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Abstract

We define a domain specific embedded language in Haskell to describe layered
software architectures of editors. By using a typed programming language to describe
the architecture, the type correctness of its components is guaranteed by the type
checker of the language. Furthermore, because the architecture description of a
system is part of the implementation of the system, the implementation will always
comply with the architecture.

1 Introduction

In this paper we use the functional programming language Haskell to give a domain specific
embedded language (DSEL) for describing layered editor architectures [6]. We use the
term editor in a broad sense. Text editors and HTML editors are well-known examples,
but also spread-sheets, e-mail agents, or even the preferences screens that are present in
most applications with graphical user interfaces can be regarded as editors.

Haskell is a functional language with strong support for abstraction. Describing the archi-
tecture in an actual programming language not only makes it possible to verify the types
of the components of the architecture, but also provides a framework for implementing
the system that is described by the architecture. Because the Haskell architecture is a
program in itself, the system can be instantiated by providing implementations for each of
the components.

In their survey of architecture description languages (ADLs) [4], Medvidovic and Taylor
identify three essential components of an architecture description: a description of the
(interface of the) components, a description of the connectors, and a description of the
architectural configuration. They claim that the focus on conceptual architecture and
explicit treatment of connectors as first-class entities differentiate ADL’s from, amongst
others, programming languages. However, Higher-order typed (HOT) functional program-
ming languages, such as Haskell [5], Clean, and ML offer possibilies for describing the main



components of an architecture, and treating all of these components as first-class entities.
Furthermore, by using abstraction, the description of the architecture can be focused on
the conceptual architecture, while the details are left to the actual components.

Higher-order typed functional languages offer excellent possibilities for embedding domain
specific languages [2]. Embedding a domain specific language facilitates reuse of syntax,
semantics, implementation code, software tools, as well as look-and-feel. We give a DSEL
in Haskell for describing layered editor architectures. We use records that contain functions
to describe the components of the architecture. The connectors are combinators, and the
configurations are programs (functions) that consist of combinators and components.

The requirements for a DSEL for describing architectures are slightly different from the
requirements for more familiar applications of DSELs, such as parsers, pretty printers, etc.
The latter are used to write programs that contain many applications of the combinators
and that are usually subject to frequent change. An architecture description, on the other
hand, will typically be a small and rather static entity, because changes to the architecture
involve changes to many components of the system. As a consequence, a concise syntax
for combinator expressions is not of the highest importance.

Another difference concerns the efficiency of the combinators. Because in an ’ordinary’
DSEL the programs that are constructed typically contain many applications of the com-
binators, the evaluation of the combinators forms a substantial part of the running time.
In contrast, the combinators in an architecture description are the glue that connects the
main components of the system. Most of the running time of the system can be expected
to be taken up by the components and not by the combinators. Therefore, efficiency of
the combinators is not a major concern. Wrapping and unwrapping a few values in the
combinators is not a problem if it improves the transparency of the architecture.

In this paper we give four implementation models for layered architectures. First, we in-
troduce a simple example layered editor architecture and explore how its main components
can be modeled in Haskell. Then we proceed to connect the components. In section 4, the
connection is straightforward, with little abstraction. This is used in section 5 as a basis to
develop a more abstract combinator implementation that uses nested cartesian products.
In section 6, we present another set of combinators, which employ a form of state hiding
to improve on the previous set. Section 7 develops a small generic library for building the
architecture-specific combinators of section 6. Section 8 contains a short description of
the architecture of the Proxima editor [7], for which the combinators were designed, and
section 9 presents the conclusions.

2 A Simple editor

In this section, we introduce a simple layered architecture for an editor that is used in
the next sections to illustrate the architecture description methods. The system that is
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Figure 1: Three cycles in the edit process.

described by the architecture is an editor in which the user can edit a presentation of a
document. Although the architecture of the editor is simple, it still contains the typical
features of the layered architectures discussed in [6].

The edit process: The main loop of the simple editor consists of the following 5 phases:

1. Compute a rendering, or presentation, of the document (presentation phase)

2. Show the presentation to the user

3. Receive an edit gesture from the user

4. Translate the edit gesture to a document update (translation phase)

5. Compute the updated document

Figure 1 contains a schematic representation of the edit process. Each of the boxes repre-
sents one complete edit cycle. The emphasis in the figure is put on the presentation and
translation phases (phases 1 and 4). Phases 2 and 3 are represented by the dotted arrows
at the bottom of the figure, and phase 5 is represented by the dotted arrows at the top.

The layers: Figure 2 shows a more detailed view of a single edit cycle. For now, we focus
on the presentation and translation phases (phase 1 and phase 4). Both the presentation
and the translation functions (we will call them present and translate) are compositions
of a number of subfunctions, similar to the layered editor in [6]. The presentation of the
document is computed via a number of intermediate data structures that are increasingly
concrete, and the edit operation on the document is computed via edit operations on the
same intermediate data structures. Therefore, the subfunctions of present and translate
are grouped pairwise in horizontal layers. Another reason for grouping the subfunctions is
that each subfunction in a layer has some parameters that are the result of the subfunction
immediately to the left of it. We will refer to the subfunctions as layer functions.
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Figure 2: The layered edit cycle.

If we look at the figure, we see that there are values that go from left to right, and
values that go either up or down. The values that go in horizontal direction are computed
by the functions in the corresponding layer, although not necessarily in the same edit
cycle. The vertical direction parameter for a layer function, on the other hand, is the
result of that function in a neighboring layer (i.e. a present layer function gets its vertical
parameter from another present function, and a translate layer function gets it from another
translate function). When composing layers, the vertical results from one layer are passed
as parameters to the next layer. The outermost vertical parameter is the parameter to the
combined layer, and the outermost vertical result is the result of the combined layer.

A single layer: Figure 3 shows the data flow for a single layer. It is somewhat more
complex than Figure 2, because not all horizontal parameters to translate are results of
present (ie. state is not a result of present). The data flow is a simplification of the data
flow of the layered editor with local state from [6]. present maps a high level data structure
doc to a low level data structure pres. The state parameter contains state that is local to
the layer, as described in [6]. The translate function works in the opposite direction of
present and maps an edit operation (gest) on the pres data structure to an edit operation
(upd) on the doc data structure. Besides pres, present also returns a value mapping. It is
used to encode information that is required by translate in order to map gest to upd. An
example of such information is a table of pointing information, that relates objects in pres
to their origin in doc. Because gest may be an edit operation on the local state, translate
also has state as a parameter. In that case, state′ is the result of performing the update
on the local state. In any other case, state′ is equal to state.
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Figure 3: A single layer.

3 A layer in Haskell

In the following sections, we will explore the possibilities of implementing the layered
architecture described in the previous section, using the functional language Haskell. The
use of a typed programming language for describing an architecture ensures that the types
of all components are correct. Furthermore, because the architecture description language
is equal to the implementation language, the architecture description is an executable
framework for the system being described. We have the certainty that if the types in the
architecture description are correct, then the types in the implementation are correct as
well. If, on the other hand, a separate architecture description language is used, then the
architecture has to be implemented in a programming language, after it has been type
checked or proven correct. This is an extra translation step that could possibly lead to
errors.

There are two aspects to modeling a layered architecture in Haskell: the building blocks,
which are the layer functions, and the connections between the building blocks. The
layer functions can simply be modeled with Haskell functions that are put in a record to
model a layer. Connecting the layer functions is more complicated. We will present three
alternatives in the next sections, but first we give the precise types of the layer functions.

