
Distributed Control for AI
�

Gerard Tely

Dept of Computer Science, Utrecht University

P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

Email: gerard@cs.uu.nl

July 1998

Abstract

This paper discusses a number of elementary problems in distributed computing and
a couple of well-known algorithmic \building blocks", which are used as procedures in
distributed applications. We shall not strive for completeness, as an enumeration of the
many known distributed algorithms would be pointless and endless. We do not even try
to touch all relevant sub-areas and problems studied in distributed computing, because
they are not all relevant to Distributed AI. Rather than an algorithm catalogue, the
paper aims to be an eye-opener for the possibilities of the distributed computing model,
an introduction to designing and reasoning about the algorithms, and a pointer to some
literature.

The paper introduces the distributed model and illustrates the various possibilities
and di�culties with algorithms to compute spanning trees in a network. We show how
the communication and time complexities of the algorithms are evaluated. Then a more
complicated, but relevant control problem is studied, namely termination detection. This
study reveals how intricate it is to make information about a distributed global state
available to a node locally. Termination detection occurs in distributed applications of all
areas and is not speci�c for Distributed AI.

Application of some distributed control techniques is exempli�ed in the later sections
in distributed computations for Arti�cial Intelligence problems. We discuss a distributed
implementation of Arc Consistency and Constraint Satisfaction and observe how termi-
nation detection and distributed evaluation of functions play a role. The paper �nally
presents a distributed graph algorithm, illustrating another termination detection princi-
ple, and providing an example of broadcast/convergecast and controller movement.

1 Introduction: Networked Intelligence

Centralised intelligence currently makes place for networked, or distributed intelligence. The
Webster program on my computer illustrates it all: it has no built-in dictionary, but responds
my queries by Internet access to an American server, yet outperforms any lookup in a paper
version. Collecting resources in any computer is uneconomical, specialised resource servers
are easier to maintain, and access cost is low due to cheap communication technology.

�Appears in: Gerhard Weiss (Ed.), Distributed Arti�cial Intelligence, MIT Press, 1998 (Ch. 14).
yThis research was partially supported by ESPRIT Long Term Research Project 20244 (Project ALCOM

IT: Algorithms and Complexity in Information Technology).

1

Network Computations. Computations in networks of processing nodes, each holding a
part of the inputs and/or resources initially, can roughly be classi�ed into centralised, dupli-
cated, or distributed computations. A centralised solution relies on one node being designated
as the computer node and possessing the resources to process the entire application locally.
All input data and relevant resources are sent to this node, and after local processing the
computer sends the relevant output data to each of the other nodes. A duplicated solution
sends all input data to each node, after which each node processes the entire application and
throws away all output data except those it needs itself. The
agrant waste of computing
resources can be economically justi�ed only if the output data (which is not transported here)
far exceeds the input data in size. Duplicated computation is used to compute routing tables
in the Internet [24, Sec. 5.5].

This chapter concerns distributed solutions, where the processing steps of the application
are divided among the participating nodes. Even when not explicitly based on a sequential
algorithm, each distributed solution can be seen as containing a sequential one consisting
of the combined computation steps of the participants. In addition the distributed solution
contains communication actions for the exchange of intermediate results and coordination;
our goal is to minimise communication and computation cost.

Afek and Ricklin [1] observe cost bene�ts of an intermediate strategy where computation is
concentrated in several computing centres. Awerbuch and Peleg [4] reach similar conclusions,
but a discussion of such solutions, though we would still consider them as distributed, is not
possible in this chapter.

1.1 Model of Computation

The distributed model is characterised by a collection of autonomous processing elements,
called nodes. In addition to some computing and storage resources, each node has the pos-
sibility to exchange information with some of the other nodes; these are referred to as its
neighbors and the communication takes place through a link (also called edge).

We denote by n the number of nodes (or size) of the network and by m the number of
links and thus the network can be represented as an undirected graph on n vertices and with
m edges. We use D for the diameter of this graph. We assume the graph to be connected,
which implies m � n� 1. It is not assumed that the nodes know this graph; representing it
in every node would be costly, and contradicts the aim of processing each bit of input where
it belongs. Storing some derived topological information, such as n, m, or the diameter of
the graph, would be feasible, but it is usually super
uous.

The neighbour relation can be de�ned by the hardware, for example in processor net-
works where the neighbors are those processors to which the node is physically connected.
Alternatively, the application can de�ne this relation, for example, in Belief Networks [31],
where each node stores information about a stochastic variable and communicates with nodes
storing some related variables.

Symmetry. In this chapter it is not necessary to make a distinction between nodes on the
basis of their resources (computing or storage nodes) or role (such as clients or servers), but we
do assume two distinctions. First, nodes are identi�ed by unique, uninterpreted tags (names)
and initially each node knows its own tag and those of its neighbors (neighbourhood knowledge
is assumed). Second, a single node is distinguished to act as an initiator of computations;

2

this only means that this node executes a special program (usually just an additional start
procedure), not that is has extra capabilities or resources.

These assumptions are natural because they can be met at low cost when implementing
a distributed system; distributed algorithms research has investigated their in
uence on the
power of the model.

In terms of network computing power, one of these assumptions su�ces and they are
equivalent [28]. If only identities are given, we may use an election program to choose one
node as an initiator; such a program should of course not rely on the existence of an initiator,
and would output, for example, the largest identity [13, 29]. If no initial identi�ers are known
while an initiator is distinguished, it may start a network traversal to assign unique names.
A di�erent situation arises in anonymous networks, where neither identities nor initiator are
given; Rosenstiehl et al. [21] established 25 years ago that these networks can compute fewer
functions. No function that requires to break symmetry can be computed deterministically;
with randomised algorithms, naming and election can be performed, but only if the nodes
initially know the size of the network [27, Chap. 9].

Communication. In this chapter, the communication between nodes is by message passing
and has two operations, send and receive. Parameters for the send are: the recipient, which
is a neighbors of the calling node, and the message, which is some piece of information; it will
be transported to the mailbox of the recipient. The receive operation removes a message from
the node's mailbox; it can complete only if a message is available, and returns the message
and its sender. If there are no messages the operation is suspended; if there is more than one
message, either of them can be returned.

We further assume that communication is asynchronous, which means that the completion
of a send operation does not imply that the message has been received, or even, that it was
delivered in the recipient's mailbox. All we assume is that it will eventually be available for
reception because we assume reliable communication. The time between sending a message
and its delivery at the receiver is unpredictable and may vary between channels and even
between messages.

Only one temporal relation can be derived, namely, that the message is sent before it is
received; we also assume that each message is received only once. This distinguishes message
passing from communication by writing and reading a shared variable; it is cumbersome to
ensure that each item written to such a variable is read (and processed) by the reading node
exactly once.

1.2 Complexity Measures

The asynchrony in the communication causes the execution model to be non-deterministic;
indeed, a distributed program may allow di�erent executions on the same data depending on
the scheduling of the events. When discussing complexity we shall always consider the worst
case over all possible schedules.

Communication, Time, and Storage. The �rst goal in analysis of distributed algorithms
is to compute the amount of communication by the algorithm; usually, as the number of
messages exchanged in a computation. Only if messages in some solution are exceptionally
large (contain more than, say, a few data items), we must be more precise and count the bits
in each message, for example, in the \linear" depth-�rst search algorithm of Section 2.1.

3

A
A
A
AAU

XXXXXXXXXz

p

q

m2

m3m1

r

�
���

tt

tt

tt

Figure 1: Two messages in one time unit.

The time complexity represents the duration of the computation, and is expressed in
terms of the slowest message in the computation. This compares with the classical sequential
time complexity, which does not really measure time but instead counts consecutive opera-
tions. The parallelism in the distributed model complicates matters slightly. Consider node
p sending messages m1 and m2 to neighbors q and r, respectively; after receiving m1, node
q sends message m3 to r and this message arrives at r before message m2. This small exam-
ple, illustrated by the space-time diagram of Figure 1, contains a message chain of length 2,
namely message m1 followed by m3 (sent after receipt of the former). However, the entire
chain is formed during the transmission of the single message m2, and hence we say the time
complexity of the example is 1.

We ignore local processing when computing time complexities; the time involved in pro-
cessing is considered \small compared to the transmission delays". Two small examples may
illustrate the controversy; see Figure 2. First, a server p polls k neighbors one by one by
sending a message and receiving a reply; each request being sent upon receipt of the previous
reply. The time complexity is 2k because polling each neighbors costs 2 time units, one for
the request and one for the reply, and this repeats k times. Ignoring the processing time be-
tween receiving a message and sending the next one appears acceptable, because no waiting
is involved, and it does not change the asymptotical complexity.

Alternatively the server may poll its neighbors in parallel by sending a request to each
and then collect the answers; now the time complexity is 2 because all requests are sent
without waiting, and the last reply must arrive at the server after at most 2 time units. The
de�nition of time complexity assumes that the time for sending the k requests, and the time
for processing the k replies, is negligible.

The storage complexity expresses the amount of memory used by the algorithm; sometimes
computed in bits, but it is usually convenient to assume larger units, \words", each capable

�
�
�
�
�
��� CC
C
C
C
C
C
CW �
�
�
�
�
�
�
��C

C
C
C
C
CCW

B
B
BBN �
�
��� C
C
C
CCW �
�
�
��� C
C
C
C
CCW �
�
�
�
���

�
�
�
�
���

�
�
�
�
�
���

�
�
�
�
�
�
�
��

Master

Slave 1
Slave 2

Slave k

�
�
�
���A

A
A
A
A
A
A
AU

A
A
A
A
A
AAU

A
A
A
A
AAU

A
A
A
AAU

A
A
AAU �

�
���

t

t

t

t

t

t

tt

t

t

t

t

t

t

t

t

t

t tttt tttt

Figure 2: The local processing controversy.

4

of storing an identi�er or integer.

Discussion. We might be tempted to compare the complexity of a distributed algorithm to
the complexity of sequential algorithms for the same problem. When comparing, sequential
time should not be compared to distributed time, but to message complexity. Indeed, in the
sequential model, \time" actually measures the total amount of \work" because time actually
counts the instructions executed sequentially. In the distributed model, \work" corresponds
to messages, because the work performed by nodes can usually be charged to sending and
receiving messages; see Algorithm 19{22 for an example. Distributed time accounts for the
speedup that is achieved by the parallelism inherent in the model, but also penalises for nodes
that must wait for data before continuing their execution.

It is usually observed that the communication complexity for processing the network
topology is at least linear in m, which is the input size for topological problems. For graph
exploration, for example, this can be shown formally [27, Chap. 6] because each link must
carry at least one message. Task that require processing a constant amount of information
for each node (such as a sum of distributed inputs, see Alg. 14) can be performed with O(n)
messages using spanning trees or cycles. A message complexity below O(n) is not possible
for tasks that require cooperation of each node.

The worst case w.r.t. time complexity occurs when all messages are exchanged one after
the other, and the time complexity then equals the message complexity. A straight-forward
distribution of a sequential algorithm (see Sec. 2.1) often results in both message and time
complexity being equal to the sequential time complexity (i.e., �(m)). If all processing for
each node can be performed in constant time, the overall time complexity becomes linear in
the size of the network (n) and this is often possible, as we will see.

