system should be.

Requirements of a courseware authoring
system

Creation of material with the purpose of knowledge transfer
involves the author and student as well as the material itself.

We will have a closer look at the requirements for these
three aspects from the viewpoint of the author, that is, its
relevance to the writer of material.

Author's aspects

The main task of an author is to organize material in such a
way that consumption by a student is optimal. An author
thus has to be able to organize material, for example in the
form of a hierarchical overview of the material. At the same
time, the author should not be restricted to a particular way
of organizing. An author may have different views on
material, for example in the form of a "required knowledge"
relation imposed on the material. Material must be reusable,
for example when constructing courses for a different
audiences using the same material.

Besides the aspects of material directly visible in a
publication for students, an author also uses other
knowledge. An author may wish to administrate in what
order material is offered to students. This order itself
however might also be derived from other meta-aspects, for
example the already mentioned "required knowledge"
relation between material induces a (partial) order for
presenting material to students. This meta-knowledge of
material is often overlooked when material is created and re-
used. However, if administrated, this meta-knowledge
provides valuable information for an author as well as for
co-authors.

More practical requirements concern the fact that a
courseware authoring system does not function on its own.
Existing material lives on normal files, often with the
naming within a filesystem as the only explicitly visible
structure. An author must be allowed to gradually move
from such an existing environment to a system providing
more features for structuring.

Authors often cooperate with others. This necessitates
facilities for working together, in the form of import/export
mechanisms or material sharing (with all the resulting
simultaneous access related problems). The already
mentioned administration of meta-knowledge also eases
cooperation.

Student's aspects

A courseware authoring system primarily focusses on
support for the author of material. However, this material is
meant for students. An author may need to take student
related aspects into account, for example, the amount of
material a student can absorb over a fixed period of time. In
general, an author may wish to present the material adapted
to the needs and restrictions of students. This may involve
theory about the way people learn as well as actual measured
behavior (profiling) of students and the way material is used
[22].

Aspects of material

Irrespective of the specific way data is used and interpreted,
it has to be treated as something which evolves over time.
Material is created, changed, (re)used and finally not used
anymore. In short, it is treated as data in any development
environment. As such, material exists in variants over time,
necessitating version management. Material also is (re)used
in different configurations; this necessitates configuration
management.

Another aspect concerns the fact that material may often
be available on different kinds of media as well as be
encoded in different ways. An example may be available on
file but also on the WWW and this example may take the
form of a picture as well as plain text. With respect to this
aspect, the system functions as a kind of gatherer of
material, reorganizing and republishing it.

Consequences for "the system"

As a consequence of the aspects mentioned of the
requirements we need a system supporting the construction
of material using any source, where structure may be
independently constructed. We will restrict ourselves to
these aspects in this article. Other consequences of the
preceding requirements are also important but not relevant
for this article.

Existing courseware authoring systems

We have examined a number of other courseware authoring
and management systems to see if they would fit our needs.
Although we did keep our search limited to the World Wide
Web, we have not found any systems that sufficiently met all
criteria. Example systems we investigated are
HyperCourseware [9] and Caleidoscope [7], and to a lesser
extent the ACME [12] and Microcosm environments [14].
The EPOC initiative [4, 5, 21] tried to establish a standard
for open courseware, but at the time of this writing has been
discontinued.

Most of the systems are platform dependent and rely on
the local file system for data storage. This puts a restriction
on the kind of relations that can be defined on the data, and
the granularity of these relations.

Another shortcoming is that existing systems tend to
focus mainly on selecting and combining appropriate blocks
of courseware and presenting these to students. However, we
need a system, which helps us constructing these pieces of
courseware. Ideally, this is done by instantiating standard
educational patterns.

Finally, we would also like to be able to use the system
for design and maintenance of conventional educational
material, like readers, handouts and slide presentations.
However, none of the examined systems offered any support
for generating these textual presentations of material.

