Section 8: On the operations which are less needed, <in> 10 chapters

Chapter 1: On <finding> the latitude of a locality from the hours (i.e., the
duration) of <its> longest day.

We multiply half the <number of the> hours of the longest day by 15
<degrees>: <The result> is half the day arc. <This result> may be used to
find the <maximum> ortive amplitude, which will be <for the sun> in the
first of Cancer. Then we divide the Sine of the maximum declination <of
the sun> by the Sine of the ortive amplitude, lowered: The result is the
Cosine of the latitude of the locality. Another method: We find half the
day arc and its deficit from 90° or its excess over 90°: This is the equation
of daylight. Then we divide the Tangent of the declination of the
<ecliptical> degree <of the sun> by the Sine of the equation of daylight,
lowered: The result is the Cosine (this should be “Cotangent”; see
commentary) of the latitude of the locality. This calculation <method> is
generally valid for the <number of the> hours of any day of the year, if we
use the declination of the sun on that day.

Chapter 2: On the altitude without a <non-zero> azimuth.

We divide the Sine of the declination of the sun or the distance of the planet
from the celestial equator by the Sine of the latitude of the locality,
lowered: The result is the Sine of the altitude corresponding to zero
azimuth. This altitude can be found if the sun or the planet rises on the
northern side of the celestial equator, i.e. <north of> the rising point of the
first of Aries or Libra, and passes the meridian circle <at a point> south of
the zenith.

Chapter 3: On <finding> the azimuth for any altitude which we assume.

We multiply the Cosine of the declination of the <ecliptical> degree of the
sun by the Sine of the ascension of the distance of the <ecliptical> degree of
the sun <from the meridian>, and we divide <the product> by the Cosine of
the altitude <of the sun>: The result is the Cosine of the azimuth <of the
sun>. If the sun is in the northern <zodiacal> signs, and the altitude of the
<sun at the given> time is less than the altitude <of the sun> corresponding
to its zero azimuth, then the azimuth is eastern or western towards north. If
the altitude of the <sun at the given> time greater than the altitude <of the
sun> relating to its zero azimuth, and the altitude <of the sun> is eastern or
western, then the azimuth is southern. If the sun is in the southern
<zodiacal> signs, then the azimuth is southern. <The method presented in>
this chapter is less necessary for the planets. <However,> if it is needed
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<for them>, <we take> the distance of the planet <from the celestial
equator> instead of the declination of the sun, and its (i.e., the planet’s)
transit degree instead of the <ecliptical> degree of the sun. Another
method: We multiply the Sine of the altitude <of the sun> by the Sine of
the latitude of the locality, and divide <the product> by the Cosine of the
latitude of the locality: The result is <called> ‘the argument of the azimuth’.
If the declination <of the sun> is southern, we add ‘the argument of the
azimuth’ to the Sine of the ortive amplitude. If the declination <of the sun>
is northern, we subtract the lesser <of these two values> from the greater
<one>. The sum or the remainder is <called> ‘the equation of the azimuth’.
We divide it by the Cosine of the altitude, lowered. The result is the Sine of
the azimuth. Now, if ‘the argument of the azimuth’ is greater than the Sine
of the ortive amplitude, then the azimuth is southern; if it is less than it (i.e.,
than the Sine of the ortive amplitude), then the azimuth is northern.

Chapter 4: On <finding> the altitude from the azimuth.

We multiply the Cosine of the latitude of the locality by the Cosine of the
azimuth, lowered: The result is <called> ‘the Sine of the first arc’. We find
the corresponding arc. Then we divide the Sine of the latitude of the locality
by the Cosine of the first arc, lowered. The result is <called> ‘the Sine of
the second arc’ which is <also> called ‘the complement of the argument of
the altitude’. Then we multiply the Sine of the declination of the sun by the
Sine of the second arc, and divide <the product> by the Sine of the latitude
of the locality: The result is <called> ‘the Sine of the third arc’. We find the
arc corresponding to it. <This arc> is called ‘the equation of the altitude’. If
the declination <of the sun> is southern, we subtract the third arc from the
complement of the second arc. If the declination <of the sun> or the
distance <of the planet from the ecliptic> is northern, we add the third arc
to the complement of the second arc. The sum or the remainder is the
<required> altitude. However, if the azimuth is northern, we always
subtract the equation of the altitude from the argument of the altitude.

A <practical> use of these two chapters: If the birth of a baby occurred
at a time during the day, and a line is drawn in the direction of the shadow
of a vertical gnomon on a horizontal plane <at that time>, and if the return
of this shadow to its first azimuth is noted in any <other> day, the altitude
of the sun is obtained <by observation> at this <time>, and the azimuth
relating to this altitude is computed, then this <azimuth> is the azimuth for
the altitude <of the sun at> the time of birth. The altitude <of the sun>
relating to this azimuth on the birthday and the position of the sun on that
<day> can be computed. This will be the altitude of the sun at the time of
birth; and the ascendant and what <else> that may be needed is computed
from it.
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Chapter 5: On the distance between two stars of which <only> one has a
<non-zero> latitude.

We multiply the Cosine of <the longitude difference> in degrees between
the two stars by the Cosine of the latitude of the star which has a <non-
zero> latitude, lowered: The result is the Cosine of <the distance> between
the two stars.

Chapter 6: On the distance between two stars both having <non-zero>
latitudes.

We multiply the Cosine of the latitude of the star which has a smaller
longitude by the Sine of <the longitude difference> between the two stars in
degrees, lowered: The result is the Sine of the first arc. We find the
corresponding arc. Then we divide the Sine of this latitude by the Cosine of
the first arc, lowered: The result is the Sine of the second arc. We find the
corresponding arc, and add <this arc> to the latitude of the star which has a
greater longitude, if the two latitudes are in two different directions. If they
are in the same direction, we obtain the difference between this latitude and
the second arc: <The result> is the third arc. Then we multiply the Cosine
of the first arc by the Cosine of the third arc, lowered: The result is the
Cosine of <the distance> between the two stars.

Chapter 7: On the extraction of the meridian line.

We level a site on the ground so that its surface becomes parallel to the
horizon. We draw a circle on it, we prick a straight needle and we measure
its perpendicularity to the surface from three positions on the
circumference, distant from each other. Then, near noon, we observe the tip
of the shadow of the needle. <The shadow> will be diminishing as we make
marks very close to one another by the tip of another needle on those
positions <of the tip of the shadow>, while <the shadow> is turning. We
check <the marks> carefully until the shadow begins increasing. Then we
connect the mark nearest to the center <of the circle> and the center by a
straight line. It will be the meridian line. Another method is <as follows>.
We level the ground and <we take> the circle and the gnomon as we said
<before>, except that the circle should be equal to the altitude circle on the
back side of an available astrolabe. <Also> the length of the gnomon should
be so that its shadow does not fall short of the circumference at noon. Then
we extract the azimuth relating to its (i.e., the sun’s) altitude on one of the
two sides of the meridian <line>. We make a mark on the circumference
where the shadow falls, when this altitude is reached <by the sun>. Using
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compasses, we obtain <the length> equal to the <chord of the> complement
of the azimuth from the altitude circle of the astrolabe. We put one leg of
the compasses on the mark, and the other on some point on the
circumference in the direction of the altitude <of the sun>, which may be
eastern or western <while the compass opening is the same>. From where it
falls, we draw a line to the center of the circle. It will be the meridian line.
If the altitude <of the sun> is <equal to> the altitude for a zero azimuth, the
shadow will be on the east-west line. The line drawn from the middle of its
two endpoints to the center of the circle is the meridian line. There are
many ways to draw this line. However, all of them are less accurate and in
practice <less> close to the correct <direction> than these two ways, but
theoretically all of them are correct and can be proved.

Chapter 8: On the deviation of the <directions of> localities with known
longitudes and latitudes from the meridian of our locality.

This deviation is called ‘the azimuth of localities’. Let the locality whose
azimuth is desired be Mecca. <To find this azimuth> we multiply the
Cosine of the latitude of Mecca by the Sine of the <difference> between the
two longitudes, lowered: The result is <called> ‘the Sine of the equation of
longitude’. We find the corresponding arc. Then we divide the Sine of the
latitude of Mecca by the Cosine of the equation of longitude, lowered: The
result is the Sine of the equation of latitude. We find the corresponding arc.
If this arc is less than the latitude of our locality, we subtract it from the
latitude of the locality. The remainder will be the adjusted latitude of the
locality, <which latitude is> southern. If it (i.e., the adjusted altitude) is
exactly equal to it (i.e., to the latitude of our locality), then the azimuth of
Mecca is the east-west line. If it is greater <than the latitude of our
locality>, we subtract from it the latitude of <our> locality: The result is the
adjusted latitude of the locality, <which latitude is> northern. Then we
multiply the Cosine of the equation of longitude by the Cosine of the
adjusted latitude of the locality, lowered: The result is the Cosine of the
distance between the two localities. Then we divide the Sine of the equation
of longitude by the Sine of the distance between the two localities, lowered:
The result is the Sine of the deviation of <the direction of> Mecca <from
the local meridian>. <For finding> the direction of the deviation, we
check <the arc> between the two localities and the adjusted latitude of the
locality: If <the arc> between the two longitudes is situated in the east-
south quadrant and the adjusted latitude of the locality is southern, then the
deviation is towards the south-east; if the adjusted latitude of the locality is
northern, then the deviation is towards north-east. If the <arc> between the
two longitudes is situated in the south-west quadrant, and the adjusted
latitude of the locality is southern, then the deviation is towards the south-
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west. If the adjusted latitude of the locality is northern, then the deviation is
towards the north-west. When we carried out this operation for the locality
of Rayy, taking its longitude from <Canary Islands in the> West (i.e., the
Atlantic Ocean> to be 85°, and its latitude 36°, the longitude of Mecca 77°,
and its latitude 21°, the deviation is <found to be> 27; 36° towards west.

Chapter 9: On the names of the fixed stars and their features in order to
recognize them by seeing.

