Market Split and Basis Reduction:
Towards a Solution of the
Cornuéjols-Dawande Instances

K. Aardal* R. E. Bixby' C. A. J. Hurkens? A. K. Lenstra$
J. W. Smeltink?

Abstract

At the TPCO VI conference Cornuéjols and Dawande proposed a set of 0-1 linear
programming instances that proved to be very hard to solve by traditional methods, and
in particular by linear programming based branch-and-bound. They offered these market
split instances as a challenge to the integer programming community. The market split
problem can be formulated as a system of linear diophantine equations in 0-1 variables.

In our study we use the algorithm of Aardal, Hurkens, and Lenstra (1998) based
on lattice basis reduction. This algorithm is not restricted to deal with market split in-
stances only but is a general method for solving systems of linear diophantine equations
with bounds on the variables.

We show computational results from solving both feasibility and optimization ver-
sions of the market split instances with up to 7 equations and 60 variables, and discuss
various branching strategies and their effect on the number of enumerated nodes. To
our knowledge, the largest feasibility and optimization instances solved before had 6
equations and 50 variables, and 4 equations and 30 variables respectively.

We also present a probabilistic analysis describing how to compute the probability of
generating infeasible market split instances. By generating instances the way prescribed
by Cornuéjols and Dawande, one obtains relatively many feasible instances for sizes
larger than 5 equations and 40 variables.

*aardal@cs.uu.nl. Department of Computer Science, Utrecht University. Research partially supported
by the ESPRIT Long Term Research Project nr. 20244 (Project ALCOM-IT: Algorithms and Complezity in
Information Technology), by the project TMR-DONET nr. ERB FMRX-CT98-0202, both of the European
Community, and by NSF through the Center for Research on Parallel Computation, Rice University, under
Cooperative Agreement No. CCR-~9120008.

tbixby@caam.rice.edu. Department of Computational and Applied Mathematics, Rice University.

tyscor@win.tue.nl. Department of Mathematics and Computing Science, Eindhoven University of Tech-
nology. Research partially supported by the project TMR-DONET nr. ERB FMRX-CT98-0202 of the Eu-
ropean Community.

Sarjen.lenstra@citicorp.com. Emerging Technology, Citibank N.A.

¥j0b0cs.uu.nl. Department of Computer Science, Utrecht University. Research partially supported by
the ESPRIT Long Term Research Project nr. 20244 (Project ALCOM-IT: Algorithms and Complezity in In-
formation Technology), and by the project TMR-DONET nr. ERB FMRX-CT98-0202, both of the European
Community.

1 Introduction and Problem Description

The feasibility version of the market split problem is described as follows. A company with
two divisions supplies retailers with several products. The goal is to allocate each retailer
to one of the divisions such that division 1 controls a fraction f;, 0 < f; <1, of the market
for product 7, and division 2 controls 1 — f;. There are n retailers and m < n products. Let
a;j be the demand of retailer j for product ¢, and let d; be determined as | f;d}], where d;
is the total amount of product ¢ that is supplied to the retailers. The decision variable z;
takes value 1 if retailer j is allocated to division 1 and 0 otherwise. The question is: “does
there exist an allocation of the retailers to the divisions such that the desired market split
is obtained?” One can formulate this feasibility problem (FP) mathematically as follows:

FP: does there exist a vector z € Z": Az =d, 0 <z <17 (1)

The market split problems was first published in the book by Williams [13]. There, the
application was related to the oil market in the UK, and the constraints were slightly more
involved compared to the description given above.

Let X = {z € {0,1}" : >0, aijz; = d;; 1 < i < m}. Problem FP (1) is NP-hard
due to the bounds on the variables. The algorithm that we use was developed for the more
general problem:

does there exist a vector x € Z" : Az =d, | <z <u? (2)

We assume that A is an integral m X n matrix, where m < n, d is an integral m-vector,
and ! and u are integral n-vectors. We denote the ith row of the matrix A by a;. Without
loss of generality we assume that ged(a;1, a2, ..., ai) = 1 for 1 < 4 < m, and that A has
full row rank.

In the optimization version (OPT) of the market split problem we want to find the
minimum slack, positive or negative, that needs to be added to the diophantine equations
in order to make the system feasible:

OPT: min{zm:(si +w;) s.t. (x,8,w) € X5}, (3)
i=1

where X° = {(z, s, w) : D1 Gz + s —wi=d;, 1<i<m, z€{0,1}", s,w € ZT}.
The Cornuéjols-Dawande instances [2] of the market split problem were generated such
that they were hard for linear programming based branch-and-bound, and they appear to
be hard for several other methods as well. The input was generated as follows. For given
m, let n = 10(m — 1) and let the coefficients a;; be integer numbers drawn uniformly and
independently from the interval [0, D — 1], where D = 100. The right-hand-side coefficients
are computed as d; = |3 Z?Zl a;j], 1 <14 < m. This corresponds to a market split where
fi = & for 1 <4 < m. Cornuéjols and Dawande [2] argued that with this choice of data,
most of the instances of the feasibility problem (1) are infeasible, which implies that the
optimization variant (3) has an objective value greater than zero. If branch-and-bound is
used to solve OPT (3), then, due to the symmetry of the input, the value of the LP-relaxation
remains at zero even after many variables have been fixed. A behavior of branch-and-bound

that was observed by Cornuéjols and Dawande was that 2*” nodes needed to be evaluated,
where « typically takes values between 0.6 and 0.7.

The algorithm we use in our study is described briefly in Section 2. The algorithm was
developed by Aardal, Hurkens, and Lenstra [1] for solving a system of linear diophantine
equations with bounds on the variables, such as problem (2), and is based on Lovész’ lattice
basis reduction algorithm as described by Lenstra, Lenstra, and Lovasz [6]. Aardal et al.
motivate their choice of basis reduction as the main ingredient of their algorithm by arguing
that one can interpret problem (2) as checking whether there exists a short (with respect
to the bounds I, u) integral vector satisfying the system Ax = d. Given a lattice, the
basis reduction algorithm finds a basis spanning that lattice such that the basis consists of
short, nearly orthogonal vectors. Hence, a lattice is chosen that seems particularly useful for
problem (2). An initial basis that spans the given lattice is derived, and the basis reduction
algorithm is applied to this basis. The parameters of the initial basis are chosen such that
the reduced basis contains one vector x4 satisfying Az, = d, and n—m linearly independent
vectors xg satisfying Azxy = 0. Due to the basis reduction algorithm all these vectors are
relatively short. If the vector x4 satisfies the bounds, then the algorithm terminates, and
if not, one observes that A(xy + Azy) = d for any integer multiplier A and any vector x
such that Axzg = 0. Hence, one can branch on integer linear combinations of vectors x
satisfying Axzy = 0 in order to obtain either a vector satisfying the diophantine equations
as well as the lower and upper bounds, or a proof that no such vector exists.

