
Label Placement by Maximum Independent Set in Rectangles

Pankaj K. Agarwal� Marc van Kreveldy Subhash Suriz

Abstract

Motivated by the problem of labeling maps, we investigate the problem of comput-
ing a large non-intersecting subset in a set of n rectangles in the plane. Our results
are as follows. In O(n log n) time, we can �nd an O(logn)-factor approximation of the
maximum subset in a set of n arbitrary axis-parallel rectangles in the plane. If all rect-
angles have unit height, we can �nd a 2-approximation in O(n logn) time. Extending
this result, we obtain a (1 + 1

k
)-approximation in time O(n logn + n2k�1) time, for

any integer k � 1.

1 Introduction

Automated label placement is an important problem in geographic information systems
(GIS), and has received considerable attention in recent years (for instance, see [6, 9]).
The label placement problem includes positioning labels for area, line, and point features.
The primary focus within the computational geometry community has been on labeling
point features [5, 7, 17, 16]. A basic requirement in the label placement problem is that the
labels be pairwise disjoint. Subject to this basic constraint, the most common optimization
criteria are the number of features labeled and the size of the labels. Other variations
include the choice of the shapes of the labels and the legal placements allowed for each
point. Unfortunately, even in simple settings, the problem turns out to be NP-hard [3, 7].

In this paper we assume that each label is an orthogonal rectangle of �xed size and
we want to place as many labels as possible. More precisely, let S be a set of n points in
the plane. For each point pi 2 S, we have a label ri, and a set �i of marked points on
the boundary of ri. Typical choices of �i include the endpoints of the left edge of ri, the
four vertices of ri, or the four vertices and middle points of the four edges of ri. A valid
placement of ri is a translated copy ri+(pi�xi) of ri for some xi 2 �i, that is, ri is placed
so that one of the marked positions on the boundary of ri coincides with the point pi.
A feasible con�guration is a family of pairs f(pi1 ; xi1); : : : ; (pik ; xik)g, where all the ij are
di�erent and xij 2 �ij , so that the rectangles in fri1 +(pi1 �xi1); : : : ; rik +(pik �xik)g are
pairwise disjoint. The label placement problem is to �nd a largest feasible con�guration.

�Department of Computer Science, Box 90129, Duke University, Durham, NC 27708-0129, USA. Re-
search partially supported by National Science Foundation Grant CCR-93{01259, by an Army Research
O�ce MURI grant DAAH04-96-1-0013, by a Sloan fellowship, by an NYI award, and by matching funds
from Xerox Corporation, and by a grant from the U.S.-Israeli Binational Science Foundation.

yDepartment of Computer Science, Utrecht University, P.O.Box 80.089, 3508 TB Utrecht, the Nether-
lands. Research partially supported by the ESPRIT IV LTR Project No. 21957 (CGAL), and by the Dutch
Organization for Scienti�c Research (NWO).

zDepartment of Computer Science, Washington University, St. Louis, MO 63130 USA. Research par-
tially supported by NSF Grant CCR-9501494.

1

Onetown

Twotown

Threetown

Fourtown

Fivetown

Sixtown

Seventown

7.2

3.6
4.2

5.5

3.1

3.3

5.7

4.1

4.2

5.33.7

3.2

4.9

Figure 1: Point labels that are names of
towns, mixed with epicenters of earthquakes
labeled with their magnitude.

In practice the labels are subject to ad-
ditional constraints, which help in simpli-
fying and improving the algorithms. Re-
stricting the shape of the labels to be same
size squares is one such approach [7, 16, 17],
because in many technical maps all labels
have the same size. Think of mapping mea-
surements at sample points in a terrain, or
maps showing magnitudes of earthquakes at
points that are the epicenters. Another in-
teresting case is when all labels have the
same height but arbitrary width. This situ-
ation arises, for example, if we want to label

points with names on a map and all labels are in the same font size, or when di�erent
types of point labels occur on a map. In this paper we consider the second case.