We have compiled in a table what we need <to know> about these stars in
most <cases>. We have recorded their positions for the beginning of the
year 301 of the Yazdigird <era>. <Their> adjustment <for other years> is
<merely applying> the equation of the apogees. We have put in front of
them <in the table> their latitudes, magnitudes, and their temperaments in
relation to the planets. Since we need <to be able> to recognize a star and
<sometimes> two stars by seeing <them> in each quadrant of the <sky>
and all the quadrants of the ecliptic in order to obtain their altitudes <by
observation> for knowing the ascendant and the time, we mention their
features, so that the observer may recognize them. They are <as follows:>
al-Kaff al-khazib (lit. “the dyed palm [of the hand]”; Caph, B Cassiopeiae):
a star in Aries, of the third magnitude, in the north, on the hump of the
constellation known as al-Naga (“the she-camel”) by the common people;
there are two stars of the same magnitude under it, which, together with this
star, form a triangle; “Ayn al-thaur (lit. “the eye of the bull”; Oculus Tauri,
o Tauri): also called al-Dabaran (Aldeberan): a red star in Taurus, of the
first magnitude, in the south, behind the Pleiades, between some stars which
look like <the Arabic letter> dal; al- Ayyig (Capella, o Aurigae): a big star
in Gemini, of the first magnitude, in the north, on the edge of the Milky
Way, behind three stars which are in a row; it rises <simultaneously> with
the Pleiades; Mankib al-jawza’ (lit. “the shoulder of the Twins”;
Betelgeuse, o Orionis): a red star in Gemini, of the first magnitude, in the
south; it is in the place of the shoulder of a standing person; al-Shi ¥4 al-
yamaniya (Sirius, o. Canis Majoris): a white big star in the beginning of the
Cancer, of the first magnitude, in the south, behind the stars of Gemini; al-
Shi ¥a al-sham iya (Procyon, o Canis Minoris): a star in Cancer, of the first
magnitude, in the south; it is smaller than Sirius, to the north of it, and in
front of it; Qalb al-asad (lit. “heart of the lion”; Regulus, a Leonis): a star
in Leo, of the first magnitude; it is approximately on the ecliptic, on the
southern side of four stars standing from south to north in a crooked row;
al-Sarfa (Cygnus, $ Leonis) also called Dhanab al-asad (Denebola): a star
in Virgo, on the tail of Leo, of the first magnitude, in the north; there are
two bright stars called al-Zubra (Zubra, § and 6 Leonis) between it and
Regulus; al-Simak al-ramih (lit., “chest of the spearman”; Arcturus, a
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Bootis): a star in Libra, of the first magnitude, in the north; there is a star
smaller than it, called al-Ramih (“the spearman”), in front of it towards
west; al-Simak al-a Zal (lit. “the chest of the unarmed <man>"; Spica, a
Virginis): a star in Libra, of the first magnitude, in the south, in front of al-
Ramify, al-Munir min al-fakka (lit. “the luminous <star> of Coronae
Borealis”; Alphacca, a Coronae Borealis): a star in Libra, of the second
magnitude, in the north, between <a> circular <array of> stars behind a/-
Simak al-ramih, the common people call it Qas at al-mas axim (lit. “the bowl
of the poor”); Qalb al- aqrab (lit. “heart of Scorpion”; Antares, o Scorpii):
a red star in Scorpion, of the second magnitude, in the south, between two
luminous stars on a curved line; al-Nasr al-wagi ‘ (lit. ‘the falling eagle™;
Vega, o Lyrae): a star at the end of Sagittarius, of the first magnitude, in the
north; its path is close to the zenith; there are two small stars under it, which
together with this star form a triangle called ath 47 (lit. “andiron/trivet™; a, ¢,
€ Lyrae or a, B, y Lyrae) by the common people; al-Nasr al-tzir (lit. “the
flying eagle”; Altair, a Aquilae): a star in Capricorn, of the second
magnitude, in the north, between two luminous stars on a straight line;
Dhanab al-dajga (lit. “tail of the hen”; Deneb, a Cygni) <also> called al-
ridf: a star in Aquarius, of the second magnitude, in the north, behind the
luminous stars that cut through the Milky Way; Mankib al-faras (lit.
“shoulder of the horse”; Scheat, Menkib, B Pegasi): a star in Pisces, of the
second magnitude, in the north, northern in relation to another star of the
same magnitude; they are called <together> as al-fargh al-mugaddam (o
and B Pegasi), <which is> one of the lunar mansions

Chapter 10: On the names of the lunar mansions, and their rising days.

The 28 <lunar> mansions and their names <are as follows>:

1. al-sharatain 2. al-butain 3. al-thurayya 4. al-dabaran 5. al-haq a
20™ of Nisan 3" of Ayar 16" of Ayar 29" of Ayar 11% of Haziran
6. al-han a 7. al-dhira“ 8. al-nathra 9. al-tarfa 10. al-jabha
25™ of Haziran 8" of Tammiz 20" of Tammiiz 2™ of Ab 15™ of Ab

11. al-zubra 12. al-sarfa 13. al-awwa’  14. al-simak 15. al-ghafr
28" of Ab 10" of Tial 23" of Ttal 6™ of Tishrin I 20" of Tishrin I

16. al-zubani  17. al-iklil 18. al-qalb 19. al-shawla  20. al-na Z’im
2" of Tishrin IT 15% of Tishrin I 28% of Tishein II 11" of Kaniin I 24% of Kanan I

21. al-balda 22.sa d al-dhabih23. sa d bula“ 24. sa d al-su ‘@d 25. sa d al-akhbiya

6" of Kanin IT 19" of Kaniin II 1 of Shabat 14™ of Shabat 27" of Shabat
26. al-fargh al-muqaddam 27. al-fargh al-mu akhkhar 28. bamn al-hin
12" of Adhar 25™ of Adhar 7™ of Nisan
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The parts of the ecliptic corresponding to these mansions are equal. They
are taken <subsequently, starting> from the point corresponding to the
beginning of Aries. Their constellations are <formed> of fixed stars with
different magnitudes and positions in the Zodiac. Their <heliacal> rising
days, i.e. <the times of> their apparition <after they exit> from <being>
under the rays <of the sun are as follows>: al-sharatain rises on the 20" of
Nisan around the year 1320 of the Two-Horned (i.e., Alexander) <era>.
Then each next mansion rises 13 days later, until a/-Simak rises. We take
the rising of al-Ghafr next to it, after 14 days for compensating the fractions
which <are> with the 13 days. Then up to the end of the mansions <we take
13 days>, as before. After 66 years al-Sharatain rises on the 21% of Nisan,
and similarly all <other> mansions rise one day later. When a mansion <of
the moon> rises, its opposite <mansion>, which is the fifteenth <mansion
counting> from it, sets. Thus, when al-Sharatain rises, al-Ghafr sets. It is
not impossible that there may be a difference of one or two days between
the actual apparition <of these mansions> and what we have defined for
them. Precise observations do not exist in this <connection> that may lead
to major inconsistency, and there is no need to determine that
<inconsistency>. <Now,> after we have completed the chapters <on
elementary calculations> that we indicated in the preface to the <first>
book, and we tried to make them close <to understanding>, and we did our
best in making them precise, we finish the first book by this chapter. We
ask God for help, and on Him is <our> reliance. This is followed by the
second book on the tables.
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Commentary

[.8.1 The ortive amplitude can be found from half the day arc by the
formula given in 1.5.6: Cos9=(Cos51Sin§)/ R, where 0 is the ortive

amplitude of the sun, &,the declination of the sun, and D the day arc. Then,
as mentioned here, we can find the latitude of the locality by the formula
Sin@_. Cosp = RSine, where 6__ is the maximum ortive amplitude of the

sun, ¢ the geographical latitude of the locality, and & the maximum
declination of the sun. The second method can also be deduced from a
formula given in 1.5.7 for calculating the equation of daylight:
RSinAD = Tgé,Tgp, where AD is the equation of daylight. Kishyar
erroneously puts Cosp instead of Cotgp in the second method. Both
methods are demonstrated in IV.8.1. The proof of the formula given in 1.5.6
is repeated there. Ptolemy [1984, 77-78] provides a different method for
finding the latitude of the locality from the length of the longest day. Al-
Battani [1899-1907, 111, 30] first calculates the ortive amplitude in a similar
way; then he obtains the latitude of the locality from the ortive amplitude,
half the day arc and the excess of half the day arc, by a method equivalent

to Sinqp=RSinADCos6‘/Sin6?Sin§. This formula can be obtained from the

above formulas.

[.8.2 Here Kishyar calculates the altitude #,0f the sun if it is due east or

west (or has zero azimuth, as Kishyar puts it) and if its northern declination
(8) is given, for a locality with geographical latitude ¢. In modern notation,
his method is equivalent to: Sink, = RSiné / Sing . Kishyar provides a proof

of this formula in IV.8.2.

1.8.3 The two methods provided by Kashyar in this chapter for finding the
azimuth of the sun when its altitude is known, are equivalent to the
following formulas:

(1) cosaz=cosé, sin A4,(A)/cosh,
(2) sinaz=(sin@ % sinh tan @)/ cosh,

where az is the required azimuth, §,is the declination of the sun, A4,(4)is

the right ascension of the arc between the sun and the meridian, h is the
known altitude, ¢ is the latitude of the locality, and & is the ortive
amplitude. Proofs of these two methods are given in IV.8.3. The second

method is provided by al-Battani [1899-1907, 111, 33-34, 53-54] for the sun
and the planets or stars.
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1.8.4 The method for finding the altitude of the sun when its azimuth is
known, is equivalent to the following formulas:

cos @ cosaz =sinq,
sing/cosa, =sina,
sin 8, sina, /sin ¢ =sin o,
h=90°-a, ta,
a,,a,,and «,being auxiliary arcs, the last two of which are called ‘the

complement of the argument of the altitude’ and ‘the equation of altitude’,
respectively. Of course the third formula may also be presented in the
simpler form, sind, /cosa, =sine,. However, the present form may better

reflect the geometrical process of finding the unknown altitude. A proof of
the validity of this method is provided in IV.8.4, where, for the case when
the azimuth is northern, the above-mentioned simpler formula is actually
demonstrated. As Kiishyar mentions in the text, this chapter together with
the former chapter may be used to find the altitude of the sun at a certain
daytime on the day when a person was born. For this we should have
registered the azimuth of the sun at the time of his birth by drawing a line
along the shadow of a gnomon at that time. It is interesting that Kiishyar
also thinks of the astrological application in this chapter and the former one.

