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Abstract

Duality is a well-established concept in quantum physics. It formalises the fact that what one
observes is not nature in itself, but—in Heisenberg’s words—“nature exposed to our method of
questioning”. In the context of image analysis “question” pertains to sometask while “nature”
(empirical facts and natural laws) could be taken as the totality of image data supplemented with
relevant external factors (knowledge or hypotheses).

However, the analogy with quantum physics falls short in at least one fundamental aspect.
Whereas the physicist studies nature for nature’s sake, endeavouring to reveal natural laws, the
image scientist pursues a certain task. This implies a shift of paradigm from the retrospect to the
prospect. It will be argued that this leads to a subtle but important difference in the role duality
plays in image processing and analysis as compared to the technically similar “bracket” formalism
in quantum physics.

Duality in the context of image processing and analysis will be explained in detail and its use
will be illustrated in a number of cases. It lies at the core of any low-level definition of alocal
sample, generalising the notion of a digital picture element. It also provides operational definitions
of partial derivativesandLie derivatives. A duality principle known as“carry-along” allows us to
connect isolated samples into ensembles endowed with the kind of topology one usually attributes to
space, time, and spacetime. In this way one is led to corresponding definitions forimages, signals,
andvideo sequences. The flexibility of duality as a generic framework for image processing and
analysis is illustrated by further examples in the context of off-line and real-time processing, notably
causal filteringandmotion analysis. .

1 Introduction

The concepts ofduality andmetamerismare close-knit. Duality pertains to the fact that the outcome
of any computation—a “representation”—relies on interaction between a fiducial source (input) and
a correlate embodying some computational paradigm (filter, algorithm, observer,etc.). Metamerism
refers to an equivalence relation induced by the fact that all representations are potentially many-to-
one. Thus any source configuration is a member of an equivalence class of feasible configurations
(metamers) that would induce identical representations if subjected to the same computation.

Metamerism has been explained in some detail by Koenderink,cf. his example of the “sextuplet
image” and “metameric black pictures” [15, 16]. A more familiar instance in the context of colour
vision is the well-known fact that the “tristimulus curves” give rise to indistinguishable colours despite
different underlying spectral sources [11].

Since their physical representations are by definition identical, it is impossible to segregate metamer-
ical sources, although it is possible to select preferred ones on the basis ofmodels(external knowledge
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or hypotheses). Even a total lack of knowledge does not prevent one from applying at least some princi-
ple of parsimony to select a distinguished representative,e.g.via regularization, the MDL—“minimum
description length”—principle,et cetera. Indeed it would be quite impossible in practicenot to make
any assertions; the application of a model is an inevitability and a commitment at the same time. Ex-
ample: One often takes for granted that the source underlying an image acquisition can be modelled as
a function, although the class of objects that can be probed so as to produce the same image values is
actually more general.

Duality is a well-established concept in quantum physics, where it has a rigorous mathematical
foundation. However, the emphasis there tends to be on a Hilbert space, or “bracket” formalism, in
which the dual objects (“bras” and “kets”, or forms and vectors) are one-to-one related (recall that the
standard Hilbert space ofL2-functions is isomorphic to its own dual,v.i.). Metamerism is usually de-
emphasised or even considered an obstacle because aims are retrospective,viz.to reveal “nature exposed
to our method of questioning” (Heisenberg). In image analysis on the other hand data are subordinate
to the accomplishment of a task, and for this reason the space of filters is of a different kind than that
of the source data,viz. such as to optimally subserve that task. Metamerism consequently becomes a
fundamental concept as it enables one to encapsulate task-irrelevant details into equivalence classes. In
low-level image representation one may think of hiding noise and digitization details, although there is
no reason why it should not apply to high-level descriptions. For instance, a segmentation task entails
the explicit formation of metameric classes (reflecting tissue types or textures, say) despite potentially
significant intraregional variability at the level of the raw data. Another example is optical character
recognition, in which one would like to classify characters irrespective of font size and style.

The use of duality in the context of image processing and analysis will be illustrated below.

2 Theory

If one wishes to abstract from machine technicalities in the definition of an “image1” one will need at
least three ingredients: (i) a sourcef (digital data, physical density field, retinal irradiance distribution,
etc.), (ii) a device or template� (filter, structuring element, probe, sensor, detector, receptive field,
etc., depending on details and context) mapping raw, unstructured data to formatted data (“samples”
or “observations”), and (iii) an operational model� that accounts for spatial coherence (a grab-bag of
samples does not make an image unless it is endowed with a suitable topology). In digital images the
latter is reflected by external “header” information stored in conjunction with the numerical pixel data.