We will study the case when �i has a constant number of positions on the boundary of
ri. The rectangles are closed; they include the boundary. Let Ri = fri+(pi�xj) j xj 2 �ig
and set R =

Sn
i=1Ri. The label placement problem is the same as computing a largest

subset of pairwise disjoint rectangles in R. Since all rectangles in Ri have a common
intersection point pi, at most one rectangle can be chosen from each Ri. Consider the
intersection graph G(R) of R: the nodes of G(R) are the rectangles of R and there is an
edge between two nodes if the corresponding rectangles intersect. A subset of pairwise
disjoint rectangles in R corresponds to an independent set in G(R). We want to compute
a maximum independent set of G(R). Abusing the terminology slightly, we will say that
we want to compute a maximum independent set of R. Computing an independent set
of rectangles is known to be NP-hard [8, 13]. This suggests that one should aim for
approximation algorithms. We call an algorithm an "-approximation algorithm, for " > 1,
if it returns an independent set of size at least
=", where
 is the size of a maximum
independent set of R.

Although it is known that no polynomial-time
(n1=4)-approximation algorithm exists
for maximum independent sets in arbitrary graphs [1], no such lower bound is known
for intersection graphs of rectangles. In this paper we present an O(n logn)-time (logn)-
approximation algorithm for rectangles.1 For the case that all rectangles in R have the
same height, we describe an (1 + 1=k)-approximation algorithm whose running time is
O(n logn + n2k�1), for any k � 1. This is an important case, since it models the label
placement problem when all labels have the same font size. It is an open problem whether
a c-approximation algorithm exists for arbitrary rectangles, for any positive constant c.

The paper is organized as follows. Section 2 summarizes the previous work on the label
placement problem. In Section 3 we describe the approximation algorithm for arbitrary
orthogonal rectangles. Section 4 describes our approximation algorithm for unit-height
rectangles, which is based on dynamic programming.

1All logarithms in this paper are base 2.

2

2 Previous Research

There has been a lot of work on label placement in cartography community; see e.g.,
[6, 9] and the references they contain for a sample of results. Algorithms researchers have
also studied labeling maps. Formann and Wagner [7] considered the label placement for
point features in the plane using square labels. Speci�cally, an axis-aligned square label is
placed for each point such that the point coincides with one of the vertices of its labeling
square. They used the size of the square label as the optimization criterion, subject to
the condition that all points must receive a label. The square represents the text or
measurement to be placed at the point. Their optimization is motivated by the maximum
font size: since the problem allows scaling in the x-direction, it is the same as rectangular
label placement for equal-size labels.

Given a point p, there are four positions for placing a square label so that the point
coincides with one of the corners of the label. If all four positions of labels are allowed,
then the problem of maximing the size of the label is NP-complete. Formann and Wagner
give an O(n logn) time algorithm that guarantees a label size at least half the optimum
[7]. They also show that no better approximation is possible unless P=NP. Formann and
Wagner's approach is to grow all four possible labels around the points, removing candidate
placements when they con
ict with other growing labels. Whether the remaining labels
allow a placement is done by solving 2-SAT problems. Ku�cera et al. [14] studied the same
problem, but developed an exact, super-polynomial algorithm that can be applied for sets
with up to roughly 100 points.

Wagner and Wol� [17, 16] have noted that, in practice, the approach of Formann and
Wagner hardly ever results in square sizes signi�cantly greater than half the optimum.
They also study several variations and their implementation and �nd ways to improve on
the size of the squares in practice.

Doddi et al. [5] allow more general shapes of labels, e.g., circles, nonoriented rectangles,
ellipses, and present approximation algorithms in each case. Like Formann and Wagner,
they also approximate the size of labels. See also [12, 15].

Christensen et al. [3] provide a comparison of several approaches to place as many
labels as possible on a map. They consider point labels, line labels, and area labels. A
further comparison can be found in [2].