1.8.5 In modern notation, the distance between two stars whose longitude
difference is A4 and whose latitudes are 0° and £, respectively, is found by
the formula: cosAAcos B =cosd, where d is the distance between the two

stars. A proof of the validity of this method is provided in IV.8.5. Al-
Battani gives a more lengthy method for this [1899, III, 59].

1.8.6 In modern notation, the distance between two stars whose longitude
difference is A4, and whose latitudes are B and p,, respectively, can be
found by the following formulas:

cos f, sin Al =sinq,

sin B, /cosa, =sina,

a,t B, =a,

cosa, cosa; =cosd
a,,a,, and a,being auxiliary arcs and d being the distance between the two

stars. Kiishyar proves this method in 1V.8.6. Al-Battani gives a different
method in a more detailed way for this calculation [1899, III, 60].

1.8.7 In this chapter, Kishyar describes two methods for finding the

meridian line, which he mentions as the most accurate among several
theoretically correct methods. His first method is based on the fact that the
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shadow of any gnomon is shortest at true local noon when the sun is on the
local meridian. In practice, this method is not very accurate. In the second
method, the chord of the angle between the azimuth of the sun and the
meridian line is computed by the methods provided in 1.8.3 or by the
astrolabe, from the altitude of the sun at the time of measuring. The
graduation for the altitudes on the rim of the astrolabe is then utilized for
obtaining this angle. See also IV.8.7. The phrase in the second method for
the case when the shadow is on the east-west line: “from the middle of its
two endpoints” is unclear to me. Maybe there is a lacuna here. Ptolemy did
not provide any method for drawing the meridian line in the A/magest, but
he assumes that it can be drawn [1984, 62]. Diodorus of Alexandria (first
century B.C.) devised a method for determining the meridian line from any
three gnomon shadows [ibid., fn. 72]. His original work is lost, but an
Arabic version of his method has recently been published with an English
translation [Hogendijk 2001, 68-72]. Al-Battani describes three methods in
his zj for determining the meridian line [1899, III, 35-38], the second of
which is similar to Kishyar’s second method, except that al-Battant finds
the chord of the angle between the azimuth of the sun and the east-west
line.

1.8.8 In this chapter Kushyar provides a method for finding the angle
between the southern direction and the great circle arc between his locality
and another locality (he calls it inkirdf, which means “deviation”), and
discusses it for the example of Mecca, because its direction is needed for
Islamic prayers. In modern notation, his method is equivalent to the
following formulas:

cos@, sinAA =sina,

sing,_ /cosq, =sing,

P, _az|=a'3

cosa, cosa, = cos!

sine, /cosl =sind
where ¢, ,AA,p,,land d are, respectively, the latitude of Mecca, the

longitude difference between the locality and Mecca, the latitude of the
given locality, the arc between the locality and Mecca, and the deviation of
the great circle arc from the locality to Mecca from the meridian line, i.e.,
the angle between the direction of Mecca and the southern direction. The
auxiliary parameters «,,a,,a, are respectively, called ‘the equation of

longitude’, ‘the equation of latitude’, and ‘the adjusted latitude’. Kiuishyar
proves the validity of this method in IV.8.8. Kiishyar’s method for finding
the direction to Mecca is the same as al-Birtini’s fourth method in his
Tahdid [al-BirGini 1967, 253-55], which he calls “the method of the zijes”
[Berggren 1985, 1]. Kaishyar’s terminology in this chapter from the mss. F,
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C, Y, B and P is like that of al-Biriini. However, ms. L uses a different
terminology in which ‘the equation of longitude’ is called ‘the first arc’, etc.
and its method is slightly different from a geometrical point of view [ibid,
8]. Al-Battani describes a simple method for finding the direction of Mecca
[1899, III, 206]. Al-Birani [ibid., 199] says that al-Battani’s method for
finding the direction of Mecca is erroneous, because he “treated the
meridian circles as parallel straight lines, and the parallels of latitudes as
parallel straight lines.” At the end of this chapter, Kiishyar calculates the
deviation for the locality of Rayy as 27; 36°. I have recalculated this value
according to Kushyar’s method and coordinates, and found it to be 27; 8,
20, 20°. The difference may be due to rounding errors. However, the real
value of the deviation may be calculated as 38; 40, 58°. In this calculation
modern values are used: Mecca (long. 39.83°, lat. 21.41°), Rayy (long.
51.44°, lat. 35.60°. As we see, Kushyar’s obvious error is due to inaccurate
coordinates of the localities, especially to incorrect longitudes (based on his
data AA is 8° whereas the correct value is 11.60°). Since in this calculation
only AA is involved, the fact that I take the longitudes with respect to
Greenwich and Kishyar takes them with respect to the Canary Islands is
irrelevant.

1.8.9 Kiishyar describes 16 bright stars which occur in the 12 zodiacal
signs. In table I1.55, he provides the coordinates and characteristics of 48
stars including 16 stars occurring in the zodiacal signs, not exactly the same
as those described in 1.8.9. This table is for the year 301 of the Yazdigird
era (932-33 A.D.). For other years, the positions of the stars are found by
applying “the equation of the apogees”, by which Kishyar means the
precession of the equinoxes that, according to him, is 54 seconds per year
(see 1.4.4 and its commentary). For each year, an arc of 54 seconds is
subtracted from the ecliptical longitude of any star.

1.8.10 In this chapter Kiishyar mentions the names of the 28 lunar mansions
and the days on which they rise just before the sun, for the year 1320 of the
Seleucid (Two-Horned, Alexander) era, corresponding to the year 399/400
A.H (1008-09 A.D.). This may be the reason why Prof. Kennedy believes
that Kiishyar wrote this zj around 1010 A.D. The same lunar mansions are
mentioned by al-Battani [1899, III, 188-89] where the last mansion is
missing. The idea of dividing the zodiac into 28 (or 27) parts comes from
ancient Indian astronomy, and the names already existed in Arabic although
they were used for unequal lunar mansions. Final remarks by the scribes
indicate the date of copying of the final part of the manuscript of Book L.
The ms. F bears Mahmiid b. Ahmad al-Hussain’s date, 545 A.H.,, and C
bears the date 1169 A.H.
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In the name of God, the Merciful, the Compassionate

Book IV of the Jami‘ Zjj

Kiya Abii’l-Hasan Kushyar b. Labban b. Bashahri al-JilT —may God
illuminate his tomb! — says: When I got through with the third Book on
astronomy, | started this fourth Book on proofs, following the order of the
chapters of the first Book.

Geometrical demonstration is a reasoning that does not allow any
excess or deficiency in <its> exactness, and all those who understand it,
equally know what has been proved and leamn it by this proof. This is the
last Book of this treatise, and when finishing it, 1 begged God for
infallibility, ability, success and guidance, <for> he is really a bestower
of these.

List of the chapters <of Book IV> containing 8 sections and 70
chapters

Section 1: On Chords and Sines, <in> 11 chapters

1. On the description of the Chord and Sine.

2. On finding the quantity of the Chord of the complement of an arc when
the Chord of the arc is known.

3. On finding the quantity of the Chord of a quarter <of a circle>.

4. On finding the quantity of the Chord of a third <of a circle>.

5. On finding the quantity of the Chord of one-tenth and one-fifth <of a
circle>.

6. On a premise for what follows.

7. On finding the quantity of the Chord of the difference between two
arcs whose Chords are known.

8. On finding the quantity of the Chord of half an arc whose Chord is
known.

9. On finding the quantity of the Chord of the sum of two arcs whose
Chords are known.

10. On a premise for what follows.

11. On measuring the Chord of 1° very accurately and the composition of
the <table of the> Chords.

Section 2: On Tangents and Cotangents, <in> 3 chapters
1. On the description of Tangents and Cotangents.

2. On finding <the quantity> of the (i.e., any) Tangent.

3. On finding <the quantity> of the (i.e., any) Cotangent.
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Section 3: On premises on which the proofs are based, <in> 7 chapters
1. On a general premise for most proofs.

2. On another premise which derives from the first one.

3. Notice on the properties of the proportional magnitudes.

4. On another premise which also derives from the first one.

5. On a premise concerning Tangent<s>, which is a substitute for the
first premise in most proofs.

. Notice on the properties of the Tangent<s>.

7. Another notice also on the properties of the Tangent<s>.

™

Section 4: On <finding> the true longitudes of the planets and their
positions, <in> 10 chapters

1. On the equation of time.

2. On the equation of the sun.

3. On the first equation for the moon.

4. On the second equation for the moon and the planets.

5. On the difference between the <apparent> radius of the epicycle
between its maximum and minimum distance <from the earth>.

6. On the first equation for Mercury.

7. On the first equation for the other planets.

8. On the latitude of the moon.

9. On the latitudes of the planets

10.0n the retrogradation of the planets.

Section 5: On the operations relating to the ascendants of the day and
night, <in> 16 chapters

. On the first declination.

. On rising times of the <zodiacal> signs on the equator.

. On the second declination.

. On the distance of the stars from the celestial equator.

. On the latitude of the <given> locality.

. On the ortive amplitude of the sun and the stars.

. On the equation of the daylight of the sun and the star<s>.

. On the rising times <of the signs> in any locality.

. On the maximum altitude of the sun and the star<s>.

10. On half the day arc of the sun and the star<s>.

11. On the <echliptical> degree of the transit of a star through the
meridian.

12. On the <ecliptical> degree of the rising and setting of a star.

13. On <finding> the arc of revolution <of the celestial equator> since the
rising of the sun and the star<s> from the altitude of the <sun or the
planet at a given> time.

NelieBEN Re SR/ I LRV

114




14. On <finding> the ascendant from the arc of revolution <of e.g., the
sun> and <finding> the arc of revolution from the ascendant.