In order to clearly distinguish between horizontal and vertical parameters, we write the type
of a layer function in the following form: horArgs -> vertArg -> (vertRes, horRess).
Thus, we see that a layer function takes one ore more horizontal arguments, a single vertical
argument, and returns a single vertical result, tupled with one ore more horizontal results.
We introduce a type synonym for layer functions of this type.

type LayerFunction horArgs vertArg horRess vertRes =
horArgs -> vertArg -> (vertRes, horRess)

A layer is a record that contains the two layer functions: present and translate. The
types of the layer functions follow directly from Figure 3. Following is a first attempt at a
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definition of Simple’. The names of the type and selector functions contain an apostrophe
(’) because we also introduce a slightly different type Simple, which will be used in most
of the rest of this paper.

data Simple’ state mapping doc pres gest upd =
Simple’ { present’ :: LayerFunction state doc mapping pres

, translate’ :: LayerFunction (mapping, state) gest state upd
}

Strictly speaking, Simple is not a type but rather a type constructor, but since it is
inconvenient to have to supply the type parameters every time the type is mentioned, we
will denote the type with its constructor in the remainder of this text. More formally,
when refering to a type t, where t is a type constructor with n parameters, we mean the
type t a1 ... an for fresh type variables ai.

The field names in the record (present’, translate’) are also the names of the field
selection functions. Thus, if layer0 is an Simple’ value, then present’ layer0 denotes
the present function of the layer. The Simple’ type is parameterized with all the types
that appear in the signatures of the layer functions.

To simplify the horizontal connection between layer functions, we prefer a data type in
which the horizontal result type (3rd type parameter of LayerFunction) of a layer function
matches the horizontal argument type (1st type parameter of LayerFunction) of the next
layer function. This implies that the horizontal result of present has the same type as
the horizontal argument of translate, and that the horizontal result of translate has the
same type as the horizontal argument of present. Figure 4 shows the data flow of the layer
functions in the new type Simple:

data Simple state mapping doc pres gest upd =
Simple { present :: LayerFunction state doc (mapping, state) pres

, translate :: LayerFunction (mapping, state) gest state upd
}

Only in the next section, we use the type Simple’. Afterwards, Simple is used. Be-
cause conversions between the two types are trivial, we will not give them. The reason
why we give Simple’ at all is that it is the more appropriate type from the component
programmer’s view. It contains exactly the function types we expect the components to
have, whereas in Simple, present returns the state parameter, which is done only to make
connecting easier.

Now that the building blocks have been established, we need a way to connect them.
We will show three connection methods. First, we explicitly connect all parameters and
results by hand, which is a working, but not very transparent, solution. Subsequently,
we introduce two more elegant and abstract methods. These methods are specific to the
Simple’ and Simple data types, but from the last method we derive a small library that
can be used for layers with an arbitrary number of layer functions.
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Figure 4: Data flow in layer.

4 Method 1: Explicitly connecting the components

The components of the editor are modeled with layers, but to get a working implementation,
we also need to realize the data flow by connecting the components. The document must be
fed into the layers, starting at the top layer and yielding the presentation at the bottom, and
similarly, the edit gesture must be fed into the bottom layer, yielding the document update
at the top. The layers are records that contain functions, so the most straightforward way
of tying everything together is to explicitly write the selection and application of each of
the functions in each of the layers. We show this by giving an example edit loop for an
editor that consists of three layers: layer0, layer1, and layer2 of type Simple’. The
data flow between the layer functions is shown in Figure 5. The corresponding Haskell
code for the edit loop is:

editLoop (layer0, layer1, layer2) states doc = loop states doc
where loop (state0, state1, state2) doc =

do { -- phase 1, Compute presentation:
let (mapping0, pres1) = present layer0 state0 doc

; let (mapping1, pres2) = present layer1 state1 pres1
; let (mapping2, pres3) = present layer2 state2 pres2

; showPresentation pres3 -- phase 2
; gest3 <- getGesture -- phase 3

-- phase 4, Compute document update:
; let (state2’, gest2) = translate layer2 (mapping2, state2) gest3
; let (state1’, gest1) = translate layer1 (mapping1, state1) gest2
; let (state0’, update) = translate layer0 (mapping0, state0) gest1

; let doc’ = updateDocument update doc -- phase 5
; loop (state0’, state1’, state2’) doc’
}
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The five phases of the simple edit cycle as presented in the previous section are directly visi-
ble in the code. Note that present and translate are selector functions, and that present
layer0 denotes the present function of layer-0. The functions showPresentation, getGesture,
and updateDocument are left unspecified, because we want to focus on the connection of
the layer functions.

The following function main calls editLoop with the correct parameters.

main layer0 layer1 layer2 =
do { states <- initStates

; doc <- initDoc
; editLoop (layer0, layer1, layer2) states doc
}

The functions initStates and initDoc provide the initial values for states and doc,
and are left unspecified. The layers of the editor are arguments of the main function. An
editor can now be instantiated by applying the function main to three Simple’ values
that implement the different layers. The type system verifies that the implemented layer
functions have the correct type signatures.

A disadvantage of the implementation of the edit loop sketched in this section is that the
patterns of the data flow are not very transparent. The fact that the mapping parameters
are horizontal parameters and that the presentation is a vertical parameter is not imme-
diately clear from the program code. Moreover, the patterns for upward and downward
vertical parameters are standard, but have to be given explicitly for each application, in-
creasing the chance of errors and decreasing transparency. Finally, the number of layers is
hard coded in the implementation. If the system is extended with an extra layer, variables
have to be renamed. If each type appearing in the layers is distinct, the type checker
catches mistakes but if some parameters or results have the same type, the type checker
will not detect a problem when, for example, two such equally typed variables are swapped.
We will therefore try to find a more abstract way of connecting the layers.

5 Method 2: Nested cartesian products

In this section we create an abstraction for the horizontal and vertical data flow patterns
in the edit loop of the previous section. We present a number of combinators that allow us
to compose layers, so that instead of having to give the applications of the layer functions
for each of the layers, we can call the layer function of the composed layer. For the main
loop in the previous section, this implies that both the present and the translate phase
can be written with one function application instead of three. The combinators also make
the data flow more explicit. The direction of the vertical parameter is apparent by the
choice of combinator, and not by the way the argument is threaded through the function
applications, as is the case in the previous section.
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Figure 6: Horizontal parameters in nested cartesian products.

Similar to the way in which the function composition operator · can be used to compose
functions f and g into f · g, we develop a combine combinator that takes two layers and
returns a combined layer. The layer functions of the combined layer are the compositions
of the layer functions in the layers that are combined.

In the method described in this section, each of the functions in the combined layer not
only takes a vertical argument and returns a vertical result, but it also takes a collec-
tion of horizontal arguments (one for each layer) and returns a collection of horizontal
results (one from each layer). The composition combinator takes care of distributing the
horizontal arguments to the corresponding layers, and also collects the horizontal results.
The combined layer provides layer functions of type LayerFunction horArgsC vertArg

horRessC vertRes. The parameters horArgsC and horResC stand for the types of the
collections of horizontal parameters and results. Figure 6 sketches the data flow in the
combined layer. Only one layer function with a downward vertical parameter is shown.

Because the types of the horizontal parameters are typically not the same, the collections
cannot be represented by lists. The same restriction holds for the horizontal results. More-
over, we want to be able to determine at compile time whether the collection contains
the right number of elements. A tuple or cartesian product is more suitable for the task,
but has the disadvantage that its components cannot be accessed in a compositional way.
Therefore, we will use a nested cartesian product consisting of only 2-tuples to represent
the horizontal parameters and results.

