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ABSTRACT

The planning of clinical treatment actions for children with congenital heart disease requires a subtle trade-o� between
their immediate and long-term consequences, where most of these consequences cannot be predicted with certainty. It is
described how this problem can be cast as a �nite-horizon, partially observable Markov decision process. The complexity of
the resulting model is reduced by using a graphical representation of state space and transition probabilities; it is shown that
such a representation yields a signi�cant decrease in the number of model parameters that have to be assessed.

1. INTRODUCTION

A signi�cant problem for the paediatric cardiologist in
the management of patients with a cardiac anomaly is
to decide if and when a patient has to be submitted to
surgical treatment. In the management of these patients,
there is always a trade-o� between the bene�ts gained
by waiting before surgical intervention in the hope that
the patient's condition will improve, and the risks caused
by the poor natural history of these disorders [1]. The
number of factors involved in this decision-making pro-
cess is large and their interplay is subtle. Therefore, it
is extremely di�cult for the clinician to determine which
timing of medical and surgical treatment will be optimal
for a given patient. In general terms, this problem may
be characterised as prognostic assessment and planning
under uncertainty with time constraints.

Partially observable Markov decision processes

(POMDPs) [2], [3] are models for sequential decision
making under uncertainty, taking into account both the
outcomes of current decisions and future decision-making
opportunities. The general form of these models allows
for the expression of many di�erent decision-making sce-
narios, including reasoning with incomplete information,
planning of both test and treatment actions, and pre-
dicting future states. Markov decision processes are re-
ceiving increasing attention from the AI community, and
have recently been proposed as a suitable framework for
decision-theoretic planning [4]. However, the generality
of the framework precludes straightforward application in
practice, due to the representational and computational
complexity of POMDP problems of considerable size.

In this paper, we investigate the applicability of
POMDPs to the problem of time-critical treatment plan-
ning and prognosis in the domain of paediatric cardiology.
As a case study we have selected the relatively frequent
occurring cardiac anomaly of ventricular septal defect. In
this problem domain, truthful modelling of clinical treat-
ment practice requires some adaptations to the general
form of the POMDP model. Furthermore, we consider the

graphical representation of POMDP models using tempo-

ral belief networks [5], [6]. These networks have previously
been suggested as an adequate representation method for
biomedical processes over time [7], [8], and, more recently,
as a suitable means to reduce the representational com-
plexity of POMDP models [4]. The case study reported
in this paper provides evidence to support this claim.

This paper is organised as follows. In Section 2, we dis-
cuss the problem of clinical treatment planning for chil-
dren with a ventricular septal defect. Section 3 reviews
Markov decision process models and associated solution
techniques. In Section 4, we discuss the representation of
Markov decision processes in probabilistic networks. The
resulting representation method is analysed in Section 5 in
terms of representational complexity. The paper is com-
pleted with conclusions and directions for further research
in Section 6.

2. EXAMPLE: TREATMENT PLANNING

FOR VSD

Ventricular septal defect (VSD) is a relatively well-
understood cardiac anomaly with many clinical features
that are typical for congenital heart disease in general.
VSD is a defect in the ventricular septum, the �bromus-
cular wall that separates the left and the right ventri-
cle. An immediate consequence of this defect is blood

ow (\shunt") from the left to the right ventricle due
to ventricular pressure di�erences. The shunt size, i.e.,
the amount of blood 
owing through the defect, depends
primarily on the size of the defect and the ratio of pul-
monary and systemic vascular resistances. Left-to-right
shunting causes oxygenous blood to be pumped into the
lungs again. As a result, the pulmonary pressure will rise,
and systemic cardiac output will decrease. With large de-
fects, the high pulmonary pressure may lead to heart fail-
ure. Heart failure accounts for most of the typical symp-
toms associated with VSDs, such as shortness of breath,
feeding problems, oedema, and growth arrearage.