A fast algorithm is one that uses sub-linear (i.e., o(n)) time. Fast computing is not
easy; Garay et al. [11] present an algorithm for Minimal Spanning Tree that runs in O(D +
n0:614) time, but the solution appears a bit arti�cial. The message complexity of the fast
solution is large (unknown though), while message optimal solutions (exchanging O(n logn+
m) messages) exist with linear time complexity [3, 10]. We shall discuss a distributed depth-
�rst search algorithm whose time is proportional to the depth of the DFS tree, while again
message complexity rises sky-high.

The network diameter serves as a time lower bound for all tasks that require coordination
between all nodes (including every task that requires consensus in the output), because no
information can be communicated across the network in o(D) time. Linial [15] gives examples
of tasks (Maximal Independent Set, Colouring) that can be solved by local computations, i.e.,
in sub-diameter time, and Litovsky et al. [16] have further investigated the power of local
computations.

1.3 Examples of Distributed Architectures in AI

Distribution may be driven by several factors, such as the wish to speed up computations by
using more hardware, or the availability of resources.

Multiprocessor computers. Sometimes an application can be processed by a single com-
puter (in a sequential model) but this is just too slow. The solution is a multiprocessor
computer, such as an array of 16, 128, or more processors connected by a high-speed com-
munication network. The steps of the computation must be allocated over the available

5

machines, but as the architecture does not match the application, this is usually a di�cult
task. The ideal allocation shares the computation load as good as possible, while achieving a
low communication overhead (due to the exchange of intermediate results). See Section 4.5.

Resource distribution. In some situations distribution is not a choice, but is enforced
by the availability of necessary resources at di�erent locations. Consider, for example, the
problem of planning several university committee meetings. Committees that share a professor
may not overlap their meetings, but to decide if some date is available, the member's agenda
must be consulted. Finding out if the members can go from one meeting to the other in time
requires inspection of bus and train time tables. To see if rooms are available, the cooperation
of the room reservation systems at the various universities is necessary.

Each of the mentioned resources runs at a �xed location, so the planning application must
include distributed problem solving; we shall consider distributed constraint satisfaction in
Section 4.

Belief Networks. A Belief Network models hypotheses and statistical dependencies be-
tween them in a graph. The computations to update the information in this network are
naturally distributed over the nodes, where each node may need information from its neigh-
bors to do the update. Each node in the graph can be described as a process, communicating
with its neighbors processes. The physical location of the processes then becomes irrelevant:
for the application it does not matter if all nodes are on the same machine, or distributed over
various machines. In Section 5 we show that processing the network structure (computation
of a loop cutset) can be described in the same model.

2 Graph Exploration

This section describes algorithms to compute spanning trees in an undirected network, that
is, partition the set of edges into tree edges (these will be directed from parent to child) and
non-tree edges. At the end no node will see the entire tree, but only the status of its own
links (tree or non-tree).

The problem of computing weight-minimal trees has received attention in the literature
[10], but where unit-cost links are assumed all trees are weight-minimal and we shall not ad-
dress this problem. We illustrate the algorithms by giving pseudocode with Pascal-like (mostly
self-explanatory) syntax set in typewriter font. As a convention we shall use a subscript u
when reasoning about a variable of node u (as in lau), but because in a distributed algorithm
a node can access only its own variables, the subscript is omitted from the pseudocode.

2.1 Depth-�rst Search

In the sequential setting, depth-�rst search has been in wide use since the late 1950's, espe-
cially in Arti�cial Intelligence, as a technique for exploring solution spaces for problems. Its
importance for graph processing was recognised by Hopcroft and Tarjan and results from the
simplicity of the algorithm (O(m) sequential time) combined with an attractive structural
property of the constructed tree, namely, that the two endpoints of any non-tree edge are
connected by a directed path in the tree.

6

var visited[u]: bool init false ;

procedure dfs(u):

if not visited[u]

then begin visited[u] := true ;

forall v in Neigh[u] do dfs(v)

end

Start the algorithm: dfs(u0)

Algorithm 3: Sequential depth-�rst search.

Sequential depth-�rst search is implemented by a short recursive procedure (Alg. 3); the
�rst call of dfs(u) recurses on all neighbors, while subsequent calls return immediately. Calls
to node u may be nested, i.e., a second call to u may occur while the �rst one is still active,
but in this case the second call returns immediately because visited [u] is set when entering
the procedure. The start node u0 is the root of the constructed tree, and each other node
becomes a child of the neighbor from which the �rst call of dfs(u) was made (this is not shown
in Alg. 3). Alg. 3 makes two recursive calls through each edge.

First distributed solution. In the distributed model, control is passed from one node to
the other by exchange of a message, so each recursive call uses two messages: one for the call
and one for the return. Some saving can be achieved; node u will not place a call to its father,
and node u will not call the procedure on neighbour v if a call was earlier received from v and
returned. The reason is in both cases that the neighbour has already been visited and would
return the call immediately.

To describe the operation of node u in more detail, consider the receipt of a message from
neighbour v. If u has sent a message to v earlier, the received message is a return message
and u selects a next neighbour for placing a call; when the neighbors are exhausted, u sends
a return message to its father or, if u is the initiator, terminates. Otherwise, the message is
a call from v; if this is the �rst call for u, designate v as the father and send a message to
another neighbour. If a call was received before, a return message is sent to v immediately.

Alg. 4 uses variable statusu[v] to indicate if the link from u to v is unused, father, or cal or
ret if a call or return was sent through the link. It is not necessary to use di�erent messages
for a call and a return because the nature of the message can be derived from the context
as argued above. Consequently, the algorithm uses only a single type of message, denoted
[dfs].

At the end, the link status is interpreted as follows. Each non-initiator has one father link,
leading to its father in the constructed dfs tree. A ret link was used for returning a second
or later call and hence indicates a non-tree link leading to a descendant in the dfs tree. A cal
link was used for placing a call, and this link is either a tree link (if the call was the �rst one
made on the neighbour) or a non-tree link leading to an ascendant. If nodes must be able
to distinguish between downward tree links and upward non-tree links, this can be done by
using two di�erent return messages for returning the �rst and the subsequent calls.

7

var visited bool init false ;

status[v] init unused (* for each neighbor *)

Start the algorithm (initiator only!):

visited := true ;

for some w in Neigh do

begin send [dfs] to w ; status[w] := cal end

Upon receipt of [dfs] from v:

if not visited then

begin visited := true ; status[v] := father end ;

if status[v] = unused then

begin send [dfs] to v ; status[v] := ret end

else if there is a w with status[w] = unused then

begin send [dfs] to w ; status[w] := cal end

else if there is a w with status[w] = father then

begin send [dfs] to w end

else (* initiator *) stop

Algorithm 4: Distributed depth-�rst search (for u).

Regarding the complexity of the algorithm, we observe that two messages are exchanged
through each link, hence the communication complexity is 2:m messages. As they are ex-
changed one after the other, the time complexity is also 2:m. The algorithm uses in each
node a number of bits proportional to its degree.

Awerbuch's linear-time solution. Exactly n � 1 of the edges become tree edges, so in
the case that m signi�cantly exceeds n, the time complexity of the algorithm is dominated
by the calls and returns through non-tree edges. These calls do not construct edges of the
dfs tree; so if node u could be aware of its neighbour v being visited already, the call to v
could be skipped without a�ecting the outcome, and the time complexity would be reduced
signi�cantly.

This is exploited in Awerbuch's algorithm [2]; each node informs its neighbors when it is
visited for the �rst time, before forwarding any recursive calls. Of course we still communicate
through each edge, but informing the neighbors can be parallelised and we save on time. When
forwarding calls, the node now skips neighbors that are known to be visited already (status
done); see Alg. 5.

It uses three types of messages, namely [dfs] as before for the calls and returns, [visit]
messages to indicate that the sender was visited, and [ack] messages to acknowledge these.
The status of a link can be unused, father, cal, or done to indicate that no [dfs] message was
exchanged, but the neighbour has been visited. The ret status is not used because no node
ever receives a second call message; the corresponding clause of Alg. 4 is removed from the
response to a [dfs] message.

The algorithm still communicates only a constant number of bits per edge, but the message

8

Start the algorithm (initiator only!):

visited := true ;

forall x in Neigh do send [visit] to x ;

forall x in Neigh do receive [ack] from x ;

for some w in Neigh do

begin send [dfs] to w ; status[w] := cal end

Upon receipt of [visit] from v :

status[v] := done ; send [ack] to v

Upon receipt of dfs from v:

if not visited then (* first dfs is first call *)

begin visited := true ; status[v] := father ;

forall x in Neigh - {v} do send [visit] to x ;

forall x in Neigh - {v} do receive [ack] from x

end ;

if there is a w in Neigh with status[w] = unused then

begin send [dfs] to w ; status[w] := cal end

else if there is a w in Neigh with status[w] = father then

begin send [dfs] to w end

else (* initiator *) stop

Algorithm 5: Awerbuch's distributed depth-�rst search.

complexity is now 4:m, which is seen as follows. On a tree edge uv, u informs v about being
visited at the expense of two messages, and the call on v by u costs two messages; no [visit]

message is sent by v to its father. On a non-tree edge uv the nodes u and v mutually inform
each other of being visited, both at the cost of two messages.

The algorithm exchanges 2 [dfs] messages through n � 1 links, to a total of 2n � 2
messages and these are exchanged in a chain. Each time a node is visited for the �rst time
the
ow of [dfs] messages is interrupted for exchanging [visit] and [ack] messages, which
takes two time units. Hence the time complexity is bounded by 4n � 2. A slightly better
result was obtained by Cidon [6].

Linear-message solution. Calls and returns through non-tree edges can be avoided with-
out sending additional messages; see H�elary et al. [12]. In these solutions a node is not
informed about a neighbour being visited by receiving from that neighbour, but instead the
call and return messages include a complete list of nodes already visited. Indeed, placing a
call on any neighbour is avoided if that neighbour occurs in the list; see Algorithm 6, where
we eliminated the visited variable because a node can inspect the message to �nd out if it was
visited before.

The algorithm illustrates various observations regarding communication complexity and
its relation to \amount of work". The total number of messages is reduced to 2(n� 1), but
at the expense of having very long messages; indeed the very last message received by the

9

Start the algorithm (initiator only!):

S := { u } ;

for some w in Neigh do

begin send [dfs,S] to w ; status[w] := cal end

Upon receipt of [dfs,S] from v :

if not (u in S) then (* first message is first call *)

begin S := S + {u} ; status[v] := father end ;

if (exists w in Neigh with w notin S) then

begin send [dfs,S] to w ; status[w] := cal end

else if (exists w in Neigh with status[w] = father) then

begin send [dfs,S] to w end

else (* initiator *) stop

Algorithm 6: Linear-message depth-�rst search (node u).

initiator contains the full list of all nodes. The total length of all transmitted lists is at least
n2�1 and at most 3

2n(n�1) node names; we observe a signi�cant di�erence between counting
messages (message complexity) and weighing them (bit complexity).