An example of such a nested cartesian product containing 4 elements is:(e0,(e1,(e2,

e3))), but also (((e0,e1),e2), e3) and ((e0,e1),(e2,e3)) are valid examples. Two
nested cartesian products are of equal type if and only if they have the same structure, and
elements at equal positions have equal types. We can access the elements in the product
in a compositional way by pattern matching on the top level product. For example: f
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(firstElt, rest) = ...

Because nested cartesian products with different structure are of different type, we use the
combinators in this section only in a right associative way, so all products are of the form
(e0,(e1,(e2, (..., en)...))).

We first define two combinators for composing layer functions. We need two combinators
because there are two ways in which layer functions can be composed, depending on the
direction of the vertical parameter. An upward vertical parameter passes through the
bottom layer first, and then through the top layer, whereas a downward vertical parameter
passes through the top layer first. The two combinators are composeDown and composeUp.
Figure 7 shows the data flow for the two combinators.

The combinator composeDown composes two layers u and l by feeding the intermediate
vertical result of u into l, establishing a downward data flow. At the same time, the
horizontal parameters for u and l are taken from the horizontal parameter to the combined
layer (which is a tuple), and the horizontal result for the combined layer is formed by tupling
the horizontal results of u and l.

composeDown :: LayerFunction horArgsU arg horRessU interm ->
LayerFunction horArgsL interm horRessL res ->
LayerFunction (horArgsU, horArgsL) arg (horRessU,horRessL) res

composeDown upper lower =
\(horArgsU, horArgsL) arg ->
let (horRessU, interm) = upper horArgsU arg

(horRessL, res) = lower horArgsL interm
in ((horRessU,horRessL), res)

In a similar way, we define a combinator composeUp for combining layer functions (e.g.
translate) in which the vertical parameter goes upward. We only show its type here.

composeUp :: LayerFunction horArgsU interm horRessU res ->
LayerFunction horArgsL arg horRessL interm ->
LayerFunction (horArgsU, horArgsL) arg (horRessU,horRessL) res

Combining layers: Using composeUp and composeDown, we can define a combinator to
combine Simple layers. From now on, we use the type Simple instead of Simple’ because
the matching horizontal parameter types in Simple make the connection easier.

First, we need to define a new data type for combined layers. Although the composition
of two layer functions is a layer function itself, we cannot put the compositions of the
layer functions in a Simple record. According to the definition of Simple, the horizontal
parameter of the first layer function (present) has type state, and the result has type
(mapping, state). In contrast, for present in the composed layer, the horizontal parameter
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Figure 7: composeDown and composeUp
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is a collection of states and the result a collection of mapping and state tuples. We cannot
specify the collection types in the type signature, so we will simply use single type variables
for the types.

The type LayerC is a more general version of Simple; it does not specify the exact structure
of the horizontal parameters. The parameter states represents the nested cartesian prod-
uct of state values, and the parameter mappingsStates represents the nested cartesian
product of mapping and state tuples.

data LayerC states mappingsStates doc pres gest upd =
LayerC { presentC :: LayerFunction states doc mappingsStates pres

, translateC :: LayerFunction mappingsStates gest states upd
}

The trivial function lift takes a layer of type Simple and returns a LayerC layer.

lift :: Simple a b c d e f -> LayerC a (b,a) c d e f
lift simple =
LayerC { presentC = present simple

, translateC = translate simple
}

The combine combinator is defined by using the appropriate compose combinator on each
of the layer functions.

combine :: LayerC a b c d e f -> LayerC g h d i j e ->
LayerC (a,g) (b,h) c i j f

combine upper lower =
LayerC { presentC = composeDown (presentC upper) (presentC lower)

, translateC = composeUp (translateC upper) (translateC lower)
}

Simple editor: The main editor loop from the previous section now reads:

editLoop layers states doc = loop states doc
where loop states doc =

do { -- Compute presentation:
let (pres, mappingsStates) = presentC layers states doc

; showPresentation pres
; gest <- getGesture

-- Compute document update:

13



; let (update, states’) = translateC layers mappingsStates gest

; let doc’ = updateDocument update doc
; loop states’ doc’
}

The main function is almost the same as in the previous section, except that instead of a
3-tuple of layers, the combined layers are passed to editLoop.

main layer0 layer1 layer2 =
do { (state0, state1, state2) <- initStates

; doc <- initDoc
; let layers = lift layer0 ‘combine‘ lift layer1 ‘combine‘ lift layer2
; editLoop layers ((state0, state1), state2) doc
}

Conclusions: The nested cartesian products solution is more compositional than the
approach of the previous section, and a lot of data flow is hidden from the main loop
by automatically passing the results of one layer into another. However, all horizontal
parameters are passed all the way through the composite layer, and are visible in the
main loop, which is not where they conceptually belong. Consequently, the type of the
composite layer is parameterized with all types appearing in the layers, leading to huge
type signatures. We will therefore show yet another approach in which the horizontal
parameters stay within each layer and are not visible in the main editor loop.

6 Method 3: Direct parameter passing

In the previous section, the horizontal results that are computed during the evaluation
of one layer function are returned explicitly and passed as arguments to the next layer
function. In the layer functions developed in this section, the horizontal results are not
returned explicitly. Instead, the next layer function is returned with the horizontal results
already applied to it. As a consequence, the main editor loop becomes more transparent,
and the type of the composed layers is simpler, since the type variables for the horizontal
parameters are no longer explicitly visible.

We will illustrate the direct parameter passing method with an example. Recall that the
main loop of the simple editor, encoded with nested cartesian products method, contains
the following code:

. . .
let (mapstates, pres) = present’ layers states doc

. . .

14



let (states’, update) = translate’ layers mapstates gest

. . .

But with the direct parameter passing method, it will contain:

. . .
let (pres, translateStep) = presentStep doc

. . .
let (update, presentStep) = translateStep gest

. . .

In other words, each combined layer function application returns the result together with
the next combined layer function. Horizontal parameters are now completely hidden from
the main loop. The code that is shown is not entirely accurate, as it turns out that some
pattern matching is required, but it gives the general idea. Note that the order in which
the layer functions are evaluated is now enforced by the layer model. It is not possible to
evaluate translateStep before presentStep.

Type definitions: The type of the layer needs to have the following structure: (Doc ->

(Pres, Gest -> (Upd, Doc -> (Pres, Gest -> (Upd, ...))))). Unfortunately, we
cannot use a type declaration: type Layer = (Doc -> (Pres, Gest -> (Upd, Layer))),
because Haskell does not allow recursive type synonyms. A newtype declaration must be
used with the disadvantage that values of the type have to be wrapped with constructor
functions.

We encode the type by dividing the computation in steps; one step for each layer function.
Because the number of steps is always equal to the number of layer functions, the statement
that a layer has n layer functions, amounts to the same as that it is an n step layer. From
now on, we will use the term number of layer functions of a layer interchangebly with
number of steps of a layer.