The clinical course is favourable with small defects
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throughout infancy and childhood [9]. About 75 to 80%
of the defects close spontaneously due to tissue growth,
with the majority closing in the �rst two years of life. Pa-
tients with moderate-sized defects may develop large left-
to-right shunts and associated complications in infancy,
but the majority of this group can be managed medi-
cally without surgical intervention. Patients with large
defects are more di�cult to manage, because of the risks
of mortality in the �rst year of life due to heart failure and
associated pulmonary infections. Furthermore, elevated
pulmonary vascular resistance may develop over time as
a response to continuous pulmonary over
ow and hyper-
tension [10]; this is termed Eisenmenger's complex. As a
result, the shunt size will decrease and the symptoms of
heart failure will vanish. However, Eisenmenger's com-
plex eventually leads to cyanosis due to shunt reversal,
and severe, irreversible damage to the pulmonary arter-
ies (arteriopathy). Early surgical intervention is therefore
strongly recommended for these patients. The majority
of patients with repair of uncomplicated VSD in infancy
or early childhood have an excellent result with no clinical
signs or symptoms and apparently normal life-expectancy.

Variable Interpretation Domain

art pulmonary arteriopathy absent, mild,
moderate, severe

cyan central cyanosis false, true

fail heart failure absent, mild,
moderate, severe

res relative pulmonary normal, increased,
vascular resistance high, very high

risk mortality risk false, true

shunt shunt size none, small,
large, reversed

size defect (VSD) size null, small,
moderate, large

symp heart failure symptoms absent, mild,
moderate, severe

Table I

Stochastic state variables for the VSD domain.

In this paper, we study the clinical problem of treat-
ment planning for VSD patients. We will use a set of
eight, discrete, stochastic variables to characterise the dis-
ease process; these variables, and their possible value sets,
are listed in Table I. For some of these variables (e.g.,
shunt size, pulmonary vascular resistance, cyanosis, and
heart failure symptoms), at each point in time the actual
state depends solely on the actual states of other vari-
ables. For other variables (e.g., defect size and pulmonary
arteriopathy), the state is determined by their own and
other variables' states in the past. Furthermore, the clin-
ician has choice among a number of actions to change
and/or observe the states of some variables. For instance,
medical treatment may be used to control heart failure,
surgery may be used to close the defect, and ultrasound
imaging, cardiac catheterisation, and pulmonary biopsy
provide additional information concerning the defect size,
the shunt size and the presence of pulmonary arteriopa-
thy, respectively. The treatment actions, their e�ects to
state variables, and their associated observations are sum-
marised in Table II.

Action Interpretation E�ects Observations

biop pulmonary biopsy { art

cath cardiac catheterisation risk shunt

echo ultrasound imaging { size

med medical treatment fail {

surg perform surgery size, risk size

Table II

Available treatment actions for the VSD domain.

The problem for the clinician is to decide if and when
to conduct one or more of these actions for a VSD patient.
Usually, the patient's condition is monitored without sur-
gical intervention during the �rst year of life. During this
period, ultrasound images are made repeatedly, and med-
ical treatment is given when necessary. After the �rst
year of life, a decision on surgical intervention is made.
In cases of doubt concerning the clinical state of the pa-
tient, cardiac catheterisation or pulmonary biopsy may be
performed prior to that decision. Therapy is considered
completed after closure of the defect, either spontaneously
or by surgical intervention.

3. MARKOV DECISION PROCESSES

Markov decision processes (MDPs) [11], [12] are models
for sequential decision making under uncertainty, which
take into account both immediate and long-term conse-
quences of decisions. Basically, the theory assumes that
a person, called the decision maker, is charged with the
responsibility of choosing a sequence of actions in order
to in
uence a stochastic process. The immediate result
of each action choice is that the system under consider-
ation evolves to a new state according to a probability
distribution determined by the action choice. Further-
more, the decision maker receives an immediate reward re-

ecting the desirability of the new system state compared
to other possible states. The goal is to optimise some
function of the overall reward sequence that expresses
the decision maker's intertemporal trade-o�s. Partially

observable Markov decision processes (POMDPs) [2] are
a generalisation of Markov decision processes which per-
mit uncertainty regarding the system state and allow for
state information acquisition depending on action choice.
Consequently, in POMDP problems the trade-o� between
actions does not only concern their immediate and long-
term e�ects, but also their information-gathering prop-
erties. The generalisation to POMDPs is signi�cant in
problem settings where state uncertainty is a central is-
sue that cannot be discarded; we note that this holds for
the VSD domain as discussed in the previous section.