It is not reasonable to assume that Algorithm 6 requires only a constant amount of local
processing per sent or received message, because the search for an unvisited neighbour requires
to compare the received list of node names to the set of neighbors. Finally, the algorithm
requires a lot of local storage to represent the S set. Concluding, the high bit complexity
and the considerable local processing and storage, make the algorithm unpractical in most
realistic situations.

Fast solution. The fastest algorithm for distributively computing a depth-�rst search tree
is not obtained by simulating the sequential dfs algorithm, but by exploiting a characterisation
of the resulting type of tree.

De�nition 2.1 A rooted spanning tree of a graph satis�es the dfs property if for each edge
uv, either u is an ancestor of v or v is an ancestor of u.

(The usual de�nition of dfs trees is based on the construction procedure, from which this
property can be derived.)

Now assume an ordering on node names is available, and represent a path from the initiator
to a node as a string enumerating the nodes in the path.

Lemma 2.2 The set of edges formed by combining for all nodes u the lexically minimal simple
path (lmsp) from the initiator to u is a dfs tree.

Proof. (Sketch!) The selected edges connect the graph because for each node at least one
path from the initiator is included. It is a tree because any pre�x of the lmsp to u, say ending
in vertex v, is the lmsp for v; this also implies that the tree path from the initiator to u is
the lmsp to u.

10

var la : string init infty ;

For the initiator only:

la := u ;

forall x in Neigh do send [path,la] to x

Upon arrival of a [path,rho] message from v:

receive [path,rho] from v ;

if rho.u < la then

begin la := rho.u ;

forall x in Neigh s.t. x not in la

do send [path,la] to x

end

Algorithm 7: The Relaxation algorithm.

To show that the dfs property is satis�ed, consider neighbors u and v and let their lmsp's be
lmsp(u) and lmsp(v), respectively; assume without loss of generality that lmsp(u) < lmsp(v).
If node v is in lmsp(u), the pre�x of lmsp(u) up to v is a path to v that is lexically smaller
than lmsp(u), so assuming lmsp(u) < lmsp(v), v is not contained in lmsp(u).

But then lmsp(u) concatenated with v, denoted lmsp(u) � v, is a simple path to v and this
implies lmsp(v) � lmsp(u) � v. Consequently, lmsp(u) < lmsp(v) � lmsp(u) � v, which implies
that lmsp(u) is a pre�x of lmsp(v), and u is an ancestor of v. 2

As a consequence, a dfs tree can be constructed with a variation of Chandy and Misra's
algorithm [27, p. 120] for shortest path computation; see Alg. 7. Variable lau is node u's
approximation of its lmsp; the approximations are initialised to 1, a string exceeding all
other strings, and remain conservative in the sense that lau � lmsp(u).

The approximation is decreased when node u obtains information about a simple path to
u that is lexically smaller than lau; that is, upon receipt of a [path, �] message such that
� � u < lau. The updated lau is propagated to the neighbors because the smaller path to u
may result in a smaller path to the neighbour also. This propagation and the subsequent
processing of the message is called a relaxation over the edge to the neighbour.

Only �nitely many messages are exchanged by the algorithm, because the messages sent by
any node correspond to smaller and smaller paths, all of bounded length (n�1 hops) because
they are simple. It is not particularly hard to construct an example where exponentially many
messages are exchanged.

We call node u ready if lau = lmsp(u); no changes in lau occur after u becomes ready,
because no path smaller than lmsp(u) is ever proposed to u. It can be shown that, for v the
second last node in lmsp(u), if edge vu is relaxed after v becomes ready, then u is ready also.

Lemma 2.3 Within t time units after the initialisation by u0, every node with an lmsp of
length t or smaller is ready.

Proof. This is done by induction on t; indeed, because no string starting with u0 is ever
lexically smaller than the string u0, the initiator is ready immediately at the initialisation.

11

Assume u has an lmsp of t + 1 hops, with second last node v. Node v has an lmsp of t
hops, hence at some point, within t time units after initialisation, there is a relaxation that
makes v ready. At this moment, v sends its new estimate lav, now lmsp(v), to u and this
message is received within a time unit. After this relaxation, that is, within t + 1 time units
from initialisation, u is ready. 2

We conclude that the algorithm constructs a dfs tree exchanging a large, but �nite, amount
of messages in time proportional to the depth of the tree. The algorithm can be fast in some
cases, but other graphs have a dfs tree of linear depth.

The relaxation algorithm introduces another problem in distributed computing, namely
that no node can directly observe the termination of the construction. Indeed, all nodes will
end in the receiving state, where their approximations equal the actual minimal paths, but the
nodes are never sure that no smaller paths will ever be proposed. We study the termination
detection problem in Section 3.

The algorithm can also be used without prior de�nition of an initiator; if all nodes execute
the initiating code, the network will converge towards a spanning tree with the smallest node
as the root. Indeed, the paths starting in this node are all lexically smaller than the paths
starting in any other node, so every node eventually accepts a path from the smallest node
as the lexically minimal one.

Breadth-�rst search. A spanning tree has the breadth-�rst search property if the tree path
from the root to each node is a shortest path in the network. Sequential computation of such
a tree is very e�cient (O(m) work) but makes use of a data structure, a queue, to temporarily
store nodes that have been discovered, but were not yet visited. The data structure plays an
important role to ensure that the nodes are visited in the correct order and the use of this
queue makes breadth-�rst search surprisingly di�cult to distribute.

The simplest algorithms explore the network by sending an explore message through each
edge (2m messages). To synchronise the exploration, coordination from the root takes place
after each level (of which there can be D) at the expense of a linear number of messages.
Consequently, the communication for the coordination is of order D:n. In the worst case, D
is linear in n, so the overhead is quadratic and dominates the message complexity.

By exploring l levels between successive synchronisation rounds the number of coordina-
tion messages is reduced to D:n=l but l exploration messages may be sent through each edge.
The resulting D:n=l + ml message complexity is minimised to

p
D:n:m with l =

p
D:n=m;

choosing the best l requires a priori knowledge of D and m. Even more sophisticated algo-
rithms are known, but their complexity still exceeds the complexity of the sequential algorithm
signi�cantly.

The bottom line is that in the design of distributed algorithms, breadth-�rst search should
be avoided if possible; fortunately, there are alternatives.

2.2 Pseudo-fast Exploration: the Echo Algorithm

In practice, a very fast exploration and spanning tree construction algorithm is obtained if each
node forwards exploration messages to all its neighbors in parallel. The algorithm (Alg. 8)

oods [echo] messages to all nodes, exchanges them over non-tree edges, and \echoes" them
back through tree edges.

In more detail, the Echo algorithm (Alg. 8) operates as follows. The initiator start the
exploration phase of the algorithm by sending messages to its neighbors. Upon receipt of the

12

var rec : integer ;

father : neighbour ;

Algorithm for the initiator:

rec := 0 ;

forall v in Neigh do send [echo] to v ;

while rec < | Neigh | do

begin receive [echo] ; rec := rec + 1 end

Algorithm for other nodes:

receive [echo] from w ; father := w ; rec := 1 ;

forall v in Neigh-{w} do send [echo] to v ;

while rec < | Neigh | do

begin receive [echo] ; rec := rec + 1 end ;

send [echo] to father

Algorithm 8: The Echo algorithm (for node u).

�rst message, a non-initiator forwards messages to all neighbors except the sender of that
�rst message, thus messages are
ooded to all nodes in the network. Each node stores the
neighbour from which the �rst message was received, and the corresponding links form a
spanning tree in the network.

The echo phase of the algorithm consists of the replies sent by each non-initiator to its
father; a node replies to its father after receiving one message from each neighbour (condition
recu = jNeighuj). It must be shown that node u eventually receives a messages from each
neighbour; for u's father this is obvious (it is u's �rst message) and for the non-tree links it is
easy to see. Indeed, if uv is a non-tree link, then v sent a message to u upon its �rst receipt,
hence u eventually receives this message.

We can now show that the echo phase starts from the leaves of the tree and propagates
upwards to the initiator. Indeed, the leaves have no children and hence will send to their
father by the argument in the previous paragraph. Then the nodes whose children are leaves
can send to their fathers, and so on. This reasoning shows not only that all nodes will
eventually receive from each neighbour, but also that the order in which this happens at the
various nodes is determined by the tree shape, and the initiator is the last node to terminate.

The echo algorithm constructs an arbitrary spanning tree (it can be shown that every
spanning tree of the network can be the result of the non-deterministic exploration), which
limits its applicability. On the other hand, the algorithm is fast in practice; its time complexity
in our model has frequently been misunderstood. Because the exploration phase forwards
[echo] messages immediately, all nodes are reached by the exploration within D time units
after initialisation. The echo phase returns messages over the same paths, and it is easy to be
mislead in thinking that this phase will also terminate in O(D) time. It is easy to show that
the time consumption is O(D) under very weak additional assumptions about the timing of
messages, and this explains why the algorithm is empirically fast.

Unfortunately, our theoretical model allows for worse executions [27, p. 217]. The O(D)

13

construction time of the tree does not imply that its depth is O(D) because exploration
messages over a long path may bypass messages over shorter paths. That the echo phase
sends messages over the same path does not imply that they take the same time, because
our model does not induce relations between various transmission delays over the same link.
Exploiting the �rst observation yields an execution where a tree of depth �(n) is constructed
in O(D) time, after which the echo phase takes linear time.

2.3 Searching for Connectivity Certi�cates

We have seen that the construction of a spanning tree requires at least
(m) communication;
it was recently discovered that the same amount of communication can result in a much richer
structure. This subsection de�nes (edge) connectivity certi�cates of networks, and we shall
show how to construct certi�cates sequentially and distributively. We also give applications
of certi�cates.

Connectivity and Connectivity Certi�cates. The local connectivity of nodes u and v
in G, denoted �G(u; v), is de�ned as the maximal number of edge disjoint paths connecting u
and v. (This function is related to transport capacity and reliability as explained at the end
of this subsection.) A connectivity certi�cate is a subset of the edges preserving connectivity
to a certain degree.

De�nition 2.4 A subset E0 � E is a k-connectivity certi�cate if, with G0 = (V; E0), for all
nodes u; v 2 V �G0(u; v) � min(k; �G(u; v)).

For example, a maximal forest preserves 1-connectivity, because nodes that are connected
(through a path) in G are also connected in a maximal forest; nodes in di�erent components
of G remain unconnected in the forest, of course. Nodes joined by multiple paths in G are
joined by only a single path in the forest, so higher connectivities are not certi�ed by the
forest. Now extend the forest to a set E0 of edges such that every edge contained in a cycle
in G is also contained in a cycle in E0. Then, if u and v are joined by two paths in G, the set
E0 also contains two such paths, and hence E0 is a 2-certi�cate.

It is most attractive to have small size certi�cates, but the computation of minimal cer-
ti�cates is NP-Complete; a k-certi�cate is sparse if its size is O(k:n).

Computation of Sparse Certi�cates. Nagamochi and Ibaraki have shown that sparse
k-certi�cates can be computed e�ciently, namely by computing and removing a maximal
forest k times.

Theorem 2.5 ([19]) Let Ei be any maximal forest in (V;E n [j<iEj); then [j�kEj is a
sparse k-connectivity certi�cate.