Existing general purpose development
environments

Development environment features

Development environments allow the user to create artifacts.
These artifacts are meant to be used in another environment
where changing these artifacts is no longer possible. Many
programs fall in the category "development environment",
not only programs generating executable code but also
editors (developing text).

Irrespective of the wide range of possible uses, these
programs have several aspects in common: they administrate
data for a user. Data evolves over time, is derived from other
data, and depends for its correctness on other data. Support
for these aspects, that is, version management, derivation
management and configuration management, ideally is
available for any piece of data produced. Support for these
aspects should be factored out of any specific development
environment and offered in a more general, systemwide
fashion, preferably in an operating system.

Several attempts have been made to offer this common
functionality in a general way [8, 10, 23]. We will consider
some aspects of the Portable Common Tool Environment
(PCTE) and Camera, especially those that are relevant for a
courseware authoring system.

PCTE

PCTE, Portable Common Tool Environment [23] offers an
elaborate infrastructure upon which development tools can
be built. This infrastructure offers a platform independent
interface for such tools as well as a framework for data,
presentation and control integration. Though integration of
all these aspects is equally important, we focus on data
integration only.

PCTE offers its user a model of data that consists of
objects and links between objects. An object is a set of
named attributes. A link between two objects explicitly
relates these two objects. Object attribute values have a type,
and some attributes - like content - are obligatory. Links
have implementation information associated with them, for
example what to do with a linked target object if a source
object is deleted. Links also have a name associated with
them, allowing links to be traversed by name.

Different tools can arbitrarily create links for already
existing objects, thereby creating a potential link spaghetti
hazard. PCTE therefore offers mechanisms to create new
views on objects and their links. These mechanisms allow
views to be combined and filter out irrelevant links and
attributes.

The typing system of PCTE is described using PCTE
objects and links. Creating new types works object-oriented,
i.e. using inheritance of attributes.

Camera

Basically, Camera [6, 10] offers the same model of data for a
user as PCTE does. Objects with attributes can be used and
defined in an object-oriented way. Objects can be related
using relationships. These relationships are grouped in
relations. Objects are not aware of being related. A relation
does not incorporate implementation information like in
PCTE.

On top of this basic data model other services are built
into Camera. Version management is integrated into the
system by means of snapshots of images of objects and
relations, thereby offering consistent, versioned
configurations of data.

Further services include derivation management in
which dependencies between calculated values and their
required objects are maintained and used as an equivalent for
the UNIX make program.

Other systems

The basic idea of both PCTE and Camera is to offer an
abstraction of the concept of data, thus allowing tools to
share data available via the system. The resulting model with
objects and a way to relate objects to each other is an idea
that exists in many other tools, for example CASE tools
supporting some object oriented analysis paradigm. UML
[1] tools from Rational [16] explicitly model by way of
classes and their associations. Relational databases (as
described by e.g. [2, 3]) are another example in which
attributes of objects are stored in tables. However, tuples in a
relational database have no identity, thus necessitating
explicit identifier management in order to link objects
(mapped on tuples). Corba [15] also defines a relation
service, where relationships between objects are
administrated outside of the objects themselves.

File systems of current operating systems mostly offer
objects with a fixed amount of attributes, for example
content and owner. Structuring is also limited, only the
hierarchy imposed by the naming service of a file system
can be used to organize files.

Data model discussion

Why is this model of objects as identifiable aggregates of
attributes of data the right one for a courseware authoring
system? In general, the idea of data boils down to basic
values (like strings), pointer values (to other values) and
structures of values (aggregate values). These different
categories of values are generally mixed; most object-
oriented languages allow attributes of an object to be a
combination of basic values and references to other objects.
The resulting structure is formed according to invariants and
patterns, (hopefully) only known by the associated code in
the data model.

