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Abstract. In this paper we give an informally semi-rigorous explanation of
the notion of sequentiality. We argue that the classical definition, due to

Pudlák, is slightly too narrow. We propose a wider notion m-sequentiality

as the notion that precisely captures the intuitions behind sequentiality. The
paper provides all relevant separating examples minus one.

1. Introduction

Sequential theories are, as a first approximation, theories with sufficient coding
machinery. We have a reasonably robust definition of this class of theories. Yet,
we will argue that this definition is slightly too narrow to capture the intuitive
motivations behind the notion of sequentiality. In essence the point is that the
current definition contains the unmotivated constraint that the definition of the
sequences in the given theory must be one-dimensional. We propose a wider notion,
m-sequentiality of which we claim that it captures the intuitions precisely. In fact,
m-sequentiality is simply sequentiality without the unmotivated constraint.

In the rest of this introduction, we explain carefully what the intuitions behind
sequentiality are. In Section 2, we provide some basic definitions and facts needed to
understand the rest of the paper. We discuss the current definition of sequentiality
in Section 3. We briefly present the state of the art in Subsection 3.2, and, in
Subsection 3.3, we give reasons why the state of the art is not quite satisfactory.

In Section 4, the definition of m-sequentiality is given, plus several characteri-
zations. For example, it is shown that a one-sorted theory is m-sequential iff it is
bi-interpretable with a sequential theory. It follows that m-sequential theories are
closed under bi-interpretability. In Section 5, it is proved that, on the one hand,
there are sequential theories that essentially involve parameters to witness their
sequentiality, and, on the other hand, that parameters can always be eliminated to
witness m-sequentiality. So, in a sense, m-sequentiality is a parameter-free notion.
Finally, in Section 6, we give a proven example of an m-sequential theory that is
not sequential. The fact that it is not all that easy to find such an example, is, per-
haps, an indication that the usual notion is only slightly wrong. The m-sequential
theories we meet in practice are all sequential. On the other hand, the example is
not ‘unnatural’, which could mean that the practice we are looking at is, until now,
rather restricted.

Sequentiality is an explication of the idea of theory with coding. Can we give an
informally rigorous determination of this idea? We think that such a rigorous
determination is not to be had, at least not quite. The notion does have a lot of
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intuitive content, but not al choices follow unavoidably from that content. We can
only give, say, an informally semi-rigorous determination that will have some gaps
in the explanation. Such an explanation cannot quite stand on its own and should
be supplemented with other considerations. The considerations are in this case
that the successful employment of sequentiality in theorems and the robustness
of sequentiality with respect to variations on its definition. We will return to
these points later. We proceed with an informally semi-rigorous determination of
sequentiality.

As a first step, towards the determination of the proper notion of theory with
coding, we must ask: coding for what? We can have different needs for coding
and we should expect different answers, depending on those needs, to the question
what is a theory with coding? A first approximation to the question to which
sequentiality is (supposed to be) the answer is to say: we want coding in order to
provide partial satisfaction predicates and, as a consequence, restricted consistency
statements. Even this answer is not quite satisfactory: in theories of pairing we
also have partial satisfaction predicates. See e.g. [Vau67] and [Vis10]. However,
these satisfaction predicates are, in a sense, more finitistic than the ones provided
by sequentiality. So, we could add to our specification: these satisfaction predicates
concern classes of formulas with decent verifiable closure properties.

What do we need to specify partial satisfaction predicates? Clearly, the very
formulation of such predicates involves the possibility to code formulas, so we will
need a modicum of the theory of syntax. Moreover, this formulation involves the
possibility to define finite functions or finite sequences. Hence, the demand that an
elementary theory of sequences is present follows directly from our desire to define
partial satisfaction. The demand for decent closure properties makes it plausible
that such sequences are closed under the operation of pushing an element on top
of a sequence considered as stack. To have projections we need numbers as inputs
of the projection, hence we need a modicum of number theory.

A further desideratum is this: we want partial satisfaction for the full language
and also restricted consistency for the theories under consideration themselves. This
means that we want to have sequences involving all objects of the original theory.
It is easy to give examples that fail this condition.

Do we need more? The good news is that these meager means are sufficient also
for coding formulas and the like. We can start with a bare minimum and build
everything we need in addition from that. For example, we do not need addition
and multiplication for our numbers since we can define these operations using the
sequences to code the recursive mechanisms.

Well, but couldn’t we also have started with a theory of finite functions? Here
the prediction is that all such alternative formulations are equivalent to the one
involving sequences. Our notion is substantially robust w.r.t. alternative formula-
tions and this robustness is an argument for the correctness of the choices made.
We will say a bit more about robustness in Section 3.

Finally, it seems reasonable to allow parameters in the definition of our sequences.
So, in the general definition, we allow parameters.

2. Basic Notions

In this section, we formulate the basic notions employed in the paper.
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2.1. Theories. The primary focus in this paper is on one-sorted theories of first
order predicate logic. Specifically, we analyze sequentiality for the case of one-
sorted theories. However, many-sorted theories will occur as an auxiliary. They
could be eliminated but the approach is less natural if we do so. We only consider
theories with a finite number of sorts. We use a, b, . . . for sorts. We take identity
to be a logical constant. In the many-sorted case, we have identity for each sort.

Our official signatures are relational, however, via the term-unwinding algorithm,
we can also accommodate signatures with functions.

Our signatures need not be finite and we need no constraint on the complexity
of the axiom set.

2.2. Interpretations: the One-sorted Case. We describe the notion of an m-
dimensional interpretation for a one-sorted language. In Subsection 2.4 we will
indicate how to adapt the definition to the many-sorted case.

An interpretation K : U → V is given by the theories U and V and a translation
τ from the language of U to the language of V . The translation is given by a
domain formula δ(~x), where ~x is a sequence of m variables, and a mapping from
the predicates of U to formulas of V , where an n-ary predicate P is mapped to a
formula A(~x0, . . . , ~xn−1), where the ~xj are appropriately chosen, pairwise disjoint,
sequences of m variables. We lift the translation to the full language in the obvious
way making it commute with the propositional connectives and quantifiers, where
we relativize the translated quantifiers to the domain δ. We demand that V proves
all the translations of sentences of U .

We can compose interpretations in the predictable way. Note that the compo-
sition of an n-dimensional interpretation with an m-dimensional interpretation is
m+ n-dimensional.

An m-dimensional interpretation is m-identity preserving, if it translates identity
to pointwise-identity of the corresponding elements of the sequences assigned to the
relata. I.o.w., x = y translates to

∧
i<m xi = yi. An m-dimensional interpretation

is m-unrelativized, if its domain consists of all the sequences of length m of the
interpreting theory. A m-dimensional interpretation is m-direct if it is unrelativized
and preserves identity. Note that all these properties are preserved by composition.
We use identity preserving, unrelativized and direct, for: 1-identity preserving, 1-
unrelativized and 1-direct.

Each interpretation K : U → V gives us an inner model construction that builds
a model K̃(M) of U out of a modelM of V . Note that (̃·) behaves contravariantly.

2.3. Sameness of Interpretations. If we want to use interpretations to analyze
e.g. sameness of theories, we need to be able to say when two interpretations
are ‘equal’. Strict identity of interpretations is too fine grained: it is too much
dependent of arbitrary choices like which bound variables to use. We specify a first
notion of equality between interpretations: two interpretations are equal when the
target theory thinks they are. Modulo this identification, the operations identity
and composition give rise to a category INT0, where the theories are objects and
the interpretations arrows.1

1For many reasons, the choice for the reverse direction of the arrows would be more natural.

However, our present choice coheres with the extensive tradition in degrees of interpretability. So,
we opted to adhere to the present choice.
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For each sufficiently good notion of sameness of interpretations there is an as-
sociated category of theories and interpretations: the category of interpretations
modulo that notion of sameness. Any such a category gives us a notion of isomor-
phism of theories which can function as a notion of sameness.

We present a list of notions of sameness. For all notions, it is easily seen that
sameness is preserved by composition. (There are many more more notions, but
they are irrelevant for this paper.)

2.3.1. Equality. The interpretations K,K ′ : U → V are equal when V ‘thinks’ K
and K ′ are identical. By the Completeness Theorem, this is equivalent to saying
that, for all V -models M, K̃(M) = K̃ ′(M). This notion gives rise to the category
INT0. Isomorphism in INT0 is synonymy or definitional equivalence.

2.3.2. i-Isomorphism. An i-isomorphism between interpretations K,M : U → V is
given by a V -formula F . We demand that V verifies that “F is an isomorphism
between K and M”, or, equivalently, that, for each modelM of V , the function FM

is an isomorphism between K̃(M) and M̃(M). Two interpretationsK,K ′ : U → V ,
are i-isomorphic if there is an i-isomorphism between K and K ′. Wilfrid Hodges
calls this notion: homotopy. See [Hod93], p222.