In our computational study we solve both feasibility and optimization versions of the
market split problem. The optimization version can be solved by a slightly adapted version
of the Aardal-Hurkens-Lenstra algorithm. We have solved instances with up to 7 equations
and 60 variables. To our knowledge, the largest feasibility instances solved so far had 6
constraints and 50 variables, and the largest optimization instances had 4 constraints and
30 variables. These results were reported by Cornuéjols and Dawande [2]. Our computational
experience is presented in Section 3.

When performing the computational study we observed that the larger the instances
became, the more often feasible instances were generated. This motivated us to analyze the
expected number of solutions for instances generated according to Cornuéjols and Dawande.
Our conclusion is that for a given value of m > 4, one needs to generate slightly fewer
variables than is given by the expression n = 10(m — 1) (keeping all other parameters
the same) in order to generate infeasible instances with high probability. We present our
analysis together with numerical support in Section 4.

2 An Outline of the Algorithm

Here we give a summary of the algorithm developed by Aardal, Hurkens, and Lenstra [1]
to solve problem (2). They also give a brief overview of the basis reduction algorithm and
the use of basis reduction in integer programming. For a detailed description of the basis
reduction algorithm we refer to Lenstra, Lenstra, and Lovész [6].

The main idea behind the algorithm is to use an integer relaxation of the set X = {z €
Z": Ax = d, | < x < u}. The relaxation that Aardal et al. consider is X;p = {x € Z" :
Az = d}. To determine whether X p is empty can be done in polynomial time. Aardal et

al. rewrite the set X;p as follows:
X[R:{wEZn:$:$d+Xo)\, AEZn_m}, (4)

where x4 € Z" satisfies Azy = d, and where X is an integral n x (n —m) matrix such
that the columns @}, 1 < j < n — m, of X, are linearly independent and such that
each column :1:% satisfies A:L'% = 0. Note that reformulation (4) is not unique. Expression
(4) states that any integer vector x satisfying Az = d can be described as a vector x4,
satisfying Az, = d, plus an integer linear combination of vectors that form a basis for the
lattice {x € Z™ : Az = 0}. Of course this observation also holds for the integer vectors x
satisfying the bound constraints, if such vectors exist. Aardal et al. argue that if we are able
to find a vector x4 that is reasonably short, then this vector will hopefully satisfy the bound
constraints. If that is the case, one is done, and if not one needs to check whether there
exists an integer linear combination of the columns of X, XA, such that & = x4+ XA
satisfies the bounds. '

One way of obtaining the vectors ¢4 and @}, 1 < j < n — m, is by using the Hermite
normal form of the matrix A, see Schrijver [11], and Aardal et al. [1]. The elements of the
Hermite normal form, however, tend to be relatively large, whereas we want the vector x4 to
contain small elements. Moreover having the other numbers in the computation large may
cause numerical problems depending on which branching strategy we apply. Aardal et al.
therefore chose to use lattice basis reduction to derive the vectors ¢4 and =}, 1 < j < n—m.

Let I®) denote the p-dimensional identity matrix, and let 0(P<%) denote the (p X q)-
matrix consisting of only zeros. Let N; and N, be positive integral numbers. Consider the
following linearly independent column vectors B = (b;)i<j<n+1:

™) o(nx1)
B=| ovm N | (5)
N> A —Naod

The vectors of B span the lattice L C R**™*! that contains vectors of the form

miN%Nxmw—mwqua%w—mwnﬂ=B(j), (6)

where y is a variable associated with the right-hand-side vector d.

Proposition 1 The integer vector xy4 satisfies Axy = d if and only if the vector

(@f, N, 0T B (%) @

belongs to the lattice L, and the integer vector xg satisfies Axg = 0 if and only if the vector

(@, 0,007 =B () ®

belongs to the lattice L.

Aardal, Hurkens, and Lenstra [1] proved that if there exists an integer vector @ satisfying the
system Az = d, and if the numbers N; and N, are chosen appropriately, i.e., large enough
with respect to the input and relative to each other, then the first n — m + 1 columns of
the reduced basis that is obtained by applying the basis reduction algorithm to B will be
of the following form:

X(()nx(nfm)) oy
0(1><(n—m)) N,
o(mx(n—m)) (mx1)

; (9)

where X = (w(l),...,w(()nfm)). Due to Proposition 1 we can conclude that x, satisfies

Azy=d, and that Az} =0, 1 <j<n-—m.
Problem (2) can now be formulated equivalently as (cf. (4)):

does there exist a vector A € Z ™ g t. 1 — gy < XoA < u — 247 (10)

Unless x4 satisfies the bound constraints, one needs to branch on the variables A; in or-
der to check whether the polytope P = {\ € Z=m) sl — gy < XoA < u — x4} is
empty. The basis reduction algorithm runs in polynomial time. If one wants an overall
algorithm that runs in polynomial time for a fixed number of variables, one needs to ap-
ply the algorithms of H.W. Lenstra, Jr. [7] or of Lovasz and Scarf [9]. Otherwise, one
can, for instance, apply integral branching on the unit vectors in A-space or linear pro-
gramming based branch-and-bound. By integral branching in the A-space we mean the
following. Assume we are at node k of the search tree. Take any unit vector ej, i.e.,
the jth vector of the (n — m)-dimensional identity matrix, that has not yet been con-
sidered at the predecessors of k. Measure the width of the polytope P in this direc-
tion, i.e., determine uy = max{eJT)\ : A € P n{\’s fixed at predecessors of k}} and
Iy = min{e}“ : A € PN {\;’s fixed at predecessors of k}}. Create |uy| — [l] + 1 sub-
problems at node k of the search tree by fixing \; to the values [l],..., |ug]. The question
is now in which order we should choose the unit vectors in our branching scheme. One
alternative is to just take them in any predetermined order, and another is to determine, at
node k, which unit vector yields the smallest value of |uy | — [l]. This branching scheme is
similar to the scheme proposed by Lovész and Scarf [9] except that we in general are not
sure whether the number of branches created at each level is bounded by some constant
depending only on the dimension. What we hope for, and what seems to be the case given
our computational results, is that |ug| — [lx] is small at most nodes of the tree. A natural
question in the context of branching is whether we may hope that linear programming based
branch-and-bound is more efficient on the polytope P as compared to the polytope X. As
can be observed in Section 3 we typically reduce the number of nodes if we branch on P
instead of X by several orders of magnitude. One way of explaining this is that we obtain
a scaling effect by going from description (2) of our problem to description (10), see Aardal
et al. [1].