5 gaSkit Flattener: Syllabus <structure> B3

E|--- Context Free Grammar ;I
A context free grammar is a four-tuple (T, N, R, S), where:

Following is a Haskell definition for Grammars =

Given a regular grammar G for language L, construct a regular grammoar for

Syllabuz
E!--- Chapter: Grammars
2-£] Intraduction
E Bl] Contest Free Grammal - Tis afinite set ofterminal symhbols
=] - M afinite set of non-terminal symhbaols
-/ Grammar - R afinite set of praduction rules
E1-T] Exercise 1.2 - 5 the start symbal
= I:—:I--- Chapter. Parzing E""
E| incomplete
E| Parser E@ Grarnrnar
EI"- grammar :: Grammar
I':'I Chapter: LL Parsing Urammar = ...
E|"- Chapter: Error Recovery E@ Exercize 1.2
] Contest Free Grammar L=

- Prototypes —

0 N e Y I

-

Figure 1: The Skit Flat Representation Editor or flattener.

A problem with this "combine basic value + pointers"
approach is that new patterns of already existing objects
needed for new tools cannot always be incorporated into
existing class definitions. Code may simply not be available,
or it would conflict with design heuristics [17] like "do not
place unrelated behavior into one class". In a courseware
authoring system this is undesired behavior, because
material will be re-used by different tools.

Another way of looking at data might be the relational
database view [3]. Data is put into attributes forming tuples,
that is, aggregates of basic values. Tuples are grouped into
tables. However, tuples are anonymous, that is, data has no
identity as in an object-oriented framework. Identity and
selection mechanisms have to be explicitly constructed since
the purely relational view on data lacks an appropriate
mechanism. However, creating specific (thus identifiable)
structures of objects (thus needing pointing) is what will
happen in any development system.

These observations, together with the requirements, lead
to an architecture in which the data model as discussed
above takes a central place. Before we further discuss this
architecture, we will first show how material fitting this
model can be used in a concrete prototype courseware
system.

SKIT Prototype
Brief Overview

We have built a prototype system to test the completeness of
our requirements, and determine a good architecture for the
future system. For portability reasons the prototype has been
implemented using Java. Seen from the user interface, the
prototype resembles a file system, in which files can have
arbitrary attributes. In contrast to a file system, however, the
smallest identifiable objects in the system are not files
containing documents, but typed units of educational
material of these documents, like "example", "definition",
and "exercise".

Another difference with a regular file system is that,
instead of having only one hierarchical relation for
organizing objects, an arbitrary number of relations can be
used to organize the objects. In the system an object may
participate in many different relations.

Relations are also used to impose structure on objects,
for example to combine a collection of objects in a printable
document. These structures can share objects between them,
which facilitates writing documents that reason about
program sources for example. The fragments of code that
appear in the document can be shared with the actual source
code, so no inconsistencies between the source and the
document can occur.

Example

Figure 1 shows an actual screenshot of the system. It is a
part of the desktop with the flat representation editor and a
collection of object prototypes (which will be explained
shortly). The objects, called SKIT objects or nodes, used in
this example, are simplified pieces of educational material
from the computer science course Grammars and Parsing.
The structure they are part of determines how the syllabus of
the course will be printed.

The left pane of the flattener contains a tree browser that
can be used to view and edit relations over SKIT objects.
The SKIT objects have a uniform appearance, and can
always be used for drag operations, wherever they appear.
They also support a context sensitive pop up menu that,
apart from basic functions like move, rename, and edit
operations, can contain additional menu items depending on
the type of the object, or the browser it is being viewed in.

The icons in the box on the right side of the figure are
object prototypes. They provide a mechanism to instantiate
new SKIT objects by making use of the drag and drop
mechanism. When they are dragged to a destination they are
not actually moved, but a new object of that type is
instantiated and dropped on the destination.

Syllabus ID# 1 1D#2 Nodes: Relations:
E| Chapter: Grammars ?;p?i‘bizﬂgbus _> ?;;relﬁ‘cg::gr’n rammars Node #1: iy 1 Retadon:
E |ntroduction content: < content: < (“name”, “Syllabus”) (#1,#2)
il (“type”, “book”) #2.43)
=I{ly] Contest Free Grammar /\ (“content”, “) (#2,#4)
ID#3 ID# 4 Node #2: Predecessor Relation:
name: “Introduction” name: “Context Free Grammar” (:nami”,‘“‘Chaptir: Grammars”) (#3, #4)
type: “text” amumnn type: “text” (“tYPe > f}:f}Ptef)
content: “This ... ” content: “A context free ... ” (eontent”, “)
Node #3:
Relation types: —> parent child " '» predecessor
Screenshot Abstract Data Representation Actual Data Representation

Figure 2: Data Representation.