The notion of i-isomorphism can be characterized in a third way. We need only
demand that, for every V -modelM, there is a V -formula F , which defines inM an
isomorphism between K̃(M) and K̃ ′(M). By a simple compactness argument one
may show that, for finite signatures, the third definition defines the same notion as
the first two.

Clearly, ifK,K ′ are equal, they will be i-isomorphic. The notion of i-isomorphism
give rise to a category of interpretations modulo i-isomorphism. We call this cate-
gory INT1. Isomorphism in INT1 is bi-interpretability.

2.3.3. Isomorphism. Our third notion of sameness of the basic list is that K and
K ′ are the same if, for all models M of V , the internal models K̃(M) and K̃ ′(M)
are isomorphic. We will simply say that K and K ′ are isomorphic. Clearly, i-
isomorphism implies isomorphism. We call the associated category INT2. Isomor-
phism in INT2 is iso-congruence.

2.3.4. Elementary Equivalence. The fourth notion is to say that two interpretations
are the same if, for eachM, the internal models K̃(M) and K̃ ′(M) are elementary
equivalent. We will say that K and K ′ are elementary equivalent. By the Com-
pleteness Theorem, we easily see that this notion can be alternatively defined by
saying that K is the same as K ′ iff, for all U -sentences A, we have V ` AK ↔ AK′ .
It is easy to see that isomorphism implies elementary equivalence. We call the asso-
ciated category INT3. Isomorphism in INT3 is elementary congruence or sentential
congruence.

2.3.5. Identity of Source and Target. Finally, we have the option of abstracting
away from the specific identity of interpretations completely, simply counting any
two interpretations K,K ′ : U → V the same. The associated category INT4 is
simply the preorder of the degrees of interpretability. Isomorphism in this preorder
is mutual interpretability.
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2.4. The Many-sorted Case. Interpretability can be extended to interpretability
between many-sorted theories. The profile of an interpretation is a mapping from
the sorts of the interpreted theory to sequences of the sorts of the interpreting
theory. We write (a0 : ~b0) . . . (a`−1 : ~b`−1) to present a profile. (The order of the
sorts is chosen arbitrarily.) We abbreviate a sequence of n a’s to an. The default
sort of one-sorted theories is o, the sort of objects.

For each sort a of the interpreted theory, we specify a domain δa(xb0
0 , . . . x

bk−1
k−1 ),

where ~b is the sequence associated to a by the profile and where ~b has length k.
We write ~x

~b for xb0
0 , . . . x

bk−1
k−1 .

With each predicate P of the interpreted theory of type a0, . . . an−1, we associate

a formula A(~x
~b0
0 , . . . , x

~bn−1
n−1 ), where (ai : ~bi) is in the profile. We demand that the

target theory verifies, for i < n, the formula A(~x
~b0
0 , . . . ,~x

~bn−1
n−1 )→ δai(~x

~bi
i ).

Our translation commutes with the propositional connectives. The translation of a
quantifier ∀xa is ∀~x~b (δa(~x~b)→ . . .). Similarly, for the existential quantifier.

An interpretation is (a : ~b)-direct if (a : ~b) is in the profile and if identity translates
to pointwise identity and if the translated domain consists of all sequences of sort
~b.

2.5. Parameters. We can extend our notion of interpretation to interpretation
with parameters as follows. Say our interpretation is K : U → V . In the target
theory, we have a parameter domain α(~z), which is provably non-empty. The
definition of interpretation remains the same but for the fact that the parameters ~z
may occur in the domain formula and in the translations of the predicate symbols.
We have to take appropriate measures to avoid variable clashes. It is clear, but
somewhat laborious to work out, that this can be done in a systematic way. Our
condition for K to be an interpretation becomes:

U ` A ⇒ V ` ∀~z (α(~z)→ AK,~z).

We note that an interpretationK : U → V with parameters provides a parametrized
set of inner models of U inside a model of V .

3. Sequentiality

In this section we provide the definition of sequentiality for one-sorted theories
(Subsection 3.1). We present the state of the art of the subject in Subsection 3.2.
Finally, in Subsection 3.3, we give reasons why the present notion is not general
enough.

3.1. Definitions of Sequentiality. We start with the primary definition in terms
of a theory of sequences seq. This definition is in direct accordance with the intuitive
picture we provided for sequential theories.

3.1.1. Sequences. We define the theory seq as follows. The language of seq has three
sorts o, n and s. We have a unary predicate symbol Z of type n, a unary predicate
symbol E (for: empty sequence) of type s, two binary predicate symbols S and < of
type nn, a binary predicate symbol L of type sn, a binary predicate symbol Pu (for:
push) of type sos, and a ternary predicate symbol Pr (for: projection) of type sno.
The variables x, x0, x

′, y, z, u . . . will be of sort o, the variables n, n0, n
′,m, k, . . . will
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will be of sort n, and the variables s, s0, s′, t, . . . will be of sort s. As usual we write
m ≤ n for: m = n ∨m < n. The axioms are:
seq1 ` (n < m ∧m < k)→ n < k
seq2 ` ¬n < n
seq3 ` n ≤ m ∨m < n
seq4 ` ∃nZ(n)
seq5 ` Z(n)→ n ≤ m
seq6 ` S(n,m)↔ (n < m ∧ ∀k (n < k → m ≤ k))
seq7 ` ∃m S(n,m)
seq8 ` Z(n) ∨ ∃m S(m,n)
seq9 ` ∃n L(s, n)

seq10 ` (L(s, n) ∧ L(s,m))→ n = m
seq11 ` (L(s, n) ∧m < n)→ ∃xPr(s,m, x)
seq12 ` (L(s, n) ∧ Pr(s,m, x))→ m < n
seq13 ` (Pr(s, n, x) ∧ Pr(s, n, y))→ x = y
seq14 ` ∃sE(s)
seq15 ` (E(s) ∧ L(s, n))→ Z(n)
seq16 ` ∃tPu(s, x, t)
seq17 ` (Pu(s, x, t) ∧ L(s, n) ∧ S(n,m))→ (L(t,m) ∧ Pr(t, n, x))
seq18 ` (Pu(s, x, t) ∧ Pr(s,m, y))→ Pr(t,m, y)

We note that we may add extensionality for sequences by reinterpreting identity
as extensional equivalence. There are many variants on seq that also would have
served our purposes. Specifically, note that one can reduce the signature to just <
and Pr in the obvious way. Moreover, we could have avoided the sort n by working
with a linear preorder on sequences for ‘is a shorter sequence than’.

Definition 3.1. We call a one-sorted theory U sequential iff there is a (o : o)-direct
interpretation of seq in U , that is one-dimensional for the three sorts of seq.

Trivially, a one-sorted theory U is sequential iff there is a (o : o)-direct interpretation
of seq in U , that is one-dimensional for sorts o and s, since we can compress the
dimension of interpretation of the numbers using the sequences.

Remark 3.2. We note that the random access to the elements of sequences pro-
vided by the projection function is essential. Suppose we modify seq to a theory
of stacks, say stack, where we omit the sort of numbers and replace the projection
function by a function Top that reads the top element of the stack. Let’s say that a
one-sorted U is a stack theory iff there is a (o, o)-direct interpretation of stack in U ,
that is one-dimensional for the two sorts of stack. One can easily show that there
are decidable stack theories2, where, in contrast, sequential theories are essentially
undecidable.

3.1.2. Sets and Classes. We define the theories adjunctive class theory ac and ad-
junctive set theory AS.3 The theory ac has two sorts o, the sort of objects, and c,
the sort of classes. It has a binary predicate ∈ of type oc. We use x, y, z, . . . as

2It is well known that there are decidable theories of non-surjective pairing. Any theory of
non-surjective pairing is a stack theory.

3The use of capitals in the name of AS registers the fact that AS is a theory with ‘iterated’
elementhood.
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variables for objects and X,Y, Z, . . . as variables for classes. We have the following
axioms.
ac1 ` ∃X ∀x x 6∈ X,
ac2 ` ∀X,x∃Y ∀y (y ∈ Y ↔ (y ∈ X ∨ y = x)).
We note that we get extensionality for free in ac by replacing identity for classes
by extensional identity. The theory ac allows finite models.

The theory AS is a one sorted theory with a binary relation ∈.
AS1 ` ∃x∀y y 6∈ x,
AS2 ` ∀x, y ∃z ∀u (u ∈ z ↔ (u ∈ x ∨ u = y)).
The theory AS is much stronger than ac. E.g., it interprets Robinson’s Arithmetic
Q. Hence, it is essentially undecidable. Note that both ac and AS have ‘random
access’ to the objects contained in the classes/sets.