POMDP model

Formally, a POMDP model is a tuple (T;X;A; P; !; r),
where

� T is a set of decision moments,
� X is a set of stochastic state variables, jointly de�ning
the set of system states,

� A is a set of available actions,
� P is a set of transition probability functions,
� ! is an observation function, and
� r is a reward function.

2



The basic form of the model is quite general and the liter-
ature on POMDPs provides a plethora of possible choices
for each of the elements. The quali�er \Markov" refers to
the fact that the transition probability, observation and
reward functions depend on the past only through the
current state of the system and the most recent action
selected by the decision maker. Below, we discuss the ap-
propriate choices for each of the model elements from the
perspective of clinical VSD treatment.

The set T of decision moments denotes the points in
time where the decision maker is expected to choose an
action. We will con�ne ourselves to the case where T is �-
nite; one then speaks of a �nite-horizon process. Standard
POMDP theory requires us to �x the set T in advance for
a given problem domain. However, in the clinical prac-
tice of VSD treatment, decision moments are established
by the cardiologist in due course. Therefore, we use the
set T as a grid of decision moments, where each time
point t 2 T is a potential decision moment. We take
T = f0; 1; 2; : : : ; Ng (N 2 N), where t 2 T denotes the
age of the patient expressed as number of life months. We
adopt the convention that no action is chosen at the last
potential decision moment: this moment is included for
evaluation of the �nal system state only. The state space
of the POMDP model is characterised by the �nite set
X = fX1; : : : ; Xmg of discrete, stochastic variables. For
the VSD domain, we have that m = 8; the variables are
listed in Table I. To express a joint assignment of values
to variables from a set X 0 � X, the notion of a con-

�guration of X 0 is introduced, which is denoted by cX0 .
The set of all possible con�gurations of X 0 is denoted by
CX0 . Consequently, the state space of the POMDP equals
CX = CfX1g � � � � � CfXmg. A state space thus char-
acterised by multiple stochastic variables is sometimes
called structured [4]. Structured state spaces o�er sev-
eral advantages over 
at state spaces (where there is only
a single state variable), the most prominent of which is
the ability to exploit conditional independencies between
the variables at hand; we will elaborate on this subject
in Section 4. For the set A of available actions in the
VSD domain we refer to Table II. Our approach di�ers
from the standard model presented in the literature in
that we allow for multiple, simultaneous actions at each
potential decision moment t 2 T . That is, the clinician
is expected to choose a subset � � A of actions to be
performed, where choosing the empty set ? is interpreted
as a skip-action, i.e. taking no decision at that point in
time. Using this action, the clinician can make decisions
at irregular time points (by skipping intermediate points)
and `�ll up' the remaining time when some satisfactory
state is reached.

The e�ects of actions are described by the set P =
fp�t : CX � CX ! [0; 1] j t 2 T; � � Ag of time- and
action-dependent transition probability functions, where
p�t (c

post
X j cpreX ) denotes the probability of arriving at state

c
post
X after performing action set � � A in state c

pre
X at

moment t. Observability of the current system state is
modelled by the observation function ! : A! 2X , where
!(a) denotes the set of state variables whose current val-
ues can be observed by the decision maker when action a

has just been performed. For an action set � � A, we de-

�ne !(�) = [a2�!(a) to be the observable set. The sets
of observable state variables for the VSD domain are listed
along with the available actions in Table II. Finally, the
immediate rewards of actions are described by the func-
tion r : CXr

! R, where Xr = fart; cyan; riskg; the states
of these variables are generally taken to measure success of
treatment in the VSD domain, whereas the other variables
are considered irrelevant for that matter. The numerical
value r(cXr

) denotes the desirability of con�guration cXr

compared to other possible con�gurations of Xr. We note
that in more general models also the most recent action
choice (e.g. associated �nancial costs) may be taken into
consideration by the reward function.