15. On the proof of <using> a base generally applicable to the arc of
revolution and what relates to it.

16. On the equalization of the houses.

Section 6: On eclipses and what pertains to them, <in> 14 chapters

1. On the absolute and adjusted magnitudes of a lunar eclipse in digits.

2. On the absolute times of a lunar eclipse.

3. On the correction of times.

4. On drawing the figure of a lunar eclipse.

5. On the distance of the moon from the earth.

6. On the altitude of the pole of the ecliptic.

7 On the altitude of any desired degree of the ecliptic.

8. On the parallax of the two luminaries in the altitude circle.

9. On the six angles needed in <the calculation of> solar eclipses.

10. On <finding> the longitudinal and latitudinal parallax of the moon
from these angles.

11. On drawing the figure of a solar eclipse.

12. On <finding> the altitude of the moon according to its latitude.

13. On <finding> the longitudinal and latitudinal parallax of the moon by
a proven method.

14. On the visibility arc<s>.

Section 7: On what pertains to astrology, in one chapter
1. On <finding> the projection of the ray taking the latitude of the planet
into account.

Section 8: On the operations which are less needed, <in> 8 chapters

1. On <finding> the latitude of a locality from the hours (ie., the
duration) of <its> longest and shortest days.

2. On <finding> the altitude without (i.e., with zero) azimuth.

3. On <finding> the azimuth of <a point of given declination and> any
assumed altitude.

4. On <finding> the altitude from the azimuth <and the declination>.

5. On the distance between two stars, one of which has a <non-zero>
latitude.

6. On the distance between two stars <both> having <non-zero> latitudes.

7. On the extraction of the meridian line.

8. On the deviation of <the directions of> the <other> localities from the
meridian of our locality.
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These chapters are sufficient to prove the <contents of> first Book,
because what may be beyond this, can be proved for someone who has
advanced in astronomy and geometry with a little effort and easy
thinking. God grants success and help.
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Section 1: On Chords and Sines, <in> eleven chapters
Chapter 1: On the description of the Chord and Sine.

ABG is a circle with £ as its center, and A its diameter. We draw £ at
right angles <to the diameter>. We take the arc A2 and we draw the line
<segment> AZ We draw ZD perpendicular to AG and ZH perpendicular
to £B. We draw the line <segment> ZG Then the line <segment> AZ is
the Chord of the arc AZ and <the line segment> ZG is the Chord of its
complement. ZD is the Sine of the arc AZ, and ZH is its Cosine and equal
to the line <segment> DE. AD is the Sagitta of the arc AZ and BH is the
Sagitta of the arc ZB. The arc ZB is the complement of the arc AZto a
quarter of the circle and the arc ZBG is the supplement of the arc AZto a
semicircle. This is what we wanted to describe.

B
@ A
Chapter 2: On finding the quantity of the Chord of the supplement of an
arc when the Chord of the arc is known.

Q@

Let ABG be a circle and AG its diameter. We cut off the arc A8 from 1t
(i.e., from the circle) and we draw the line <segment>s AB <and> BG.
We assume the Chord AB <to be> known; then I say that the Chord BG

is <also> known.
| '/ B
6 ,

Proof: The angle ABG is a right angle because it is <subtended> in a
semicircle. Then the square of AG is equal to <the sum of> the squares of
AB <and> BG. If we subtract the square of AB from the square of AG,
the remainder <which is> the square of BG <will be> known. Its square
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root which is the Chord BG'is <also> known. That is what we wanted to
demonstrate. Now it has become clear that the ratio of any Chord to the
diameter of the circle is equal to the ratio of the Sine of half the arc of the
Chord to the radius of the circle. <For showing> this <we notice that> if
we bisect the Chord AB at D and we draw DE, <where> E'is the center of
the circle, <then> DFE will be parallel to BG and AD will be the Sine of
half the arc AB. Then the ratio of BAto AG'is equal to that of DA to AE.
So all calculations that are made on <the basis of> the Chord and the
diameter can be carried over to the Sine of half the arc of the Chord and
the radius. This is what we wanted to demonstrate.

Chapter 3: On finding the quantity of the Chord of a quarter <of a circle>.

Let ABG be a circle centered at £, and AG its diameter. We draw £B at
right angles <to the diameter> and we draw <the line segments> AB
<and> BG Then each of the arcs AB <and> BGis a quarter of the circle
and each of the line <segment>s AB <and> BG is the Chord of a quarter
<of the circle>. | say that they are known. B

Proof® Angle AEB is right, so the square of AB is equal to the <sum of
the> squares of AF <and> EB. Each of <the line segments> AL and £B
is <equal to> the radius. Then the sum of their squares is known and
<thence> its square root is known. Therefore, the Chord AB is known.
That is what we wanted to demonstrate. Now it has become clear that the
square of the Chord of a quarter <of a circle> is equal to twice the square
of the radius, and that the square of the diameter is equal to four times the
square of the radius. <This is> because the square of AG is equal to the
<sum of the> squares of AB <and> BG, and each of the squares of AB
<and> BG is equal to twice the square of AE. So the square of AG <is
equal to> four times the square of AF. This is what we wanted to
demonstrate.
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Chapter 4: On finding the quantity of the Chord of a third <of a circle>.

Let 4BG be a circle and AG its diameter. We draw BG equal to the radius
of the circle; it is <the Chord of> a sixth <of the circle>. We draw AB. 1
say that the Chord of a third <of a circle> is known.

B

Proof: Angle 4BG is right because it is <subtended> in a semicircle.
Then the square of AG is equal to <the sum of> the squares of 4B <and>
BG. The square of AG is known, and the square of BG, which is the
Chord of a sixth <of a circle>, is known. So the square of AR
remaining from the square of AG is known. So its square root is <also>
known. It is the Chord AB. So the Chord 4B is known. That is what we
wanted to demonstrate. Now it has become clear that the square of the
Chord of a third <of a circle> is <equal to> three times the square of the
radius <of the circle>. The Chord BG is equal to the radius <of the
circle>. If we subtract the square of BG from the square of AG, three
times the square of the radius <of the circle> is the remainder of 4G. It is
the square of the Chord AB. This is what we wanted to describe.

Chapter 5: On finding the quantity of the Chord of one-tenth and one-fifth
<of a circle>.

Let ABG be a semicircle centered at E, and AG its diameter. EB is
perpendicular to AG. We bisect AE at D and we draw BD. We make D7
equal to BD.Isay that £Z is equal to the Chord of one-tenth of the circle
and BZ is equal to the Chord of one-fifth of it.

B
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Proof: AFE'is bisected at Dand EZis added to it. So the product of AZ by
ZE plus the square of DE'is equal to the square of D.Z (by Elements I1.5).
But DZis equal to DB, and the square of DB is equal to <the sum of> the
squares of DE<and> EB. So the product of AZby ZF plus the square of
DE is equal to the <sum of the> squares of DE and EB. We subtract the
common square of DE. Then the remaining product of AZby ZFE is equal
to the square of EB. But EB is equal to EA. So AZis divided in mean and
extreme ratio <at £>, and the greater portion is AE. But AF is the Chord
of one-sixth <of the circle>. So (by Elements X111.9) EZis the Chord of
one-tenth <of the circle>. Since the <sum of the> squares of BE <and>
EZ is equal to the square of BZ, BEis the Chord of one-sixth <of the
circle>, and EZ is the Chord of one-tenth <of the circle>, therefore (by
Elements X111.10) BZ is the Chord of one-fifth <of the circle>. This is
what we wanted to demonstrate.

Chapter 6: On a premise for what follows.

<In> any quadrilateral inscribed in a circle, if we multiply each side by its
opposite side, the sum of the products will be equal to the product of the
two diagonals. Let ABG be a circle and the quadrilateral AGBD is
<inscribed> in it. I say that the product of ABby GD and <the product

of> ADby GBwhen added <together> are equal to the product of AG by

BD.
G

A

Proof: We make the angle DGE equal to the angle BGA. Since the angle
DGE is equal to the angle BGA and the angle AGE is common, the angle
DGA will be equal to the angle BGE. But the angle GAD is equal to the
angle GBD, because they are <subtended> in the arc GD. So the
remaining angle ADG is equal to the angle BEG Therefore the ratio of
GB to BEis equal to the ratio of GA to AD. So the product of GB by AD
is equal to the product of GA by BE. Again, the angle DGE is equal to the
angle BGA, and the angle GDB is equal to the angle GAB, because they
are <subtended> in the arc BG So the remaining angle GED is equal to
the angle ABG. Therefore the ratio of GDto DEis equal to the ratio of
GA to AB. Then the product of GDby AB s equal to the product of GA
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by DE. But it has been shown that the product of GB by ADis equal to
the product of GA by BE. So the product of AGby BDis equal to the
product of GBby AD and <the product of> GD by AB <added together>.
This is what we wanted to demonstrate.

Chapter 7: On finding the quantity of the Chord of the difference between
two arcs whose Chords are known.

Let ABG be a semicircle with <a known line segment> AD as its
diameter. The Chords AB<and> AGin it (i.e., in the circle) are known.
We draw BG. Then I say that BG is known.

Proof: We draw BD<and> GD. Then they are both known, because they
are the Chords of the supplements of AB <and> AG <to a semicircle>. So
according to what was demonstrated in the premise, the product of AGby
BD is equal to the sum of the product of ABby GD and <that of> AD by
GB. But the product of AG by BD is known, and the diameter AD is
known. So the Chord BG is known. This is what we wanted to
demonstrate.

Chapter 8: On finding the quantity of the Chord of half an arc of whose
Chord is known.

Let ABGD be a circle and AD is its diameter. We assume the Chord AG
<to be> known. We bisect the arc AG at B, We draw AB <and> BG.
Then I say that AB is known.