For each step, we define a separate type. The types are mutually recursive. Because
the types of the vertical parameters may be different for each layer, the step types are
parameterized with the types of the vertical parameters. For the Simple layer type, we
get:

newtype PresStep doc pres gest upd =
PresStep (doc -> (pres, TransStep gest upd doc pres))

newtype TransStep gest upd doc pres =
TransStep (gest -> (upd, PresStep doc pres gest upd))

type Layer doc pres gest upd = PresStep doc pres gest upd

In the next section, we will give a more abstract definition of the step types. For now, we
will use the above definitions because they clearly show the mutually recursive structure
of the types.
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Instead of using a separate type for each of the layer functions, it is also possible to use
one newtype declaration that encapsulates both layer functions:

newtype Layer doc pres gest upd =
Layer (doc -> (pres, gest -> (upd, Layer doc pres gest upd)))

We prefer the mutually recursive types because they are more symmetric than the single
Layer type. Because of the use of newtypes, values have to be wrapped with constructors,
as well as unwrapped. Wrapping and unwrapping occurs either for every step, in case
of the mutually recursive types, or only once every edit cycle, in case of the single type
encapsulating all layer functions. Doing it for every step leads to more elegant combinators.

We define two combinators for constructing and combining Layer values. The first com-
binator, lift, takes a Simple layer, which is a record with layer functions, and converts
it to a direct parameter passing layer of type Layer. To combine layers of type Layer, we
define a combinator combine. Both combinators in this section are specific to the Simple

type. In the next section, we define a library to construct lift and combine for arbitrary
layers.

Lift: The combinator lift takes a layer of type Simple and returns a Layer value:

lift :: Simple state mapping doc pres gest upd -> state ->
Layer doc pres gest upd

lift layer state = presStep state
where presStep state = PresStep $

\doc -> let ((mapping,state), pres) = present layer state doc
in (pres, transStep (mapping,state))

transStep (mapping,state) = TransStep $
\gest -> let (state’, upd) = translate layer (mapping, state) gest

in (upd, presStep state’)

Besides the layer parameter, lift gets a second parameter, state, which is the initial
value of the horizontal state parameter in the layer. The data flow pattern of the horizontal
parameters is encoded entirely in the definition of lift. Moreover, the state type is not
visible in the result of lift, so once the horizontal state is passed to the lifted layer, it
is no longer visible outside this layer; the lift combinator takes care of passing around
the horizontal parameters to and from the layer functions, and also to the next edit cycle.
This state hiding helps to keep the architecture description transparent, because now the
horizontal parameters do not play a rô le anymore when the layers are connected.

Combine: With lift we can instantiate layer values of type Layer doc pres gest upd.
To combine layers, we define a combinator combine with the following type:
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combine :: Layer high med emed ehigh -> Layer med low elow emed ->
Layer high low elow ehigh

The order of the parameters in the type of combine might seem a bit odd. The reason
for this order is that the first type in each pair of parameters specifies an argument type,
and the second type specifies a result type. The composed pres function is created by
applying the pres function of the first layer (high -> med) to the high argument and
then applying the pres function of the second layer (med -> low) to the result. The
trans function, however, has a different direction: the trans function of the second layer
(elow -> emed) is applied to the argument, and the trans function of the first layer (emed
-> ehigh) is applied to the result.

The implementation of combine is just plumbing to get the parameters at the right places.
The direction of the vertical parameters is encoded in the definition of combine. For pres,
this direction is downward (the function from the upper layer is applied first), whereas for
trans, it is upward (the function from the lower layer is applied first).

combine :: Layer high med emed ehigh -> Layer med low elow emed ->
Layer high low elow ehigh

combine = presStep
where presStep (PresStep upr) (PresStep lwr) = PresStep $

\high -> let (med, uprTrans) = upr high
(low, lwrTrans) = lwr med

in (low, transStep uprTrans lwrTrans)
transStep (TransStep upr) (TransStep lwr) = TransStep $

\elow -> let (emed, lwrPres’) = lwr elow
(ehigh, uprPres’) = upr emed

in (ehigh, presStep uprPres’ lwrPres’)

Simple editor: The edit loop of the simple editor no longer has a reference to the
horizontal parameters. Furthermore, the combined layer is called presentStep instead of
layers, to reflect that it is the present step of the computation.

editLoop presentStep doc =
do { let (pres, TransStep translateStep) = presentStep doc

; showPresentation pres
; gesture <- getGesture

; let (update, PresStep presentStep’) = translateStep gesture

; let doc’ = updateDocument update doc

; editLoop presentStep’ doc’
}

17



In the main function, the combined layer is created by lifting the layers together with their
initial states and using combine to put them together.

main layer0 layer1 layer2 =
do { (state0, state1, state2) <- initStates

; doc <- initDoc
; let PresStep presentStep = lift layer0 state0

‘combine‘ lift layer1 state1
‘combine‘ lift layer2 state2

; editLoop presentStep doc
}

Conclusions: The direct parameter passing model hides the data flow of the horizontal
parameters from the main loop of the system. Furthermore, the types of the horizontal
parameters, as well as the intermediate vertical parameters are hidden from the type of
the composed layer, similar to the way in which the type of the intermediate result for a
composition of two functions f :: b → c and g :: a → b is hidden from the type of the
composition f · g :: a → c. As a result, both horizontal and vertical data flow are made
more transparent.

7 Developing a library for architecture descriptions

In this section, we develop a small meta combinator library for implementing the direct pa-
rameter passing lift and combine combinators for layered architectures with an arbitrary
number of layer functions. The combinators in the library are meta combinators because
they are used to build lift and combine, which are combinators themselves.

The combinators from the previous section are just one case of a layered architecture:
a layer with two layer functions and hence two steps. Even though lift and combine

are straightforward to write, some code is duplicated, and small errors are easily made.
Therefore, instead of a general description for writing lift and combine by hand, it is
better to have a small library of meta combinators for building them. Another advantage of
a meta combinator library is that the direction of the vertical data flow can be expressed by
using a meta combinator whose name reflects the direction, instead of explicitly encoding
the direction for each of the steps in the combine function itself.

In the next sections, we first analyze the data type definitions that are required for a layer
with an arbitrary number of layer functions. Then, we derive meta combinators for lift

and combine.

Looking at the definitions of lift and combine in the previous section, we see that they
both consist of two parts: one for each step in the layer. Both functions define a local
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function for each of the layer functions in the layer. In both lift and combine for the
Simple layer type, these local functions are called presStep and transStep.

The method we use for the derivation of the meta combinators is to start with such a local
function and gradually factorize out all step specific aspects. After this process, we are left
with a function that, when applied to the step specific aspects, has the same behaviour
as the local function we started with. Moreover, because the function is not step specific
anymore, it can be used to get the behaviour of the other step functions as well. This
function is the meta combinator that we can use to build instances of the combinator for
architectures with arbitrary numbers of steps.

For lift, the local function is similar for each of the steps, but for combine, two varia-
tions exist, depending on the direction of the vertical parameter. Consequently, one meta
combinator is derived for lift, whereas for combine we get two meta combinators: one
for steps with upward parameters and one for steps with downward parameters.

7.1 Type definitions

In order to extend the direct parameter passing method to layers with an arbitrary number
of steps, we first investigate what the data types for each step will be. It turns out that
it is not possible to give a general type definition in Haskell that can be used for the
step definitions for layers with arbitrary numbers of steps. The reason for this is that the
number of type variables depends on the number of steps. However, we can give a simple
method for defining the data types, given the number of steps in the layer.