We have:

Theorem 3.3. Let U be a one-sorted theory. The following are equivalent.
i. U is sequential.

ii. There is an (o : o)-direct interpretation of ac in U that is one-dimensional for
the sorts o and c.

iii. There is a direct interpretation of AS in U .
iv. There is an extension V of AS in the same language, such that U is synonymous

with V .

Proof. The equivalence of (ii) and (iii) is easy and so is the implication from (i) to
(iii). To prove the implication from (iii) to (i) one shows that seq has an (o : o)-
direct interpretation in AS that is one-dimensional for the sorts s and n, using
an elaborate bootstrap. We refer the reader to the literature. See, e.g., [Pud83],
[MPS90], [HP91]. See also Subsection 3.2 for comments on ingredients of the proof.
The equivalence of (iii) and (iv) is proved in [Vis08]. 2

We note that AS is itself sequential. Moreover, sequentiality is preserved by syn-
onymy. Of course, our definition does not work for many-sorted theories, but if we
extend it in an appropriate way, it will follow that ac is not sequential, since it has
finite models.

Remark 3.4. An alternative to AS was provided by Harvey Friedman. Here is
Friedman’s theory that we will call reduced adjunctive subtractive set theory ASS−.
The axioms are as follows.
ASS−1 ` ∀x, y ∃z ∀u (u ∈ z ↔ (u ∈ x ∨ u = y)).
ASS−2 ` ∀x, y ∃z ∀u (u ∈ z ↔ (u ∈ x ∧ u 6= y)).
We can directly interpret ASS− in AS using an argument in the style of the proof
of Lemma 4.1. We can interpret AS in ASS− by defining

x ∈∗z y :↔ (x ∈ y ∧ x 6∈ z) ∨ (x 6∈ y ∧ x ∈ z).
An ∈∗z-empty set is given by z. We define ∈∗z-adjunction of y as ∈-adjunction of y
in case y 6∈ z, and as ∈-subtraction of y in case y ∈ z.

Open Question 3.5. Is ASS− essentially parametrically sequential? In other
words: can we find a direct interpretation of AS without parameter? My conjecture
is: no.
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3.2. State of the Art concerning Sequentiality. The notion of sequential the-
ory was introduced by Pavel Pudlák in his paper [Pud83]. Pudlák uses his notion
for the study of the degrees of local multi-dimensional parametric interpretability.
He proves that sequential theories are prime in this degree structure. In [Pud85],
sequential theories provide the right level of generality for theorems about consis-
tency statements. Let n-provability stand for provability from axioms with code
below n and with a proof only involving formulas of complexity at most n, where
the complexity measure is, e.g., depth of quantifier alternations. We write conn(U)
for an appropriate arithmetization of the consistency of U w.r.t. n-consistency. For
any sequential RE theory U , and any n, we can find a definable number system
N such that U ` conN

n (U). This is a formalization of the soundness theorem. On
the other hand, if U is finitely axiomatized, for every definable number system
N , we can find an n, such that U 0 conN

n (U). This is a version of the second
incompleteness theorem.

The notion of sequential theory was independently invented by Friedman who called
it adequate theory. See Smoryński’s survey [Smo85]. An important difference is that
in the definition, as given by Smoryński, Elementary Arithmetic EA (aka EFA or
I∆0 + exp) is stipulated to be interpretable in adequate theories. This demand is
too strong. Friedman uses the notion to provide the Friedman characterization of
interpretability among finitely axiomatized sequential theories. (See also [Vis90]
and [Vis92].) Moreover, he shows that ordinary interpretability and faithful in-
terpretability among finitely axiomatized sequential theories coincide. (See also
[Vis93] and [Vis05].)

Examples of sequential theories are Adjunctive Set Theory AS, Buss’ theory S1
2 (see:

[Bus86]) and synonymous variants of it like a theory of strings due to Ferreira (see:
[Fer88], [Fer90], [FO06]) and a theory of sets and numbers due to Zambella (see:
[Zam96]), Wilkie and Paris’ theory I∆0 + Ω1 (see: [WP87]), PRA, Elementary
Arithmetic EA (aka Elementary Function Arithmetic EFA, or I∆0 + exp), IΣ0

1,
Peano Arithmetic PA, ACA0, ZF, GB.

Here are some memorable results concerning sequential theories.

I. Sequential theories are essentially undecidable (since they interpret Q).
II. Pudlák in his [Pud85] proves a variant of Dedekind’s theorem that all mod-

els of second order arithmetic are isomorphic. In Pudlák’s variant any pair
of number systems definable in a sequential theory has a pair of definably
isomorphic definable cuts.

III. Sequential theories U have a normal form 0(U) modulo mutual local inter-
pretability. Here 0(U) = S1

2 + {conn(U) | n ∈ ω}. We have U ≡loc V iff
0(U) = 0(V ). An alternative normal form is the theory Π(U) := S1

2+{P∈Π0
1 |

U � (S1
2 +P )}. See e.g., [Vis09a]. The normal form theorem is related to both

the Orey-Hájek characterization and the Friedman characterization.
IV. For any finitely axiomatized sequential theory U , there is an interpretation of

S1
2 in U that is Σ0

1-sound. See e.g. [Smo85], [Kra87], [Vis93], [Vis05].
V. There is a sequential theory U with p-time decidable axiom set such that the

predicate logic of U is complete Π0
2. The theory was first given in [Kra87].

The result is proved in [Vis05].
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VI. Let’s say that U model-interprets V if all models of U contain an internal
model of V . It is easily seen that model-interpretability is between inter-
pretability and local interpretability. One can show that there are sequential
theories U and V such that U model-interprets V , but U does not interpret V ,
and that there are sequential theories T and W , such that U locally interprets
V , but U does not model-interpret V .

Open Question 3.6. It is unknown whether there is anything like a normal form
modulo mutual global interpretability. An even more modest question is the fol-
lowing: is every sequential theory U mutually interpretable with an extension of S1

2

in the same language?

We have provided several characterizations in Subsection 3.1. An important part of
the story of the characterization involving AS is the interpretability of Robinson’s
Arithmetic Q in AS. Here are some historical notes about that characterization.

(1) In [ST52], Wanda Szmielew and Alfred Tarski announce the interpretability
of Q in AS plus extensionality. See also [TMR53], p34.

(2) A proof of the Szmielew-Tarski result is given by George Collins and Joseph
Halpern in [CH70].

(3) Franco Montagna and Antonella Mancini, in [MM94], give an improvement
of the Szmielew-Tarski result. They prove that Q can be interpreted in an
extension of AS in which we stipulate the functionality of empty set and
adjoining of singletons.

(4) In appendix III of [MPS90], Jan Mycielski, Pavel Pudlák and Alan Stern
provide the ingredients of the interpretation of Q in AS.

(5) A new proof of the interpretability of Q in AS is given in [Vis09b].

A very nice presentation of the converse interpretability of (an extension of) AS
plus extensionality in Q, is given in [Nel86]. This is an interpretation with absolute
identity.

For further work concerning sequential theories, see, e.g., [Pud85], [Smo85], [MPS90],
[HP91], [Vis93], [Vis98], [JV00], [Vis05], [Vis09c], [Vis09d], [Vis09a].

3.3. Why the Notion of Sequentiality is not Quite Right. The most direct
argument that the notion of sequentiality is not quite right is to notice that there is
an unmotivated and unnecessary component in the definition. Why do we demand
that the interpretation of seq is one-dimensional for the sorts s and o? The fact
that the interpretation is (o : o)-direct, and, hence, one-dimensional for o, follows
from our intuitive motivation: we want our sequences to be sequences of all objects
of the original domain of the interpreting theory. However, there is no reason to
put any constraint on our representation of sequences. We are just interested in
the accessibility of the elements contained in the sequences, but not in the way the
sequences are represented as long as it fulfills its desired function.

A second argument is that sequentiality fails to be preserved under the rela-
tion of bi-interpretability. The notion of bi-interpretability is a very good notion
of sameness of theories. It preserves such diverse properties of theories as finite
axiomatizability and κ-categoricity. In the parameter-free case it preserves auto-
morphism groups modulo isomorphism. There are good reasons that sequentiality
should be closed under bi-interpretability. If U is bi-interpretable with a sequential



10 ALBERT VISSER

theory V , we have the following situation. For any model M of U , we have an
internal model N of V , and inside this model we have again an internal modelM′
of U , definably isomorphic, say via F , with the originalM. Now we have sequences
for M′ provided by N . These sequences are inherited by M, in a definable way
via F . So, M has sequences. Inspection of this argument shows that it fails as a
proof precisely because of multi-dimensionality: the definition of the sequences in
M may be more-dimensional, where we demanded it to be one-dimensional. Thus,
the arbitrary demand of one-dimensionality blocks a very good closure condition of
our theories.