Proof: We draw GD and we make DZequal to GD. We draw BD <and>
BZ, and we draw BF perpendicular to AZ Then GDis equal to D7 and
DB is common. Thus, GD <and> DB are equal to ZD <and> DB
<respectively>, and the angle ZDB is equal to the angle BDG because
they are <subtended> in two equal arcs. So the base BG is equal to the
base BZ But AB is equalto BG. So ABis equal to BZ. So the triangle
ABZ
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is isosceles. The perpendicular BE is drawn from <the vertex of> the
angle ABZ, so AFis equal to EZ. Since the triangle ABD is right-angled
and the perpendicular BE is drawn from its right angle, the triangles ABD
<and> ABE are similar. So the ratio of DA to AB is equal to the ratio of
BA to AE. So the product of DA by AEis equal to the square of AB.
Each of DA <and> AF are known, so the square of AB is known. So, its
square root, i.e. the Chord AB, is known. This is what we wanted to
demonstrate.

Chapter 9: On finding the quantity of the Chord of the sum of two arcs
whose Chords are known.

Let ABG be a circle with £ as its center. We assume the two known

Chords AB <and> BGin it. We draw AG Then I say that AG is known.
B

Proof: We draw the diameter BD from B, and draw AD <and> DG. Then
AD 1s the Chord of the supplement of AB <to a semicircle> and GD is
the Chord of the supplement of BG <to a semicircle>, and <hence> they
are known. So the product of ABby GD and <the product of> BG by AD
<added together> is equal to the product of BDby AG. But each of AB,
GD, BG, <and> AD is known and the diameter BD is known. Then the
Chord AG is known. This is what we wanted to demonstrate.

Chapter 10: On a premise for what follows.

If there are two unequal chords in a circle, then the ratio of the greater
chord to the smaller chord is less than the ratio of the arc of the greater
chord to the arc of the smaller chord. Let ABGD be the circle
circumscribing them (i.e., the chords). <Inscribed> in it are the chords
AB <and> BG, and BG'is the greater <chord> of the two. I say that the

122




ratio of the chord BG'to the chord BA is less than the ratio of the arc BG
to the arc BA.

Proof: We bisect the angle ABG by the line <segment> BD. We draw the
<line segments> AG, AD, and GD. Since the angle ABG is bisected by
the line <segment> BD, the line <segment> GD is equal to the line

<segment> AD. But the line <segmené>

GE 1s longer than the line <se§ment> EA. We draw from Dto the line
<segment> AG the perpendicular DZ Since ADis longer than ED, and
ED is longer than DZ the circle drawn with the center D and radius DE
intersects AD and goes beyond DZ. We draw <an arc such> as HET and
we extend DZto T. Since the sector DET is greater than the triangle DEZ
and the triangle DEA is greater than the sector DEH, the ratio of the
sector DETto the sector DEH is greater than the ratio of the triangle DEZ
to the triangle DEA. The ratio of the triangle DEZ to the triangle DEA is
equal to the ratio of the line <segment> £Zto EA. The ratio of the sector
DET to the sector DEH is equal to the ratio of the angle ZDFE to the angle
EDA. Then the ratio of the line <segment> ZF to the line <segment> EA
is less than the ratio of the angle ZDEto the angle ADE. Componendo,
the ratio of the line <segment> ZA to the line <segment> £A is less than
the ratio of the angle ZDA to the angle ADE. The ratio of halves is equal
to the ratio of <their>doubles. So, the ratio of the double of AZ, which is
GA, to AE, is less than the ratio of the double of the angle ZDA, which is
the angle GDA, to the angle ADFE. Separando, the ratio of the line
<segment> GE to EA is less than the ratio of the angle GDE to the angle
EDA. The ratio of GE'to FA is equal to the ratio of the chord GB to the
chord BA, and the ratio of the angle GDB to the angle BDA is equal to
the ratio of the arc GBto the arc BA. So, the ratio of the chord GB to the
chord BA is less than the ratio of the arc GB to the arc BA. This is what
we wanted to demonstrate.

Chapter 11: On measuring the Chord of 1° very accurately and the
composition of the <table of the> Chords.

It was shown in Chapter 7 how to find the Chord of the difference
between a sixth and a fifth of a circle, which is <equal to> the Chord of
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12°. From Chapter 8, <we can find> the Chord of its half and half of its
half, up to the Chord of one and half degrees, and the Chord of a half plus
a quarter of a degree. After this <introduction>, we draw a circle <with
the points> A, B, <and> Gon it. First, we take the line <segment> AB as
the Chord from the circle of the arc of a half plus a quarter of a degree,
and AG as the Chord of 1°. Then the ratio of the Chord of AGto the
Chord of AB is less than the ratio of the arc AGto the arc AB. The arc
AG is equal to the arc ABplus one-third of it. So the Chord AG is less
than the Chord AB plus one-third of it. The Chord AB plus one-third of it
<is> 0; 1, 2, 49, 52. Again we take in this circle the line <segment> AB
as the Chord of 1° and the line <segment> AG as the Chord of one and a
half degree. Then the arc AGis equal to the arc AB plus half of it. So the
Chord AG is less than the Chord AB plus half of it. So the Chord AB is

B G

greater than two thirds of the Chord AG. Two thirds of the Chord AG
<is> 0; 1, 2, 49, 48. Since the Chord of 1°is once <found> less and
another time more than the same thing exactly, without a <noticeable>
magnitude difference, if half the difference is added to the smaller value,
the Chord of 1°is found with the closest approximation <equal to> 0; 1,
2, 49, 50. After knowing this, <I add that> in Chapter 7 <finding> the
Chord of the sum of two arcs has been explained. <Since> the Chord of
1° is known, the Chord of 2° is <also> known. Again, the Chord of 1° and
the Chord of 2° are known, so the Chord of 3° is <also> known. Again,
the Chord of 1° and the Chord of 3° are known, so the Chord of 4° is
known as well. On this basis we compose the Chords of <any number of>

degrees up to 90" and put them in the table. This is what we wanted to
demonstrate.
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Commentary

Book IV actually has 70 chapters as found in F, V, L, and M. However, F
mentions the number of the chapters to be 60, whereas L, M and V
mention it to be 66 in the contents list provided in the opening of the
Book. The number of the chapters in Y and A, which lack chapters
V.34, IV.3.6, IV.3.7, and IV.4.1, is equal to 66. Most parts of this
section are direct quotations from the A/magest The contents of [V.1 are
also found in al-Battant’s zij [1899, 111, 13-14] without any proof.

IV.1.1 This introductory chapter defines the terms Chord, Sine, Sagitta,
and complement or supplement of any arc.

IV.1.2 This method is found in Ptolemy’s Almagest1.10 [1984, 50].

IV.1.3 In Ptolemy’s A/magest1.10 [1984, 49-50], the approximate value
of the Chord of 90° is found by this method.

IV.1.4 Again, the approximate value of the Chord of 120° is found by
this method in Ptolemy’s A/magest1.10 [1984, 49-50].

IV.1.5 This proof is found in Ptolemy’s A/magest1.10 [1984, 48-49].

IV.1.6 This is usually called Ptolemy’s theorem. Kushyar presents a
proof similar to that in Ptolemy’s A/magest1.10 [1984, 50-51].

IV.1.7 Kishyar’s proofis found in Ptolemy’s A/magest1.10 [1984, 51].
IV.1.8 This proof is found in Ptolemy’s A/magest1.10 [1984, 52-53].

IV.1.9 This theorem is also proved by using Ptolemy’s theorem in
Ptolemy’s Almagest 1.10 [1984, 53]. However, Kishyar’s proof is
simpler.

[V.1.10 When speaking about [the ratios of] sectors or triangles, Kashyar
means [the ratios of] their areas. This proof is found in Ptolemy’s
Almagest1.10 [1984, 54-55].

IV.1.11 Ptolemy presented the same method in A/magest1.10 [1984, 55-
56] with a less accurate result (1; 2, 50) compared to Kashyar’s result 1;
2, 48, 50). In 1.2.1 Kashyar takes Sine 1° equal to 1; 2, 49, 38, 31. Both
Kiishyar’s values are correct to 2 sexagesimal digits. Sin 1° is
1; 2,49, 43, 11 correct to 4 sexagesimals.
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Section 2: On Tangents and Cotangents, <in> three chapters
Chapter 1: On the description of Tangents and Cotangents.

Let ABGD be the altitude circle with E as its center, and <let> D/ be the
intersection of the plane of the altitude circle and the horizon circle, and
<let> DE be the vertical gnomon perpendicular <to the horizon> at the
point D, and <let> GK be the intersection of the plane of the altitude
circle and the plane perpendicular to the horizon <plane>, and <let> GE
be the gnomon parallel to the horizon plane, perpendicular to the above
mentioned (i.e., the vertical) plane at the point G.

B

G < A

H
1 T/K. D

We assume AZ <as> the altitude arc. We draw ZET which is the ray
joining the tip of the gnomon and the endpoint of the shadow. DT is the
shadow of the gnomon DE, and it is <called> the Horizontal Shadow and
<also> the Cotangent (lit., “Second Shadow”) of the altitude AZ. GH is
the shadow of the gnomon GE, and it is <called> the Reversed Shadow
and <also> the Tangent (lit., “First Shadow™) of the altitude AZ. If we
assume BZ as the altitude <arc>, then GE will be the gnomon for the
Horizontal Shadow (Cotangent) and DE will be the gnomon for the
Reversed Shadow (Tangent). So, DT will be the Tangent of the altitude
BZ and GH will be its Cotangent. But BZ is the complement of AZ. So the
Tangent of any altitude is the Cotangent of the complement of this
altitude. The Reversed Shadow (Tangent) is called the First <Shadow>
because it begins to appear and to increase <simultaneously> with the
appearance and increase of the altitude of the sun. The Second Shadow
(Cotangent) decreases with increasing altitude. This is what we wanted to
demonstrate.

Chapter 2: On finding the quantity of the (i.e., any) Tangent.

Let ABGD be the altitude circle centered at £ and <let> AEA be its
diameter, and <let> 4B be the altitude arc. We draw EBZ, and we draw
AZ perpendicular to 4E. We also draw BG perpendicular to 4E. Then AZ
is the Tangent of the altitude 4B. | say that it is known.
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Proof: ZA4 and BG are both perpendicular to AE, so they are parallel. So
the ratio of Z4 to AE is as the ratio of BG to GE. But AF is the radius <of
the circle> and it is equal to the gnomon <which may be> assumed <as
divided> into any <number of> parts, and BG is the Sine of the arc 4B
and GE is equal to its Cosine. Therefore AZ is known. This is what we
awnted to demonstrate.