If we take the two step data types for Simple’ from Section 6, and rename the variables,
we get:

newtype Step1,2 a b c d = Step1,2 (a -> (b, Step2,2 c d a b))

newtype Step2,2 a b c d = Step2,2 (a -> (b, Step1,2 c d a b))

The pattern on the righthand side can be captured by a type synonym Step2, which makes
the individual step types somewhat simpler:

type Step2 next a b c d = (a ->(b, next c d a b))

Furthermore, we write the data type definitions as records, in order to get a selector
function for each type. The selector functions will be used in the definition of combine.

newtype Step1,2 a b c d = Step1,2 {step1,2 :: Step2 Step2,2 a b c d}
newtype Step2,2 a b c d = Step2,2 {step2,2 :: Step2 Step1,2 a b c d}
For a layer with three layer functions, and hence three steps, we need three mutually
recursive step data types. Each step has six parameters.

newtype Step1,3 a b c d e f = Step1,3 {step1,3 :: a -> (b, Step2,3 c d e f a b)}
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newtype Step2,3 a b c d e f = Step2,3 {step2,3 :: a -> (b, Step3,3 c d e f a b)}
newtype Step3,3 a b c d e f = Step3,3 {step3,3 :: a -> (b, Step1,3 c d e f a b)}
Which can be written simpler as:

type Step3 next a b c d e f = (a -> (b, next c d e f a b))

newtype Step1,3 a b c d e f = Step1,3 {step1,3 :: Step3 Step2,3 a b c d e f}
newtype Step2,3 a b c d e f = Step2,3 {step2,3 :: Step3 Step3,3 a b c d e f}
newtype Step2,3 a b c d e f = Step3,3 {step3,3 :: Step3 Step1,3 a b c d e f}
Clearly, the type definitions for three step layers are very similar to the type definitions
for two step layers. However, because the number of parameters for the type depends on
the number of steps, it is not possible to give one Haskell type synonym Step. We will
have to settle for a general description of how to construct the type synonym. For a layer
with n layer functions, the type of Stepn has 2n parameters. The parameters are named
a1 r1 ... an rn to reflect that for each pair of parameters, the first one (ai) is a vertical
argument, and the second one (ri) is a vertical result

type Step next a1 r1 ... an rn = (a1 -> (r1, next a2 r2 ... an rn a1 r1))

The individual step data types are defined as:

newtype Step1 a1 r1 ... an rn = Step1 {step1 :: Step Step2 a1 r1 ... an rn )}
newtype Step2 a1 r1 ... an rn = Step2 {step2 :: Step Step3 a1 r1 ... an rn )}
. . .
newtype Stepn a1 r1 ... an rn = Stepn {stepn :: Step Step1 a1 r1 ... an rn )}
Because no general Step type synonym is possible, an implementor has to construct the
appropriate Step type definition, as well as the step data types. In a language with
dependent types, such as Cayenne [1], a general type Step could have been defined.

7.2 Derivation for lift

First we develop a meta combinator for the lift function. Below is the code for lift
for layers with two steps. This is the code from section 6 in which a few variables have
been renamed to emphasize the data flow patterns instead of the meaning of the individual
steps. The local functions presStep and transStep are renamed step1 and step2. Fur-
thermore, in presStep, state is renamed to horArgs, and (mapping, state) is renamed
to horRess. And similarly, in transStep, (mapping, state) is renamed to horArgs and
state’ is renamed to horRess. Finally, also the vertical parameters and results in both
local functions are renamed to vertArg and vertRes. Because the derivation will not af-
fect the type, we do not rename any type variables. The resulting function does not show
its purpose as clear as the original does, but it makes clear that the data flow in both local
functions is similar.
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lift :: Simple state mapping doc pres gest upd ->
state -> Layer doc pres gest upd

lift simple state = step1 state
where step1 horArgs = PresStep $

\vertArg -> let (vertRes, horRess) = present simple horArgs vertArg
in (vertRes, step2 horRess)

step2 horArgs = TransStep $
\vertArg -> let (vertRes, horRess) = translate simple horArgs vertArg

in (vertRes, step1 horRess)

The definitions of the local functions step1 and step2 contain mutually recursive refer-
ences. We can take the mutual recursion out of the definitions by supplying the next step
as a parameter to each function.

lift simple state = (step1 (step2 (lift simple))) state
where step1 next horArgs = PresStep $

\vertArg -> let (vertRes, horRess) = present simple horArgs vertArg
in (vertRes, next horRess)

step2 next horArgs = TransStep $
\vertArg -> let (vertRes, horRess) = translate simple horArgs vertArg

in (vertRes, next horRess)

We can turn this into a more elegant definition by taking the following steps. If we drop
the state parameter on the lefthand and righthand sides of the first line, and rewrite the
function application as a composition, we get:

lift simple = (step1.step2) (lift simple)

Because the result of lift layer is the function (step1.step2) applied to this result, we
can use the combinator fix:

fix a = let fixa = a fixa
in fixa

to capture the recursion pattern, yielding:

lift simple = fix $ step1 . step2
where step1 next horArgs = PresStep $

\vertArg -> let (vertRes, horRess) = present simple horArgs vertArg
in (vertRes, next horRess)

step2 next horArgs = TransStep $
\vertArg -> let (vertRes, horRess) = translate simple horArgs vertArg

in (vertRes, next horRess)

21



Except for the applications of the two constructors PresStep and TransStep and the layer
functions present’ and translate’, the local functions are now equal. We eliminate the
constructors and the layer functions, by passing them as parameters pack and layerF to
the local functions.

Because step1 and step2 are now the same function, we give this function a new name:
liftStep, which is the meta combinator for building lift functions. Below is the new
definition of lift together with the definition of liftStep, which is not a local function
anymore. The liftStep below is not the final version of the meta combinator. In Sec-
tion 7.4 we define a type class that contains the pack function, so the final liftStep does
not get pack as a parameter and has a slightly different type with a type constraint in it.

lift :: Simple state mapping doc pres gest upd ->
state -> Layer doc pres gest upd

lift simple =
fix $ liftStep PresStep (present simple)

. liftStep TransStep (translate simple)

liftStep :: ((vArg -> (vRes, nStep)) -> step) ->
(hArgs -> vArg -> (vRes,hRess)) ->
(hRess -> nStep) ->
hArgs -> step

liftStep pack layerF next horArgs = pack $
\vertArg -> let (vertRes, horRess) = layerF horArgs vertArg

in (vertRes, next horRess)

liftStep works for layers with arbitrary numbers of steps: The definition of
liftStep does not depend on the number of steps of a layer, even though the derivation
starts with the definition of lift for layers with two layer functions. In the case of n steps,
there will be n local step functions, each one containing a reference to the next, except for
the last one, which contains a reference to the first function.

We can now perform the same steps to the n-step lift as we did for the 2-step lift.
We only sketch the process here. After renaming the variables, the explicit recursion is
removed from the local function definitions, by passing the next step as a parameter, and
lift will look like:

lift layer state = (step1 (step2 ... (stepn (lift layer))...)) state

where ...

which can be written as a composition:

lift layer = (step1 ... stepn) lift layer

where ...
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And, after using fix to capture the recursion, becomes:

lift layer = fix $ step1 ... stepn

where ...

Finally, the constructor and layer functions have to be passed as parameters to the local
step functions and the calls to the local functions become calls to liftStep. If we assume
that the n constructors are Stepi and the n layer functions are layerFunctioni, then the
final definition of lift is:

lift layer=

fix $ liftStep Step1 (layerFunction1 layer)

. ...

. liftStep Stepn (layerFunctionn layer)

The liftStep metacombinator can therefore be used to create the lift combinator for a
layer with an arbitrary number of layer functions.