Problem speci�cation and solution

A POMDP problem speci�cation consists of a POMDP
model, an initial probability distribution Pr on the state
space, and a utility function u : R ! R re
ecting the de-
cision maker's intertemporal trade-o�s, where R is the set
of all possible reward sequences for the given model. For
the VSD domain, we will use the total reward criterion,
where u(r1; : : : ; rN) =

PN

i=1 ri. The sequential decision

problem is to choose, prior to the �rst decision, a policy

to maximise the utility function u, where a policy pro-
vides the decision maker with a prescription for choosing
an action in any possible state occupied by the system.

Generally speaking, the complexity of �nding utility-
maximising policies depends on the size of the state space,
the number of available actions, and the horizon length.
For �nite-state (fully observable) MDP problems, e�-
cient solution methods exist, based on the principle of
dynamic programming [12]. Unfortunately, this does not
hold for problems involving partial observability. Solving
a POMDP problem directly necessitates keeping track of
entire process histories, of which the sizes grow exponen-
tially in the size of the state space and action sets. A
more promising approach is based on transforming the
(�nite-state) POMDPmodel to an equivalent MDP model
in which system states are probability distributions on
the state space of the original POMDP model [2]. When
the state space in the original POMDP model contains
n states, then the state space in the transformed MDP
model is the (n�1)-dimensional unit simplex; transition
probabilities are derived through Bayes' rule. Dynamic
programming techniques can be applied to solve prob-
lems using the transformed MDP model, but because of
the continuity of its state space, algorithms are compli-
cated and limited. Solving POMDPs with a short, �nite
planning horizon is nevertheless feasible [3].

4. GRAPHICAL REPRESENTATIONS OF

POMDPS

It was noted above that structured POMDP state spaces
o�er a number of advantages over 
at state spaces. One
of these advantages is that we can factorise the transition
probability distributions describing the e�ects of actions.
Factorisation of a joint probability distribution is based on
conditional independence relations induced by the distri-
bution, and allows for a reduction in the required number
of model parameters, and for more e�cient probabilis-
tic inferences. Bayesian belief networks [13] provide for a
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concise, graphical representation of factorised joint prob-
ability distributions. More recently, the belief network
framework was extended to cope with dynamic stochastic
systems [5], [6], where the joint probability distribution
on the variables in the network evolves over time. These
networks are generally referred to as temporal belief net-
works. Temporal belief networks have been suggested as
a suitable way to express the dynamics of POMDP mod-
els [4], equally facilitating the solution methods by ex-
ploiting independencies between state variables, and by
making explicit persistence of states and rami�cation of
action e�ects [5].
Now, let X(t) denote the set of state variables at time

point t. A two-stage temporal belief network (2TBN) [4]
is a belief network with two sets of variables X(t) and
X(t + 1), where each arc is drawn either a variable from
X(t) to a variable from X(t + 1), between two variables
both from either X(t) or X(t + 1). The former type of
arc is called a temporal dependency; the latter is called an
atemporal, or synchronic, dependency. 2TBNs allow for a
compact representation of probabilistic state transitions,
where temporal dependencies model the direct e�ects of
actions, and synchronic dependencies model intra-stage
correlations. These intra-stage correlations are indepen-
dent of action choice, so we can use a single, atemporal
belief network for their speci�cation.

art

res

size

shunt

fail cyan

risk symp

Fig. 1. Synchronic belief network for the VSD domain.