3 Computational Experience

3.1 The Feasibility Version

We solved 17 instances of problem FP (1) reformulated as problem (10). Three of the
instances were feasible and 14 infeasible. The input was generated as described in Section 1.
The instances M16 and M17 are the instances “marksharel” and “markshare2” of MIPLIB
[10].

In our computational study we wanted to determine the effect of the reformulation of
problem (1) to problem (10). Therefore, we solved formulation (10) by linear programming
based branch-and-bound in order to compare our experience with the branch-and-bound
results reported by Cornuéjols and Dawande [2] on formulation (1). Given that we consider
an integer relaxation (4) rather than a linear relaxation when determining (10), we also
wanted to investigate the effect of maintaining the integral representation by applying inte-
gral branching. This explains the choice of the three branching methods that we considered
in our study: linear programming based branch-and-bound on the variables A;, branching
on the unit vector in A-space that yields the smallest value of |u] — [l] at node k of the
search tree as described in Section 2, and branching on the unit vectors in the predetermined
order j =n—m,...,1, see Section 2. For the linear programming based branch-and-bound
we used CPLEX, see below. Since CPLEX solves optimization problems we needed to re-
formulate (10) for this branching method as follows. We introduced the objective function
max Z;:lm Aj, and if a feasible solution was found we terminated the search. An example
of an enumeration tree derived by the third method (branching on the unit vectors in the
predetermined order j = n —m,...,1) for an instance of size 4 x 30 is shown in Figure 1.
Notice that few branches are created at each node of the tree, and that no branching occurs
below level eight.

Figure 1: Enumeration tree for integer branching e;, j = (n —m),...,1

Table 1: Results for the feasibility version

LP B&B on A thinnest e; ej,j=(Mn-m),...,1
Inst. m n type | # nodes time (s) | # nodes time (s) | # nodes time (s)
M1 5 40 N 7,203 40 1,723 652 3,107 58
M2 5 40 N 10,488 58 3,839 1,335 8,252 118
M3 5 40 Y 5,484 30 1,398 558 2,155 39
M4 5 40 N 16,484 84 5,893 1,685 14,100 175
M5 5 40 N 17,182 94 3,027 1,163 5,376 85
M6 5 40 N 11,500 62 2,762 1,010 5,322 87
Mr 5 40 N 16,666 88 4,025 1,391 9,710 123
M8 5 40 N 7,483 42 2,386 899 4,310 68
M9 5 40 N 6,393 36 1,674 660 3,115 50
M10 5 40 N 17,206 90 3,791 1,319 7,860 115
M1l 6 50 N 413, 386 3,690 88,619 53,713 152,399 3,532
M12 6 50 Y 53,273 428 14,456 9,078 8,479 229
M13 6 50 N 375,654 3,080 86,005 51,626 141,259 3,596
M14 6 50 N 381,813 2,984 108,725 75,794 204,367 4,193
M15 6 50 Y 96,470 768 69,981 37,774 129,402 2,700
M6 6 50 N | 114,215 932 40,274 24,969 79,130 1,639
Mi7r 7 60 N 108,154 1,228 36,288 36,023 73,877 2,095

The information in Table 1 is interpreted as follows. In the first three columns, “In-
stance”, “m”, and “n”, the instance names and the dimension of the instances are given. A
“Y” in column “type” means that the instance is feasible, and an “N” that it is not feasible.
Note that it is not known a priori whether the instances are feasible, but it is established by
our algorithm. In the following six columns the number of nodes and the computing times
are given for the three branching methods. The computing times for the method “thinnest
e;” and “ej, j = (n —m),...,1”, are given in seconds on a Sun Ultra Enterprise 2 with
two 168 MHz Ultra Sparc processors (our implementation is sequential), SpecInt95 6.34,
SpecFp95 9.33. The linear programming branch-and-bound computations were carried out
on an Alphaserver 4100 5/400 with four 400 MHz 21164 Alpha Processors (sequential im-
plementation) SpecInt95 12.1, SpecFp95 17.2. The times reported on for this method are
the actual times obtained with the Alphaserver multiplied by a factor of 2, in order to make
it easier to compare the times of the three methods. The basis reduction in the algorithm
by Aardal, Hurkens, and Lenstra is done using LiDIA, a library for computational number
theory [8]. The average computing time for the Aardal-Hurkens-Lenstra algorithm was for
the three instance sizes 1.6, 3.1, and 4.8 seconds respectively. These computations were
all carried out on the Sun Ultra Enterprise 2. For the LP-based branch-and-bound on the

variables A; we used CPLEX 6.5 [4], and for the other two methods we use the enumeration
scheme developed by Verweij [12]. The linear programming subproblems that arise in these
two methods when determining |uy | and [lx], are solved using CPLEX version 6.0.1 [3].

An important conclusion of the experiments is that the reformulation itself is essential.
Cornuéjols and Dawande [2] could only solve instances up to size 4 x 30 using CPLEX
version 4.0.3. We also applied CPLEX versions 6.0 and 6.5 to the initial problem formulation
(1) and observed a similar behavior, whereas CPLEX produced very good results on the
reformulated problem (10). Cornuéjols and Dawande did solve feasibility instances of size
6x 50 by a group relaxation approach. Their computing times are a factor of 3-10 slower than
ours. No previous computational results for instances of size 7 x 60 have, to our knowledge,
been reported.