In particular, a sample is defined by virtue of interaction betweenf and�. Duality pertains to the
details of the interface. One branch of mathematics, known as distribution theory, provides a well-
established instance known astopological duality. Point of departure islinearity andcontinuity. In
mathematical morphology one pursues an alternative option,morphological duality. This is anonlinear
probing mechanism, although remarkable analogies with the linear case exist. A third instance of duality
sheds light on the cause of these analogies. It encompasses both topological as well as morphological
formalisms as limiting cases. Albeit strictly nonlinear, it is isomorphic to the linear case, and hence will
be referred to aspseudo-topological duality. All three instances will be briefly outlined.

2.1 The Principle of Duality

Let us denote the class of all possible sources—raw images, for the sake of definiteness—by�, and
call it state spacefor ease of reference. The class of filters will be calleddevice spaceand indicated

1“Image” should be distinguished from “raw image”—in the form of an image file, say—which is merely a machine
representation of the source field of interest.
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Figure 1: Duality:� def
= dual� means that an elementF 2 � (i.e. a “raw image”) is defined by virtue

of the way it triggers numerical responsesF [�] 2 IR when exposed to all filters in a fiducial filter class
� 2 �. This implies that one can make arbitrary hypotheses about the “naked source field” (the input
symbolised by “?”) as long as these are consistent with data evidence (the output representation marked
by “!”) given one’s knowledge about the inner workings of the measurement procedure (i.e. the duality
paradigm). Source field configurations or raw images that induce identical representations for a given
filter class are called metamerical (relative to filter class and duality paradigm).

by �. Assessment of a raw image proceeds indirectly,viz. by monitoring its behaviour when probed
by all available templates: Fig. 1.I.e. one conceives of a grey-value as the outputF [�] 2 IR of a
raw imageF 2 � when exposed to a specified filter� 2 �. It is common practice to model a raw
image as an ordinary function mapping spatial pointsx 2 IRn into grey-valuesf(x) 2 IR. However,
point mappings are deceptive for two reasons: (i) one cannot map points as these are physically void
entities, and (ii) grey-values have no objective existence independent of some measurement aperture,
i.e. without accounting for duality. This can be formalised as follows.

Paradigm 1 (Duality) State space is the dual of device space:�
def
= dual�.

We will adhere to the traditional “naked function model” to represent araw imagein order to de-
emphasise the duality underlying the raw image data, which are of course in turn determined by some
duality principle reflecting the measurement paradigm (think of sampling with a device specific “point
spread function”). Using functions rather than functionals in this case expresses our wish to abstract
from image formation details (point spread function, quantum effects, noise) and machine technicalities
(rendering details, numerical limitations), but will of course pose physical limitations to filter design
(e.g.it is of no use to apply filters that are more narrow than the point spread function). In particular we
must decline from references to isolated source values; the “identity operator”—i.e. a sampling filter
confined to a single point, returning the source field’s “punctal” value—is a physically void concept!
Note that, in principle,F [�] may beanyfunctional of�.

2.2 Metamerism

In the context of duality it is natural to considerequivalence classes: Input images that trigger identical
responses are indistinguishable. Example: Suppose we have only one filter at our disposal, which reads
its inputf and returns its pixel averagef . Theng � f iff g = f . Clearly lots of images map to the same
mean. In order to arrive at an image processing framework forgenericpurposes a conceptual imageF
must somehow be one-to-one related to its pixel dataf , except for non-measurable details. That is, if
g(x) = f(x) almost everywhere, then we would likeG[�] = F [�] for all plausible filters�, vice versa.
In a generic context simple duality formalisms and large filter classes are preferred.

If, on the other hand, one has aspecificgoal in mind, it remains a bit of an art to arrange things
in such a way thatG[�] = F [�] whenever two raw imagesf andg are supposed to produce identical
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outcome. A nontrivial example is “noise suppression” (or, if one wishes, segmentation): Iff andg
differ only in the manifestation of noise, then a filter� in conjunction with a suitable functional (i.e.
duality principle) realizing the above identity would solve the problem. In a specific context duality
formalisms tend to become highly nontrivial and the smallest possible filter class —one would rather
refer to the probing mechanism as a whole as an “algorithm” in this case—is preferred so as to minimise
ambiguity or user effort.

2.3 Topological Duality

Without loss of generality one may adopt the filter class proposed by Schwartz [19] in the (bi)linear case.
According to Paradigm 1 this implies that images are conceived of as so-called “tempered distributions”
(objects that are to be filtered linearly in order to produce numeric samples).