An atemporal belief network for the VSD domain has
recently been constructed with aid of a domain expert
[14]; a simpli�ed version of the network is shown is Fig. 1.
For X = fX1; : : : ; Xmg, let �s = f
is : C�s(Xi) � CXi

!
[0; 1] j i = 1; : : : ;mg be the set of synchronic probabil-
ity assessment functions associated with the belief net-
work, where �s(Xi) denotes the parent set of variable Xi

in the synchronic dependency graph; 
is(cXi
j c�s(Xi)) de-

notes the probability of Xi having con�guration cXi
given

the con�guration c�s(Xi) of its parents. We assume these
probabilities to be stationary (i.e. independent of time).
The atemporal belief network is also taken to represent
the initial probability distribution on the state space in
the POMDP problem speci�cation.
We distinguish two kinds of temporal dependency:

those induced by action choices (exogenous change) and
those stemming from persistence or action-independent
change of state variables (endogenous change). Both
kinds of dependency can be modelled using 2TBNs, com-
prising only those state variables that are directly rel-
evant. Fig. 2a shows the 2TBN modelling endogenous
change due to Eisenmenger's complex: pulmonary arteri-
opathy may result from left-to-right shunts. This process
is progressive, and therefore we also take into account the
former state of the pulmonary arteries. Fig. 2b shows the
2TBN modelling exogenous change due to surgery. The
surgery action itself is depicted by a square box, called an
action node. Successful surgery results in a closed defect
(i.e., size = null). However, the chances of success equally
depend on the size of the existing defect: large defects
are more di�cult to patch. The dashed arrow indicates
that the clinician is able to observe the defect that results.
Furthermore, a small risk is associated with the operation.
The twisted arc indicates that there is also a path in the
synchronic dependency graph from size to risk.

art

shunt

art

t+ 1t

Fig. 2a. 2TBN modelling Eisenmenger's complex.

size size

risk

surg

t t+ 1

Fig. 2b. 2TBN modelling surgical intervention

If we merge the atemporal belief network and each of
the 2TBNs modelling endogenous and exogenous change,
a complete graphical model for transitions and observa-
tions is obtained. This model is shown in Fig. 3. For-
mally, let �t(Xi) be the set of temporal predecessors of
node Xi 2 X in the complete model, that is, there is an
arc from Xj(t) to Xi(t+1) for every Xj 2 �t(Xi), and let
Ai � A be the set of actions directly a�ecting Xi, i.e.
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size

shunt

fail cyan

risk symp

art

res

size

shunt

fail cyan

risk symp

biop

cath

echo

med

surg

Fig. 3. 2TBN with action nodes for the VSD domain.

there is a solid arc from action node a to Xi for every a 2
Ai. Furthermore, let �t = f
it : C�s(Xi)�C�t(Xi)� 2Ai �
CXi

! [0; 1] j i = 1; : : : ;mg be the set of transition prob-
ability assessment functions associated with the complete
graphical model at time t; 
it(c

post
Xi

j cpost
�s(Xi)

; c
pre
�t(Xi)

; �i) de-

notes the probability of Xi having con�guration c
post
Xi

at
time t+1 given that its synchronic predecessors then have
con�guration c

post
�s(Xi)

, its temporal predecessors had con-

�guration c
pre
�t(Xi)

at the previous moment t, and subse-
quently action set choice �i � Ai was made. We as-
sume that 
it(c

post
Xi

j cpost
�s(Xi)

; c
pre
?

;?) = 
is(c
post
Xi

j cpost
�s(Xi)

),
i.e., synchronic probability assessment functions are used
when there are no temporal predecessors and no action
is selected that directly a�ects variable Xi. In the VSD
example, this holds for at least four, and at most six vari-
ables, depending on the action set choice. Two variables,
size and art are subject to endogenous change connected
to the natural course of disease.

The transition probability distributions associated with
the POMDP model can now be factorised according to the
independency relations portrayed by the graphical part of
the complete 2TBN (i.e. with all action nodes added). For
each potential decision moment t 2 T and each action set
� � A, we have that the transition probability function
p�t can be written as

p
�
t (c

post
X j cpreX ) = (1)
Y

i=1;:::;m



i
t(c

post
X (fXig) j c

post
X (�s(Xi)); c

pre
X (�t(Xi)); � \Ai)

for each c
pre
X ; c

post
X 2 CX , where c

pre
X (X 0), cpostX (X 0) de-

note the con�gurations of X 0 � X within c
pre
X and c

post
X ,

respectively.