If we consider the number of nodes that we enumerate using the three methods, we note
that branching on the thinnest unit vector (in A-space) yields the fewest number of nodes
for all instances except instance M12, which is a feasible instance. We do, however, need to
determine the unit vector that yields the thinnest direction at each node of the tree, which
explains the longer computing times. Branching on unit vectors in the predetermined order
j=mn—m,...,1, also requires fewer nodes for most instances than the linear programming
based branching on the variables A;. In terms of computing times, linear programming based
branch-and-bound is for most instances the fastest method, but does not differ too much
from the times needed for branching on unit vectors e;, j = n—m,..., 1. It is worth noticing
that our integer branching implementation, in particular the communication between our
branching scheme and CPLEX, can be made more efficient. Our results indicate that integer
branching is an interesting method, in particular if we can find reasonably good branching
directions quickly, as in the third method. In our case it seems as if the unit vectors in
A-space yield thin branching directions. To investigate this we applied the generalized basis
reduction algorithm of Lovdsz and Scarf [9] to our polytope P. The reduced basis vectors
yielded thinner directions than the strategy “thinnest e;” in only about 6% of the cases
for the instances of size 5 x 40. This implies that the unit vectors in A-space, in some
order, basically form a reduced basis in the Lovasz-Scarf sense. The computations involved
in determining a Lovasz-Scarf reduced basis are fairly time consuming. For a problem of
dimension 5 x 40, at the root node of the tree, one has to solve at least 100 linear programs
to determine the basis. For each level of the tree the number of linear programs solved at
each node will decrease as the dimension of the subproblems decrease. If the unit basis
would generate bad search directions, then a heuristic version of the Lovasz-Scarf algorithm
would be a possibility.

3.2 The Optimization Version

The algorithm by Aardal, Hurkens, and Lenstra [1] was primarily designed to solve feasibility
problems, but can with simple adaptions be used to solve the optimization version (3) of
the market split instances as well. Below, we report on the results obtained by using three
different strategies to solve the optimization version. All strategies are based on linear
programming based branch-and-bound, and we us CPLEX in our study.

Strategy 1: Here, we solve a sequence of feasibility problems. We start with the feasibility
version (10). If the instance is infeasible, then we proceed by considering the following
sequence of feasibility problems for v = 1,2,... until a feasible solution is found.

do there exist vectors « € {0,1}", s,w € ZT;: (11)

n m
Zaija:j+si —w; =d;, 1 <1< m, Z(sz +wz~) =7
j=1 i=1

These feasibility problems are then reformulated as problems of type (10) using the algo-
rithm of Aardal et al. For each of these feasibility problems we apply linear programming
based branch-and-bound on the variables ;. As mentioned in the previous section we
need to actually reformulate the feasibility problems as optimization problems in order
to use CPLEX. We therefore investigate the influence of the choice of objective function

on the search that CPLEX is performing. In Strategy 1 we use the objective function
max Z;Lilm_l Aj.

Strategy 2: This is the same as Strategy 1 except that the objective function is a pertur-
bation of the objective function zero. Here we sketch the principle of the perturbation. What
is basically done to construct the perturbed objective function is to perturb the variables
of the linear programming dual as follows. Notice that the number of constraints in the
linear relaxation of the reformulation (10) of the feasibility problem (11) is p = 2n + 2m;
we have 2n constraints corresponding to the upper and lower bounds on the a-variables,
and 2m constraints corresponding to the nonnegativity requirements on the slack variables
s; and w;, 1 <i < m. Let e =10 % and let, for i = 1,...,p, Z; be drawn uniformly and
independently from the interval [0, 1]. Let §; = €Z;. If the dual variable y; < 0 in the original
formulation we let y; < d;, and if y; > 0 we let y; > —0;. For y; such that y; < §;, make the
substitution Y; = y; — d;, and for y; > —d; we substitute y; by Y; = y; + §;. This substitution
implies a perturbation of the primal objective function.

Strategy 3: Here we view the problem as an optimization problem directly, which implies
that only one problem is solved instead of a sequence of problems as in Strategies 1 and 2.
We extract the expressions of the slack variables s; and w; in terms of the variables)\; and
minimize the sum of the slack variables expressed in the A;’s.

For all computations we used CPLEX version 6.5. The computations were made on an
Alphaserver 4100 5/400 as described in the previous subsection. From the results in Table 2
we can conclude that instances of sizes up to 7 x 60 are relatively easy to solve to optimality
after using the reformulation of the problem implied by the algorithm of Aardal, Hurkens,
and Lenstra [1]. This represents a large improvement over earlier results, where the largest
optimization instances had dimension 4 x 30, see Cornuéjols and Dawande [2]. If we consider
the number of nodes that we enumerate when applying linear programming based branch-
and-bound on the variables)\;, we observe that this number is significantly smaller than
the number 2%" for o between 0.6 and 0.7 that Cornuéjols and Dawande observed when
applying branch-and-bound on the zj-variables. For instances of size 4 x 30 they enumerated
between 10% and 2 x 10° nodes. For the same number of enumeration nodes we can solve

Table 2: Results for the optimization version

Strat. 1 Strat. 2 Strat. 3
Inst. # nodes time (s) # nodes time (s) # nodes time (s)
M1 20,022 57 13,699 38 53,267 180
M2 6,451 44 75,174 222 109,498 281
M3 5,484 15 5,230 15 41,518 118
M4 36,847 107 75,985 211 176,437 456
M5 32,880 93 16,379 45 271,208 705
M6 35,710 105 21,277 62 220,603 875
M7 64,090 180 88,160 254 396,416 1,261
MS8 33,937 99 35,471 103 122,526 383
M9 9,910 29 19,083 56 200,987 625
M10 28,402 76 146,224 436 99,502 299

M11 1,165,498 6,018 1,728,646 7,811 6,158,407 29,486

M12 53,273 214 73,801 283 | 5,101,843 22,002
M13 810,496 505 | 1,410,840 6,607 | 6,057,528 26,333
M14 384,882 1,505 | 1,117,107 4,748 | 7,861,402 34,083
M15 96,470 384 17,007 60 | 9,558,521 37,960
M16 282,665 1,190 319,020 1,248 71,253 348

M17 567,837 3,767 1,823,915 11,597 3,425,941 27,168

instances of more than twice that size. We can also observe that solving the reformulated
optimization version (Strategy 3) instead of a sequence of feasibility problems (Strategies
1 and 2) is more time consuming in most cases. One reason is that the optimum objective
value is small, so the number of problems we need to solve in Strategies 1 and 2 is small, but
in case of the infeasible instances greater than one. If one expects the optimum value to be
large and no reasonable bounds are known, then it is probably better to consider Strategy
3.