Computing k maximal forests can easily be done in O(k:(n + m)) time but Nagamochi
and Ibaraki achieved an O(n + m) algorithm by cleverly combining the construction of the
various forests.

Computing a maximal forest. A maximal forest is obtained by starting with no edges (E0 = ;)
and applying test(e) to every edge e (in arbitrary order), where test(e) means:

14

if e introduces no cycle in E'

then E' := E' + {e} else reject e

Regardless of the test order the obtained structure is a maximal forest, but di�erent test
orders may yield di�erent forests.

In general it could require some e�ort to see if e introduces a cycle, but this e�ort is
eliminated by suitable test order strategy. Call a node active if it has untested edges, and call
a non-trivial tree of the forest active if it contains active nodes; the test strategy guarantees
at most one active tree at any moment. The strategy is: if there is an active tree T , then
select an active node u from it and test all its untested edges; testing all untested edges of u is
called a visit to u. Then, if there is an active tree, adding some edges of u to E0 only extends
T but does not introduce an extra active tree, and only if there is no active tree, adding an
edge may introduce one.

The uniqueness of the active tree implies that in a visit to u, edge uv introduces a cycle
if and only if v is adjacent to an edge in E0. Indeed, v is adjacent to the untested edge uv,
hence active, and so if it has an E0 edge it is in an active tree; because there is only one active
tree, v is already connected to u through T . The construction of the forest is: repeatedly
select and visit an unvisited node, if possible one that already has an adjacent E0 edge. The
visit to u is: consider its untested edges uv and include them if and only if v has no E0 edges
yet.

Computing all forests simultaneously. We start the construction with all forests empty (Ei =
;) and apply a basic ranking step rank(e) to every edge, where rank(e) adds e to the �rst
forest where e does not introduce a cycle.

i := smallest value s.t. e does not create a cycle in Ei ;

Ei := Ei + {e}

The ranking order will imply, as above, that every forest has at most one active tree, hence
edge uv creates a cycle in Ej if and only if v already has an edge ranked j. Thus, when edge
uv is ranked during a visit to u, its rank is the smallest rank at which v has no adjacent edges
yet. A crucial property follows: if any node has an edge ranked i, it also has edges ranked j
for all j < i; the highest rank of an edge of a node will be called the level of that node.

Each forest will have at most one active tree, and the mentioned property implies that a
node active in forest i is also active in forest j for all j < i. Hence it su�ces to select a node
of maximal level and rank all its adjacent edges in order to construct the required sequence
of maximal forests.

Nagamochi and Ibaraki have shown that the entire ranking can be completed in O(n+m)
time in the sequential model. Their solution uses a centralised data structure to store all
unvisited nodes according to their level; the next visited node is selected from it in O(1) time.
Ranking an edge requires the data structure to be updated, because an unvisited node is
increased in level; moving the node from one list to the list of next level is also done in O(1)
time.

Distributed Certi�cate Algorithm. At �rst sight the centralised data structure frus-
trates a distributed implementation, just as it is the case for breadth-�rst search. However,
Evens et al. [9] showed that the central data structure can be replaced by a recursive search
for unvisited nodes through the branches of the tree of the highest active level. To this end, if

15

var rank[v] : int init 0 ;

visited : bool init false ;

search[v] : bool init true ;

procedure Visit:

begin visited := true ;

forall v s.t. rank[v] = 0

do begin send [rnk] to v ;

receive [ranked,i] from v ;

rank[v] := i

end

end

procedure Search(v):

begin if not visited then Visit ;

forall w s.t. search[w] and rank[w] >= rank[v],

in decreasing order of rank[w]

do begin search[w] := false ; send [srch] to w ;

receive [return] from w

end ;

if v = u (* Initiator! *)

then construction is terminated

else send [return] to v

end

Upon receipt of [rnk] from v:

rank[v] := smallest i>0 s.t. u has no edge ranked i ;

send [ranked,rank[v]] to v

Upon receipt of [srch] from v:

Search(v)

To initiate the search (Only the initiator!):

Search(u0)

Algorithm 9: The distributed certi�cate algorithm (for node u).

node u receives a search message through an edge of rank i, it forwards the message through
all unsearched edges of rank i and higher, highest ranks �rst.

In Algorithm 9, node u stores the rank of its adjacent edge uv in ranku[v] (0 if the edge is
unranked), and the
ag searchu[v] indicates if the search must still be forwarded to v. Verweij
[32] shows that this search procedure indeed visits at each time the unvisited node of highest
label. We summarise the properties of the algorithm.

16

Theorem 2.6 Algorithm 9 exchanges 4m messages in 4m time and assigns a rank to each
edge in such a way that for each k, the edges with ranks 1 to k form a sparse k-connectivity
certi�cate.

Ranking the unvisited edges of u (in procedure Visit) can be done in parallel to reduce
the time complexity to 2m+ 2n. If only a certi�cate for one given value of k is required, the
edges ranked higher than k need not be searched and the algorithm uses 2k:n + 2n time.

Applications. In communication networks, the local connectivity of u and v has two im-
portant operational meanings, related to capacity and to reliability. First, if each edge has a
given data rate �, the existence of k disjoint paths between u and v implies that an overall
data
ow of k:� can be transported from u to v. Second, the edge disjointness of the paths
implies that, as long as k � 1 or fewer links fail, at least one path between u and v remains
una�ected. Consequently, �G(u; v) equals both the maximal data
ow between u and v, and
the number of link failures that can partition u from v.
Determining local connectivity. The local connectivity of u and v can be computed by repeat-
edly searching for an augmenting path in the graph, until no more paths are found. As this
search may cost O(m) messages, this way of computing the connectivity costs about O(�:m)
messages (� = �G(u; v)).

A better complexity is obtained with certi�cates; after ranking all the edges, the �rst uv
path is searched in the edges of rank 1. The second augmenting path is searched among the
edges ranked 1 and 2, and the ith augmenting path is searched among edges of rank up to i.
Indeed, if i paths exist in G, the certi�cate property guarantees that they exist in the union
of the �rst i forests, so the restricted search does not terminate inappropriately. Because the
ith path is searched in a restricted network with less than i:n edges, the total cost is O(�2:n),
which is usually smaller than �:m.
Testing global connectivity. Algorithms for computing 2- or 3-connected components may
pro�t from execution on a 2- or 3-connectivity certi�cate [14]. The certi�cate can be computed
in O(m) time and messages, and guarantees that the subsequent connectivity algorithm has
to consider only O(n) edges.

3 Termination Detection

A distributed algorithm terminates when it reaches a global state (con�guration) in which
no event of the algorithm is applicable. However, such a terminal con�guration does not
imply that each node is in a terminal state, that is, a (local) state from which no events are
applicable, as is illustrated by Algorithm 7. Each node awaits the arrival of messages in a
receiving state, and reacts to their arrival by sending some (possibly zero) messages. While a
node always returns to a receiving state (hence not explicitly terminated) the computation as
a whole halts when all nodes are simultaneously in this state and no messages are in transit.

This section discusses techniques to make termination explicit by distributively detecting
that the program has reached a terminal con�guration. A description of the problem is given
in Sec. 3.1, and we discuss two classes of solutions in Sections 3.2 and 3.3.

17

var state : (act, pas) ;

Su: { state = act }

send [mes]

Ru: { A message [mes] arrives at u }

receive [mes] ; state := act

Iu: { state = act }

state := pas

Algorithm 10: Steps of distributed computation (node u).

3.1 Problem De�nition

The description of the termination detection problem abstracts away from the purpose and
operations of the computation in question, but concentrates on the aspects relevant for termi-
nation. A node is assumed to be in either an active or a passive state, where in an active state
the node may send messages and in a passive state it may not. (In Alg. 7 a node receiving
a message immediately sends the resulting message and becomes receiving (passive) again.
Here we model a slightly more general situation where a node may already receive while still
processing previous messages.) The transition from active to passive may occur spontaneous-
ly (namely, when the active node �nishes its current activities), but a passive node can only
be awakened by receiving a message. The operation is modelled by the transitions in Alg. 10;
again, the actual computation as well as the content of the exchanged message are abstracted
away from.

Receiving messages is impossible if no messages are in transit, and sending messages is
impossible if all nodes are passive; becoming passive is clearly also impossible in this case,
and hence termination of Alg. 10 occurs when simultaneously all nodes are passive and all
channels are empty.

A termination detection algorithm is added to a distributed computation and requires
to make termination explicit. Detection requires executing some extra statements with the
operations of the computation, as well as exchanging some extra messages for the detection
purpose only. (These additional control message do not render a passive node active, of
course.) Correctness requires that (1) if the computation terminates, this is detected within
�nite time thereafter (liveness) and (2) termination is not detected prematurely (safety).

The detection algorithms roughly fall in two categories. Tracing algorithms follow the
computation
ow by tracing active nodes along the message chains that activated them,
and call termination when all traced activity has ceased. Probe algorithms rely on global
(coordinated) scans of the network state and call termination when no activity is found. The
distinction can be compared to that between reference counting and mark-and-sweep type
garbage collectors [30].

18

var state : (act, pas) init if u=u0 then act else pas ;

cc : integer init 0 ;

fat : node init if u=u0 then u else undef ;

Su: { state = act }

send [mes] ; cc := cc + 1

Ru: { A message [mes] from v arrives at u }

receive [mes] ; state := act ;

if fat = undef then fat := v

else send [sig] to v

Iu: { state = act }

state := pas

Au: { A message [sig] arrives at u }

receive [sig] ; cc := cc - 1

Tu: { cc = 0 and state = pas and fat != undef }

if fat = u (* Root node! *)

then Detect

else send [sig] to fat ; fat := undef

Algorithm 11: Dijkstra and Scholten's algorithm (node u).

3.2 Tracing Algorithms

A tracing algorithm relies on knowledge of the set of initially active nodes, because all activity
of the computation originates from these nodes by message chains. Dijkstra and Scholten's
algorithm [8] assumes that initially exactly one node is active; we call this node the root node.

Global description: Computation tree. The detection algorithm maintains, during the
distributed computation, a computation tree T , whose vertices are nodes of the network and
messages in transit; the root node is the root of T . Steps of the computation trigger updates
in the tree structure aimed at preserving the crucial property of T :

at any time, all active nodes as well as all [mes] in transit are vertices of T .

In addition, control messages and passive nodes may be in T , but their presence serves the
maintenance of the tree rather than the correctness of the algorithm directly. In view of this
property, termination can be concluded if the root node is passive and has no children. Indeed,
the root node having no children implies T contains only the root, so no [mes] are in transit
and no node other than the root is active; if the root is also passive we have termination.