The right pane of the flattener window contains a flat
and editable representation of the structure in the left pane.
Although it looks like a normal text document, it is actually
a combination of the contents of the SKIT objects on the left
side. All edit actions on the flattened version are propagated
to the objects whose content is changed and, vice versa,
when an object’s content changes, this is reflected in the
flattener.

The flattener also serves as an outline editor; the
structure of the document can be viewed and edited in the
tree browser pane, and expanding and collapsing nodes in
the tree causes the editor to show and hide, respectively,
corresponding parts of the flat representation.

In addition to on-screen flattening, the system supports
exporting data to files using a similar flattening mechanism.
This so-called external file flattener also allows type specific
transformations on SKIT objects. This way different
presentations can be generated from the same SKIT objects.
Currently, only LaTeX and Haskell code can be generated,
but future versions will include html and support user
defined formats.

Data Representation

Figure 2 contains a small part of the syllabus structure from
Figure 1. The left part of the figure shows the structural
relation as it is visualized by the system, the middle part
shows the data structures underlying this visualization, and
the right side shows how these data structures are
implemented in the system.

Each SKIT object is implemented as a node (rectangles
in Figure 2), which is an identifiable collection of name
value pairs (attributes). The SKIT relation is implemented as
a pair of relations: a parent child relation, denoted with the
normal arrows, and a predecessor relation that determines
the order of the children of each parent (denoted with dotted
arrows). Relations are collections of relationships, which are
the single arrows in the figure. Each relationship links two
objects together, at least in a binary relation. The data layer
also supports relations of other arities but they have not been
used yet. There is actually a third relation involved, which

links each parent to a corresponding predecessor relation,
but it has been omitted from the picture for simplicity.

The actual data representation shows the clear
separation between nodes and relations. Instead of using
pointers that are part of the nodes, the relations are
implemented using tables that contain references to the
nodes. Each relation is a list of pairs (relationships) of SKIT
object identifiers. The nodes are identified using a scheme of
globally unique identifiers. Relations too are identifiable
objects in the system that can be included in relations.

SKIT Architecture

Using the prototype and the preceding discussion about
existing systems as a reference point we propose an
architecture that will - in our eyes - fulfill the needs of a
courseware authoring system.

On the most global level the SKIT system consists of
four layers, as shown in Figure 3.

Applications
Tools & Facilities
Data

Storage

Figure 3: High level layering in the system.

The Data layer provides an abstraction of data in the
form of objects and links between them. This layer provides
the same functionality as PCTE and Camera concerning
data. Data is put into uniquely identifiable aggregates of
name + value pairs, called Nodes. These name + value pairs,
or attributes, may not be other Nodes, that is, they may not
point to other Nodes. Relations on the other hand consist of
relationships where fields of a relationship may contain
Nodes or other values. A relationship explicitly relates
Nodes. An example of the way Nodes and Relations are used

is shown in Figure 2. This part of the architecture has been
realized in the prototype.

The Storage layer provides persistency of Nodes using
different media. Persistence may be realized by a relational
database but also via a set of HTML pages, a file system or a
custom built database. Together the Data and Storage layers
provide an abstraction of data and independence of the way
it is stored. Currently a simple database is used.

The Tools & Facilities layer provides functionality for
the integration of control and presentation, that is, building
blocks to add new tools and their visualization with the
facilities to have interaction between tools. The techniques
to be used here are similar to those used in component
technology like OpenDoc [11, 20], (D)COM [13, 20] and
JavaBeans [19].