7.3 Derivation for combine

The derivation of the meta combinators for combine is largely similar to the derivation
for lift. We start with the original definition of combine for layers with two steps (see
Section 6), in which we have renamed some variables. The two local functions are renamed
to step1 and step2. Both uprTrans and uprPres’ are renamed to nextUpr, and both
lwrTrans and lwrPres’ to nextLwr. The names of the vertical parameters and results
in presStep (low, med and high) are already appropriate, so elow, emed and ehigh in
transStep are also renamed to low, med and high.

combine :: Layer high med emed ehigh -> Layer med low elow emed ->
Layer high low elow ehigh

combine = step1
where step1 (PresStep upr) (PresStep lwr) = PresStep $

\high -> let (med, nextUpr) = upr high
(low, nextLwr) = lwr med

in (low, step2 nextUpr nextLwr)
step2 (TransStep upr) (TransStep lwr) = TransStep $

\low -> let (med, nextLwr) = lwr low
(high, nextUpr) = upr med

in (high, step1 nextUpr nextLwr)

The explicit mutual recursion in the local functions is removed by passing the next step as
a parameter.
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combine = step1 (step2 combine)
where step1 nextStep (PresStep upr) (PresStep lwr) = PresStep $

\high -> let (med, nextUpr) = upr high
(low, nextLwr) = lwr med

in (low, nextStep nextUpr nextLwr)
step2 nextStep (TransStep upr) (TransStep lwr) = TransStep $

\low -> let (med, nextLwr) = lwr low
(high, nextUpr) = upr med

in (high, nextStep nextUpr nextLwr)

Analogously to lift, the fix combinator can be used to abstract from the explicit recur-
sion.

combine = fix $ step1 . step2
where step1 nextStep (PresStep upr) (PresStep lwr) = PresStep $

\high -> let (med, nextUpr) = upr high
(low, nextLwr) = lwr med

in (low, nextStep nextUpr nextLwr)
step2 nextStep (TransStep upr) (TransStep lwr) = TransStep $

\low -> let (med, nextLwr) = lwr low
(high, nextUpr) = upr med

in (high, nextStep nextUpr nextLwr)

Because the constructors in the two local functions not only appear in the righthand side,
but also in the patterns of the lefthand side, it is not as straightforward to factorize the
constructors out of the definition. For the righthand side occurrences, we can pass the
constructor as an argument pack to the local function, similar to what was done for lift.
The constructors also appear on the lefthand side of the local functions. Because we
cannot use a parameter for the pattern matching, we pass a selector function unpack.
Instead of pattern matching, the unpack function is used to unpack the arguments of the
local functions.

Unfortunately, the selector function is used on two arguments with different types, whereas
Haskell only allows monomorphic applications of function arguments. Using a universally
quantified type does not work, because we have to quantify over all parameters in the
types, and the number of parameters is not determined. For now, the selector function is
passed twice, as unpackL and unpackH. The two unpack functions are used to unpack the
upr and lwr parameters. Together with the constructor (the pack function), the unpack
functions are put in a 3-tuple. In the next section, we show how a more elegant approach
that uses a type class for the pack and unpack functions.

We assume that the selector functions presStep and transStep are defined by declar-
ing the PresStep and TransStep types as records, according to the method shown in
Section 7.1.
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combine = fix $ step1 (PresStep,presStep,presStep)
. step2 (TransStep,transStep,transStep)

where step1 (pack, unpackU, unpackL) nextStep upr lwr = pack $
\high -> let (med, nextUpr) = (unpackU upr) high

(low, nextLwr) = (unpackL lwr) med
in (low, nextStep nextUpr nextLwr)

step2 (pack, unpackU, unpackL) nextStep upr lwr = pack $
\low -> let (med, nextLwr) = (unpackL lwr) low

(high, nextUpr) = (unpackU upr) med
in (high, nextStep nextUpr nextLwr)

Unlike in the case for lift, the two step functions are not the same now, because the
directions of the vertical parameters for step1 and step2 are different. Therefore, instead
of one meta combinator, we get two: combineStepUp and combineStepDown. Because all
step specific information has been factorized out, the functions can be used for arbitrary
steps.

combine :: Layer high med emed ehigh -> Layer med low elow emed ->
Layer high low elow ehigh

combine = fix $ combineStepDown (PresStep,presStep,presStep)
. combineStepUp (TransStep,transStep,transStep)

combineStepDown :: ( (h -> (l,nStepC)) -> stepC
, stepU -> h -> (m, nStepU)
, stepL -> m -> (l, nStepL) ) ->
(nStepU -> nStepL -> nStepC) -> stepU -> stepL -> stepC

combineStepDown (pack, unpackU, unpackL) nextStep upr lwr = pack $
\high -> let (med, nextUpr) = (unpackU upr) high

(low, nextLwr) = (unpackL lwr) med
in (low, nextStep nextUpr nextLwr)

combineStepUp :: ( (l -> (h,nStepC)) -> stepC
, stepU -> m -> (h, nStepU)
, stepL -> l -> (m, nStepL)) ->
(nStepU -> nStepL -> nStepC) -> stepU -> stepL -> stepC

combineStepUp (pack, unpackU, unpackL) nextStep upr lwr = pack $
\low -> let (med, nextLwr) = (unpackL lwr) low

(high, nextUpr) = (unpackU upr) med
in (high, nextStep nextUpr nextLwr)

Like liftStep, the meta combinators do not depend on the number of steps, so they can
be used to build combine for layers with an arbitrary number of layer functions.
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7.4 A type class for pack and unpack

The previous subsections define meta combinators for the functions lift and combine.
Because explicit constructor appearances have been removed from the meta combinators,
both functions have a function argument that is used for packing the result, and combine

has two function arguments to unpack its two layer arguments. Although the unpack
function for both layer arguments is the same, it has to be passed twice because the function
is used on arguments of different type. In this section, we construct a type class Pack that
contains the pack and unpack functions for the step data types. The type class eliminates
the need for explicitly passing the pack and unpack functions to the meta combinators.
Consequently, the unpack function does not need to be passed twice anymore.

First, we take a look at the types of the pack and unpack parameters of the meta com-
binators. Because the types of the pack and unpack functions have the same structure
in each of the three combinators, it does not matter which meta combinator we look at,
exception that liftStep does not have an unpack parameter. Therefore, we take a look
at combineStepDown:

combineStepDown :: ( (h -> (l,nStepC)) -> stepC
, stepU -> h -> (m, nStepU)
, stepL -> m -> (l, nStepL)) ->
(nStepU -> nStepL -> nStepC) -> stepU -> stepL -> stepC

combineStepDown (pack, unpackU, unpackL) nextStep upr lwr = pack $ ...

The type of pack is (h -> (l, nStepC)) -> stepC. The result of the function (stepC) is
a step type (PresStep or TransStep in the Simple’ case) and its argument is a function
from h to a tuple of l and the next step value (nStepC). We rename the parameters in the
type of pack to the more general: (arg -> (res, nStep)) -> step.

For the unpack function, we only look at unpackU, since the structure of both unpack
functions is the same. The type of unpackU is stepU -> h -> (m,nStepU). The function
takes a step value (stepU) and returns a function from type h to a tuple of m and the next
step type (nStepU). Analogously to pack, we rename the type variables: unpack :: step

-> arg -> (res,nStep).