Detailed description. Variable fatu is undef if u is not in the tree, points to u itself if u
is the root node, and points to u's father if u is a non-root tree node; ccu counts the children

19

var la : string init infty ;

cc : integer init 0 ;

fat : node init undef ;

For the initiator only:

la := u ; fat := u ;

forall x in Neigh

do begin send [path,la] to x ; cc := cc + 1 end

Upon arrival of a [path,rho] message from v:

receive [path,rho] from v ;

if fat = undef then fat := v

else send [sig] to v ;

if rho.u < la then

begin la := rho.u ;

forall x in Neigh s.t. x not in la

do begin send [path,la] to x ; cc := cc + 1 end

end

Au: { A message [sig] arrives at u }

receive [sig] ; cc := cc - 1

Tu: { cc = 0 and fat != undef }

if fat = u (* Root node! *)

then Detect: construction completed

else send [sig] to fat ; fat := undef

Algorithm 12: Relaxation with Termination Detection (node u).

of u in T . When active node u sends a [mes], this message becomes a child of u hence ccu
is incremented (action Su in Alg. 11). When u is activated (action Ru) its membership of T
must be ensured and this can be done by assuming the sender of the [mes] as its father; the
father cc is unaltered as u replaces the [mes] as a child. If u is already in the tree, the [mes]

is removed from the tree and a [sig] message is sent to its father to decrease the cc. Observe
that a passive node remains in the tree if it has children, and a childless node remains in the
tree if it is active; only if a passive, childless node is in the tree the withdrawal action Tu

takes place. A non-root node sends a [sig] to its father so as to decrement the latter's cc,
while the root node calls termination in this case.

Correctness, variations, discussion. It is far from trivial to �rmly establish that the
algorithm is correct and operates as described above, even under the most exotic scenarios of
the computation and its timing. The basic techniques (invariant properties and variant func-
tions) and their application to this algorithm are discussed in [27, Sec. 8.1] but are outside the
scope of this chapter. Actually, the termination detection problem and the publication of sev-

20

u
mdv = �1

mdv = 0

v
m3

m2

m1

mdu = 1

Active node

Status report

w ��@@ �
���@

@@R

��

@
@@R ��@@

@@

@@��

Figure 13: Compensated behind-the-back activation.

eral incorrect solutions strongly motivated research in veri�cation techniques for distributed
algorithms.

The algorithm can be applied to computations like Alg. 7, where the active state is not
explicit. The resulting fast DFS algorithm with termination detection is shown as Alg. 12. The
requirement that only one node initiates the computation was relaxed by Shavit and Francez
[22]; in their algorithm each initiator of the computation traces a subset of the activity, and
one round of global communication is used to determine that all traced activity has ceased.

The number of exchanged control messages equals the number of messages exchanged
by the underlying computation, and this was shown to be optimal in the worst case. If a
computation is started from a single node and the number of exchanged messages is relatively
small (linear in n or m, say), the Dijkstra{Scholten algorithm is the termination detector of
choice.

3.3 Probe Algorithms

Probe algorithms repeatedly scan the entire network for active nodes and computation mes-
sages; they are based on the principle laid out by Dijkstra, Feijen, and Van Gasteren [7].
For simplicity of explanation we shall assume a special node (the controller) to coordinate
detection; the controller exchanges status reports with all nodes.

In order to establish the absence of computation messages, each node maintains a message
de�cit, being the number of messages it has sent so far minus the number of messages it
received so far. At any time, the number of messages in transit equals the sum of all de�cits,
hence empty channels mean zero de�cit sum. In reply to a request ([req] message) from the
coordinator, each node sends a status report ([stat, m, c] message), but defers sending it
until it is passive.

It is tempting to believe that, because the nodes were passive when sending the report, the
controller can detect termination if it receives status reports from all nodes and the de�cits
add to zero. However, unsafety results from the status reports being produced at di�erent
times, as is illustrated in the space-time diagram of Figure 13. Node w was activated \behind-
the-back" of the controller, but the activating message m2 causes no negative de�cit because
the de�cit was compensated for by receiving m3 from w! Message m2 crosses the probe
because it was sent before the status report of its sender, but received after the status report
of its receiver, and m3 is said to cross the probe backwards.

Taking the status reports can be coordinated so as to prevent any message from crossing
the probe backwards, which would render the algorithm safe; the status reports would then
form a consistent snapshot cf. [5]. It is easier however, to detect the possibility of any com-

21

var state : (act, pas) ;

md : int init 0 ;

rec : bool init false ;

Su: { state = act }

send [mes] ; md := md + 1

Ru: { A message [mes] arrives at u }

receive [mes] ; state := act ;

rec := true ; md := md - 1

Iu: { state = act }

state := pas

Au: { state = pas and a [req] message has arrived. }

send [stat,md,rec] to controller ; rec := false

Code for the controller:

repeat t := false ; s := 0 ;

forall u do send [req] to u ;

forall u do

begin receive [stat,m,r] ;

t := (t and r) ; s := s+m

end

until (t = false and s = 0) ;

Detect termination

Algorithm 14: Probe based termination detection (node u).

pensated behind-the-back activation; to this end, each node also includes in its status report,
whether any [mes] message was received since sending the previous report. If this is the case,
termination is not concluded; thus the receipt of a compensating backward message prevents
detection; the resulting algorithm is shown as Alg. 14.

Variations, complexity, discussion. The various probe based algorithms di�er consider-
ably, mainly in their treatment of in-transit messages, and the collection of the status reports
[25, 26]. Instead of counting messages as we have shown, acknowledgements or time-outs can
be used.

Instead of direct communication with the controller as in Alg. 14, probe propagation
through a Hamiltonian Cycle, or the Echo algorithm can be used for status communication.
To implement the latter possibility, the controller acts as the initiator in the Echo algorithm.
Status reports are sent upward in the constructed spanning tree in an accumulated fashion,
i.e., each node reports the sum over all mdu and the conjunction over all recu of the nodes u
in its subtree.

22

?

Detection

Second probe:
Successful

First probe:
Unsuccessful

Termination

A

A
AA�

�
�
��A
A
A
AA? �

��A
AA �

��A
AA��cc�

�
�
��C
C
C
CC���AA�

�
��E
E
EE

Figure 15: The detection delay.

Instead of having an additional controller, one of the nodes of the computation will perform
the controller task in addition to the computation proper. In this way it is not necessary to
add either nodes or channels to the network solely for the purpose of detection.

Probe algorithms are the detectors of choice in computations that exchange a lot of mes-
sages, especially if many are exchanged in parallel. The reason is that probe algorithms
exchange a �xed number of control messages per probe, independent of the number of basic
messages. A good balance between detection overhead and detection delay can be achieved
by starting probes under the control of a timer (as in [20].) Assume a �xed delay of � is
introduced between the end of an unsuccessful probe and the start of the next one, and that
the duration of the probe is small compared to �. After termination occurs, some of the
nodes may have rec = true so that the �rst probe started after termination fails to detect.
The next probe �nds all nodes with rec = false and thus termination is detected after at most
2� delay.

4 Distributed Arc Consistency and CSP

To demonstrate the application of the distributed algorithm techniques to distributed AI
problems, we shall now study the distributed Arc Consistency algorithm DisAC4; see also [20].
The Constraint Satisfaction Problem and consistency �lters were also discussed in Chapter
4.

The Constraint Satisfaction Problem (CSP) and Arc Consistency (AC) are de�ned in
Sec. 4.1, and the sequential AC4 algorithm is outlined in Sec. 4.2. We then consider a
resource distributed model, where the resources for checking the consistency of a variable
are located at a particular node. Sec. 4.3 gives the resulting algorithm, where each node
is assumed responsible for one model variable, and Sec. 4.4 discusses termination detection
for this version. An alternative computational model, a multiprocessor computer, where
each node holds a subset of the variables, is considered in Sec. 4.5. Sec. 4.6 discusses how
the distributed AC algorithm can be extended to be used in distributed backtracking CSP
algorithms.

4.1 Constraint Satisfaction and Arc Consistency

A Constraint Satisfaction Problem is de�ned by a set of variables Z = fx1; : : : ; xng, where
xi must be assigned a value vi from a domain Di but subject to constraints. The constraints
are a collection of binary predicates Cij where Cij(v; w) indicates if assigning v to xi is
legitimate w.r.t. Cij if value w is assigned to xj . A solution to the problem is an assignment

23

that is simultaneously legitimate for all constraints, or, equivalently, in which no constraint is
violated. It is usually assumed that constraints are symmetric (that is, Cij(v; w) = Cji(w; v)),
but symmetry is not used in the algorithms of this section.

Finding a solution is computationally hard (the problem is NP complete) and generally
involves testing all or many possible assignments. The size of each domain is assumed �nite
(in order to express complexities we assume a uniform upper bound jDij � a), but the number
of possibilities is still exponential in n.

Arc Consistency is a polynomial technique that may help to reduce the search space
considerably; it deletes a value from a domain if some constraint is seen to be unful�llable
with this value. More speci�cally, consider constraint Cij and assume that for some v 2 Di

there is no w 2 Dj for which Cij(v; w) is true. As Cij can not be ful�lled with xi = v, the
value v in Di is redundant and can be eliminated for further consideration. This elimination
may lead to other values becoming redundant in turn. A problem is called arc consistent if
it has no redundant domain values. The Arc Consistency problem is to restrict all domains
in a constraint satisfaction problem, so as to make the problem arc consistent but without
eliminating possible solutions.

Formally, given domains D1 through Dn, the Arc Consistency problem requires to �nd
D0

1 through D0
n such that:

1. The domains are restricted: D0
i � Di.

2. The restricted problem is arc consistent: No D0
i contains a redundant value.

3. The output is maximally arc consistent: if sets D00
i with D0

i � D00
i � Di are arc consistent,

then D00
i = D0

i for each i.

The third requirement implies that no solutions are eliminated: if (v1; : : : ; vn) is a satisfying
assignment, then vi 2 D0

i for each i.
Usually not every pair of variables has a non-trivial constraint (a constraint di�erent from

true). The problem is modelled as a directed graph where the variables are the nodes, and
there is an edge from xi to xj if Cji is non-trivial. Let Succi denote the successors and Pred i
the predecessors of i in this graph and m the number of edges.

4.2 The AC4 Algorithm

Mohr and Henderson [18] proposed the following data structures and algorithm for detecting
redundant values; see Alg. 16. For each xi, and each v 2 Di, an array of counters is maintained,
where the counter cnt [i; v; j] exists for each j for which a constraint Cij exists. The counter
cnt [i; v; j] expresses the number of values w 2 Dj for which Dij(v; w) is true. When some
counter cnt [i; v; j] equals zero, the value v is redundant and is removed from Di. As a result,
cnt [j; w; i] should be decremented for all j; w such that Cji(w; v) and to this end the pair
(i; v) is queued for later processing. In this processing it is not necessary to evaluate the
Cji predicate again, because all relevant information is stored in additional support data
structures Supp[j; w]. The set Supp[j; w] contains all pairs hi; vi for which Cij(v; w) is true,
or, equivalently, for which w is counted in cnt [i; v; j]. The main loop of Alg. 16 shows how the
relevant counters are decremented and how this may make other values redundant in turn.

The size of the cnt arrays is at most m:a integers because (i; j) ranges over edges of the
graph. The size of the support structure is larger because for each constraint Cij , all values
in Dj may support all values in Di, in which case the Supp lists together have m:a2 pairs.