Chapter 3: On finding the quantity of the (i.e., any) Cotangent.

Let ABGD be the altitude circle centered at E, and AEA and DED its two
<perpendicular> diameters. We assume arc DB as the altitude. We draw
EBZ and we draw AZ perpendicular to AE. We also draw BG
perpendicular to AE. Then AZ is the Cotangent of the altitude DB. I say

that it is known. A z
G.
5)
D 4 b
B G
Z

Proof: Z4 and BG are both perper?dicular to AE, so, they are parallel. So
the ratio of Z4 to AE is as the ratio of BG to GE. But AE is the radius <of
the circle> and it is equal to the gnomon <which may be> assumed <as
divided> into any <number of> parts, and BG is the Cosine of the altitude
and GE is equal to the Sine of the altitude. Therefore AZ is known. This is
what we wanted to demonstrate.
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Commentary

IV.2.1 In the Islamic-period trigonometry the function 60tgé was called
Jdsw ey (al-zill al-awwal, lit. “the first shadow”), wsssedidw (al-zill al-
ma ks, lit. “the reversed shadow”), ussd Jui (a/-zill al-mankiis, lit. “the
inverted shadow”), or wwaulidid (a/-zill al-muntasab, lit. “<vertically>
erected shadow”). Similarly, the function 60cotgd was called v Jw (a/-
zill al-thani, lit. “the second shadow”), sawdidih (a/-zill al-mustawr, lit.
“the horizontal shadow™), Lsdul (al-zill al-mabsdat, lit. “the
<horizontally> extended shadow”), or . Juh (a/-zill al-basit, lit. “the
plain shadow”) [Kennedy 1956, 140; al-Birtin1 1954, 1, 332-54; al-Biriini
1985, 127-29]. Whenever the term “shadow” was used without any
adjective, it meant the First Shadow (Tangent) [al-Birani 1985, 129]. In
this work, I always translate “the first shadow, meaning 60tgé, as the
Tangent, and “the second shadow”, meaning 60cotgé, as the Cotangent.

I do not know why Kishyar uses the expression “horizon circle” and
not merely “horizon”, while al-BiriinT [1985, 127] uses the correct
expression “horizon plane”. Ptolemy [1984, 80-82] discusses the noon
shadows at equinoxes and solstices, but he does not mention “Shadows”
as trigonometric functions. Al-Battani [1899, III, 31-33] discusses the
horizontal and vertical shadows in their proper meaning and describes
their calculation in terms of the Chords and vice versa. In the
commentary to this and the following section, I always refer to al-
Birant’s Maqalid ilm al-hay’'a (“The keys to astronomy”) [al-Biriini
1985], because this was a standard work on spherical trigonometry, and
the first independent treatise on the subject, whose author was a
contemporary of Kishyar and was aware of Kiishyar’s work [al-Biriini
1985, 101, 103, 143, 145].

IV.2.2 A similar method using a different figure is provided by al-Biriini
[1985, 129].

IV.2.3 A similar method using a different figure is provided by al-Birtini
[1985, 127].
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Section 3: On premises on which the proofs are based, <in> 7 chapters
Chapter 1: On a general premise for most proofs.

<In> any triangle consisting of arcs of great circles on the sphere, in
which one angle is right and another angle is assumed, the ratio of the
Sine of the side subtending the right angle to the Sine of the side
subtending the given angle, is equal to the ratio of the greatest Sine to the
Sine of the assumed angle. Let the triangle be ABG, and its right angle be
G, and the assumed <angle> be BAG. | say that the ratio of the arc 4B to
the Sine of the arc BG is equal to the ratio of the greatest Sine to the Sine
of the angle BAG.

Proof: The center of the sphere is E. We draw 4AE. We complete each of
the arcs AB and AG to quadrants, AH and A7. We take A as the pole and
we draw the arc HT with radius equal to the side of an <inscribed>
square. Then angle HTG is right. We draw GE and TE both equal to the
radius of the circle AGT. Then they are in the plane of that circle. We
draw BD perpendicular to GE, and HI perpendicular to 7E. Then they are
perpendicular to the plane of the circle AGT. We draw BZ perpendicular
to AE and similarly, HE perpendicular to it. Then they are in the plane of
the circle ABH. We draw DZ. Then BZ is the Sine of the arc 4B, BD is the
Sine of the arc BG, HE is the greatest Sine, and H/ is the Sine of the arc
HT, and it is <also> the Sine of the angle BAG. Since BD and HI are
perpendicular to the plane of the circle AGT, all lines drawn <in the plane
of circle AGT> from <any of> the two points D and / make a right angle
with the perpendicular. So, the angles D and / are right. Thus, BZ and HE
are parallel, BD and HI are parallel; then, ZB and BD are parallel to EH
and HI<, respectively>. So, the angle ZBD is equal to the angle EHI. The
angles D and / are right, then the angles Z and E of the two triangles are
equal. So the two triangles ZBD and EH] are similar, so the ratio of ZB to
BD is equal to the ratio of EH to HI. It has previously been said that ZB is
the Sine of the arc AB, BD is the Sine of the arc BG, EH is the greatest
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Sine, and HI is the Sine of the angle HAT. Therefore, the ratio of the Sine
of the arc 4B to the Sine of the arc BG is equal to the ratio of the greatest
Sine to the Sine of the angle HAT. This is what we wanted to
demonstrate.

Now it has become clear that in any two triangles in the sphere with two
<correspondingly> equal angles, and two right angles, the ratio of the
Sine of the side subtending the right angle in one triangle to the Sine of
the side subtending the <other> equal angle is equal to the ratio of the
Sine of the side subtending the right angle in the other triangle to the Sine
of the side subtending the angle corresponding to the first one.

<Proof:> On the basis of this rule (i.e., the general premise), if the angle
L in the triangle AKL is right, we may mount the arc AL on the arc 4G as
the arc AKX may be mounted on the arc AB, because the angles 4 <in the
two triangles> are equal, and the ratio of the Sine of the arc AK to the
Sine of the arc LK will be equal to the ratio of the Sine of the arc AH to
the Sine of the arc HT. Similarly, if the angle X is right, and we mount the
arc AK on the arc AG, as the arc AL may be mounted on the arc 4B, then
the ratios are those ratios <which we just described>.

Chapter 2: On another premise which derives from the first one.

<In> any ftriangle consisting of arcs of great circles on the sphere, in
which one angle is right, the ratio of the Cosine of one of the two sides
encompassing the right angle to the Cosine of the hypotenuse of the right
angle is equal to the ratio of the greatest Sine to the Cosine of the third
side. Let the angle B in the triangle ABG be right; then I say that the ratio
of the Cosine of BG to the Cosine of GA is equal to the ratio of the
greatest Sine to the Cosine of 45.

D

z A
Proof: We take A4 as the pole and we draw the circle DHZ with distance
equal to side of an <inscribed> square. We complete the quadrants DEZ,
AGE, ABD, and BGZ, then the angle F in the triangle ZGE is right. So,
according to what was demonstrated in the first premise, the ratio of the
Sine of ZG to the Sine of GE is equal to the ratio of the greatest Sine to
the Sine of the angle Z. But ZG is the complement of BG, GE is the
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complement of 4G, and BD is the arc of the angle Z, and it is the
complement of AB. Thus the ratio of the Cosine of BG to the Cosine of
AG is equal to the ratio of the greatest Sine to the Cosine of AB. This is
what we wanted to demonstrate.

Chapter 3: Notice on the properties of the proportional magnitudes.

If there are four proportional magnitudes, and <also> four others making
another ratio, so that the ratios are not in continued proportion, and the
two means of the first <proportion> are equal to the two means of the
other <respectively> (First example), then by composition <of ratios>,
the ratio of the <first> antecedent to the <second> antecedent is equal to
the ratio of the <first> consequent to the <second> consequent, in inverse
order. Also, the ratio of the <first> antecedent to the <second>
consequent is equal to the ratio of the <second> antecedent to the <first>
consequent, in inverse order. If the two antecedents of the first
<proportion> are equal to the two antecedents of the second (Second
example), <respectively,> then the ratio of the <first> consequent to the
<second> consequent of the first <proportion> is equal to the ratio of the
<first> consequent to the <second> consequent of the other <proportion>.
If the two consequents of the first <proportion> are equal to the two
consequents of the other <proportion> (Third example), then the ratio the
<first> antecedent to the <second> antecedent of the first <proportion> is
equal to the ratio of the <first> antecedent to the <second> antecedent of
the other <proportion>. This is what we wanted to mention.

First  example

A B G D
2 4 3 6
E W Z H
1 4 3 12
Second example
A B G D
2 4 3 6
E W Z H
2 8 3 12
Third example
A B G D
2 4 3 6
E W Z H
1 4 1;30 6

131



Proof: <In the first example,> the ratio of A to B is equal to the ratio of
G to D, the ratio of E to W is equal to the ratio of Z to H, and B is equal
to W and G is equal to Z. <So> the product of B by G is equal to the
product of A by D, and the product of W by Z is equal to the product of
E by H. We cast out the equal <product of the means>. It follows that the
product of A by D is equal to the product of E by H. Thus the ratio of A
to H is equal to the ratio of E to D.

<In> the second example, the product of B by G is equal to the product of
A by D, and the product of W by Z is equal to the product of E by H. But
A is equal to E and G is equal to Z. Thus the product of B by Z is equal
to the product of E by D and the product of G by W is equal to the
product of A by H. We cast out the equal <product of the means>. It
follows that the product of B by H is equal to the product of W by D.
Thus the ratio of B to W is equal to the ratio of D to H.

<In the> third example, the product of B by G is equal to the product of
A by D, and the product of W by Z is equal to the product of E by H.
<Now,> B is equal to W, and D is equal to H. Then the product of B by Z
is equal to the product of E by D, and the product of G by W is equal to
the product of A by H. We cast out the equals. There remains that the
product of A by Z is equal to the product of E by G. Then the ratio of A
to E is equal to the ratio of G to Z. That is what we wanted to
demonstrate.