Thus, our first shot at a type class with pack and unpack is:

class Pack step arg res nStep where
pack :: (arg -> (res, nStep)) -> step
unpack :: step -> arg -> (res, nStep)

However, this definition is not complete yet. In order to see why, we have to look at the
new type of combineStepDown:

combineStepDown :: ( Pack stepC h l nStepC
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, Pack stepU h m nStepU
, Pack stepL m l nStepL ) =>
(nStepU -> nStepL -> nStepC) -> stepU -> stepL -> stepC

The type is ambiguous, because type variables h, m and l appear in the constraint, but
not in the actual type of the function. The type inference algorithm cannot determine the
values (which are types) of h, m and l in an application of combineStepDown. The problem
only arises in the combine step meta combinators, because in the type of liftStep, all
variables in the constraint appear in the type as well.

We resolve the ambiguity by adding a functional dependency [3] step -> arg res between
step and arg and res to the class declaration.

The meta combinators are used to build the lift and combine combinators, and therefore
the constraints in the types of the meta combinators also have consequences for the types of
the combinators. More precisely, because in the combinator definition, a meta combinator
is applied to each step in the layer, for each step, constraints will appear in the type of
the combinators. However, the types of the combinators do not refer to these intermediate
steps, so the types are ambiguous. As an example, we can look at the type of lift for
Simple:

lift :: (Pack step doc pres nstep, Pack nstep gest upd step) =>
Simple state mapping doc pres gest upd -> state -> step

The Pack constraints refer to nstep, which does not occur in the type of the function. The
ambiguity in the types can be resolved by adding yet another functional dependency to
the type class definition, stating that the next step is uniquely determined by the current
step: step -> nStep. The final functional dependency is: step -> arg res nStep.

It is straightforward to see that the functional dependencies hold. Instances of Pack are
always of the following form: (for a given type constructor TheStep and its next step type
NextStep).

instance Pack (TheStep a r ...) a r (NextStep ... a r) where ...

The dependency states that given (TheStep a b ...), the types a, r and (NextStep

... a r) are uniquely determined. For a and r, this is true because a and r appear
in (TheStep a r ...). Furthermore, because each step has a unique next step, and this
next step has the same type variables as the step, the type (NextStep ... a r) is also
determined by (TheStep a r ...). Therefore, instances of Pack will never conflict with
the functional dependency.

The class definition becomes:

class Pack step arg res nStep | step -> arg res nStep where
pack :: (arg -> (res, nStep)) -> step
unpack :: step -> arg -> (res, nStep)
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With the use of the type class, the meta combinators change slightly. We show the
changes to the definition of combineStepDown. The other meta combinators undergo
similar changes and are shown in the next section.

The combineStepDown function loses the 3-tuple parameter with the pack and unpack
functions, and unpackL and unpackU are replaced by unpack. In addition, a type constraint
is added to the type.

combineStepDown :: ( Pack stepC h l nStepC
, Pack stepU h m nStepU
, Pack stepL m l nStepL ) =>
(nStepU -> nStepL -> nStepC) -> stepU -> stepL -> stepC

combineStepDown nextStep upr lwr = pack $
\high -> let (med, nextUpr) = (unpack upr) high

(low, nextLwr) = (unpack lwr) med
in (low, nextStep nextUpr nextLwr)

From the type constraint, we can see how the type class approach solves the double unpack
parameter problem. Three Pack constraints are present in the type. The last two state
that parameter types stepU and stepL are instances of Pack, and the first constraint
states that result type stepC is instance of Pack. From this we can see that the first two
constraints arise from the use of unpack on the upr and lwr arguments (of types stepU and
stepL), whereas the last constraint comes from the use of pack. In the implementation,
this means that three dictionaries are passed, and that the two occurrences of unpack

come from different dictionaries. In other words, the type system takes care of passing the
double unpack functions.

The type class does have a small drawback. Due to the monomorphism restriction, Haskell
only allows a function to have an overloaded type if it is defined with parameters on the
lefthand side of the definition (ie. f x1 . . . xn = . . . , instead of f = \x1 . . . xn-> . . . ),
or if it has an explicit type signature. Due to the type class, the inferred types of lift

and combine are overloaded. However, combine has no parameters on the lefthand side of
the definition, so it needs to be rewritten, or it needs a type signature.

Because the type of combine can be complex, as the order of the parameters depends on
the direction of the layer functions, it is inconvenient to have to give the type signature.
If a type signature in the architecture source is desired, the compiler can be asked for the
type, which can then be pasted in the source.

To eliminate the need for an explicit type signature for combine, we explicitly add the
upper and lower layer parameters to the definition. For Simple, combine becomes:

combine upper lower = fix (combineStepDown . combineStepUp) upper lower

A more general description of the construction of combine is given in the next section.
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7.5 Final Library and Conclusions

Figure 8 contains the final definitions of the meta combinators together with the Pack type
class, the fix combinator, and the LayerFunction type synonym. In order to describe
and implement an architecture, a number of definitions are necessary that depend on the
number of layer functions and hence cannot be included in the library. We give a general
description of these definitions.

General use: The general case that we consider is of a layered architecture in which
the layers have n layer functions. The record type TheLayer contains the layer functions.
The type has a number of type variables. The hi variables are the types that appear in
the horizontal parameters of the layer, and the ai and ri are the types of the vertical
arguments and result. The horizontal type variables need not be equal to the types of the
horizontal parameters in the layer. See for example the type Simple. It has two horizontal
type variables (mapping and state), but the horizontal parameters in the layer are state

and (mapping, state). As a result, the number of horizontal type variables (m) is not
necessarily equal to the number of layer functions (n), and the types of the horizontal
arguments and results in the layerFunction types below have to be denoted with (...).

data TheLayer h1 ... hm a1 r1 ... an rn =

TheLayer { layerFunction1 :: LayerFunction (...) a1 (...) r1

...

layerFunctionn :: LayerFunction (...) an (...) rn }

First, we define the Step type synonym that captures the explicit function type and rotation
of parameters in the subsequent data definitions:

type Step next a1 r1 ... an rn = (a1 -> (r1, next a2 r2 ... an rn a1 r1))

Using Step the mutually recursive data definitions for each of the steps are straightforward.
Each definition Stepi contains a reference to the next definition Stepi+1, except for Stepn,
which contains a reference to the first step: Step1. Note that write the type definition
with the Haskell record syntax to define the stepi selector functions.

newtype Step1 a1 r1 ... an rn = Step1 {step1 :: Step Step2 a1 r1 ... an rn}
newtype Step2 a1 r1 ... an rn = Step2 {step1 :: Step Step3 a1 r1 ... an rn}
. . .
newtype Stepn a1 r1 ... an rn = Stepn {step1 :: Step Step1 a1 r1 ... an rn}
The type synonym Layer is introduced for the type Step1:

type Layer a1 ... a2n = Step1 a1 ... a2n
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fix :: (a->a) -> a
fix a = let fixa = a fixa

in fixa

type LayerFunction horArgs vertArg horRess vertRes =
horArgs -> vertArg -> (vertRes, horRess)

class Pack step arg res nStep | step -> arg res nStep where
pack :: (arg -> (res, nStep)) -> step
unpack :: step -> arg -> (res, nStep)

liftStep :: Pack step vArg vRes nStep =>
(hArgs -> vArg -> (vRes,hRess)) ->
(hRess -> nStep) ->
hArgs -> step

liftStep layerF next horArgs = pack $
\vertArg -> let (vertRes, horRess) = layerF horArgs vertArg

in (vertRes, next horRess)

combineStepDown :: ( Pack stepC h l nStepC
, Pack stepU h m nStepU
, Pack stepL m l nStepL ) =>
(nStepU -> nStepL -> nStepC) -> stepU -> stepL -> stepC

combineStepDown nextStep upr lwr = pack $
\high -> let (med, nextUpr) = (unpack upr) high