Definition 1 (Schwartz Theory) LetS(IRn) be the class of smooth functions of rapid decay, then�
def
=

S(IRn), whence�
def
= S0(IRn). The latter is also known as the class of tempered distributions.

The majority of tempered distributions is “regular”,i.e. they can be written in integral form:

F [�] =

Z
dz f(z)�(z) :

(A very weak formal requirement is thatf must be a function of polynomial growth.) Of course this is
nothing but straightforward linear filtering, and it is easy to implement an approximate discrete version.
Nonregular tempered distributions always involve theDirac distribution: �[�] � �(0). In practice one
uses the integral formula even in these cases, associating the Dirac distributionwith the “function-under-
the-integral”�(x). Such distributions are not at all pathological, and share virtually all nice properties
characteristic for distributions in general, such as smoothness (infinite differentiability). “Point stimuli”
also lie at the core of “reverse engineering” disciplines, in which one aims to establish filter profiles
of a black box system by applying an (approximate) point stimulus. In image analysis the stimulus is
given (a raw imagef , which can be approximated by a linear combination of Dirac distributions if one
neglects the p.s.f.), and the filters are designed according to need.

Rapid decay reflects filter confinement. This implies that we can assign abase pointx to each
filter � corresponding to its “centre of mass”. This many-to-one assignment rule�[�] = x is called a
“projection map”. Its one-to-many inverse,�inv[x] = �x � �, producing all filters at a given base
point, is technically known as a “fibre”, and the totality of all fibres over all base points,� = [x�x

as a “fibre bundle”. A localised filter may haveanysize; a suitable measure for this is the normalised
second order central momentum tensor (“affine scale”).

Filter smoothness is hardly a demand. This follows from the fact thatS0(IRn) is larger than any of
the function spaces typically employed in non-dualistic models. In other words, the filter classS(IRn)
guarantees a more-than-sufficient “segregation of quality”. In fact, ifF [�] = G[�] for all � 2 S(IRn),
thenf andg differ by at most a non-measurable function, exactly as desired.

Oneimage processing consistencydemand should be mentioned. If a filtered image2 does not have
a preferred status, in other words, is just another source field that could be filtered in turn, then it can be
shown that� must satisfy aclosure property: Two successive filterings must be equivalent to a single
one using a filter that is also available in�, cf. Fig. 2. This is indeed the case forS(IRn), which is a
convolution algebra. The consistency demand must be met if we want to account for all possible input
images regardless of preprocessing history.Scale-space theory[6, 10, 12, 13, 18, 20, 21] boils down

2Strictly speaking we have not yet defined “image”, but think of it for the moment as thecorrelationf ? �(x), i.e. the
collection of samples obtained according to Definition 1 using shifted copies�(z� x) of �(z) at every base pointx.
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Figure 2: Image processing consistency requires device spaces to satisfy a closure property.

to Schwartz theory equipped with apoint concept, a positive “zeroth order” filter consistent with the
image processing demand,i.e. one generating anautoconvolution algebra. Within S(IRn) this leaves
no choice but the normalised Gaussian (of arbitrary scale and base point). For later use the Gaussian
and its derivatives will be denoted byG(IRn), the “Gaussian family” [17].

Definition 2 (Scale-Space Theory)Recall Definition1. The scale-space representation of a raw image

is obtained by subjecting it to the Gaussian family�
def
= G(IRn), i.e., it is an element of�

def
= G0(IRn).

The significance of linearity is that it is compatible with the demands for differentiation. In fact, both
Definitions 1 and 2 enable differentiation in a well-posed and operationally meaningful sense:

Result 1 (Derivatives) LetD be a linear derivative operator. The derivative of a local sampleF [�] is
the local sample defined by

DF [�]
def
= F [DT�] ;

in whichDT is the transpose ofD. In integral form:

DF [�] =

Z
dz f(z)DT�(z) :

Thus differentiation is in fact integration: One can “extract a derivative” by linearly filtering the source
data with a filterDT�. Of course the result again depends on the filter as in the zeroth order case. Note
that transposition brings in a minus sign if order is odd,e.g.rT = �r (why?). Regarded as a fibre
bundle the Gaussian family induces a so-calledlocal jet bundleof the input image [7, 17].

2.4 Morphological Duality

Morphological duality is based (at least conceptually) on tactile probing. A sample of the form

F [�] = sup
z

[f(z) + �(z)] ;

is known as thedilation of f (at the origin) bystructuring element�, cf. Fig. 3. A similar formula is
obtained for theerosionif sup is replaced byinf and addition by subtraction. One can think of a physical
probing device with profile� touching the surface defined by the graph off from above, respectively
from below. It should be clear from this picture that morphological probing is quite sensitive to the
presence of noise spikes (exceptional amplitudes at isolated points).