What <we proved> in this notice on proportions <may be> summarized
<as follows:> If the second <term>s are equal and the third <term>s are
equal, the ratio of the first <term of the first proportion> to the first <term
of the second proportion> will be equal to the ratio of the fourth <term>
to the fourth <term>, in inverse order. If the first <term>s are equal and
the third <term>s are equal, the ratio of the second <term of the first
proportion> to the second <term of the second proportion> will be equal
to the ratio of the fourth <term> to the fourth <term>, in the same order.
If the second <term>s are equal and the fourth <term>s are equal, the
ratio of the first <term> to the first <term> is equal to the ratio of the third
<term> to the third <term>, in the same order, and the ratio of the first
<term> to the third <term of the first proportion> is equal to the ratio of
the first <term> to the third <term of the second proportion, in the same
order>.

Chapter 4: On another premise which also derives from the first one.
<In> any triangle consisting of arcs of great circles, the ratio of the Sine

of an angle of it to the Sine of another angle <of it> is equal to the Sine of
the side subtending the first angle to the Sine of the side subtending the
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other angle. <Let> the triangle 4BG have different sides and angles; then
[ say that the ratio of the Sine of the angle B to the Sine of the angle G is
equal to the Sine of the arc AG to the Sine of the arc 4B.

Proof: We take B as the pole and we draw <the circular arc> DTE with a
distance equal to side of an <inscribed> square. We take G as the pole
and we draw ZHE <similarly>. We complete each of <the arcs> BGZ,
BAT, and GAH, and we draw EAI. Since B is the pole of 7D, BT and BD
are quadrants. Since £ is the pole of BDZ, EZ, ED, and E] are quadrants.
Since G is the pole of ZHE, each of <the arcs> GE, GZ are quadrants.
Then, in the triangle BA/ the angle / is right. So, the ratio of the Sine of
BA to the Sine of A/ is equal to the ratio of the greatest Sine, which is the
Sine of BT, to the Sine of 7D. Also the angle / in the triangle GAI is right.
So the ratio of the Sine of GA to the Sine of A/ is equal to the ratio of the
greatest Sine, which is the Sine of GH, to the Sine of HZ. Since the means
of the first <proportional> magnitudes, i.¢., <the Sines of> A/ and BT, are
equal to the means of the other <proportional> magnitudes, i.e., <the
Sines of> 47 and GH, therefore the ratio of the Sine of BA, which is the
side subtending the angle G, to the Sine of AG, which is the side
subtending the angle B, is equal to the ratio of the Sine of AZ, which is
equal to the Sine of the angle G, to <the Sine of> 7D, which is the Sine of
the angle B. Thus the ratio of the Sine of an angle to the Sine of
<another> angle <in any triangle> is equal to the Sine of the side
subtending the <first> angle to the Sine of the side subtending the
<other> angle. This is what we wanted to demonstrate.

Chapter 5: On a premise concerning the Tangent<s>, which is a substitute
for the first premise in most proofs.

<In> any triangle consisting of arcs of great circles, in which an angle is
right and another angle is assumed, the ratio of the Sine of the side
between the right angle and the assumed angle to the Tangent of the side
subtending the assumed angle is equal to the ratio of the greatest Sine to
the Tangent of the assumed angle. Let ABG be the triangle where angle B
is right and BAG is the assumed angle. Then I say that the ratio of the
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Sine of the arc 4B to the Tangent of the arc BG is equal to the ratio of the
greatest Sine to the Tangent of the angle BAG.

L D
2 Cx—8
T3\,
£ H

Proof: With £ as the center of the sphere, we draw 4£ and we complete
each one of <the arcs> 4B and AG into the quadrants AH and A7. We
draw HE and BZ perpendicular to AE. We take A as the pole and we draw
the arc HT with a distance equal to the side of an <inscribed> square. We
draw EG and £7, the radii of the circle AGT, and we extend them to D
and /. We draw EB, a radius of the circle ABH. We draw BD and HI
perpendicular to the diameters <containing> £B and £H at B and H. We
draw DZ. Then BZ is in the plane of ABH, so it is the Sine of the arc A4B.
HE is also in that plane, and it is the greatest Sine. ZB and HE make right
angles with the perpendiculars BD and HI, <respectively>. So the two
planes BZD and HET are parallel (see commentary). BD is perpendicular
to the diameter <containing> EB, and therefore, perpendicular to the
plane ABH. Then all lines drawn in the plane ABH make right angles with
the perpendicular BD. So the angle DBZ is right and the two angles HE/
and BZD are equal. Then the two triangles HEI and ZBD are similar. So
the ratio of ZB to BD is equal to the ratio of EH to HI. But ZB is the Sine
of the arc 4B, BD is the Tangent of the arc BG, EH is the greatest Sine,
and HI is the Tangent of the angle HAT. So the ratio of the Sine of the arc
AB to the Tangent of the arc BG is equal to the ratio of the greatest Sine
to the Tangent of the angle BAG. This is what we wanted to demonstrate.

Now it has become clear that in any two triangles in a sphere having two
<respectively> equal angles and two right angles, the ratio of the Sine of
the side between the right angle and the <other> equal angle to the
Tangent of the other one of the two sides containing <the right angle> is
equal to the ratio of the Sine of the corresponding <side> to the Tangent
of the <other> corresponding side in the other triangle. This rule is valid,
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because in the triangle ALK, the proof is equal to the ratio of the first
premise, whether the angle K or the angle L is right.

The spherical right triangles will be known by these premises in <the
following> three cases.

First <case>. An angle with one of the sides, either the side subtending
the right angle or the side subtending the known angle, <are given.
Solution:> The ratio of the Sine of the side subtending the right angle to
the Sine of the side subtending the known angle is equal to the ratio of the
greatest Sine to the Sine of the known angle.

Second <case>: Any two of its sides <are given. Solution:> The ratio of
the Cosine of one of the sides containing the right angle to the Cosine of
the side subtending the right angle is equal to the ratio of the greatest Sine
to the Cosine of the third side; the ratio of the Sine of the side subtending
the right angle to the Sine of the other <known> side is equal to the ratio
of the greatest Sine to the Sine of the angle <opposite to> the other
known side.

Third <case>: An angle with a side adjacent to it, namely one of the two
sides containing the right angle, <are given. Solution:> The ratio of the
Sine of this side to the Shadow of the other side containing the right angle
is equal to the greatest Sine to the Shadow of the known angle.

Chapter 6: Notice on the properties of the Tangent<s>.

<Given> any two different arcs, their Tangent is the inverse of their
Cotangent. Let A and B be the Tangents of two different arcs, G and D be
their Cotangents, and E be the gnomon. For the arc whose Tangent is A,
let its Cotangent be G, and for the arc whose Tangent is B, let its
Cotangent be D; then I say that the ratio of A to B is equal to the ratio of
D to G.

A

Proof: The ratio of A to E is equal to the ratio of E to G, and the ratio of
B to E is equal to the ratio of E to D. Then the product of A by G is equal
to the product of B by D. So, the ratio of A to B is equal to the ratio of D
to G.
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Chapter 7: Another notice also on the properties of the Tangent<s>.

Something divided by the Tangent or Cotangent of any arc is equal to the
<same> thing multiplied by its (i.e., the arc’s) Cotangent or Tangent
<, respectively>. <Example:> Let the Cotangent of a given arc be 2, its
Tangent be 0; 30, and <the length of> the gnomon be 1, that is, unity.
<If> the magnitude 6 is divided by 2, <the result> is 3, and then I say that
3 is equal to the product of 6 by 0; 30.

0530 2

Proof: 6 divided by 2, 1s 3. Then the product of 2 by 3 is 6, and the
product of 2 by 0; 30, i.c. a half is 1, because the ratio of 2 to 1 is equal to
that of 1 to 0; 30. Then the ratio of 0; 30 to 3 is equal to that of 1 to 6. The
product of 0; 30 by 6 is equal to that of 1 by 3. The product of 1 by 3 is 3,
because 1 is <the length of> the gnomon which is taken <equal to> unity.
Then the product of 0; 30 by 6 is 3. Since the Cotangent of any arc is
<equal to> the Tangent of its complement, something divided by the
Tangent of any arc is equal to the <same> thing multiplied by the
Tangent of its complement. This is what we wanted to demonstrate.
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Commentary

This chapter has already been translated into English and published with
an introduction, summary and commentary based on ms. L in [Berggren,
1987]. I have mentioned the differences of that translation with mine,
whenever they are significant. There are also some minor differences
mostly due to the differences between the two mss.

IV.3.1 This is a special case of the Sine Theorem for right spherical
triangles. Al-Birtni [1985, 101,103] notes that Kiishyar took this theorem
from Abi Mahmiid Khujandi, named it a/-Mughni (lit., “making [one]
able to dispense” [with Menelaus’ Theorem]), and abridged Khujand1’s
proof of it. Al-Birani later quotes Kiishyar’s abridged version of the proof
[op. cit, 143, 145] and adds that Kiishyar did not find the generalized
form of this theorem. However, we find a generalization of it in IV.3.4.
The second proof at the end of this chapter seems to be a later addition
which exists in F but is not found in A and Y, and has later been added to
the mss. Vand L.

IV.3.2 This is equivalent to the Cosine Theorem for right spherical
triangles. According to al-Birtini [op. cit, 151], Ab@i’l-‘Abbas al-Nayrizi
and Abu Ja‘far al-Khazin in their non-extant commentaries on Ptolemy’s
Almagest presented this theorem. Al-Biriin1 then quotes the proof
provided by them, which is more complicated than Kiishyar’s.

IV.3.3 Here Kushyar states the following theorems. If A:B=G:D and
E:W=Z:H, then:

(a) If B=W, G=Z, we have A:E=H:Z and A:-H=E:Z
(b) If A=E, G=Z, we have B:-W=D:H.
(c) If B=W, D=H, then A:E=G:Z.

Kishyar supposes that “the ratios are not in continued proportion”, i.e.,
A:BZE:W. If A:B=E:W, we would have A=E, B=W, G=Z, and D=H in all
three cases (a), (b), and (c).