Next to the instances we report on here we also generated another five instances of size
7 x 60. All these instances were feasible so we decided not to report on the results of the
computations here. For the size 6 x 50 we also had to generate quite a few instances to
obtain infeasible ones. This motivated us to investigate whether the relation n = 10(m —1),
as Cornuéjols and Dawande suggested, is actually likely to produce infeasible instances if
we keep all other parameters as they suggested. Our probabilistic analysis is presented in
the next section.

10

4 The Expected Number of Solutions

Here, we derive an expression for the expected number of solutions for problem formulation
(1), given that the coefficients a;; are generated uniformly and independently from the set
{0,...,D—1}, and that d; = | f >77_ ai;], cf. Section 1. In addition, we relate the expected
number of solutions to the probability of generating an infeasible instance.

The analysis is easily adapted for arbitrary rational fractions f;. Cornuéjols and Dawande
[2] use D =100 and f = 4.

4.1 The Probability that a Subset Induces a Solution

Consider a subset S C {1,2,...,n}, and let z; = 1if j € S, and z; = 0 otherwise. We
compute the probability that 3. qai; = | f Z?Zl a;j], in which case the vector as defined
above satisfies Az = d for row i. Define a random variable Z;(S) = 3" cgaij — [f 27— aij]
denoting the difference between the left-hand side and the right-hand side of row i. The
probability that we want to compute is therefore Pr[Z;(S) = 0]. Let the random variables
Y;(S) and U; be defined as

Yi(s):Zaij_fz_:laij:Z(l_f)aij_z:faija (12)

jes jes ¢S

and U; = f >0 aij — [f 77—, aij]. Hence, we can write Z;(S) = Yi(S) + U;.
For any rational fraction f = P/Q (P,Q € N,gcd(P, Q) = 1), we have Y;(S) € %Z and
U; € %Zﬂ [0,1). Since Y;(S) + U; =0 (mod 1), we have

—k

0 J. (13)

Q-1
Pr(Z;(S) = 0] = Pr[Y;(S) = —Ui] = > _ Pr[Vi(S) =
k=0

We can give an approximation using the normal distribution as described in Section 4.2,
or compute this probability exactly using the probability generating function of Y;(S), see
Section 4.3. In either case, we obtain an expression Pr[Z;(S) = 0] = ¢(n, D,|S]), i.e., the
probability that & induced by S defines a solution for a;x = d; depends on n, D and the size
of S only. The probability that S induces a solution for Az = d is given by ¢(n, D, |S|)™.
Let S denote the set of all subsets that induce a solution. The expected number of solutions
is derived by summing over all subsets S, i.e.,

Bsl= Y atn sy =3 (2) atn Do) (14)

Sc{1,..,n} s=0

4.2 An Approximation

As a first approach we compute g(n, D, |S|) by approximating the distribution of Y;(S) by
the normal distribution. Each of the coefficients a;; has expectation %(D — 1) and variance
L(D? —1). Since they are drawn independently, we obtain E[Y;(S)] = (D — 1)(|S| — nf)
and Var[Y;(S)] = &(D? — 1)(|S|(1 — 2f) + f?n). Note that for f = 1, the variance reduces

11

to (D? — 1)n/48. For rational f = P/Q, the probability that subset S induces a solution
for row 1 is given by Pr[Z;(S) = 0] = Pr[1/(2Q) — 1 < Yi(S) < 1/(2Q)]. Using the Central
Limit Theorem [5], we approximate this expression by the normal distribution, and find

B
Pr % —1<Y(9) < %] ~ \/%/a exp(—%uZ)du, (15)
with
1 1 . 1 .
I (G N . 1L "

VVarY;(S)]

Since we are adding exponentially many of these terms in expression (14), it is unclear how
accurate the result is. Therefore an exact formulation is derived as well.

Var[Y;(5)]

4.3 An Exact Formulation

The probability generating function of a;; is

gy | 1 1 zP -1
_ W[p%5] — —k_ = D-1y _ - | _
G () = Elz f]—kE%Dx =5l+at 2P) =5 ——. (17)
Since the coefficients a;; are independent, the probability generating function of Y;(S) is
given by

Gyys)(z) = E[,Q:Yi(s)] = E[(Ezjes(l_f)aij_zjgs faz'j]
— H E[m(l—f)aij] H E[:C_faij]
jes i¢s
H(l x(lf)D_1>H<1 w(f)D_1>
- D= — 1 5O T
jes D .’B() 1 is D ,1‘() 1
1\" (=)D _q 5] 2(=HD _1 n—|5|
B (5) WD -1 S D_1
1 1 20-np _1\® spp 18|
= Dn GfO-)m-Is) \ Z0-H 1 (i;F:j—> : (18)

For rational f = P/Q, we can expand expression (18) to }, c;jzi/?, where c; denotes
the probability Pr[Y;(S) = %] To compute Pr[Z;(S) = 0], we need to evaluate only the
coefficients ¢; for j = 0,—1,...,—-Q + 1. For f = %, expression (18) is equal to

1 1 P2 —1\"
Eimuknmﬂwwz<muz_1) : (19)

In order to find the Taylor expansion of the factors in (18) and (19) we use the following
lemma.

12

N ,
Lemma 2 (y;:ll) =Y 720 a;y’ with

min{N,|j/D .
ol J}(N>(_1)k(j—Dk+N—1> 0)
i = k j— Dk '
k=0

Proof Write (yD:l)N as the product of (1 —yP”)¥ and (1 —y)~" with (1 — yP)N =
(]JV) DJ and (1 —y)~N = >0 (]+];.]_1)yj. Note that a; =0 for j > (D —1)N,
(N (+y+-+yP Y. O

For f = % we apply the lemma with N =n and y = z'/2, to obtain

1

Pr[Zi(S) = 0] = q(n, D, |S]) = 7 (a(p-1)(n-15)) + 4(D-1)(n15)-1) (21)

For f # %, we use the lemma to find the coefficients a; of each factor in expression (18) and
compute the coefficients ¢; by convolution of the two power series obtained.