The Applications layer consists of the set of tools
written using the Tools & Facilities layer. In the prototype
the two upper layers have been combined and are simply
part of the prototype itself. The application supporting the
construction of the example syllabus and the required tools
have not yet been separated into a framework and an
application using this framework.

Future work

Currently the prototype as described above has been
realized. The SKIT project is likely to be continued in a
broader context where the system will be used in
combination with tools to present material to students. For
future research educational aspects as well as software
architecture issues are relevant. The system will be used for
constructing educational material as well as experiments
with new tools for constructing this material. These tools
will be built within a framework using component
technology and domain specific languages.

In the near future, the prototype as well as architecture
will be developed further in order to get a better idea about
the long-term requirements. For more information contact
the authors or have a look at the SKIT project WWW page
[18].

We also expect that a tool developed along the proposed
lines can be used for other problem domains, for example
the writing of documentation or this paper itself.

References

1. Booch, Grady, Rumbaugh, James and Jacobson, Ivar, 'The
Unified Modeling Language User Guide,' 1999.

2. Chen, Peter, 'Entity-Relationship Approach to Data
Modelling,' Tutorial: System and Software Requirements
Engineering, 1990, pp. 238-243.

3. Elmasri, Ramez and Navathe, Shamkant B., 'Fundamentals of
Database Systems,' 1994.

4. 'EPOC Report 2, Pre-requisites for Open Courseware,’
http://www.amtp.cam.ac.uk/icrd/EPOC/reports/epocrep2/epoc
rep2.htm.

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.
21.

22.

23.

'Towards a Framework for Open Courseware. The third
Report of the TLTP working group on open Courseware.,'
http://www.amtp.cam.ac.uk/icrd/EPOC/reports/epocrep3/inde
x.htm, 1996.

Florijn, Gert, Lippe, Ernst, Dijkstra, Atze, Oosterom, Norbert
van, Swierstra, Doaitse, 'Camera: Cooperation in Open
Distributed Environments,' Proceedings of the EurOpen and
USENIX Spring 1992 Workshop/Conference, apr 1992, pp.
123-136.

'Freebird Learning Systems - Caleidoscope,'
http://www.coacs.com/Freebird/caleidos.htm.

Godard, C. and Charoy, F., 'Databases for Software
Engineering,' 1994.

'HyperCourseware, Solutions and Designs for the Electronic
Educational Environment,' http://www.hypercourseware.com/.
Lippe, E., 'CAMERA, Support for Distributed Cooperative
Work,' 1992.

MacBride, rew and Susser, Joshua, 'Byte Guide to OpenDoc,'
1996.

MacDougall, G., Place, C. , Muldner, M., Currie, D., Khwaja,
A., 'Automated Courseware Management Environment,'
http://plato.acadiau.ca/sandbox/papers/calgary/acmel.html.
'The Component Object Model Specification,'
http://msdn.microsoft.com/developer/, 1995.

'Microcosm,'
http://www.mmrg.ecs.soton.ac.uk/projects/microcosm.html,
1997.

'The Common Object Request Broker: Architecture and
Specification,' http://www.omg.org, 1998.

'Rational Software: Unified Development Solutions &
Programming Tools,' http://www.rational.com/.

Riel, Arthur J., 'Object-Oriented Design Heuristics,' 1996.
Schrage, M. and Dijkstra, A., 'SKIT Project,’
http://www.cs.uu.nl/docs/skit.

'JavaBeans API Specification,' http://java.sun.com/beans/,
1997.

Szyperski, Clemens, 'Component Software,' 1997.

TLTP Working group on Open Courseware, "'EPOC Report 2,
Pre-requisites for Open Courseware,’
http://www.amtp.cam.ac.uk/icrd/EPOC/reports/epocrep2/epoc
rep2.htm.

Verpoorten, J.H., 'Modelgebaseerde Ontwikkeling van
Computerondersteunend Onderwijs,' 1994.

Wakeman, Lois and Jowett, Jonathan, '"PCTE, The standard for
open repositories,' 1993.