In Section 6, we will show in detail that sequentiality is not closed under bi-
interpretability. We will show in Subsection 4.3 that every m-sequential theory
is bi-interpretable with a sequential theory. We claim that m-sequentiality is the
right notion. So, by combining the theorem and the claim, we only need to close
off the sequential theories under bi-interpretability to arrive at the right notion.

Remark 3.7. It is easy to see that sequentiality is closed under synonymy.

Sequential theories are known not to be closed under mutual interpretability, how-
ever this does not constitute an argument against the definition. E.g., consider the
disjoint union U � U of a sequential theory U with itself. This disjoint union is
mutually interpretable with U but it is not sequential.4 Yet, U � U proves, on dif-
ferent interpretations of number theory, its own restricted consistency statements.
Shouldn’t we also call U � U sequential? Well, in the light of our original moti-
vation the answer should be no. The fact that we do have restricted consistency
statements is inherited from U , which does have the means to verify these state-
ments. The theory U � U itself does not have partial satisfaction for all objects in
the domain of the theory.

A second example of a non-sequential theory that is mutually interpretable with
a sequential one, is as follows. Robinson’s arithmetic Q is mutually interpretable
with AS but not itself sequential. See [Vis08].

It seems to me that even for iso-congruence there is no strong reason that sequential
theories should be closed under that equivalence relation. If we trace the argument
above concerning the closure of sequentiality under bi-interpretability, we see that
in a model M of U , we have sequences of elements of the isomorphic internal
model M′. However, we cannot make it visible in M that these sequences can
also function as sequences of elements ofM. Moreover, where, by compactness, we
were guaranteed uniformity of the isomorphisms, in the case of bi-interpretability,
conceivably,for iso-congruence, the isomorphisms could be wildly different if we vary
our models of U . (See also Question 4.11.)

4. What is m-Sequentiality?

Our improved version of sequentiality is m-sequentiality. In this section we give
the official definition of m-sequentiality and prove some equivalents. We define
m-sequentiality as follows.

Definition 4.1. A one-sorted theory U is m-sequential iff there is an (o, o)-direct
interpretation of seq in U .

4This follows e.g. from the results of [Pud83] or [MPS90].
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4.1. Some useful Results. As a preparation of our characterizations in the subse-
quent subsections, we prove some useful results about seq. We distinguish between
internal sequences, which are objects of type s, and external sequences, which exist
only because we can externally form sequences of terms (as in the definition of
m-dimensional interpretations).

Theorem 4.2. Consider any number m. Then, the theory seq interprets ac by
an (o : om)(c : s2)-direct interpretation. In other words, there is a a seq-definable
predicate (z0, . . . , zm−1) ∈ (s0, s1), where the zi are of type o and the sj are of type
s, such that:

• seq ` ∃~s ∀~z ~z 6∈ ~s
• seq ` ∀~z,~s ∃~t ∀~u ((~u ∈ ~t↔ (~u ∈ ~s ∨

∧
i<m ui = zi))

Here, of course, all (external) sequences are supposed to be of the right length.

Proof. We work in seq. It is easy to see that there are at least two objects. For
arbitrary x and y with x 6= y, we define an m,x, y-sequence as follows. It is a
sequence s such that

i. ∀n, u (Pr(s, n, u)→ (u = x ∨ u = y))
ii. ∀n (Pr(s, n, x)→

∨
i<m((Z(n− i) ∨ Pr(s, n− i− 1, y)) ∧

(L(s, n− i+m) ∨ Pr(s, n− i+m, y)) ∧
∧

j<m Pr(s, n− i+ j, x))
iii. ∀n (Pr(s, n, y)→

∨
i<m((Z(n− i) ∨ Pr(s, n− i− 1, x)) ∧

(L(s, n− i+m) ∨ Pr(s, n− i+m,x)) ∧
∧

j<m Pr(s, n− i+ j, y))

Here, e.g., Z(n− i) abbreviates ∃k0, . . . ki−1 (Z(k0) ∧ S(k0, k1) ∧ . . . ∧ S(ki−1, n)).
We define (z0, . . . , zm−1) ∈ (s0, s1) by: for some x, y, we have x 6= y and

s0 is an x, y,m-sequence and s0 and s1 have the same length and, for some n,
(
∧

i<m Pr(s0, n+ i, x) or
∧

i<m Pr(s0, n+ i, y)) and
∧

i<m Pr(s1, n+ i, zi).

If we take s0 and s1 both the empty sequence, we see that (s0, s1) satisfies the
empty class axiom. We fulfill the adjunction axiom by pushing m times x or m
times y on top of s0, where the choice of x and y depends on the last element of
s0, if any, and where we push subsequently z0, z1, . . . , zm−1 om s1. 2

We provide a strengthening of Theorem 4.2 that will be only used in an alternative
proof of Theorem 5.2. We start with a well-known lemma. Let ac+ be ac plus the
following axioms.
ac3 ` ∀X,Y ∃Z ∀z (z ∈ Z ↔ (z ∈ X ∧ z ∈ Y ))
ac4 ` ∀X,x∃Y ∀y (y ∈ Y ↔ (y ∈ X ∧ y 6= x)

Lemma 4.1. There is an o : o-direct interpretations, of ac+ in ac, with profile
(o : o)(c : c), that is one-dimensional and identity preserving for c.

Proof. We work in ac. To simplify the presentation we replace identity on classes
by extensional identity. Then we can justify the use of functional notations ∩ for
intersection and \ for subtraction. We define the virtual class X0 as consisting of
all those classes X such that, for all Y , X ∩ Y exists. We show that X0 is closed
under empty class, adjunction, and intersection.

Clearly the empty class is in X0.

We have: (X ∪ {x}) ∩ Z = (X ∩ Z) ∪ {x}, if x ∈ Z, and (X ∪ {x}) ∩ Z = X ∩ Z if
x 6∈ Z. In both cases (X ∪ {x}) ∩ Z exists. Ergo, X ∪ {x} is in X0.
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Suppose X and Y in X0. We note that X ∩ Y exists, since X ∈ X0. Consider any
Z. We have (X ∩ Y ) ∩ Z = X ∩ (Y ∩ Z). Since Y ∈ X0, Y ∩ Z exists and since
X ∈ X0, X ∩ (Y ∩ Z) exists. Hence X ∩ Y is in X0.

By relativizing the classes to X0 we get an interpretation of ac+ac3. We now work in
ac+ac3. As before, we add extensionality. Define X1 as the class of all X such that
X \ {x} exists, for all x. We show that X1 is closed under empty class, adjunction,
intersection and subtraction.

It is clear that the empty class is in X1.

Suppose X is in X1. Consider x. We have (X ∪ {x}) \ {y} = (X \ {y}) ∪ {x}, if
x 6= y, and (X ∪ {x}) \ {y} = X, if x = y. In both cases (X ∪ {x}) \ {y} exists. So
X ∪ {x} ∈ X1.

Suppose X is in X1. Consider any Y in X1. We have (X ∩Y )\{z} = (X \{z})∩Y .
So X ∩ Y is in X1.

Suppose X is in X1. Consider any x. We have

(†) (X \ {x}) \ {y} = (X \ {x}) ∩ (X \ {y}).
The right hand side of (†) clearly exists. Hence, X \ {x} ∈ X1.

We relativize to X1 in ac+ac3. This gives us the desired interpretation. 2

Theorem 4.3. Consider any number m. Then, the theory seq interprets ac+ by
an interpretation of profile (o : om)(c : s2), that is (o : om)-direct and (c : s2)-
identity preserving. In other words, there are a seq-definable predicates D(s0, s1)
and (z0, . . . , zm−1) ∈ (s0, s1), where the zi are of type o and the sj are of type s,
such that:

• seq ` ~x ∈ ~s→ D(~s)
• seq ` ∃~s (D(~s) ∧ ∀~z ~z 6∈ ~s )
• seq ` ∀~z,~s (D(~s)→ ∃~t (D(~t) ∧ ∀~u (~u ∈ ~t↔ (~u ∈ ~s ∨

∧
i<m ui = zi))))

• seq ` ∀~s,~s′ ((D(~s) ∧D(~s′))→ ∃~t (D(~t) ∧ ∀~z (~z ∈ ~t↔ (~z ∈ ~s ∧ ~z ∈ ~s′))))
• seq ` ∀~z,~s (D(~s)→ ∃~t (D(~t) ∧ ∀~u ((~u ∈ ~t↔ (~u ∈ ~s ∧

∨
i<m ui 6= zi))))

Here all (external) sequences are supposed to be of the right length.