5. ANALYSIS

It was shown in the previous section how 2TBNs with ac-
tion nodes provide for a concise, graphical representation
of the dynamics of POMDP models. Concision is arrived

at by exploiting both intra-stage and inter-stage indepen-
dencies between state variables, and explicit representing
the limitations in the e�ects of actions.

Let d be an upper bound on the number of values that
each state variable can take, i.e., jCfXigj � d for each
Xi 2 X. So, for X = fX1; X2; : : : ; Xmg, we have that
jCX j � dm. Furthermore, let jAj = k, so that there are 2k

di�erent action sets. Then, for each t 2 T and each � � A,
we need at most dm �dm = d2m transition probabilities, so
the upper bound on total number of parameters needed
for the POMDP equals N � d2m � 2k. For the VSD domain
we would actually need 8589934592 transition probabili-
ties for each t 2 T .

In the graphical model, there are m state nodes, and
with each node Xi is associated a transition probability
assessment function 
it for which at most d � dj�s(Xi)j �
dj�t(Xi)j � 2jAij probabilities have to be speci�ed. If the
numbers of synchronic and temporal predecessors are
bounded by ls and lt, respectively, and the number of
actions directly a�ecting Xi is bounded by q, for each
Xi 2 X, then the total number of parameters for the
complete model is at mostm �d �dls �dlt �2q = d1+ls+lt �2q .
Note that in the most extreme case, where ls = m � 1,
lt = m and q = k, we obtain the number m � d2m � 2k.
Fortunately, in most practical applications, we have both
ls; lt � m and q � k. For instance, in the VSD model, we
have that ls = 2, lt = 2 and q = 2. The precise number of
probabilities required for this model per moment t 2 T is
282, consisting of 136 stationary probabilities from syn-
chronic dependencies and 146 time-dependent probabili-
ties.

Summarising, the number of model parameters can be
reduced by a factor of approximately 3 � 107 if we use a
graphical model in the VSD domain. A further reduction
in the amount of model parameters could be obtained by
making assumptions on the interaction between station-
ary and time-dependent probabilities, and on how the ef-
fects of multiple actions may be combined.
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6. CONCLUSIONS AND FURTHER

RESEARCH

Clinical treatment planning requires the ability to pre-
dict the interplay between the natural history of disease
and e�ects of intervening actions over time. Often, such
predictions cannot be made with certainty, and trade-o�s
have to be made between the expected bene�t of current
and future decisions. We have discussed how treatment
planning problems in paediatric cardiology can e�ectively
be modelled using partially observable Markov decision
processes (POMDPs). Furthermore, the dynamics of the
treatment process under consideration were represented
as temporal probabilistic networks in order to reduce the
model complexity. The complexity of POMDP models is
known to hamper their application in practice, and prob-
abilistic networks have been suggested in the literature as
a suitable means to reduce that complexity [4]. However,
both theoretical and practical investigations supporting
this claim were lacking so far. In this paper, we have
demonstrated that for practical problems a signi�cant re-
duction in the number of model parameters can be ob-
tained with this representation.
A next step in the current line of research would be to

perform a sensitivity analysis on the model given a choice
of reward and utility functions, in order to assess the re-
quired precision in the estimates of various model param-
eters. Note that a rough probability estimate (i.e. having
a broad plausible range) has to be improved only when
the improved estimate may yield other optimal decision
policies. Furthermore, the factorisation of the transition
probability distributions of Eq. 1 can be used to enhance
the e�ciency of solution methods. Several forecasting al-
gorithms for temporal belief networks have been described
in the literature. Future investigations will have to point
out whether these algorithms can be used in conjunction
with dynamic programming techniques to construct opti-
mal decision policies for real-life clinical treatment plan-
ning problems.
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