A particularly interesting filter is thequadratic structuring functionwith arbitrary base point and
size, which inducesdilationanderosion scale-spacesanalogous to (zeroth order) Gaussian scale-space
in the linear theory [1, 2, 3, 5]. However, because of nonlinearity it is not clear whether one can define
“morphological derivatives” analogous to Result 1, [4].
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Figure 3: Dilation by a semicircle is an instance of a morphological probing mechanism. The radius of
the circle—in general the width of the structuring element—is a measure of scale or resolution of the
measurement probe.

2.5 Pseudo-Topological Duality

Consider a probe of the form

F�[�] =
1

�
ln

Z
dz e�f(z) �(z) � 2 IRnf0g :

It is basically a linear probe but with a nonlinearity at the interface of source and filter. If certain weak
conditions regarding the source dataf are met it can be shown that, if� is a normalised Gaussian, both
the “linear limit” � ! 0 as well as the two “morphological limits”� ! �1 exist and reproduce the
previously encountered linear, respectively morphological scale-spaces. The linear limit even defines
an isomorphism, whence the terminology “pseudo-topological duality”. For nonzero finite� it defines
a probing mechanism which is in a precise sense in-between the linear and morphological ones. It
can be interpreted as a soft-probing into a “surface layer” (whereby the surface itself is defined by
the graph off ) of depthO(1=j�j), [8]. A particularly interesting observation is that pseudo-linear
probing is less sensitive to noise spikes than the morphological limits; in the case of additive noise with
a characteristic amplitude in the order of1=j�j, its behaviour is much like the noise averaging linear
mechanism within the noise layer, while still resembling the morphological mechanism “deep down”.
Thus unlike morphological duality pseudo-linear duality can be adapted to data tolerance.

2.6 The Carry-Along Principle

There are always dual interpretations explaining an apparent change of grey-value: Either filter or
input has changed. A “spatial transformation” (shift, rotation, scaling,etc.) pertains to a changing
relationship between interactingphysical objectsdefined in space (i.c. sources and filters), rather than
some nonphysical deformation of space itself. Although this applies to duality in general, we focus on
implications in the context of topological duality.

Definition 3 (Push Forward) Let � : IRn ! IRn : x 7! �(x) be a spatial transformation. The push
forward of a filter is then defined as the mapping

�� : �x ! ��(x) : � 7! ���
def
= j detr�inv j� � �inv :
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Subscripts attached to� indicate what happens to a filter’s centre of gravity (whence the terminology).
One naturally “pulls back” the source field in the dual view.

Definition 4 (Pull Back) With� and its push forward�� as defined in the previous definition, the pull
back of the input image is defined as the mapping

�
� : ��(x) ! �x : F 7! �

�F defined by �
�F [�]

def
= F [���] :

Note that the base point (“focus of attention”) now moves inoppositedirection. These definitions may
seem a bit abstract on first sight, but it is easily appreciated that both��� (filter transformation) as well
as��F (transformation of input image) represent more sensible actions than�(x) (for how could one
transform a “void”?), and in a way it is better to say that one of the former two induces the others.
Indeed, it is easy to think of dual filter/image transformations without existence of a corresponding
spatial transformation, but impossible to make sense of the latter without any manifestation on physical
objects (cf. Result 1: Derivation has no counterpart in “empty space”). If one writes Definition 4 in
integral form it will be seen that it is basically a change of integration dummies; the function-under-
the-integral corresponding to the transformed source,�

�F , is just the original one evaluated at the
transformed point,i.e.f � � (“scalar transformation”):

�
�F [�] =

Z
dz f(�(z))�(z) = [subst.y = �(z)] =

Z
dy j detr�inv(y) j f(y)�(�inv(y)) = F [���] :

Example: One can shift a patient underneath a scanner, or move the scanner in opposite sense. This
generalises to any (invertible) transformation. The relevant formulas in this case are:�(z) = z + x,
�
�f(z) = f(z + x), ���(z) = �(z � x), and the above equality can be rewritten as the correlation

f ? �(x) in two equivalent ways.
Definitions 3 and 4 implement the so-called “carry-along principle”, which forms the basis for many

image manipulations. This is illustrated in subsequent sections.

2.7 From Samples to Images

The step from a mere grey-value sampleF [�] to an actual output imageF [���] = f ?�(x) in the patient
example relies on the push forward/pull back principle based on spatial translations�(z) = z+ x over
all vectorsx within the relevant field of view (recall Footnote 2).