Proof. We compose the interpretations of Theorem 4.2 and Lemma 4.1. 2

4.2. m-Direct and Relaxed Direct Interpretations. Consider one-sorted the-
ories U and V . An interpretation M : U → V is relaxed direct iff there is a
V -definable relation R, such that:

• V ` x R ~y → δM (~y),
• V ` ∀x ∃~y x R ~y,
• V ` (x R ~y ∧ u R ~v ∧ ~y =K ~v)→ x = u.

If the interpretation contains parameters with domain α, the definition of R will
also contain parameters. E.g., the first item becomes:

V ` (α(~z) ∧ x R~z ~y)→ δM,~z(~y),

etcetera. We have the following theorem.

Theorem 4.4. Any m-direct interpretation is relaxed direct.

Proof. Suppose M : U → V is m-direct. Let x R ~y :↔
∧

i<m yi = x. Clearly, R
witnesses that M is relaxed direct. 2
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Here is our first characterization of m-sequentiality.

Theorem 4.5. The following are equivalent: (i) U is m-sequential; (ii) for some
m, there is an m-direct interpretation of AS in U , (iii) there is a relaxed direct
interpretation of AS in U .

Proof. We give the proof for the case without parameters. The case with parameters
is an easy adaptation.

(i) ⇒ (ii). Suppose M : seq → U is (o : o)-direct. Suppose the interpretation of
type s is k-dimensional. Put m := 2k. We define:
(z1, . . . , zm) ∈ (x0, . . . , xk−1, y0, . . . , yk−1) :↔

δs
M (x0, . . . , xk−1) ∧ δs

M (y0, . . . , yk−1) ∧
((z1, . . . , zm) ∈ (x0, . . . , xk−1, y0, . . . , yk−1))M

where Theorem 4.2 provides the relation ∈ inside M . (By coding the pair of internal
sequences as one internal sequence, we can get the more efficient m := k.)

(ii) ⇒ (iii). This is immediate from Theorem 4.4.

(iii)⇒ (i). Suppose M : AS→ U is relaxed direct. Let R be the witnessing relation.
As we mentioned in the proof of Theorem 3.3, we can (o : o)-directly interpret seq in
AS, say via K. See, e.g., [Pud83], [MPS90], [HP91]. Suppose L := M ◦K : seq→ U .
By the (o : o)-directness of K, we find that δo

L is, U -provably, equal to δM , and =o
L

is, U -provably, the same as =M . We build the desired (o : o)-direct interpretation,
say, Q : seq→ U , by defining:

• δo
Q(x) :↔ x = x,

• δs
Q(~y) :↔ δs

L(~y),
• δn

Q(~z) :↔ δn
L(~z),

• =s, =n, Z, E, S, < L, are interpreted according to Q as they are according
to L,

• x =o
Q y :↔ x = y,

• PuQ(~s, x,~t) :↔ ∃~y (x R ~y ∧ PuL(~s, ~y,~t)),
• PrQ(~s, ~n, x) :↔ ∃~y (x R ~y ∧ PrL(~s, ~n, ~y)).

By the U -provable, totality and (=,=o
L)-injectivity of R, we can easily verify that

Q is indeed an interpretation of seq. 2

It is clear that we should have the following theorem.

Theorem 4.6. Suppose K : AS→ V is relaxed direct and one-dimensional. Then
V is sequential.

Proof. Suppose K : AS → V is relaxed direct and one-dimensional. Suppose R
witnesses that K is direct relaxed. We define a new direct interpretation M of AS
in V by setting x ∈M y :↔ ∃z (x R z ∧ z ∈K y). 2

Remark 4.7. We call a theory U conceptual if there is an (o, o)-direct interpre-
tation of ac in U . It is easily seen that, if U is conceptual via a one-dimensional
interpretation, then U is sequential. However, if the interpretation of the classes is
allowed to be more-dimensional, then there are conceptual theories with finite mod-
els. So conceptual 6= m-sequential. As we hope to illustrate elsewhere the notion of
conceptuality is useful in its own right.
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4.3. bi-Interpretability. Any interpretation between one-sorted theories can be
split up into first an identity-preserving interpretation and then an 1-isomorphism.

Theorem 4.8. Suppose K : U → V , where U and V are 1-sorted. Suppose V
proves that there are at least two objects. Then, there is a theory VK and interpre-
tations ıUK : U → VK and K : VK → V , such that ıUK is identity-preserving, K is
an 1-isomorphism (i.e., a bi-interpretation), and K = K ◦ ıUK .

As a general methodology, one should strive —to quote Kreisel— to say simple
things simply. Regrettably, the proof of the present theorem is a case where I failed
miserably to fulfill this dictum. It seems to me that, with the right eyes, one can
immediately see that it is true, but when you try to write the proof down with any
precision . . . My solution to the problem presented by this elaborate proof of a
triviality is as follows. I provide a detailed proof of the theorem in Appendix A.
Here I give a sketchy proof highlighting the main ideas of the construction.

Proof. We ignore the possibility of parameters. The theory VK is formed as the
disjoint sum of the theories U and V extended with a new predicate F . The
obvious embeddings of U and V in VK are respectively ıUK and ıVK . The theory VK

also contains axioms stating that F is an isomorphism between U as interpreted
via ıVK ◦K and U as interpreted via ıUK in VK . In other words, F : ıVK ◦K → ıUK
witnesses the INT1-identity between ıVK ◦K and ıUK .

We want to construct an interpretation K : V → VK , such that K and ıVK are
inverses in the sense of INT1. Thus, V and VK will be bi-interpretable. Moreover,
since ıVK ◦ K =1 ıUK , we have K = K ◦ ıVK ◦ K =1 K ◦ ıUK . Here the standard
embedding ıUK is clearly one-dimensional and identity-preserving.

U
K

//

ıU
K ��
V ıV

K

))
VK

K

gg

We turn to the construction of K , i.e., of a uniform internal model of VK in V . We
want to reproduce the objects of V and the objects of δK as a disjoint sum. To do
that more-dimensionality comes into play. The objects of δK are given as (external)
sequences of length, say m. As a first move we also represent the objects of V as
sequences of length m where we take the last component to represent the intended
object. The rest is padding. We are given that V produces two distinct objects x
and y, so one option is to make our domains disjoint by raising the dimension with
1 and represent the V -objects as (x, . . . , v) and the U -objects as (y, u0, . . . , um−1).
The disadvantage of this construction is that we make use of parameters. This
is an inessential use, however, and we can replace it by a construction where we
do not use parameters. We raise the dimension with two and represent the V -
objects by (x, x, . . . , v), where x is now arbitrary, and we represent the U -objects
by (x, y, u0, . . . , um−1), where x and y are arbitrary and different.

Thus we produced disjoint copies of the objects of V and the objects of δU and
the copies are given by sequences of the same length. It is now easy to extend this
construction with define predicates to obtain an m + 2-dimensional interpretation
K of VK in V .

The verification that K is inverse to ıUK , finally, is just a matter of careful tracing
of obvious details. 2
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We use Theorem 4.8 to prove that any m-sequential theory is bi-interpretable with
a sequential theory.

Theorem 4.9. Suppose V is m-sequential. Then V is bi-interpretable with a se-
quential theory V ?.

Proof. Suppose K : AS→ V is a relaxed direct interpretation. Let R be the witness
of relaxedness. We take V ? := VK as provided by Theorem 4.8.

We start with an arbitrary object x from the domain of VK , or, in other words,
of idVK

. The bi-interpretation between V and VK is given by ıVK : V → VK and
K : VK → V . We have an isomorphism G : ıVK ◦K → idVK

. We relate x via G−1 to
a sequence ~y of ıVK ◦ K . Suppose ıVK is k-dimensional and K is `-dimensional. We
can view ~y as a sequence ~y0, . . . , ~y`−1 of ıVK-objects ~yi of length k. Each ıVK-object
~yi is related via RıV

K to an ıVK ◦ K-object ~ui. So we can relate ~y0, . . . , ~y`−1 via
RıV

K pointwise to ~u0, . . . , ~u`−1. The sequence ~u0, . . . , ~u`−1 is an external sequence
in ıVK ◦ K : AS → VK . Inside ıVK ◦ K we can work in AS. Thus, we may relate
the external sequence ~u0, . . . , ~u`−1 to an internal one ~v in ıVK ◦ K. Let’s call the
internalizing relation IıV

K◦K (for the given length `). We have ~v ∈ıV
K◦K ~w for some

~w in ıVK ◦K. Finally let H : ıVK ◦K → ıUK be the isomorphism between ıVK ◦K and
ıUK . We can relate ~w to z via H.