24

(* Initialise counters and support structures *)

forall Cij

do forall v in Di

do forall w in Dj

do if Cij(v,w)

then begin cnt[i,v,j] +:= 1 ;

Insert(Supp[j,w], <i,v>)

end ;

(* Check for initially redundant values *)

forall Cij

do forall v in Di

do if cnt[i,v,j] = 0

then begin Enque (Q,<i,v>) ; Delete(Di, v) end ;

(* Main loop *)

while not Empty(Q)

do begin Deque(Q, <j,w>) ;

forall <i,v> in Supp[j,w]

do if v in Di

then begin cnt[i,v,j] := cnt[i,v,j] - 1 ;

if cnt[i,v,j]=0

then begin Enque (Q,<i,v>) ;

Delete(Di, v)

end

end

end

Algorithm 16: Sequential AC4.

As each pair (i; v) is queued at most once, the queue never holds more than n:a pairs. Thus,
the storage complexity of AC4 is dominated by the support structures.

Initialisation of the data structures costs m:a2 time, the initial check for redundant values
takes m:a time, and the main loop may again take m:a2 time. The resulting O(m:a2) time
complexity is optimal for Arc Consistency [18].

4.3 The Distributed AC4 Algorithm

In this subsection we shall describe a distributed implementation of the AC4 algorithm, �rst
assuming that there is one computing node for each variable. Thus, node i maintains the
domain Di and holds the resources for evaluating Cij ; this makes node i the place of choice to
maintain cnt [i; v; j] as well. Neighbouring nodes will communicate the elimination of nodes
in order to enforce decrementing the counters.

We shall now discuss the storage of the support structures. One possibility is to store
Supp[j; w] in node j and have j send a message to node i for each hi; vi found in Supp[j; w].

25

However, if node j sends just one message to node i when w is eliminated, node i must still
evaluate Cij to �nd out for which v cnt [i; v; j] must be decremented. If j sends a list of values
v for which this is the case, the communication complexity becomes very high.

Another possibility is to split Supp[j; w] over the various neighbors: the pairs hi; vi are
stored in node i. When node j eliminates w it will inform node i with a single message, and
on receipt of this message node i must consider all its pairs of Supp[j; w]. This possibility is
chosen in [20].

However, we observe that the support structure can be eliminated completely without
signi�cantly increasing the computational complexity of the algorithm. Indeed, for each j; w
the set Supp[j; w] is read just at most once, namely, when j is eliminated from Dj . Our
distributed implementation therefore uses a di�erent decrement policy. When w is eliminated
from Dj, rather than enumerating a stored set Supp[j; w], we will test for each i; v if Cij(v; w)
is true, and, if so, decrement cnt [i; v; j],

The queue of the sequential algorithm is distributed over all nodes as the receive queues
(RQ) and send queues (SQ). Whenever node i detects v to be redundant, v is placed in
the local send queue SQi. An independent subprocess Si is responsible for taking all values
out of this queue and informs the neighbors by sending a [remove, v] message. Incoming
messages are bu�ered in the receive queue; an independent subprocess Ri inserts all received
values in this queue, and the worker process Wi reads its input from this queue.

The elimination of support data structures reduces the storage requirements: Algorithm 17
stores an array of a counters cnt i[�; j] (in node i) for each constraint Cij, hence the overall
storage requirement is O(m:a).

The initialisation requires O(m:a2) time (as does the sequential algorithm) and exchanges
no messages. (If �i is the in-degree of node i, the computation for node i is O(�i:a

2).) To this
end we assume that node i knows the initial domain Dj , denoted as D0

j , and counts, for each
v, the number of supporters in this initial domain.

To assess the communication and computation cost of the processing phase, �rst observe
that each value w 2 D0

j is deleted from Dj and queued in SQj at most once because of the
test in procedure Redundant . Consequently, each arc in the constraint graph carries at most a
messages, to a total message complexity of O(m:a). Each value received is enqueued for later
processing, and this processing (action Wi) consists of a loop over (at most) a values in Di.
The local computation cost is therefore bounded by O(m:a2) steps, hence the initialisation
phase still dominates the computation.

The distributed time complexity is O(n:a); indeed, at most this many values are eliminated
altogether, and the redundancy of some value is detected at most one time unit after its last
supporter was eliminated.

4.4 Termination Detection

Termination of Alg. 17 is implicit, because after the elimination of all redundant values the
nodes will be in a receiving state, ready to receive and process further [remove, �] messages.
Fortunately, application of the results of Section 3 is straightforward. De�ne pas(i) to be the
following predicate:

SQi is empty ^RQi is empty ^ initialisation is completed in node i

We observe the following.

26

var D init Di (* Domain *)

cnt[v,j] (* Count support *)

SQ,RQ (* Send and Receive queue *)

procedure Redundant (v):

if v in D then

begin Delete(D, v) ; Enque(SQ, v) end

Initialisation (for each node):

forall j in Pred

do forall v in D

do begin cnt[v,j] := 0 ;

forall w in Dj^0 (* Node i knows the

initial set Dj *)

do if Cij(v,w)

then cnt[v,j] := cnt[v,j] + 1 ;

if cnt[v,j] = 0

then Redundant(v)

end

Wi: { Receive queue RQ is not empty }

Deque (RQ, <j,w>) ;

forall v in D

do if Cij(v,w)

then begin cnt[v,j] := cnt[v,j] - 1 ;

if cnt[v,j] = 0

then Redundant (v)

end

Ri: { receive [remove,w] from node j }

Enque (RQ, <j,w>)

Si: { SQ is not empty }

Deque (SQ, v) ;

forall j in Succ do send [remove,v] to j

Algorithm 17: Distributed AC4 Algorithm (node i).

1. If pas(i) holds, it can be falsi�ed only by the receipt of a [remove, w] message. After
initialisation, the only steps for node i are Wi, Si, and Ri, but processing and sending
are not possible when the receive and send queue are empty. So only receipt is possible
in this case, and will place a value in the receive queue, thereby falsifying pas(i).

2. If pas(i) holds, node i cannot send a [remove, �] message. The empty send queue

27

disables the send action.

3. If simultaneously for all i pas(i) holds and no channel contains a [remove, �] message,
the algorithm has terminated. In this case, no processing or sending is possible because
all queues are empty, and no receiving is possible because no messages are in transit.

Thus the assumptions for the termination detection problem are satis�ed, and we can
apply the algorithms of Sec. 3 to make termination explicit. The tracing algorithm (Alg. 3.2)
is not appropriate here. First, it requires that there is exactly one initiator, which is not
the case in Alg. 17 (generalisations to more initiators exist, though). The main reason is
the overhead of control messages; tracing algorithms double the communication, while probe
algorithms can have a much lower communication overhead if the distributed computation
exchanges a lot of messages in parallel.

Thus, the Distributed AC4 algorithm should be combined with a probe based termination
detection algorithm, such as Alg. 14. We shall not give the combined algorithm here.

On termination of the distributed AC4 algorithm, the remaining domains Di are maxi-
mally arc consistent and two special situations deserve our attention.

1. Contradiction: On termination, some Di is empty.
Clearly, the product space is also empty, and because no solution to the problem is
eliminated by the Arc Consistency algorithm, this condition implies that there exists
no assignment satisfying all constraints.

2. Solution: On termination, each Di is reduced to a singleton fvig.
In this case the product space contains just a single assignment, namely (x1; : : : ; xn) =
(v1; : : : ; vn). Because the domains are arc consistent, this assignment is easily seen to
satisfy all constraints. Indeed, consider constraint Cji and observe that, because vi was
not removed from Di, there is at least one w in Dj for which Cji(w; vi) is true. But Di

is the singleton fvjg, so Cji(vj ; vi) is true.

Evaluating these conditions can easily be done by augmenting the termination detection
algorithm; in addition to reporting the reci and md i information, node i states if Di is a
singleton, and if Di is empty.

4.5 Partitioning for Multiprocessor Computers

We have so far assumed that there is a given, one-to-one correspondence between nodes
and variables; a natural assumption if the resources for checking consistency are distributed
and expensive to reallocate. Other applications may allow to freely allocate variables of the
problem to processing nodes, for example, when a multi-processor machine is used to solve a
CSP (with all resources at hand).

We �rst discuss the execution of Algorithm 17 in this case, especially if more than one
variable is assigned to any machine node. Node u maintains the administration for a collection
Zu � Z and will execute all computations of Alg. 17 for the relevant variables, with only two
twists that are not completely trivial. First, if node i sends a message to node j while i and
j are in the same machine, no message is sent but the eliminated value is placed in the queue
locally. Second, a machine can use a single receive queue, rather than a separate one for each
of the variables it holds.

28

Thus the execution of the Arc Consistency itself is not very complicated, but the interest-
ing question is to �nd a good allocation of variables over nodes. This distribution should have
a favourable processor load, and need as little communication as possible. Fortunately, as a
result of the analysis in the previous subsection, the load and communication of a distribution
can be computed.

Let node i of the Arc Consistency Problem be allocated to processor p(i) of the machine.
As node i of the problem requires O(�i:a

2) work, the total load of processor p is
P

i:p(i)=p �i:a
2.

As O(a) messages are exchanged through each edge of the problem, the total amount of
communication will be O(a):jfij 2 E : p(i) 6= p(j)gj. Minimising load and communication
(over all allocations) is NP-hard, so an approximation algorithm is needed; see for example
the work by Lo [17].

4.6 Distributed Constraint Satisfaction Algorithm

We shall now brie
y discuss how Distributed Arc Consistency can be used in distributed
solutions for Constraint Satisfaction Problems. A CSP is usually solved by backtracking,
where parts of the solution space are eliminated from search by hypothesis generation. A
hypothesis for variable xi speci�es a subset of the domain Di and restricts the search to
tuples for which xi is in the subset. The current problem instance is narrowed down with the
additional restriction that xi is in the subset, yielding a new problem instance. More generally,
a hypothesis can itself be a binary predicate assuming a constraint on combinations of xi and
xj values.

If solution occurs in the restricted search space, the problem is solved and the found
tuple is the solution. (It satis�es all the original constraints plus the current collection of
hypotheses.) If contradiction is found, a backtracking step is taken: the hypothesis is
replaced by its negation because the hypothesis is found to be inconsistent with the problem
(including earlier hypotheses) and search is continued. If neither of these situations occurs, a
next hypothesis is generated to narrow down the search space further.

The evaluation of the problem instances uses Arc Consistency: after each generation of
a hypothesis or its replacement by its negation, the domains are further restricted by the
Arc Consistency algorithm. We have seen that the AC algorithm reduces the domains to
the maximally arc consistent subsets, and allows to conclude if solution or contradiction
occurs.

A distributed CSP solver alternates hypothesis generation, hypothesis evaluation (by
means of arc consistency), and hypothesis elimination (backtracking) in a coordinated way.
To decide what hypothesis to generate, we assume that each node can locally evaluate the
attractiveness of hypotheses it can generate. For example, generating a hypothesis concern-
ing a variable with 20 possible values may be less attractive than one concerning a variable
with 2 possible values. After termination of each arc consistency phase, the controller coordi-
nates a global search for the node with the most attractive hypothesis. This does not require
that the controller has access to all information or even that it can communicate with each
node directly. In the next section we show (in the context of a graph processing algorithm)
how such an evaluation is possible in a network of arbitrary topology using broadcasts and
convergecast over a spanning tree.