3 Arbitrary Size Rectangular Labels

We describe a simple, divide-and-conquer algorithm for computing a large independent
set in a set R of n orthogonal rectangles in the plane. We sort the horizontal edges of
R by their y-coordinates and their vertical edges by their x-coordinates; this step takes
O(n logn) time. This sorting is done only once in the beginning. If n � 2, we compute
the maximum independent set in O(1) time. Otherwise, we do the following.

1. Let xmed be the median x-coordinate among the abscissae of R.

2. Partition the rectangles of R into three groups: R1; R2, and R12, where R12 contains
rectangles intersecting the line ` : x = xmed, and R1 and R2 contains the rectangles
lying to the left and right, respectively, of the line.

3

3. Compute I12, the (real) maximum independent set of R12. Recursively compute I1
and I2, the approximate maximum independent sets in R1 and R2, respectively.

4. If jI12j � jI1j+ jI2j, return I12, otherwise return I1 [I2.

The �rst observation to make is that the rectangles in R1 are disjoint from the rect-
angles in R2. Consequently, the independent sets 1 and I2 can simply be joined into a
larger independent set. The second observation to make is that since all rectangles in R12

intersect the line `, it su�ces to compute a largest nonoverlapping subset of intervals in
the set J = fr \ ` j r 2 R12g, in order to compute I12. This one-dimensional problem can
be solved optimally by the following greedy strategy in O(n logn) time. Sort the intervals
in the ascending order of their bottom endpoints. Add the topmost interval l, with high-
est bottom endpoint, to the independent set; delete all intervals intersecting l; and repeat
until no intervals remain. Recall that the horizontal edges of rectangles in R are sorted by
their y-coordinates, so we can sort the intervals in J by their bottom endpoints in linear
time. Since jR1j � jnj=2 and jR2j � jnj=2, the overall running time of the algorithm is
O(n logn).

Next, we prove by induction that our algorithm computes an independent set of size
at least
=max(1; logn), where
 is the largest independent set. For n � 2, we compute
a largest independent set, so the claim is obviously true for n � 2. Suppose it is true for
all m < n. Let I� be a maximum independent set of R. Similarly, let I�1 , I

�
2 , and I�12

be the maximum independent sets of R1, R2, and R12, respectively. Since the algorithm
computes a maximum independent set I12 of R12, we have jI12j = jI�12j � jI� \ R12j. By
the induction hypothesis,

jI1j � jI�1 j
log(n=2)

� jI� \R1j
logn� 1

and similarly; jI2j � jI� \R2j
logn� 1

:

Therefore, jIj = maxfjI12j; jI1j+ jI2jg �

max

�
jI� \R12j; jI

� \R1j+ jI� \R2j
logn� 1

�
� max

�
jI� \R12j; jI

�j � jI� \R12j
logn� 1

�
:

If jI� \R12j � jI�j= logn the induction step is proved, and otherwise,

jI�j � jI� \R12j
logn� 1

� jI�j � jI�j= logn
logn� 1

=
jI�j
logn

;

and the induction step is proved as well. Hence, we obtain the following result.

Theorem 1 Let R be a set of n axis-parallel rectangles in the plane. An independent set

of R of size at least
= logn can be computed in time O(n logn), where
 is the size of a

maximum independent set in R.

4 Approximation Scheme for Unit-Height Rectangles

In this section we develop a polynomial-time approximation algorithm for computing an
independent set of rectangles of �xed height, but of arbitrary width. As discussed earlier,
our class is clearly more general than unit squares, and this added generality is important
for labeling maps. We assume without loss of generality that all rectangles have unit
height. We �rst develop a 2-approximation algorithm that takes O(n logn) time. Then,
using dynamic programming, we obtain a (1+ 1

k)-approximation algorithm whose running
time is O(n logn+ n2k�1) time, for any k � 1.