Thus, we can define:

x ∈? z :↔ ∃~y0, . . . , ~y`−1 (x G−1 (~y0, . . . , ~y`−1) ∧
∃~u0, . . . , ~u`−1 (

∧
i<`

~yi R
ıV
K ~ui ∧

∃~v ( (~u0, . . . , ~u`−1) IıV
K◦K ~v ∧

∃~w (~v ∈ıV
K◦K ~w ∧

~w H z ))))

In this definition, we assume that domain and range are ‘built in’ in each relation
involved. E.g., ` x G−1 (~y0, . . . , ~y`−1)→ δıV

K◦K
(~y0, . . . , ~y`−1).

To see that the definition works, note that each of G−1, RıV
K considered pointwise

and IıV
K◦K is total and injective (w.r.t. the appropriate equivalence relations) and

that H is an isomorphism. 2

Finally we show that, 1-retracts of sequential theories are m-sequential. We note
that it follows that U is m-sequential iff U is bi-interpretable with a sequential V
iff U is a 1-retract of a sequential V .

Theorem 4.10. if U is a 1-retract of a sequential theory V , then U is m-sequential.

Proof. Suppose K : U → V and M : V → U and F : M ◦K → idU witness that U
is a 1-retract of V . Let N : AS→ V be direct. Let M be m-dimensional and let K
be k-dimensional.

We have M ◦ N : AS → U . Note that M ◦ N is m-dimensional. Let I be the
relation between external and internal sequences in AS, for the given length k. We
take:

x R ~z :↔ ∃~y0, . . . , ~yk−1 x F−1 (~y0, . . . , ~yk−1) IM◦N ~z.

The relation R witnesses that M ◦N is relaxed direct. 2
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Open Question 4.11. It seems to me that there is no strong reason that m-
sequential theories should be closed under iso-congruence. However, it would be
interesting to know whether they are. I conjecture that the answer is no.

4.4. Summarizing. We have the following characterization theorem.

Theorem 4.12. The following are equivalent.

char(i) U is m-sequential.
char(ii) For some m, there is an m-direct interpretation of AS in U .

char(iii) There is a relaxed direct interpretation of AS in U .
char(iv) U is bi-interpretable with a sequential theory V .
char(v) U is a 1-retract of a sequential theory V .

char(vi) U is bi-interpretable with an extension of AS in the same language.

The last equivalence follows immediately using (iv) of Theorem 3.3.

5. Parameters

In this section, we will show that some sequential theories are not parameter-free
sequential. In contrast, we show that all m-sequential theories are parameter-free
m-sequential.

Example 5.1. Let us start with the Ackermann interpretation of the hereditarily
finite sets in the natural numbers. We call this ∈ack. Let α be a bijection between
the integers and the natural numbers. We define, on the integers, x ∈∗ y :↔
α(x) ∈ack α(y). Finally, we define, on the integers, x ∈z y :↔ (x+ z) ∈∗ (y + z).

We consider the structure, say M, on the set of the integers, given by x ∈z y.
Clearly, M is sequential with one parameter.

Suppose a binary predicate x ∈ y were definable in M, without parameters,
satisfying AS. Let m be a singleton. Since successor is an automorphism of M it
follows that all elements are singletons, contradicting the assumption that we have
AS for ∈.

We prove that parameters can always be eliminated from the witnessing interpre-
tations of m-sequentiality.

Theorem 5.2. Suppose V is m-sequential. Then V is m-sequential without param-
eters.

Proof. Our proof is an adaptation of the proof that if V is m-sequential via a k-
dimensional interpretation of the sequences, then there is an 2k-direct interpretation
of AS in V .

Suppose U is m-sequential. Let M : seq → U be (o : o)-direct. Suppose M
has dimension k for the interpretation of sort s. Suppose M has an `-dimensional
parameter domain α.

Put m := 2k + `. We define:
(z1, . . . , zm) ∈ (p0, . . . , p`−1, x0, . . . , xk−1, y0, . . . , yk−1) :↔

αM (p0, . . . , p`−1) ∧ δs
M (x0, . . . , xk−1) ∧ δs

M (y0, . . . , yk−1) ∧
((z1, . . . , zm) ∈ (x0, . . . , xk−1, y0, . . . , yk−1))M,~p

using Theorem 4.2 to provide the ∈ inside M, ~p. (By coding the triple of external
sequences as one internal sequence, we can get the more efficient m := k.) 2
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The above proof is a bit disappointing, since we have to detour over the character-
ization theorem. This means that, in a sense, we throw away the interpretations
of the successor theory that we were given and have to regain it via an bootstrap.
There is a more elegant and more interesting proof that we will give now. The
construction shows how we can, in the presence of finite functions, glue together
different systems of the ordering of the natural numbers.

Proof. Suppose M : seq → U is (o : o)-direct. Let M be k-dimensional for sort
n. Let ~p and ~q be in αM . Using Theorem 4.3, we can define finite functions from
δn
M,~p to δn

M,~q as finite sets of 2k-sequences. Note that by Theorem 4.3, we can
both adjoin pairs to a function and substract pairs from a function. We consider
two such functions equal, when, whenever their inputs are =M,~p-equal, then their
outputs are =M,~q-equal.

We say such a function f is a ~p, ~q-isomorphism on ~n (in δn
M,~p) iff the domain of

f consists of all ~n′ such that ~n′ <M,~p ~n, and the range is <M,~q-downwards closed,
and, if ~n′′ <M,~p ~n

′ <M,~p ~n, then f(~n′′) <M,~q f(~n′). Note that it follows that f
commutes with successors. Clearly, we can find a δn

M,~q-number ~n∗, such that we
can consider f as function from ~n to ~n∗.

Define N~p as the class of those ~n in δn
M,~p, such that, for all ~n′ ≤M,~p ~n, and for all ~q

in αM :

i. there is a ~p, ~q-isomorphism f on ~n′, which is unique modulo equality. We will
call the unique ~p, ~q isomorphism on ~n: f~n,~p,~q.

ii. if n′′ <M,~p n
′, then f~n′′,~p,~q is the restriction of f~n′,~p,~q to ~n′.

iii. f~n′,~p,~p is the identity.

It is clear that N~p is downwards closed under <M,~p and that it contains the zero of
δn
M,~p. We show that N~p is closed under successor. Consider any ~n in N~p. Suppose

SM,~p(~n,~n+). Either ~n is an M, ~p-zero or an M, ~p-successor. We leave the case that
ZM,~p(~n) to the reader. Let the <M,~p-predecessor of ~n be ~n−. Suppose f~n,~p,~q(~n−) =
~n∗ and SM,~q(~n∗,~n?). We obtain f~n+,~p,~q by adjoining (~n,~n?) to f~n,~p,~q. It is easy to
see that f~n+,~p,~q, thus defined, is a ~p, ~q-isomorphism for ~n+. Also property (ii) and
(iii) are evident. Suppose g is a second ~p, ~q-isomorphism for ~n+. We subtract the
pair corresponding to input ~n from g, thus obtaining a ~p, ~q-isomorphism h for ~n. It
follows that h is equal to f~n,~p,~q. Hence g must be equal to f~n+,~p,~q.

We define: F~p,~q(~n) = ~n∗ iff SM,~p(~n,~n+) and f~n+,~p,~q(~n) = ~n∗. Clearly, F~p,~q is an
initial embedding of N~p in δn

M,~q. Also F~p,~p is the identity on N~p.

We want to improve the N~p and the F~p,~q to a system of classes of ‘numbers’ with
designated isomorphisms between them where the isomorphisms are closed under
identity, inverse and composition. We proceed as follows. We define N?

~p as the class
of those ~n in N~p, such that, for all ~n′ ≤M,~p ~n,

a. for all ~q in αM , we have: F~p,~q(~n′) ∈ N~q,
b. for all ~q, ~r in αM , we have: F~q,~r(F~p,~q(~n′)) = F~p,~r(~n′),

It is easy to see that N?
~p is downwards closed w.r.t. <M,~p, that it contains the zero

of N~p, and that it is closed under SM,~p.
Suppose ~n is in N?

~p . We show that ~n? := F~p,~q(~n) satisfies the conditions (a) and
(b). We note that (a) for ~n?, follows from (b) and (a) for ~n. We verify (b) for ~n?.
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For ~s in αM , we have:

F~r,~s(F~q,~r(~n?))) = F~r,~s(F~q,~r(F~p,~q(~n))))
= F~r,~s(F~p,~r(~n)))
= F~p,~s(~n)
= F~q,~s(F~p,~q(~n)))
= F~q,~s(~n?)