4.4 The Probability of Generating Infeasible Instances

Finally, we relate the expected number of solutions to the probability of generating an infea-
sible instance. For simplification, we neglect the dependency between two distinct subsets,
each not providing a solution. We further use log(1 + z) = = + O(z?), yielding

Pri#S§=0] = Pr[S¢S,VSC{1,2,...,n}
~ H Pr[S ¢ S]
Sc{1,...,n}
= exp(log J] (1—q(n,D,18)™)
Sc{1,...,n}
= exp(Y log(l—a(n, D,IS)™)
Sc{1,...,n}
~ exp(Y —qln,D,|s)")
Sc{l,...,n}
— exp (~E[#S)) . (22)
For f = % there is a correlation due to symmetry that we cannot neglect. If all row sums
are even, then a subset S induces a solution if and only if its complement S = {1,...,n}\S

does. We first compute the conditional probability that S does not induce a solution, given
that S does not for the first k£ rows. Let S; denote the set of subsets that induce a solution
with respect to row ¢ and let g5 = g(n, D, |S|).

13

Pr [S¢S|(Vi:1<i<k,S¢S)ANi:k+1<i<m,S€S)

=Pr[3i:1<i<k Y ayeven] +Pr[Vi:1<i<kY ayodd]-{
j j
Pr{3i:k+1<i<m, Y agodd] -1+
j

. | (45 \k
Pr[Vz.k-}-lSZSmazj:aw even] (1 (1—(]5))}

=(1- 2—k) + 2—k(1 _ 2—(m—k)) + 2—k2—(m—k)(1 _ (1 qu)k)
—4s

~1—2 Mgk, (23)

Using (23) we derive an expression for the probability that both S and S are not in S.

m

q m m— -m
Pr[S,5¢S] = Y <k>(1—qS)’“qg F(1—27mgk)
k=1
m g\m g+ - a\"
—1ogre (%s) B <qS qs2 qsqs> _ (24)
Since g5 ~ ¢g, we obtain
Pri#S =01 ~ [Px[S,5¢S]
S:1eS
= exp Z logPr[S, S ¢ S]
S:1eS
m 1 qs \m
~oexp Y —qf (- g+ (1=)™
S:1eS
- 11
~ eXP(Z (—gs")(1 — 52—m))
Sc{1,..,n}
1 _
= exp (—E#S)(~ 5pr)) = B (25)

Note that for large values of E[#S] this approximation yields significantly different results
compared to (22).

4.5 Computational Results

We have computed the expected number of solutions using probability generating functions
(gen), and using an approximation by the normal distribution (approx) for several values
of m and n. The results are presented in Table 3. In our computations we use f = %
and D = 100. The horizontal lines in the table indicate the relation n = 10(m — 1) as pro-
posed by Cornuéjols and Dawande. We notice that the value obtained by the approximation

overestimates the exact value with a relative error of at most 5.2%.

14

70 T

60

e e e
B
S
22

X2
e

22>
S,

i

$!0,0.‘0.

v, LIAY
:’:i.#.#'

%
e e

% R
SRR

il

0
6
ExpHi 8
5 6
m
Figure 2: The expected number of solutions for m =4,...,8, truncated at 10

Table 3 and Figure 2 show that, for fixed m, the expected number of solutions grows
rapidly with n. In particular, we observe that for m > 6 and n = 10(m — 1), the expected
number of solutions is greater than 0.9, which implies that the probability of generating
an infeasible instance is less than 0.4. This confirms our experience with the instances we
generated for our computational experiments reported on in Section 3. If one wants to
generate infeasible instances with high probability for m > 6, then one needs to use slightly
fewer columns for a given value of m than the relation n = 10(m — 1) indicates.

Let p;,, be the unknown probability of generating an infeasible instance. To test our
approximation Py, ,, as given in expression (25) for a given instance size m,n, we generate
N instances and count the infeasible ones. For such an experiment, let X; be 1 if the
1th sample is infeasible and 0 otherwise. Since X; are independent binary random variables,
T = X1+ -+ Xy is binomially distributed with parameters N and py, 5, (T' ~ Bin(N, py, 5))-
Our null hypothesis is pmn = Pm,n- Under this assumption T' ~ Bin(N, P,). By looking
at the 2.5% quantile and the 97.5% quantile, we construct a 95% confidence interval for T":

90.025(N, Pmn) <T < q0.975(N, Pm.n) - (26)

In our experiment we chose N = 1000, and instance sizes as given in Table 4. For each
combination of m and n we obtained a realization ¢,,, = 1 + -+ + x5 of T. In Table 4
we further report on our estimator py, , the quantiles corresponding to the 95%-confidence
interval, the value of our realization ¢, , and pmn = tmn/N. For all our tested instances
we found that the outcome of our experiment lies within the 95%-confidence interval. This
indicates that there is no reason to reject our null hypothesis.

15

Table 3: The expected number of solutions computed exactly using the probability gener-
ating function (gen) and approximated by the normal distribution (approx)

n m =4 m =5 m =6 m =7 m =8
gen approx gen approx gen approx gen approx gen approx