More detailed description. When detecting termination of the arc consistency phase,
the controller also evaluates if solution or contradiction occurs and informs the nodes.

29

If the search space is still too large, all nodes stack the current value of their domain Di

and the support structures cnt i[v; j]. They evaluate the attractiveness of any hypothesis they
can generate, and report the most attractive one. The convergecast allows the coordinator
to �nd the most attractive hypothesis, and informs the node that submitted this hypothesis.
This hypothesis is added to the constraints, after which Arc Consistency is started again.

In case of solution, the computed assignment is the output of the problem and the whole
algorithm is terminated.

In case of contradiction, a backtrack step is taken. All nodes restore the previous
values of Di and cnt i[v; j] and in addition, the node that generated the most recently added
hypothesis replaces it by its negation. After this, arc consistency is started again.

5 Distributed Graph Processing

We shall demonstrate various techniques for distributed processing of the network topology
by a distributed algorithm that has the topology as the input graph. The example worked out
is the computation of a loop cutset in a Belief Network, which is a necessary preprocessing
stage for the application of loop cutset conditioning in these networks. The aim of this section
is to show how a sequential algorithm (by Suermondt and Cooper [23]) can be modi�ed for
distributed execution.

5.1 The Problem: Loop Cutset

A Belief Network is a directed acyclic graph in which the nodes represent various hypotheses
and the arcs represent known statistical dependencies. Let ~G = (V; ~E) denote the directed
graph, and G = (V; E) the underlying undirected graph. The algorithms for updating the
probability distribution of the hypotheses assume that G is free of cycles, and hence to apply
these algorithms, cycles must be eliminated. A vertex in an undirected cycle is called a pit if
both of its adjacent cycle arcs are incoming, and we require each cycle to be broken by the
removal of at least one non-pit vertex.

De�nition 5.1 A loop cutset is a subset C � V such that for each cycle in G, C contains
at least one node of the cycle that is not a pit of that cycle.

Algorithm of Suermondt and Cooper. For e�ciency reasons, the cutset should be small,
but computation of an optimal cutset is NP hard. The best-known heuristic for computing
small cutsets (Suermondt and Cooper [23]) includes vertices in C one by one, trying to choose
vertices that cut as many loops as possible. This is done by choosing a vertex with maximal
degree, but to avoid cutting a cycle by removal of a pit, the chosen node must have in-degree
zero or one. Because nodes of degree one are never part of a cycle, these nodes are removed
(repeatedly) before searching for a cut-node; see Alg 18.

5.2 Distributed Execution of the Algorithm

The distributed algorithm does not represent the cut set in any central place; instead, at the
end each node will know whether it is itself a cutnode or not. Algorithm 18 is simulated
by two alternating phases, each under control of a coordinating node, which is the root of
a spanning tree in the network. The spanning tree is used for control purposes, and an

30

C := empty ;

while V != empty

do begin if there is v in V with deg(v) = 1

then remove v from G

else begin K := { v in V | indeg(v) <= 1 } ;

v := node of highest degree in K ;

C := C + {v} ;

remove v from G

end

end

Algorithm 18: Suermondt and Cooper Loop Cutset.

edge of the network can be part of it regardless whether it was already eliminated by the
Suermondt/Cooper algorithm.

A leaf trim phase removes as many degree-one nodes as possible, and repeatedly; that
is, if the removal of a node causes the degree of another node to drop to one, the latter is
removed in the same phase. A cut node search is initiated when there are no more leaves,
and searches the network for the highest degree node (with in-degree zero or one). When
identi�ed, the cut node becomes the new controller; a shift controller phase moves the root
of the spanning tree to this node and hands control to the next leave trim phase. This phase
has no counterpart in Alg. 18, and neither has the initial phase that constructs the control
spanning tree.

Part one: Variables and leaf trim. Algorithm 19 shows the variables and constants used
by the node u. The constants Inu and Outu represent the incoming and outgoing neighbors of
u in the graph; in the algorithms, x and y will range over neighbors of u, i.e., over Inu[Outu.

To construct and maintain the control tree, each adjacent edge ux has a link control status
lcsu[x] with the following meaning. The initial status is basic; when x is a child or the father
of u the status is son or fat; and when the edge was rejected for the spanning tree, its status
is frond.

The removal of edges and nodes by the Suermondt/Cooper algorithm is represented by
the link activity status and node activity status lasu[x] and nasu. Initially the link is active
(status is yes) but upon removal of x or u, lasu[x] becomes no. The nodes are also initially
active (nasu = yes), but they can be removed either as a leaf or as a cut node, and nasu
becomes either noncut or cut.

The variables mydegu, bestdegu, and bestbranchu are used to determine the next cut node;
mydegu is the degree of u, bestdegu the highest degree in u's subtree, and bestbranchu points
to the location in the tree where the highest degree is found.

Algorithm 19 also presents the procedures for removal of leaves. The TrimTest procedure
veri�es if u has degree one, and if so, u becomes noncut; a [remove] message is sent to the
only neighbour to inform it of the removal, and the procedure terminates after receipt of
an acknowledgement [sig]. Receipt of the [remove] message causes the carrying edge to
be non-active (las = no), and the node performs TrimTest itself. If a [remove] message is

31

cons In (* Incoming neighbors *) ;

Out (* Outgoing neighbors *) ;

var lcs[x] init basic (* Link control status *) ;

las[x] init yes (* Link activity status *) ;

nas init yes (* Node activity status *) ;

mydeg (* Compute degree of u *) ;

bestdeg (* Highest degree in subtree *) ;

bestbranch (* Point to best degree *) ;

procedure TrimTest:

if | { x : las[x] = yes } | = 1

then begin x := neighbour s.t. las[x] = yes ;

nas := noncut ; las[x] := no ;

send [remove] to x ;

receive [sig] or [remove] from x

(* Optimisation, see text *)

end

Upon receipt of [remove] from y:

las[y] := no ; TrimTest ; send [sig] to y

Algorithm 19: Variables and Leaf Trim.

sent as a result, the replying [sig] message is deferred until a reply was received, according
to the Dijkstra/Scholten principle. A slight twist is the possibility to receive a [remove]

message instead of a [sig]; this will happen where two nodes (v and w) connected by a
single edge remain at some point in the execution. Both nodes call TrimTest and decide to
remove themselves and send a [remove] message over the edge. Rather than having both
nodes reply to the other's message with a [sig], each one treats the received message as the
reply, thus saving the two extra messages. I do not know how many messages are saved in
this way, but with this modi�cation it is possible to compute the overall number of messages
easily; see Sec. 5.3.

Part two: Control tree construction. The initial control tree is constructed by exe-
cuting the echo algorithm from the initiator; this is shown in Alg 20. Procedure Construct-
Subtree sends [construct, 0] messages through all basic edges and awaits the receipt of a
[construct, i] message. The construct messages of the exploration stage have i = 0, while
the replies to the father have i = 1; thus upon receipt of the message, the edge is recognised
as either son or frond. Upon completion of the subtree a message (with i = 1 of course) is
returned to the father.

Nodes run TrimTest in parallel with the construction of the subtree and await its return
before replying to the father. Consequently, when the construction terminates at the initiator,
the �rst round of leaf elimination was completed, and the search for the node of highest degree

32

procedure ConstructSubtree:

forall x s.t. lcs[x] = basic

do send [construct,0] to x ;

while exists x : lcs[x] = basic

do begin receive [construct,i] from y ;

if i=0 then lcs[y] := frond

else lcs[y] := son

end

The initiator starts the algorithm:

pardo ConstructSubtree & TrimTest odrap ;

InitSearchCutnode

The others, upon arrival of the first [construct,i] message:

(* i=0 in the first message, because the

first message is certainly NOT a reply. *)

receive [construct,0] from x ; lcs[x] := fat ;

pardo ConstructSubtree & TrimTest odrap ;

send [construct,1] to x

Algorithm 20: Construction of control spanning tree.

is initiated by calling the procedure InitSearchCutnode.

Part three: Search for cut node. The procedure NodeSearch, called in node u, computes
the highest node degree in the subtree of u (with the restriction, of course, that only nodes
with in-degree zero or one are taken into account). This procedure computes the degree of u
itself and initiates a recursive computation in the subtrees by sending [search] messages to
the sons of u. The procedure terminates only after receipt of a [bestis, d] message from
each child; the order in which these messages arrive is not relevant. While processing the
replies, u maintains the highest degree seen in the variable bestdegu and bestbranchu points
to either u itself or to the subtree reporting the highest degree.

This computation and the exchange of [search] and [bestis, d] messages over a span-
ning tree are a typical example of the broadcast/convergecast mechanism. By changing the
local computation, the same mechanism can be used to compute other functions, such as
summation or conjuntion and disjunction, as the application requires.

The coordinator of the round initiates the search by calling InitSearchCutnode, and all
other nodes become involved upon receipt of a [search] message (from their father necessar-
ily). In the latter case, after completion of NodeSearch the result value is sent to the father in
a [bestis, d] message, where d is the computed degree (bestdegu). When the NodeSearch
procedure terminates in the coordinator, the stored value is the overall highest degree. A
value 0 at this point indicates that there are no nodes left with in-degree bounded by 1;
actually a termination condition for the algorithm, as any non-empty directed acyclic graph
has such nodes. If NodeSearch leads to a positive value, this is the maximal node degree, and

33

procedure NodeSearch:

if | { x in In : las[x] =yes } | <= 1

then mydeg := | { x : las[x] =yes } |

else mydeg := 0 ;

bestdeg := mydeg ; bestbranch := u ;

forall x s.t. lcs[x] = son

do send [search] to x ;

forall x s.t. lcs[x] = son

do (* in order of message arrival !! *)

begin receive [bestis,d] from x ;

if d > bestdeg

then begin bestdeg := d ;

bestbranch := x

end

end

procedure InitSearchCutnode:

NodeSearch ;

if bestdeg = 0 then Terminate

else ChangeRoot

Upon receipt of [search] from x:

(* x is the father *)

NodeSearch ;

send [bestis,bestdeg] to x

Algorithm 21: Search for Cut Node.

a node of this degree can be chosen as the next cut node. To pass control to such a node, the
current coordinator calls the procedure ChangeRoot.

Part four: Controller shift. Because the newly selected cutnode is at the center of the
leaf-trim activity of the next round, we prefer to make it the new controller.

After the execution of NodeSearch, each node u has the pointer bestbranchu pointing to
the highest degree node in the subtree of u. The procedure ChangeRoot is called only in
nodes for which the subtree contains the globally highest degree. Indeed, the �rst call to
ChangeRoot occurs in the controller (after completion of NodeSearch) and the subtree of the
controller contains the entire network.