4

4.1 A 2-approximation algorithm

Consider a set R of n unit-height rectangles in the plane. We draw a set of horizontal
lines, `1; `2; : : : ; `m, where m � n, so that the following three conditions hold.

1. The separation between two lines is strictly more than one,

2. each line intersects at least one rectangle, and

3. each rectangle is intersected by some line.

Note that minimum separation condition implies that a rectangle cannot be intersected
by more than one line. The lines can be drawn from top to bottom using an incremental
approach. These lines partition the set R into subsets R1; R2; : : : ; Rm, where Ri is the set
of rectangles in R that intersect line `i.

We compute a maximum independent set Mi for each Ri, which takes O(jRij log jRij)
time, using the one-dimensional greedy algorithm. Since the line `i does not intersect any
rectangle of R n Ri, the rectangles in Mi do not intersect any rectangle of Mj except for
j = i � 1 or j = i + 1. Consider the two independent sets fM1 [M3 [� � � [M2dm=2e�1g
and fM2 [M4 [� � � [M2bm=2cg. Clearly, the larger of these two must have size at least

=2, and thus we have a 2-approximation algorithm. The running time of the algorithm is
O(n logn), since �nding the lines `i and forming the corresponding partition can be done
in a single pass through the rectangles after sorting them by their y-coordinates.

Theorem 2 Let R be a set of n unit height axis-parallel rectangles in the plane. In

O(n logn) time, we can compute an independent set of size at least
=2, where
 is the

size of a maximum independent set of R.

4.2 A (1 + 1
k
)-approximation algorithm

`1

`2

`3

`4

`5

`6

`7

`8

R1

1

R3

3

R
3

7

`9

`10

Figure 2: The group G2 for k = 3.

We will improve the approximation fac-
tor to (1 + 1

k), for any k � 1, by com-
bining dynamic programming with the
shifting technique of Hochbaum and
Maass [10]. The basic idea is to par-
tition the rectangles by horizontal lines
`1; `2; : : : ; `m as before, but then use dy-
namic programming to optimally solve
the subproblem for each subset of rect-
angles intersected by k consecutive lines.
Suppose the lines are labeled `1; `2; : : : ; `m
from top to bottom, and Ri is the set of
rectangles intersecting the line `i. De�ne
Rk
i = Ri [Ri+1 � � �Ri+k�1, that is, R

k
i

is the set of rectangles intersecting any
line in the set f`i; `i+1; : : : ; `i+k�1g. We
will refer to the Rk

i 's as subgroups.

5

We now de�ne k + 1 groups G1; : : : ; Gk+1 (see Figure 2), where

Gj = Rj�1
1 [

[
i�0

Rk
i(k+1)+j = R n

[
i�0

Ri(k+1)+j :

That is, for 1 � j � k+1 the groupGj is obtained fromR by deleting rectangles intersected
by every (k + 1)-st line, starting with the `j-th line.

We make two key observations about these groups of rectangles. First, consider two
consecutive subgroups within any group, such as Rk

1 and Rk
k+2 in G1. No rectangle of R

k
1

intersects a rectangle in Rk
k+2; the line `k+1 separates these subgroups. By extension, this

means that for any group Gj, the rectangles in a subgroup of Gj are disjoint from the
rectangles of any other subgroup of Gj. Thus, if we combine the independent sets for all
the subgroups, we get an independent set of the whole group Gj. Second, since a group
is formed by deleting all rectangles that intersect every (k + 1)-st line, the union of all
rectangles in R n Gj is intersected by at most dm=(k + 1)e lines. Thus, if we compute
a maximum independent set for each Gj, and choose the largest one, we can miss at
most
=(k + 1) rectangles by the pigeon hole principle. Hence we get an (1 + 1

k) factor
approximation. This is exactly the shifting idea of Hochbaum and Maass [10], and this is
precisely what we will do as well.