20 0.0004 0.0004 2.3091e-6 2.3692e-6 1.3071e-8 1.3519e-8 7.5214e-11 7.8457e-11 4.3865e-13 4.6155e-13
21 0.0007 0.0008 4.0743e-6 4.1700e-6 2.2299e-8 2.2964e-8 1.2316e-10 1.2759e-10 6.8386e-13 7.1256e-13
22 0.0014 0.0014 7.2921e-6 7.4623e-6 3.9302e-8 4.0507e-8 2.1514e-10 2.2339e-10 1.1927e-12 1.2479e-12
23 0.0025 0.0026 0.00001 0.00001 6.8320e-8 7.0205e-8 3.6171e-10 3.7380e-10 1.9270e-12 2.0023e-12
24 0.0046 0.0047 0.00002 0.00002 1.2125e-7 1.2461e-7 6.3449e-10 6.5644e-10 3.3604e-12 3.5006e-12
25 0.0086 0.0087 0.00004 0.00004 2.1378e-7 2.1924e-7 1.0881e-9 1.1219e-9 5.5765e-12 5.7801e-12
26 0.0159 0.0161 0.00008 0.00008 3.8208e-7 3.9177e-7 1.9192e-9 1.9797e-9 9.7509e-12 1.0121e-11
27 0.0295 0.0298 0.0001 0.0001 6.8118e-7 6.9740e-7 3.3415e-9 3.4385e-9 1.6516e-11 1.7079e-11
28 0.0548 0.0555 0.0003 0.0003 1.2257e-6 1.2544e-6 5.9298e-9 6.1020e-9 2.9002e-11 3.0013e-11
29 0.1023 0.1035 0.0005 0.0005 2.2050e-6 2.2540e-6 1.0449e-8 1.0733e-8 4.9914e-11 5.1513e-11
30 0.1913 0.1936 0.0009 0.0009 3.9929e-6 4.0798e-6 1.8657e-8 1.9159e-8 8.8096e-11 9.0939%e-11
31 0.3585 0.3626 0.0016 0.0016 7.2371e-6 7.3878e-6 3.3199e-8 3.4045e-8 1.5357e-10 1.5819e-10
32 0.6732 0.6808 0.0030 0.0030 0.00001 0.00001 5.9626e-8 6.1124e-8 2.7250e-10 2.8068e-10
33 1.2668 1.2805 0.0055 0.0055 0.00002 0.00002 1.0696e-7 1.0953e-7 4.8000e-10 4.9361e-10
34 2.3879 2.4131 0.0102 0.0103 0.00004 0.00004 1.9319e-7 1.9774e-7 8.5633e-10 8.8043e-10
35 4.5090 4.5552 0.0189 0.0192 0.00008 0.00008 3.4895e-7 3.5685e-7 1.5215e-9 1.5623e-9
36 8.5279 8.6128 0.0353 0.0358 0.0001 0.0001 6.3353e-7 6.4759e-7 2.7288e-9 2.8010e-9
37 16.1533 16.3098 0.0659 0.0668 0.0003 0.0003 1.1512e-6 1.1758e-6 4.8844e-9 5.0085e-9
38 30.6410 30.9297 0.1234 0.1250 0.0005 0.0005 2.1000e-6 2.1440e-6 8.8038e-9 9.0240e-9
39 58.2021 58.7363 0.2314 0.2343 0.0009 0.0009 3.8357e-6 3.9137e-6 1.5859e-8 1.6241e-8
40 110.6973 111.6878 0.4345 0.4400 0.0017 0.0018 7.0282e-6 7.1681e-6 2.8719e-8 2.9400e-8
41 210.7999 212.6397 0.8174 0.8274 0.0032 0.0033 0.00001 0.00001 5.2021e-8 5.3216e-8
42 401.8960 405.3196 1.5399 1.5582 0.0060 0.0061 0.00002 0.00002 9.4624e-8 9.6756e-8
43 767.0835 773.4649 2.9050 2.9388 0.0112 0.0114 0.00004 0.00004 1.7224e-7 1.7601e-7
44 1465.6670 1477.5812 5.4876 5.5499 0.0209 0.0212 0.00008 0.00008 3.1459e-7 3.2134e-7
45 2803.3082 2825.5860 10.3793 10.4945 0.0391 0.0397 0.0001 0.0002 5.7517e-7 5.8721e-7
46 5366.9806 5408.6988 19.6556 19.8690 0.0733 0.0743 0.0003 0.0003 1.0545e-6 1.0761e-6
47 1.0285e4 1.0363e4 37.2658 37.6617 0.1375 0.1393 0.0005 0.0005 1.9356e-6 1.9744e-6
48 1.9726e4 1.9874e4 70.7327 71.4684 0.2582 0.2617 0.0010 0.0010 3.5613e-6 3.6313e-6
49 3.7868e4 3.8145e4 134.3989 135.7680 0.4856 0.4920 0.0018 0.0018 6.5607e-6 6.6867e-6
50 7.2753e4 7.3275e4 255.6339 258.1855 0.9144 0.9262 0.0033 0.0034 0.00001 0.00001
51 1.3989e5 1.4087e5 486.7099 491.4721 1.7238 1.7457 0.0062 0.0062 0.00002 0.00002
52 2.6918e5 2.7103e5 927.5451 936.4449 3.2537 3.2940 0.0116 0.0117 0.00004 0.00004
53 5.1834e5 5.2184e5 1769.2812 1785.9346 6.1478 6.2225 0.0216 0.0220 0.00008 0.00008
54 9.9884e5 1.0054e6 3377.8566 3409.0581 11.6287 11.7673 0.0405 0.0411 0.0001 0.0001
55 1.9261e6 1.9386e6 6454.3702 6512.8979 22.0181 22.2758 0.0761 0.0772 0.0003 0.0003
56 3.7165€6 3.7402¢6 1.2343e4 1.2453e4 41.7308 42.2104 0.1429 0.1449 0.0005 0.0005
57 7.1757e6 7.2207e6 2.3622e4 2.3830e4 79.1668 80.0606 0.2687 0.2724 0.0009 0.0009
58 1.3863e7 1.3948e7 4.5245e4 4.5635e4 150.3239 151.9916 0.5058 0.5127 0.0017 0.0017
59 2.6799¢7 2.6961e7 8.6723e4 8.745Te4 285.6905 288.8057 0.9531 0.9658 0.0032 0.0033
60 5.1835e7 5.2143e7 1.6634e5 1.6772e5 543.4188 549.2448 1.7978 1.8214 0.0060 0.0061
61 1.0031e8 1.0090e8 3.1928e5 3.2189e5 1034.5026 1045.4103 3.3943 3.4383 0.0112 0.0114
62 1.9424e8 1.9535e8 6.1324e5 6.1817e5 1970.9501 1991.3942 6.4148 6.4966 0.0211 0.0214
63 3.7629¢8 3.7843e8 1.1786e6 1.1879¢6 3757.9874 3796.3444 12.1341 12.2862 0.0395 0.0401
64 7.2936e8 7.3343e8 2.2666€6 2.2842e6 7170.6817 7242.7199 22.9726 23.2561 0.0733 0.0754
65 1.4144e9 1.4221e9 4.3616€6 4.3951e6 1.3692e4 1.3828e4 43.5290 44.0578 0.1397 0.1417
66 2.7440e9 2.7589e9 8.3980e6 8.4614e6 2.6164e4 2.6419e4 82.5476 83.5352 0.2629 0.2666
67 5.3262e9 5.3545e9 1.6179e7 1.6299e7 5.0029e4 5.0511e4 156.6664 158.5126 0.4952 0.5021
68 1.0343e10 1.0396e10 3.1186e7 3.1412e7 9.5728e4 9.6634e4 297.5662 301.0208 0.9337 0.9465
69 2.0092e10 2.0196e10 6.0146e7 6.0581e7 1.8328e5 1.8499e5 565.6096 572.0801 1.7619 1.7858
70 3.9050e10 3.9248e10 1.1606e8 1.1688e8 3.5114e5 3.5437e5 1075.8876 1088.0185 3.3274 3.3720
71 7.5923e10 7.6305e10 2.2406e8 2.2563e8 6.7315e5 6.7925e5 2047.9738 2070.7375 6.2893 6.3723
72 1.4767ell 1.4840el1 4.3279¢8 4.3578e8 1.2912e6 1.3027e6 3901.0477 3943.8021 11.8969 12.0517
73 2.8734ell 2.8875ell 8.3636e8 8.4207e8 2.4781e6 2.4999¢6 7435.8186 7516.1883 22.5215 22.8106
74 5.5932e¢l11 5.6202el11 1.6170e9 1.6278e9 4.7588e6 4.8001e6 1.4183e4 1.4334e4 42.6664 43.2066
75 1.0891e12 1.0943e12 3.1277¢9 3.1484€9 9.1434e6 9.2218e6 2.7068e4 2.7354e4 80.8888 81.8993
76 2.1215e12 2.1314e12 6.0523€9 6.0920e9 1.7577e7 1.7725e7 5.1694e4 5.2231e4 153.4610 155.3527
s 4.1339¢12 4.1531el2 1.1717e10 1.1792e10 3.3807e7 3.4089¢7 9.8781e4 9.9795e4 201.3437 2904.8880
78 8.0580e12 8.0948e12 2.2693e10 2.2837el0 6.5057e7 6.5593e7 1.8887e5 1.9078e5 553.4833 560.1297
79 1.5712e13 1.5783e13 4.3968e10 4.4245€10 1.2525e8 1.2627e8 3.6133e5 3.6494e5 1052.1712 1064.6447
80 3.0646e13 3.0782el13 8.5223el0 8.5754e10 2.4126e8 2.4319e8 6.9164e5 6.9847e5 2001.4513 2024.8798