(low, nextLwr) = (unpack lwr) med
in (low, nextStep nextUpr nextLwr)

combineStepUp :: ( Pack stepC l h nStepC
, Pack stepU m h nStepU
, Pack stepL l m nStepL ) =>
(nStepU -> nStepL -> nStepC) -> stepU -> stepL -> stepC

combineStepUp nextStep upr lwr = pack $
\low -> let (med, nextLwr) = (unpack lwr) low

(high, nextUpr) = (unpack upr) med
in (high, nextStep nextUpr nextLwr)

Figure 8: Final meta combinators for lift and combine
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All Stepi types are made instances of Pack with n instance declarations of the following
form:

instance Stepi (Stepi a1 r1 ... an rn) a1 r1 (Stepi+1 a2 r2 ... an rn a1 r1)

where pack = Stepi

unpack = stepi

The only thing left to do now, is to define the lift and combine combinators. For the lift
combinator, we need to apply liftStep to each of the layer functions, compose the steps
and apply fix to the composition.

lift :: TheLayer h1 ... hm a1 r1 ... an rn -> Layer a1 r1 ... an rn

lift theLayer =

fix $ liftStep (layerFunction1 theLayer)

...

. liftStep (layerFunctionn theLayer)

The combine combinator is a composition of either combineStepUp or combineStepDown

meta combinators to which fix is applied. The choice of combineStepUp or combineStepDown
for a layer function is determined by the direction of the vertical data flow in that layer.
Note that the upper and lower arguments are added because of the monomorphism re-
striction. The type of combine cannot be given in a general definition and is explained
below.

combine :: Layer ... -> Layer ... -> Layer ...

combine upper lower =

fix ( combineStep<Up/Down>
...

. combineStep<Up/Down>
) upper lower

A general type definition of combine cannot be given, because the order of the type variables
depends on the direction of the layer functions. For each pair of type variables, ai and ri in
the Layer ... ai ri ... types of the two arguments and the result, we have the following
dependency. If the i-th layer function is downward:

Layer ... h m ... -> Layer ... m l ... -> Layer ... h l ...

And if the layer function is upward:

Layer ... m h ... -> Layer ... l m ... -> Layer ... l h ...

However, instead of computing the type by hand, the compiler can be asked for the type
which can then be pasted in the source.

31



This concludes the definitions that are necessary to be able to describe an architecture.

Simple editor: As an example application of the library, we give the definitions that
are required for implementing the simple editor architecture. Recall that the data type
containing the layer functions is:

data Simple state mapping doc pres gest upd =
Simple { present :: LayerFunction state doc (mapping, state) pres

, translate :: LayerFunction (mapping, state) gest state upd
}

The simple editor layer contains two layer functions, so we need to define two step data
types with corresponding pack and unpack functions. First we define the Step type syn-
onym and the step data types. The layer has two layer functions, so the number of type
variables is four.

type Step next a b c d = (a ->(b, next c d a b))

newtype PresStep doc pres gest upd =
PresStep {presStep :: Step TransStep doc pres gest upd}

newtype TransStep gest upd doc pres =
TransStep {transStep :: Step PresStep gest upd doc pres}

Each pair of steps must be an instance of Pack:

instance Pack (PresStep a b c d) a b (TransStep c d a b) where
pack = PresStep
unpack = presStep

instance Pack (TransStep a b c d) a b (PresStep c d a b) where
pack = TransStep
unpack = transStep

The definitions of lift and combine are now rather trivial:

lift simple =
fix $ liftStep (present simple) . liftStep (translate simple)

combine =
fix $ combineStepDown . combineStepUp

The definitions of the main and editLoop functions are the same as in Section 6 so they
are not reproduced here.
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Conclusions:

The simplicity of the definitions of the lift and combine combinators leads to the question
whether it is possible to define generic lift and combine combinators with the use of a type
class that contains the step specific aspects. This would eliminate the need to explicitly
define the combinators. It would be sufficient to define the step data types and make them
instances of the type class.

Although it is possible to define the type class, it turns out not te be very useful. The
generic combinator takes an argument of a certain step type and contains a recursive call
to itself on the next step type. Because of this recursive call, a type constraint on the step,
for example that it is an instance of Wrap, must also hold for the next step. But since the
recursive call generates a constraint for its next step too, the constraint must also hold
for the step after the next step, and so on. As a result, in the type of the combinator we
have to explicitly give the type constraints on each of the step types. However, this means
that the type of the combinator depends on the number of steps, and we do not want to
encode the number of steps in the library. Therefore, we will use the simpler approach of
constructing lift and combine explicitly.

The meta combinator library has the same advantages as the direct parameter passing
solution of Section 6, but at the same time, it is much easier to describe a specific archi-
tecture. The use of meta combinators makes the data flow clearer and reduces the chance
of errors in the specification.

8 The Proxima editor

The motivation for using Haskell to describe editor architectures has come from the Prox-
ima project [7]. Proxima is a generic incremental XML editor, which is being developed
at Utrecht University. The editor is parameterized with a presentation sheet that specifies
how a document is presented. Furthermore, it is parameterized with a computation sheet
that specifies derived values, such as chapter numbers, or a table of contents. A user can
only see and edit the final presentation of the document. Because the mapping of the
document on the presentation is a stepwise process, and hence the translation from edit
commands on the presentation to updates on the document as well, Proxima has a layered
architecture.

Figure 9 schematically shows the layers of Proxima. The figure shows the layers (sur-
rounded by rectangles) as well as the data values that arise in the process of mapping of
the document on the presentation. Edit actions and incremental updates are not shown in
the figure.

The document at the top of the architecture is mapped on the rendering at the bottom,
which is shown to the user. The evaluator takes the document and a computation sheet and
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Figure 9: The layers of Proxima

produces the enriched document, which is the document together with all derived values.
Similarly, the presenter takes the enriched document together with a presentation sheet,
and computes the abstract presentation. Until this point, the presentation does not contain
any absolute layout; all elements in the presentation are positioned relative to each other
and do not yet have an absolute size.

The absolute coordinates are computed by the arranger. It maps the abstract presentation
on an arrangement, which is a absolute positioning of all elements of the presentation. The
arranger also takes care of hyphenation, line and page breaking. Finally, the arrangement
is rendered as a bitmap by the renderer.

A prototype of the Proxima editor has been implemented with the architecture combinators
of the previous section. The module that contains the architecture description is an actual
part of the implementation of the prototype.

9 Conclusions

The combinators presented in this paper make it possible to specify layered editor archi-
tectures in a concise and transparent way. With a small number of definitions, a layered
architecture can be described. The combinators have been tested with an actual architec-
ture and have been heap profiled to ensure that no memory leaks are present.

Furthermore, because the architecture description language is embedded in the implemen-
tation language, the architecture of a system forms part of the implementation of the
system. No translations from the ADL to the implementation language is required, and
the implementation is guaranteed to comply with the architecture.
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The combinator language in this paper is tailored to a specific kind of architectures: those
of layered editors. Although we use the term editor in a broad sense, also including spread-
sheets, e-mail agents, etc., further research should explore the possibilities of using Haskell
to describe other kinds of architectures. Another area of research concerns the dynamic
aspects of the architecture: how can constraints and invariants on the data be described
and, if possible, verified?
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