We give a dynamic programming solution for computing a maximum independent set
M(Rk

j) for any subgroup Rk
j , that is, a set of rectangles intersected by k consecutive lines

in `1; `2; : : : ; `m. After computing M(Rk
j) for every j � 1, the rest of the algorithm is

straightforward.
p

q

t
`1

`2

A[p; q; t] = 7

Figure 3: Polygonal line de�ned by p; q; t
and its relation to the table entry A[p; q; t].

For ease of exposition, we describe the al-
gorithm for the case k = 2, but all the ideas
generalize readily. Without loss of general-
ity, let us consider the problem of comput-
ing a maximum independent set for R2

1 =
R1 [R2, that is, the rectangles intersecting
`1 or `2. Let X = (x1; x2; : : : ; xg) denote the
sequence of distinct abscissae, sorted in in-
creasing order (left to right). Note that only
the ordinates of the bottom edges of rectan-
gles in R1 and of the top edges of rectangles
in R2 are relevant. Let Y = (y1; y2; : : : ; yh)
denote the sequence of distinct ordinates of

bottom edges from R1 and of top edges from R2, sorted in the increasing order (bottom to
top). Add to X the value x0 where x0 < x1. Add to Y the value y0, which is the ordinate
of the line `2 minus 1, and the value yh+1, which is the ordinate of the line `1 plus 1. Note
that y0 < y1 and yh < yh+1.

With each triple � = (p; q; t), where 0 � p; q � g + 1 and 0 � t � h + 1, we associate
a polygonal line �� de�ned as follows: If p = q, then �� is the vertical line x = p;
otherwise �� consists of a vertical ray emanating from the point (xp; yt) in the (+y)-
direction, the horizontal segment connecting (xp; yt) to (xq; yt), and another vertical ray
emanating from the point (xq; yt) in the (�y)-direction, see Figure 3. Let R� � R denote
the set of rectangles whose interiors lie to the left of the polyline �� . Let M� denote a
maximum independent set of R� , and let A� = jM� j. We now describe how we compute

6

p

q

t

`1

`2

p� 1 p

q

t

`1

`2

i� 1
i

jj � 1

p

q

t

`1

`2

i� 1
i

Figure 4: Filling out the entry A[p; q; t]; the three cases.

A� for all triples � = (p; q; t). We will construct a three-dimensional table A, in which
A[p; q; t] will store the value of A(p;q;t).

We consider the case when p > q; the case p < q is symmetric. If p = q, the third
index t plays no role. We can �ll out the entry A[p; p; ::] as the case where p > q and the
third index is h+ 1. So we need only consider the case p > q.

If p > q and no rectangle in R� \R1 has its right edge at x = xp, then R� = R(p�1;q;t);
therefore A[p; q; t] = A[p� 1; q; t]. Otherwise, let r 2 R1 be the rectangle whose right edge
is at x = xp. (Let us assume that there is only one such rectangle; we will discuss later
how to handle the case when the right edges of many rectangles lies on the line x = xp.)
Suppose the left edge of r lies on the line x = xi and its bottom edge lies on the line
y = yj. If j < t (or yj < yt), then r 62 R� , so R� = R(p�1;q;t) and A[p; q; t] = A[p� 1; q; t].
Otherwise, R� = R(p�1;q;t) [frg. If r 62 M� , then again A[p; q; t] = A[p � 1; q; t]. On the
other hand, if r 2M� , then none of the other rectangles in R� that intersect r can belong
to M� . There are two cases when r 2 M� , see Figure 4. If i > q (or xi > xq), then let
� 0 = (i � 1; q; t), otherwise let � 0 = (i � 1; q; j � 1). It is easy to see that if r 2 M� , then
M� = M� 0 [frg. Therefore, A� = A� 0 + 1. Hence, we obtain the following for A[p; q; t],
assuming that p > q.