16

Table 4: The probability of generating an infeasible instance

n | E[#S] P 90.025 0.975 t P

25 | 0.0086 0.9917 986 997 | 993 0.993
26 | 0.0159 0.9847 977 992 | 979 0.979
27 | 0.0295 0.9718 961 982 | 978 0.978
28 | 0.0548 0.9483 934 962 | 949 0.949
29 | 0.1023 0.9056 887 923 | 888 0.888
30 | 0.1913 0.8308 807 854 | 821 0.821
31 | 0.3585 0.7066 678 735 | 704 0.704
32 | 0.6732 0.5209 490 552 | 537 0.537
33 | 1.2668 0.2931 265 322 | 283 0.283
34 | 2.3879 0.0989 81 118 85 0.085
33 | 0.0055 0.9946 990 999 | 995 0.995
34 | 0.0102 0.9900 983 996 | 987 0.987
35 | 0.0189 0.9816 973 989 | 981 0.981
36 | 0.0353 0.9658 954 977 | 964 0.964
37 | 0.0659 0.9372 922 952 |1 929 0.929
38 | 0.1234 0.8856 866 905 | 887 0.887
39 | 0.2314 0.7963 771 821 | 774 0.774
40 | 0.4345 0.6520 622 681 | 628 0.628
41 | 0.8174 0.4473 416 478 | 466 0.466
42 | 1.5399 0.2196 194 246 | 200 0.200

mmmmmmmmmm%%%%%%%%%%g

Acknowledgements

We would like to thank Bram Verweij for his assistance in implementing our integral branch-
ing algorithm using his enumeration scheme [12]. We also want to thank David Applegate
and Bill Cook for their many useful comments on our work and for allowing us to use their
DEC Alphaservers.

References

[1] K. Aardal, C. Hurkens, A. K. Lenstra (1998). Solving a system of diophantine equa-
tions with lower and upper bounds on the variables. Research report UU-CS-1998-36,
Department of Computer Science, Utrecht University.

[2] G. Cornuéjols, M. Dawande (1998). A class of hard small 0-1 programs. In: R. E.
Bixby, E. A. Boyd, R. Z. Rios-Mercado (eds.) Integer Programming and Combinatorial
Optimization, 6th International IPCO Conference. Lecture Notes in Computer Science
1412, pp 284-293, Springer-Verlag, Berlin Heidelberg.

[3] CPLEX 6.0 Documentation Supplement (1998). ILOG Inc., CPLEX Division, Incline
Village NV.

17

[4]

[5]

[6]

[7]

8]

[9]

[10]
[11]

[12]

[13]

CPLEX 6.5 Documentation Supplement (1999). ILOG Inc., CPLEX Division, Incline
Village NV.

G. R. Grimmett, D. R. Stirzaker (1982). Probability and Random Processes, Oxford
University Press, Oxford.

A. K. Lenstra, H. W. Lenstra, Jr., L. Lovédsz (1982). Factoring polynomials with rational
coefficients. Mathematische Annalen 261, 515-534.

H. W. Lenstra, Jr. (1983). Integer programming with a fixed number of variables.
Mathematics of Operations Research 8, 538—548.

LiDIA — A library for computational number theory. TH Darmstadt / Universitat des
Saarlandes, Fachbereich Informatik, Institut fiir Theoretische Informatik.
http://www.informatik.th-darmstadt.de/pub/TI/LiDIA

L. Lovész, H. E. Scarf (1992). The generalized basis reduction algorithm. Mathematics
of Operations Research 17, 751-764.

MIPLIB. http://www.caam.rice.edu/~bixby/miplib/miplib3.html
A. Schrijver (1986). Theory of Linear and Integer Programming. Wiley, Chichester.

A. M. Verweij (1998). The UHFCO Library. Department of Computer Science, Utrecht
University.

H. P. Williams (1978). Model Building in Mathematical Programming. John Wiley &
Sons Ltd., Chichester.

18