Consider any ~n inN?
~p . Suppose ~n∗ ≤M,~q

~F~p,~q(~n). Since, F~p,~q is an initial embedding,
it follows that, for some ~n′ ≤M,~p ~n, we have ~n∗ = F~p,~q(~n′). Clearly, ~n′ is in N?

~p .
Ergo by the above ~n∗ satisfies conditions (a) and (b). We may conclude that F~p,~q(~n)
is in N?

~q .
Let F ?

~p,~q be F~p,~q restricted to N?
~p . Clearly, we find F ?

~p,~p = idN?
~p
, and F ?

~q,~r ◦F ?
~p,~q =

F ?
~p,~r, and F ?

~p,~q = (F ?)−1
~q,~p.

We assume that the F ? are defined in such a way that we have:

• U ` ~n F ?
~p,~q ~n

∗ → (N?
~p (~n) ∧N?

~q (~n∗))
• U ` ~n =M,~p ~n

′ F ?
~p,~q ~n

∗ =M,~q n
? → ~n F ?

~p,~q ~n
?

We define our parameter-free interpretation M? : seq→ U .

• δo
M?(x) :↔ x = x,

• x =oo
M? y :↔ x = y,

• δn
M?(~p, ~n) :↔ αM (~p) ∧N?

~p (~n),
• ~p, ~n =nn

M? ~q,~n∗ :↔ ~n F ?
~p,~q ~n

∗,
• ZM?(~p, ~n) :↔ ZM,~p(~n),
• SM?(~p, ~n, ~q,~n∗) :↔ ∃~n′ (SM,~p(~n,~n′) ∧ ~n′ F~p,~q ~n

∗),
• ~p, ~n <M? ~q, ~n∗ :↔ ∃~n′ (~n <M,~p ~n

′ ∧ ~n′ F ?
~p,~q ~n

∗),
• δs

M?(~p,~s) :↔ αM (~p) ∧ δs
M,~p(~s),

• ~p,~s =M? ~q,~t :↔
∧

i pi = qi ∧ ~s =M,~p ~t,
• EM?(~p,~s) :↔ EM,~p(~s),
• LM?(~p,~s, ~q,~n∗) :↔ ∃~n (~n F ?

~p,~q ~n
∗ ∧ LM,~p(~s, ~n)),

• PrM?(~p,~s, ~q,~n∗, x) :↔ ∃~n (~n F ?
~p,~q ~n

∗ ∧ PrM,~p(~s, ~n, x)),
• PuM?(~p,~s, x, ~q,~t) :↔

∧
i pi = qi ∧ PuM,~p(~s, x,~t).

It is not difficult to see that our interpretation delivers the goods. 2

6. Sequentiality is not preserved under Bi-interpretablity

We consider the following modelM in a signature with unary predicate symbols
A, B, S, C, a binary predicate symbol ∈ and a ternary symbol app. The domain
is partitioned in three infinite sets B, S and C. The set A is an infinite subset of
S. Here A is the interpretation of A, etc. The union of the sets A and B forms
the urelements. The set S consists of the hereditarily finite sets over A plus A.
The relation ∈ (that corresponds, par abus de langage, with the symbol ∈) is the
element relation on S. Here urelements are treated as empty sets. Note that we
can define ‘the true empty set’ ∅: it is the unique empty set not in A. The set C
consists of partial bijections from A to B. We treat the empty bijection in C, say
2, as distinct from the true empty set ∅ in S. Finally app stands for the application
relation that we will again call app.
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We use a, a′, a0, . . . to range over elements of A, and b, b′, b0, . . . for elements
of B, and s, s′, s0, t, . . . for elements of S, and χ, χ′, χ0, ν, . . . for elements of C.
Finally, x, x′, x0, y, z, . . . are general variables. There will be some ad hoc uses of
other letters for variables.

We write χ(a) = b for app(χ, a, b). We will use 〈s, t〉 for internally defined pairing
on S and (x, y) for ‘external pairing’ as used in more-dimensional interpretations.

We first show that (the theory of) our model is m-sequential. To do that we need
some preparation. We start to work in S. Clearly, in S we have the familiar
machinery available to implement certain inductive definitions. Let’s say that the
class of substitution pairs is the minimal class such that a pair 〈c, s〉 is a substitution
pair, if c is a partial bijection from A to A, coded in the usual way as a set of pairs,
and s is a set of substitution pairs such that for every element 〈d, t〉 of s we have
range(d) ⊆ dom(c).

We will prove that there is a relaxed direct interpretation of AS in (the theory of)M
to show that (the theory of)M is m-sequential. We first specify our interpretation
of AS. The elements of our domain, say the class of set∗s, are of the form (χ, s),
where s is a set of substitution pairs for any 〈d, t〉 in s, we have range(d) ⊆ dom(χ).

We define: (ν, t) ∈∗ (χ, s) iff, for some d, we have 〈d, t〉 ∈ s and ν = χ ◦ d. In
fact d is uniquely determined by this condition: we could also say (ν, t) ∈∗ (χ, s) iff
〈χ−1 ◦ ν, t〉 ∈ s.

We note that for any 〈d, t〉 ∈ s, we have that (χ ◦ d, t) is a set∗. Consider
any 〈e, u〉 ∈ t. Since 〈e, u〉 is a substitution pair, we have range(e) ⊆ dom(d) =
dom(χ ◦ d).

We easily see that any pair (χ, ∅) will be an empty set∗.

We define {(χ, s)}∗ := (χ, {〈j, s〉}), where j is the identity on dom(χ), or, in other
words, j = χ−1◦χ. We easily see that {(χ, s)}∗ is indeed an ∈∗-singleton containing
(χ, s).

Next we want to show that —not necessarily unique— unions exist. We need the
following lemmas.

Lemma 6.1. Suppose χ ⊆ ρ and that (χ, s) is a set∗. Then, (ρ, s) is also a set∗.
Moreover, (ρ, s) is ∈∗-extensionally equal to (χ, s).

Lemma 6.2. Suppose that (χ, s) and (χ, t) are sets∗, then (χ, s∪ t) is a set∗, which
is an ∈∗-union of (χ, s) and χ, t).

Lemma 6.3. Suppose χ and ρ have the same range. Consider (χ, s). We can find
an u such that (ρ, u) is a set∗ that is ∈∗-extensionally equal to (χ, s).

Lemmas 6.1 and 6.2 are easy. We prove Lemma 6.3.

Proof. Suppose χ and ρ have the same range and consider (χ, s). Define:

u = {〈ρ−1 ◦ χ ◦ d, t〉 | 〈d, t〉 ∈ s}.

We note that 〈ρ−1 ◦ χ ◦ d, t〉 is a substitution pair, since dom(ρ−1 ◦ χ ◦ d) =
dom(d). The pair (ρ, u) is a set∗, since range(ρ−1 ◦ χ ◦ d) ⊆ dom(ρ). Finally, we
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have:

(ν, t) ∈? (χ, s) ⇔ 〈χ−1 ◦ ν, t〉 ∈ s
⇔ 〈ρ−1 ◦ χ ◦ χ−1 ◦ ν, t〉 ∈ u
⇔ 〈ρ−1 ◦ ν, t〉 ∈ u
⇔ (ν, t) ∈∗ (ρ, u)

This ends our proof. 2

Consider any set∗s (χ0, s0) and (χ1, s1). Consider any ρ with as range the union
of the ranges of the χi. Let ρi be the restriction of ρ to the range of χi. By
Lemma 6.3, we can find a set ui such that (ρi, ui) is a set∗ and such that (ρi, ui) is
∈∗-extensionally equal to (χi, si). By Lemma 6.1, (ρ, ui) is extensionally equal to
(χi, si). Finally, by Lemma 6.2, (ρ, u0 ∪u1) is a union of the (ρ, si) and, ipso facto,
of the (χi, si).

We may conclude that we have indeed produced an interpretation of AS. We still
need a witnessing relation R. We define by recursion the following mapping F from
S to substitution pairs. F (a) := 〈∅, a〉, F (s) := 〈∅, {F (t) | t ∈ s}〉. For s in S, we
set: s R (2, F ({s})). For b in B, we set b R (τab, F (a)), where τab is the bijection
with domain {a} that maps a to b. For χ ∈ C, we set χ R (χ, F (∅)). It is easy to
see that F is total, has set∗s as values and is injective.

We conclude that our model is m-sequential.

We show that our model is not sequential, i.e., that there is no one-dimensional
direct interpretation, possibly with parameters, of AS in M. Suppose there was.
Let the elementhood predicate be ∈?. Since all elements of the model can be defined
in terms of urelements, we may assume that all parameters are urelements. Suppose
the number of parameters in A is n and the number of parameters in B is m.