A[p; q; t] =

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

A[p� 1; q; t] no rectangle in R(p;q;t) \R1 has the

right edge at x = xp;

max(A[p� 1; q; t]; R(p;q;t) \R1 has a rectangle r with the

A[i� 1; q; t] + 1) right edge at x = xp, the left edge at x = xi,
and i > q;

max(A[p� 1; q; t]; R(p;q;t) \R1 has a rectangle r with the

A[i� 1; q; j � 1] + 1) right edge at x = xp, the left edge at x = xi
with i � q, and the bottom edge at y = yj.

If there are many rectangles in R� \ R1 with the right edge on the line x = xp, we
divide them into two subsets|the ones whose left edge lies to the left of x = xq and the
ones whose left edge does not lie to the left of x = xq. For each rectangle in the �rst
category, we use the third case and for all rectangles in the second category we apply the
second case. We then choose the one that gives the maximum value. We can �ll out the
three-dimensional table A in a standard dynamic programmingmanner [4]. Geometrically,
the only constraint on �lling out the entries is that when A[p; q; t] is being computed, we
must have computed the entries corresponding to the polygonal lines that lie in the closure

7

of the subplane left of �(p;q;t). A straightforward implementation of the dynamic program
requires O(jR1 [R2j3) time|most entries take constant time to �ll out, except when
several rectangles have their right edge at the same p or q. However, we can a�ord to
spend time proportional to the number of rectangles, since the total work still adds up to
O(jR1 [R2j3).

Let jRij = ni, for i = 1; 2; : : : ;m, where m is the number of lines used to partition
R. Then, clearly

Pm
i=1 jRij =

P
ni = n. In order to compute an independent set of size

2
=3, we perform the dynamic programming algorithm m� 1 times, once for each pair of
consecutive lines. Thus the total time complexity is

m�1X
i=1

O((ni + ni+1)
3) = O(n3) :

Observe that if ni = O(
p
n) for all i|a situation that is likely to occur in practice|then

the running time is only O(n2). It is straightforward to adapt the algorithm so that it
computes the independent set rather than the size of it.

Theorem 3 Let R be a set of n unit-height axis-parallel rectangles in the plane. In O(n3)
time, we can compute an independent set of size at least 2
=3, where
 is the size of a

maximum independent set of R.

Extending the technique to a (1 + 1
k)-approximation algorithm is straightforward. We

need to compute an optimum solution for the union of rectangles intersecting k consecutive
lines. In the dynamic programming algorithm, instead of a 3-dimensional table, we need
to �ll out a (2k � 1)-dimensional table. Geometrically, a (2k � 1)-tuple corresponds to a
weakly y-monotone, rectilinear polyline with two vertical half-lines, k�2 horizontal edges,
and k�3 vertical edges. Each vertical edge has its x-coordinate in X, and each horizontal
edge has its y-coordinate in Y . This gives us the polynomial-time approximation scheme
with the following performance.

Theorem 4 Let R be a set of n unit-height axis-parallel rectangles in the plane. In

O(n2k�1) time, we can compute an independent set of size at least
=(1 + 1
k), for any

k � 1, where
 is the size of a maximum independent set of R.

5 Conclusions

We have given approximation algorithms and an approximation scheme for maximum size
non-intersecting subset in sets of rectangles. The work is motivated from label placement
at points, where the rectangles represent the bounding boxes of labels. The approximation
scheme was known for the restrictive case of unit size square labels [11], which occurs for
�xed precision decimal numbers as labels. We gave a di�erent approximation scheme for
unit height labels with varyings widths, which is the standard situation for labels that are
names, or labels of di�erent type with �xed font size.

The algorithms for labeling support the situation where several positions for the label of
any point are allowed. The restriction is that all positions of the label of a point intersect
each other. Also, the asymptotic running time is not a�ected if a constant number of
positions is allowed for each label.

8

The maximum non-intersecting subset of rectangles problem can be seen as a maximum
independent set problem in a special type of graph. The approximation algorithm we
presented for these graphs is considerably better than what is theoretically possible for
general graphs. However, we were not able to obtain a polynomial time, constant factor
approximation algorithm for the case of arbitrary axis-parallel rectangles. This is an
interesting open problem.