However, a complete and consistent image model accounts forall symmetries of space and time,i.e.
not only translations (homogeneity), but also spatial rotations (isotropy) and spacetime scalings (scale
invariance). If� is rotationally invariant the result of carry-along will be a multiscale representation of
f . This is at the same time a “minimal” representation since nontrivial filters in Schwartz space may be
rotationally invariant but cannot be scale-invariant3 (recall the Jacobian in the push forward formula).

2.8 Temporal Causality

It is sometimes argued that because of infinite filter support the Gaussian family is not suited in case
temporal causalityis a prerequisite, as in active vision. However, the following “Koenderink trick”,
exploiting the carry-along principle, can be applied [14].

Consider 1D temporal sequencesf(t) for simplicity. The basic observation is that there must be
sometime domain in which the Gaussian family makes sense (by virtue of its uniqueness there is no
alternative), say parametrised by a parameters 2 IR. The physically reasonable domain for a visual

3Scale-invariant filters� 62 S(IRn) do exist, however:�(z) = kzk�n is scale-invariant inn-dimensional space.
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Figure 4: The isomorphismt = �(s; a) discards the unknown futuret � a. The asymptote indicates the
time horizont = a. The box delimits a typical time window for a real-time system. Uniform sampling
of theS-domain implies a graded resolution history.

system actively participating in the world is of course the history part of the time axis. Therefore discard
the unknown future by introducing a time horizon (the present moment) and mapping the past semi-axis
onto thes-domain: Fig. 4. Once such an isomorphism has been established4, sayt = �(s; a)—note
that it depends on the present momenta—proceed as usual: The isomorphism acts on a filter�(s) by the
recipe of “push forward”, yielding a filter���(t; a)—which again depends ona—producing the desired
filter profile in thet-domain: Fig. 5. In this way Koenderink has utilised the push forward principle to
produce filters incorporatingmanifest temporal causalityin an unambiguous way.

Recall that
��F [�] = F [���] :

In other words, the alternative “realist’s view” or “causal world picture” obtained by the dual action of
pull back applied to the source data cannot be disqualified on objective grounds. TheF on the r.h.s.
corresponds to a “function under the integral”f(t), which could be a fully recorded video tape being
causally processed, or looked at by an observer in real-time. Of course the content of the tape doesnot
depend on the present momenta. Causality is introduced here by the act of filtering (observation) by
causal filters���. The��F on the l.h.s. is a signal in thes-domain—whichdoesdepend ona—and
reflects thesignal history relative to acquisition timea, subjected to shift invariant filters that do not
depend on the time of acquisitiona.

The causal representation should appeal to biologists for its built-in fading memory characteristics
and emphasis on recent events, which is of course crucial in generating efficacious action (escaping
predators, catching prey,etc.).

2.9 Motion

The appropriate differential tool in the context of motion is theLie derivative. It expresses the rate of
change of a quantity when moving in the direction of a (spatial) vector fieldv, say, and is proportional
to that vector field. The following definition therefore suggests itself:

(v � r)F [�]
def
= F [�r � (v�)] :

The l.h.s. corresponds toLvf = (v � r)f , i.e. the Lie derivative of a scalar function. Transposed to
filter space one observes that the dual Lie derivative of a filter� must beLT

v
� = �r � (v�). Apart

from the minus sign we see that the gradient operator acts on filter as well as vector field, containing an
additional divergence term� div v not present in the scalar case.

4There exists a unique “canonical” isomorphism [6], which Koenderink arrives at by physical reasoning [14].
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kernel of order 0 in S-domain kernel of order 0 in T-domain

kernel of order 1 in S-domain kernel of order 1 in T-domain

kernel of order 2 in S-domain kernel of order 2 in T-domain

Figure 5: Comparison of causal point operator and its first and second order derivatives ins and t

domains. The map��—which depends ona—maps the filters ins-representation on the left to thet-
representation on the right, which corresponds to a fixed delaya� t. All causal filters vanish smoothly
towards the time horizon. (Of course there is no such moment in the left graphs.) The shaded region
indicates the unrevealed future.
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The spatial motion fieldv is defined such that if one comoves with the induced flowsome measur-
able entityis preserved. The simplest such entity isF [�] itself, in which case one obtains the “motion
constraint equation” while correctly accounting for duality:

d

dt
F [�] = (v � r)F [�] +

@

@t
F [�] = 0 ;

or, in dual form (omitting the overall minus),

F [
d

dt
�] = F [r � (v�)] + F [

@

@t
�] = 0 :

An algorithm for solving the latter has appeared in the International Journal of Computer Vision [9],
which also discusses the case of density sources.
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