We now consider the procedure ChangeRoot; if bestbranchu = u, then the maximum over
u's subtree occurs at u, and because this maximum equals the global maximum, node u
itself is chosen as the next cut node. Otherwise a [changeroot] message is sent to the
son that reported the highest degree (pointed by bestbranchu) because this subtree must
contain the globally maximal degree. The direction of all control tree edges through which
the [changeroot] message is forwarded is reversed so that the new controller becomes the

34

procedure ChangeRoot:

if bestbranch = u

then begin nas := cut ;

(* Coordinate next round *)

TrimFromNeighbors ;

InitSearchCutnode

end

else begin lcs[bestbranch] := fat ;

send [changeroot] to bestbranch

end

Upon receipt of [changeroot] from x:

lcs[x] := son ; ChangeRoot

procedure TrimFromNeighbors:

forall x s.t. las[x] = yes

do send [remove] to x ;

forall x s.t. las[x] = yes

do (* In order of arrival of the messages *)

begin receive [sig] or [remove] from x ;

las[x] := no

end

Algorithm 22: Controller Shift.

root of this tree.
Finally we discuss the removal of the cut node from the network. The node becomes a cut

node (nasu := cut) and informs its neighbors about its removal by calling TrimFromNeighbors.
If removing one of the edges decreases the degree of a neighbour to 1, trimming of this new
leaf is performed immediately, and termination of the whole procedure is detected as before.

Observe that before removal of the cut node there were no leaves (as a result of the
previous trimming round), and only the neighbors of the cut node decrement their degree.
Consequently, if there are any leaves at this point, they are contained in the neighbors of the
cut node, and hence TrimTest need only be initiated in these neighbors.

After termination of this trimming round the controller initiates the search for the next
cut node by calling InitSearchCutnode.

5.3 Complexity and Conclusions

To evaluate the complexity of the distributed algorithm, we introduce some parameters; n
and m are the number of nodes and edges of G as usual, let s be the size of the computed
cutset, and d the diameter of the control tree (worst case: n� 1). We then observe that in all
procedures of the algorithm, at most a constant amount of work is associated with receiving
or sending a message. Thus, the computation complexity of the algorithm is asymptotically

35

equal to the number of messages exchanged by the algorithm. As remarked before, this is
usually the case in distributed graph algorithms.

For the communication complexity we consider how many messages of each type are
exchanged. For the construction of the control tree, two [construct, i] messages are sent
through each edge of the graph to a total of 2m messages. Each edge is deactivated exactly
once at the expense of two messages, so the total amount of [remove]/[sig] messages is
also 2m. The evaluation of the highest degree node requires the exchange of one [search]

and one [bestis, :::] message through each edge of the control tree, which is 2(n � 1)
messages. This evaluation is performed s + 1 times (the last evaluation yields 0 but is used
to detect the end of the algorithm), so the overall number of [search] and [bestis, d]
messages is 2(s+ 1)(n�1). Finally, the execution shifts the controller s times, which requires
[changeroot] messages to be sent through a path in the control tree; the total number of
[changeroot] messages is bounded by s:d. We thus see that 2m+ 2m+ 2(s+ 1)(n� 1) + s:d
messages are exchanged, which is about 4m + 2s:n.

When evaluating the amount of time used by the algorithm we must realize that we have
no guarantee of any actual parallelism occurring in the trimming of leaves. If we ignore
leaf trimming, the construction of the control tree takes at most 2d time, a search for a cut
node takes at most 2d time, and changing the root to the new cut node takes at most d
time. These procedures together take (3s+ 4):d time, but their progress can be delayed when
nodes wait for leaf trimming to terminate. However, in the worst case all trimming is done
sequentially and the exchange of [remove]/[sig] messages takes 2 time units per node, so
the other procedures are delayed at most (n�s):2 time units, and the overall time complexity
is bounded by (3s + 4):d + 2(n� s).

Our example of a distributed graph processing algorithm was taken from the Arti�cial
Intelligence domain, namely loop cutset computation. Other graph algorithms can be treated
in a similar way to yield distributed versions; known examples include Shortest Path [27,
Sec. 4.2], Minimum Spanning Tree [10], Maximum Flow [32], Connectivity problems [14].

6 Conclusions

This chapter gives an overview of the most important techniques of distributed algorithm
design for Distributed Arti�cial Intelligence applications. Important issues in this domain are
the distributed control of computations, and the distributed processing of the network graph.

We have seen two important control paradigms. Termination detection is necessary to
observe when some subcomputation has ended, and a new phase of the application can start.
Examples included termination of arc consistency in distributed Constraint Satisfaction, and
the leaf trimming sub-phase of Suermondt and Cooper's loop cutset algorithm. Distributed
coordination can be issued by a controller using broadcast and convergecast over a spanning
tree. Such a tree can be constructed using the echo algorithm, and can be used to broad-
cast computation states, to convergecast maximal values or sums, and the root of the tree
can move. All these techniques were used in Suermondt and Cooper's algorithm, and are
applicable to the distributed CSP algorithm outlined in Section 4.6. The interested reader is
referred to [27] to read about more paradigms, such as leader election, control for anonymous
networks, snapshots, synchronous algorithms; I consider them of lesser importance for the AI
community.

Distributed graph processing is based on sequential techniques for the same problem, and

36

distributed graph exploration is an important step. We have seen several depth-�rst search
algorithms, and studied an algorithm for connectivity certi�cates. Breadth-�rst search is
notoriously di�cult to implement in distributed algorithms.

We have not addressed any issues related to failure and recovery of nodes; fault tolerance is
an important area in distributed algorithms research, but the results are not easily transferred
to the Arti�cial Intelligence application domain.

References

[1] Yehuda Afek and Moty Ricklin. Sparser: A paradigm for running distributed algorithms.
In Adrian Segall and Shmuel Zaks, editors, 6th Int. Workshop on Distributed Algorithms,
volume 647 of Lecture Notes in Computer Science, pages 1{10, Haifa, November 1992.
Springer Verlag.

[2] Baruch Awerbuch. A new distributed depth-�rst search algorithm. Information Process-
ing Letters, 20:147{150, 1985.

[3] Baruch Awerbuch. Optimal distributed algorithms for minimum weight spanning tree,
counting, leader election and related problems. In Symp. on Theory of Computing, pages
230{240, May 1987.

[4] Baruch Awerbuch and David Peleg. Routing with polynomial communication-space
trade-o�. SIAM J. Discr. Math., 5(2):151{162, May 1992.

[5] K. Mani Chandy and Leslie Lamport. Distributed snapshots: Determining global states
of distributed systems. ACM Transactions on Computer Systems, 3(1):63{75, February
1985.

[6] Israel Cidon. Yet another distributed depth-�rst search algorithm. Information Process-
ing Letters, 26:301{305, January 1988.

[7] Edsger W. Dijkstra, Wim H. J. Feijen, and A. J. M. van Gasteren. Derivation of a
termination detection algorithm for distributed computations. Information Processing
Letters, 16(5):217{219, June 1983.

[8] Edsger W. Dijkstra and Carel S. Scholten. Termination detection for di�using compu-
tations. Information Processing Letters, 11(1):1{4, August 1980.

[9] Shimon Even, Gene Itkis, and Sergio Rajsbaum. On mixed connectivity certi�cates. In
Paul Spirakis, editor, European Symposium on Algorithms, volume 979 of Lecture Notes
in Computer Science, pages 1{16. Springer Verlag, 1995.

[10] Robert G. Gallager, Pierre A. Humblet, and P. M. Spira. A distributed algorithm for
minimum weight spanning trees. ACM Transactions on Programming Languages and
Systems, 5:67{77, 1983.

[11] Juan A. Garay, Shay Kutten, and David Peleg. A sub-linear time distributed algorithm
for minimum-weight spanning trees. In Symp. on Theory of Computing, pages 659{668,
1993.

37

[12] Jean-Michel H�elary, Aomar Maddi, and Michel Raynal. Calcul distribu�e d'un extremum
et du routage associ�e dans un r�eseau quelconque. Technical Report 516, INRIA, Rennes,
April 1986.

[13] Lisa Higham and Teresa Przytycka. A simple, e�cient algorithm for maximum �nding
on rings. In Andr�e Schiper, editor, 7th Int. Workshop on Distributed Algorithms, volume
725 of Lecture Notes in Computer Science, pages 249{263. Springer Verlag, September
1993.

[14] Esther Jennings. Distributed Graph Connectivity Algorithms. PhD thesis, Dept of Elec.
Eng., Lule�a Un. (Sw.), Sept. 22, 1997.

[15] Nathan Linial. Distributive graph algorithms: Global solutions from local data. In
Foundations of Computer Science, pages 331{335. IEEE, 1987.

[16] Igor Litovsky, Yves M�etivier, and Wies law Zielonka. On the recognition of families of
graphs with local computations. Information and Computation, 118(1):110{119, April
1995.

[17] Virginia Mary Lo. Heuristic algorithms for task assignment in distributed systems. IEEE
Trans. on Computers, 37(11):1384{1397, November 1988.

[18] R. Mohr and T. C. Henderson. Arc and path consistency revisited. Artif. Intell., 28:225{
233, 1986.

[19] Hiroshi Nagamochi and Toshihide Ibaraki. A linear-time algorithm for �nding a sparse
k-connected spanning subgraph of a k-connected graph. Algorithmica, 7:583{596, 1992.

[20] Thang Nguyen and Yves Deville. A distributed arc-consistency algorithm. Technical
report, D�ept Informatique, Univ. Cath. de Louvain, 1348 Louvain-la-Neuve, Belgium,
September 1995.

[21] Pierre Rosenstiehl, J. R. Fiksel, and A. Holliger. Intelligent graphs: Networks of �nite
automata capable of solving graph problems. In R. C. Read, editor, Graph Theory and
Computing, pages 219{265. Academic Press, 1972.

[22] Nir Shavit and Nissim Francez. A new approach to the detection of locally indicative
stability. In Laurent Kott, editor, Int. Colloq. on Automata, Languages, and Program-
ming, volume 226 of Lecture Notes in Computer Science, pages 344{358. Springer Verlag,
1986.

[23] H. J. Suermondt and G. F. Cooper. Probabilistic inference in multiply connected belief
networks using loop cutsets. Int. J. of Approximate Reasoning, 4:283{306, 1990.

[24] Andrew S. Tanenbaum. Computer Networks. Prentice Hall, 3rd edition, 1996.

[25] Gerard Tel. Distributed in�mum approximation. Technical Report
RUU{CS{86{12, Dept of Computer Science, Utrecht Univ., 1986. URL
http://www.cs.ruu.nl/~gerard/liter/dia.dvi.

[26] Gerard Tel. Total algorithms. Algorithms Review, 1(1):13{42, January 1990.

38

[27] Gerard Tel. Introduction to Distributed Algorithms. Cambridge University Press, Cam-
bridge, U.K., 1994.

[28] Gerard Tel. Network orientation. Int. Journal on Foundations of Computer Science,
5(1):23{57, March 1994.

[29] Gerard Tel. Linear election in hypercubes. Parallel Processing Letters, 5(3):357{366,
1995.

[30] Gerard Tel and Friedemann Mattern. The derivation of termination detection algorithms
from garbage collection schemes. ACM Transactions on Programming Languages and
Systems, 15(1):1{35, January 1993.

[31] Linda C. van der Gaag. Bayesian belief networks: Odds and ends. The Computer
Journal, 39(2):97{113, 1996.

[32] Bram Verweij. Distributed edge depletion for maximum
ows. Master's thesis, Dept of
Computer Science, Utrecht Univ., July 1996.

39