Consider any object c representing a set? (modulo ∈?-extensionality) of the form

{a0, . . . , an+m, b0, . . . , bn}?

with ai in A en bj in B, where the ai and bj are not parameters.
Can c be in S? Consider any b′ in B disjoint from the bj and the parameters.

Consider the automorphism σ generated by interchanging b0 and b′. Since b0 ∈? c,
we find b′ = σ(b0) ∈? σ(c) = c. Quod non. By a similar argument c is not in B.

So c is a bijection χ. Suppose ai is not in the domain of χ. Let σ be the
automorphism generated by interchanging ai and a′, where a′ is disjoint of the
parameters and of the ai. It follows that: a′ = σ(ai) ∈? σ(χ) = χ. Quod non. So
each of the ai is in the domain of χ. By a similar argument, each of the bj is in the
range of χ.

By our choice of the number of ai and bj , we have, for some k, χ(ak) = b′,
where b′ is neither a parameter nor one of the bj . Similarly, we have, for some `,
χ(a′) = b`, where a′ is not a parameter. Let τ be the automorphism generated
by interchanging ak and a′, and b′ and b`. We find: b′ = τ(b`) ∈? τ(χ) = χ. A
contradiction.
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Appendix A. Proof of Theorem 4.8

We repeat the theorem:

Theorem 4.8. Suppose K : U → V , where U and V are 1-sorted. Suppose V
proves that there are at least two objects. Then, there is a theory VK and interpre-
tations ıUK : U → VK and K : VK → V , such that ıUK is identity-preserving and K
is an 1-isomorphism (i.e., a bi-interpretation) and K = K ◦ ıUK .

Proof. We give the proof for the case without parameters and then sketch how is
should be adapted if there are parameters.

Suppose K : U → V , where U and V are 1-sorted and K is m-dimensional. We
define VK as follows. The signature of VK is the disjoint union of the signatures of
U and V , plus a unary predicate D and a m+1-ary predicate F . As axioms we take
the axioms of U relativized to D, the axioms of V relativized to the complement of
D, plus axioms that express that F defines, in each modelM of VK , an isomorphism
between the internal model K̃(P) of U in M, where P is the internal model of V
with domain Dc

M, and the internal model N of U in M with domain DM.
We can view this as follows. There are the obvious identity-preserving interpre-

tations ıUK : U → VK and ıVK : V → VK . The axioms for F precisely make F a
witness for the identity in INT1 of ıVK ◦K and ıUK .

We define an m+ 2-dimensional interpretation K : VK → V as follows.
• δK

(x, y, ~z) :↔ x = y ∨ δK(~z)
• (x0, x1, ~x2) =K

(y0, y1, ~y2) :↔
(x0 = x1 ∧ y0 = y1 ∧ x2(m−1) = y2(m−1)) ∨ (x0 6= x1 ∧ y0 6= y1 ∧ ~x2 =K ~y2)

• Suppose P is in (the disjoint version of) the signature of V :
PK

(x00, x01, ~x02, . . . , x(n−1)0, x(n−1)1, ~x(n−1)2) :↔∧
i<n xi0 = xi1 ∧ P (x02(m−1), . . . , x(n−1)2(m−1))

• Suppose P is in (the disjoint version of) the signature of U :
PK

(x00, x01, ~x0,2, . . . , x(n−1)0, x(n−1)1, ~x(n−1)2) :↔∧
i<n xi0 6= xi1 ∧ PK(~x02, . . . , ~x(n−1)2)

• DK
(x, y, ~z) :↔ x 6= y ∧ δK(~z)



WHAT IS THE RIGHT NOTION OF SEQUENTIALITY? 23

• FK
(x00, x01, ~x0,2, . . . , x(m−1)0, x(m−1)1, ~x(m−1)2, y0, y1, ~y2, ) :↔∧

i<m(xi0 = xi1 ∧ xi2(m−1) = y2i) ∧ y0 6= y1 ∧ δK(~y2)

We want to show that K is an 1-isomorphism with inverse ıVK . We first compute
M := K ◦ ıVK .

• δM (x, y, ~z)↔ x = y.
• (x0, x1, ~x2) =M (y0, y1, ~y2)↔ (x0 = x1 ∧ y0 = y1 ∧ x2(m−1) = y2(m−1))
• PM (x00, x01, ~x0,2, . . . , x(n−1)0, x(n−1)1, ~x(n−1)2) :↔∧

i<n xi0 = xi1 ∧ P (x02(m−1), . . . , x(n−1)2(m−1))

It is clear that G with G(x0, x1, ~x2, y) :↔ x0 = x1∧x2(m−1) = y gives us the desired
isomorphism G : M → idV .

Next we compute N := ıVK ◦ K . We write ~x : Dc, where ~x has length k, for∧
i<k ¬D(xi). We write ADc

for A with its quantifiers relativized to Dc.

• δN (x, y, ~z) :↔ x, y, ~z : Dc ∧ (x = y ∨ δDc

K (~z))
• (x0, x1, ~x2) =N (y0, y1, ~y2) :↔ x0, x1, ~x2, y0, y1, ~y2 : Dc ∧

(x0 = x1 ∧ y0 = y1 ∧ x2(m−1) = y2(m−1)) ∨ (x0 6= x1 ∧ y0 6= y1 ∧ ~x2 =K ~y2)
• Suppose P is in (the disjoint version of) the signature of V :
PN (x00, x01, ~x0,2, . . . , x(n−1)0, x(n−1)1, ~x(n−1)2) :↔

x00, x01, ~x0,2, . . . , x(n−1)0, x(n−1)1, ~x(n−1)2 : Dc ∧∧
i<n xi0 = xi1 ∧ P (x02(m−1), . . . , x(n−1)2(m−1))

• Suppose P is in (the disjoint version of) the signature of U :
PN (x00, x01, ~x0,2, . . . , x(n−1)0, x(n−1)1, ~x(n−1)2) :↔

x00, x01, ~x0,2, . . . , x(n−1)0, x(n−1)1, ~x(n−1)2 : Dc ∧∧
i<n xi0 6= xi1 ∧ PDc

K (~x02, . . . , ~x(n−1)2)
• DN (x, y, ~z) :↔ x, y, ~z : Dc ∧ x 6= y ∧ δDc

K (~z)
• FN (x00, x01, ~x0,2, . . . , x(m−1)0, x(m−1)1, ~x(m−1)2, y0, y1, ~y2) :↔

x00, x01, ~x0,2, . . . , x(m−1)0, x(m−1)1, ~x(m−1)2, y0, y1, ~y2 : Dc ∧
y0 6= y1 ∧ δDc

K (~y2) ∧
∧

i<m(xi0 = xi1 ∧ xi2(m−1) = y2i)
We now may take to define our isomorphism H : N → idVK

, the formula:
• H(x0, x1, ~x2, y) :↔ x0, x2, ~x2 : Dc ∧

((x0 = x1 ∧ x2(m−1) = y)) ∨ (x0 6= x1 ∧ δDc

K (~x2) ∧ F (~x2, y))

To add parameters, suppose the parameter domain of K is α and the number of
parameters is k. We define the theory VK as follows. For every predicate of V we
have a copy in the predicates of VK of the same arity. For every predicate of U of
arity n we have a corresponding k+n-ary predicate. Again we keep the predicates
corresponding to those of V and U disjoint. We have a unary predicate DV and a
k + 1-ary predicate DU . We have a k + 2-ary predicate F . We have the following
axioms.

• ` DU (~p, x)→ (~p : DV ∧ αDV (~p ))
• ` ∃~pDU (~p, x)↔ ¬DV (x)
• ` (DU (~p, x) ∧DU (~q, x))→ ~p = ~q
• if A is an axiom of V : ` ADV

• ` F (~p, x, y)→ (αDV (~p) ∧DV (x) ∧ δDV

K,~p(x) ∧DU (~p, y))
• ` (αDV (~p) ∧DV (x) ∧ δDV

K,~p(x))→ ∃y F (~p, x, y)
• ` (αDV (~p) ∧DU (~p, y))→ ∃xF (~p, x, y)
• (F (~p, x, y) ∧DV (u) ∧ δDV

K,~p(u) ∧ x =DV

K u)→ F (~p, u, y)
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• (F (~p, x, y) ∧ F (~p, u, v))→ (x =DV

K u↔ y = v)
• If P is an n-ary predicate of U :
`

∧
i<n F (~p, xi, yi)→ (PDV

K,~p (x0, . . . , xn−1)↔ P (y0, . . . , yn−1))
Note that the axioms of U will take care of themselves because of the isomorphism.
The rest of the development is precisely as expected. 2
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