Acknowledgement. The authors thank Alexander Wol� for helpful comments.

References

[1] M. Bellare and M. Sudan. Improved non-approximability results. In Proc. 26th Annu.

ACM Sympos. Theory Comput., pages 184{193, 1994.

[2] J. Christensen, S. Friedman, J. Marks, and S. Shieber. Empirical testing of algo-
rithms for variable-sized label placement. In Proc. 13th Annu. ACM Sympos. Comput.

Geom., pages 415{417, 1997.

[3] J. Christensen, J. Marks, and S. Shieber. An empirical study of algorithms for point-
feature label placement. ACM Trans. Graph., 14:202{232, 1995.

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT
Press, Cambridge, MA, 1990.

[5] S. Doddi, M. Marathe, A. Mirzaian, B. Moret, and B. Zhu. Map labeling and its
generalization. In Proc. 8th ACM-SIAM Sympos. Discrete Algorithms, pages 148{
157, 1997.

[6] J. S. Doerschler and H. Freeman. A rule-based system for dense-map name placement.
Commun. ACM, 35:68{79, 1992.

[7] M. Formann and F. Wagner. A packing problem with applications to lettering of
maps. In Proc. 7th Annu. ACM Sympos. Comput. Geom., pages 281{288, 1991.

[8] R. J. Fowler, M. S. Paterson, and S. L. Tanimoto. Optimal packing and covering in
the plane are NP-complete. Inform. Process. Lett., 12(3):133{137, 1981.

[9] H. Freeman. Computer name placement. In D. J. Maguire, M. F. Goodchild, and
D. W. Rhind, editors, Geographical Information Systems: Principles and Applica-

tions, pages 445{456. Longman, London, 1991.

[10] D. S. Hochbaum and W. Maas. Approximation schemes for covering and packing
problems in image processing and VLSI. J. ACM, 32:130{136, 1985.

[11] H. B. Hunt III, M. V. Marathe, V. Radhakrishnan, S. S. Ravi, D. J. Rosenkrantz, and
R. E. Stearns. A uni�ed approach to approximation schemes for NP- and PSPACE-
hard problems for geometric graphs. In Proc. 2nd Annu. European Sympos. Algo-

rithms, volume 855 of Lecture Notes Comput. Sci., pages 424{435, 1995.

9

[12] H.B. Hunt III, M.V. Marathe, V. Radhakrishnan, S.S. Ravi, D.J. Rosenkrantz, and
R.E. Stearns. A uni�ed approach to approximation schemes for NP- and PSPACE-
hard problems for geometric graphs. In Proc. 2nd Europ. Symp. on Algorithms,
volume 855 of Lect. Notes in Comp. Science, pages 424{435, 1995.

[13] H. Imai and Ta. Asano. Finding the connected components and a maximum clique
of an intersection graph of rectangles in the plane. J. Algorithms, 4:310{323, 1983.

[14] L. Ku�cera, K. Mehlhorn, B. Preis, and E. Schwarzenecker. Exact algorithms for a
geometric packing problem. In Proc. 10th Sympos. Theoret. Aspects Comput. Sci.,
volume 665 of Lecture Notes Comput. Sci., pages 317{322. Springer-Verlag, 1993.

[15] M. V. Marathe, H. Breu, H. B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz. Simple
heuristics for unit disk graphs. Networks, 25:59{68, 1995.

[16] F. Wagner and A. Wol�. An e�cient and e�ective approximation algorithm for the
map labeling problem. In Proc. 3rd Annu. European Sympos. Algorithms, volume 979
of Lecture Notes Comput. Sci., pages 420{433. Springer-Verlag, 1995.

[17] Frank Wagner and Alexander Wol�. Map labeling heuristics: Provably good and
practically useful. In Proc. 11th Annu. ACM Sympos. Comput. Geom., pages 109{
118, 1995.

10