In the ms. L, the part on the proofs of the three propositions which comes
before the final part, the summary of the propositions of this notice, is
transferred to Section 5 of this chapter, just before the proof of the
Tangent Theorem. Prof. Berggren who has based his English translation
of this chapter on ms. L, has restored the misplaced fragment to the end
of Chapter 3 [1987, 24, 28]. He shows that this is a piece skipped by the
scribe who, after he had noted his error, simply put it at the first available
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place. However, the proof for the third example is missing in Prof.
Berggren’s translation [op.cit., 24].

IV.3.4 This is the general case of the Sine Theorem for a general
spherical triangle. Kiishyar’s proof is similar to the proof which al-Birtini
presents for this theorem [1954, 355-56]. This chapter is missing in the
mss. Aand Y.

IV.3.5 This is the Tangent Theorem for right spherical triangles which,
according to al-Birtini, was discovered by Abt al-Wafa’ al-Biizjani.
Kishyar’s proof is similar to al-Biizjani’s as presented by al-Birini
[1985, 131]. The second part of this chapter, which discusses the solution
of right spherical triangles, was presented by al-Birini [op. cit, 169-91]
in more details: In proving that the planes BZD and HET are parallel, it
must also be noticed that the spherical angles B and H are right angles, so
the planes HEI and BEG are perpendicular to the plane of ABH.
Therefore BD and HI are both perpendicular to the plane ABH. Prof.
Berggren has translated the title of this chapter differently: “On a premise
called ‘the Shadow’ established on the basis of the first premise in many
of the proofs”. The Arabic title in L is like what we read in this edition
but written in a less clear form, and this title implies that the Tangent
Theorem may be used instead of the first premise (the Sine theorem) in
many proofs. At the end of the proof of this chapter, before mentioning
the three cases of spherical right triangles, the sentence “This rule is
valid, because ...” which involves a reference to a later addition in
Chapter 1, also seems to be a later addition to F, and is not found in other
mss. So it is not found in Berggren’s translation either.

IV.3.6 and IV.3.7 Since the Tangent and Cotangent functions are
inversely proportional by definition, these propositions are trivial. It is
quite interesting that Kishyar takes the length of the gnomon equal to
unity, as we do now.

IV.3.7 In [Berggren 1987, 27] the Arabic characters involved in this
chapter are supposed to denote magnitudes rather than their numerical
values in the Abjad numeral system, possibly due to the misleading
diagram in L, which was the only ms. accessible to Berggren. However,
the present interpretation is more consistent and leaves no ambiguity
about the content of the chapter.

138



Section 4: On <finding> the true longitudes of the planets and their
positions, <in> 10 chapters

Chapter 1: On the equation of time.

As has been said in Book III, this equation is the difference between the
mean day and the true day. The mean day is <the duration of one>
rotation of the celestial equator from the (i.e., any) meridian to the
<same> meridian, plus the arc of it (i.e., the equator) equal to the mean
daily motion of the sun. The true day is <the duration of one> rotation of
the celestial equator from the (i.e., any) meridian to the <same> meridian,
plus the part of it (the equator) which rises together with the varying
<daily> motion of the sun (i.e., the difference between the right
ascensions of the true solar longitudes at the end and the beginning of the
day). <The maximum magnitude of> (i.e., an upper bound of) this
equation is the sum of twice the difference between the <solar> ecliptical
degrees and the <corresponding> right ascensions, plus twice the
difference between the sun’s mean longitude and its <corresponding>
true longitude. That part relating to the difference of the <right>
ascension <and the true longitude> is <at most> about 5 degrees, and that
part relating to the difference of the <positions of the mean and the true>
sun <on the ecliptic> is <at most> 4 degrees, approximately. Then the
sum of the two <maximum> differences is approximately 9 <time-
>degrees, which is three-fifths of an equinoctial hour, minus a small
amount. <However,> this equation never reaches the total <amount>,
because while one of the two differences is maximum, the other is
somewhat less than its maximum, except when the apogee is in the
middle or in the last decan of Leo, because <the variation of> this
equation in one or two days is not noticeable. We may define any position
on the ecliptic as the base (i.e., the point of reference or zero point). But if
we define the middle decan of Aquarius (as the zero point of the equation
of time), the mean days will always exceed the true days, until it (i.e. the
sun) reaches the aforesaid apogee. If another <position> is defined as the
base (i.c., the zero point), the mean days sometimes exceed the true days
and sometimes are less than them. Now I say that the <amount in> hours
of the excess of the mean days over the true <days> is known.




Proof: ABGD is the horizon circle, DB the meridian, and AEG the
celestial equator with X as its pole. Let point £ be the mean longitude of
the base, which is one of the degrees in the middle decan of Aquarius,
and Z the <right> ascension of its true longitude. We draw ZK. Let point
T be another mean longitude. The <right> ascension relating to its true
longitude may be less or more than it. First we let it be more, as /. We
draw HK. In the situation which we described, the difference between the
two mean longitudes <here represented as arcs on the celestial equator> 1s
greater than the difference between the <right> ascensions of the two true
longitudes. Thus, the arc ET is greater than the arc ZH. ZT is common <to
them> so EZ is greater than TH. Therefore, the time in which the arc £7
passes the meridian is greater than the time in which the arc ZH passes
the meridian, in the amount of the excess of EZ over TH. Each one of the
arcs ET, ZH, EZ, and TH is known, so the excess of ET over ZH is
known. Each 15 degrees of the equator <corresponds to> one hour. So the
magnitude of this excess with respect to 15 degrees is known. So the
excess of the mean days over the true days is known. It is the deficit of
the true days from the mean days, if we want <to find> the mean days.
Also let the point / be a mean longitude and the point H the right
ascension of its true longitude, being less than it (i.e., the mean
longitude). Thus EJ is greater than ZH in <the amount of the sum of> the
two arcs £Z and HI. The two arcs E/ and ZH are known, so the sum of the
two arcs £Z and HI is known. The time in which the arc E/ passes the
meridian is greater than the time in which the arc ZH passes <the
meridian> in the amount of the sum of the arcs £Z and H/. But their
amount with respect to 15 degrees is known. So the excess of the mean
days over the true days is known. It is the deficit of the true days from the
mean days, if we <to find> the mean days from the true days. This is
what we wanted to demonstrate.

Chapter 2: On the equation of the sun.

<Let> ABG <be> the circle of the eccentric orb with £ as its center and
AG as its diameter, and <let> D <be> the center of the orbit representing
the ecliptic (i.e., parecliptic; D is the center of the earth). Then DE is the
eccentricity. It has been found to be <equal to> 2 parts and 4 minutes plus
half and a quarter <of a minute>, based on <taking> EA <equal to>

The bold lines are for the case
in which the anomaly exceeds 90’
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sixty parts. 4 is the position of the apogee, B is the body of the sun, and
AB the solar mean anomaly. We drop BH perpendicular to AE. It is the
Sine of the arc 4B. <We drop> DZ perpendicular to BZ. The angle ZED is
equal to the angle HEB, and the two angles Z and H are right. So the ratio
of EB to BH is equal to the ratio of ED to DZ. EB is <equal to> sixty
parts. BH and ED are known. So DZ is known, and ZE is known because
HE is the Cosine of the mean anomaly (and EB:HE=ED:ZE). So BZ is
known. The <sum of the> squares of BZ and ZD is equal to the square of
BD. So BD is known. The ratio of BD to DZ, which is known (i.e., which
has been computed) based on <taking> BE as the radius, is equal to the
ratio of sixty to DZ in the magnitude in which it (i.e., DZ) is desired (i.e.,
we want DZ for BD = 60). So DZ based on <taking> BD as the radius is
known. It is the Sine of the angle ZBD. So the angle ZBD is known, and it
is the angle of the equation. That is what we wanted to demonstrate.
Since AEB is an exterior angle of the triangle BDE, the angle AEB, which
is the value of the mean anomaly, is greater than the angle EDB, which is
the angle of the true longitude, in the amount of the angle £BD which is
the angle of the equation. If the equation is to be subtracted from the
mean anomaly or the mean longitude, <the angle of> the true longitude
(i.e., EDB) and the mean anomaly are less than 180 <degrees>. If the
mean anomaly is greater than 180 <degrees™>, <we do> the opposite (i.e.,
we add the equation to the angle of the true longitude and the mean
anomaly).

Chapter 3: On the first equation for the moon.

<Let> ABG <be> the circle of the eccentric orb (=deferent) with £ as its
center, AD as its diameter, Z as the center of the inclined orb (i.., the
lunar orbit; Z is the earth), H as the (prosneusis) point towards which the
line joining the apogee and perigee of the epicycle, i.e. M and N is
pointing, LKG as the epicycle centered at B, and L as the body of the
moon. The angle ZBH is the angle of equation. Then AZB is the angle of
double elongation. EZ and ZH are equal, each of them being <equal to>
12 parts and half based on <taking> AE <equal to> 60 parts. ET and H/
are perpendicular to BI. The angle EZT is known, and the angle 7 is right.
Then the remaining angle £ as well as the sides of the triangle EZT are
known.




EB is <equal to> 60 parts and its square is equal to the <sum of the>
squares of BT and TE. So, BT and, therefore, the whole BZ are known.
The angles of the triangle EZT are equal to those of the triangle Z/H.
Then the ratio of EZ to ZH is equal to the ratio of Z7 to Z/ and to the ratio
of ET to HI. EZ and ZH are equal. Then /Z and Z7, and ET and HI are
equal. Then the whole B/ is known and its square plus the square of /H is
equal to the square of BH. Then BH is known. If we take the point B as
the center and draw a circle with its radius equal to BH, then HI is the
Sine of the angle IBH based on <taking> BH as the radius whose value is
known (i.e., 60). Then HI is known, based on <taking> BH <equal to> 60
parts. Then the angle /BH is known (so ZBH, the angle of the first
equation, is known). The angle /BH is equal to the angle MBK; so, the arc
MK is known. KL is the adjusted anomaly based on <taking> AB, the
double elongation, less than 90 <degrees>. If the double elongation is
greater than 90 <but not greater than 180 degrees>, we find the angle of
equation in the same way. If it is greater than 180 <degrees>, the equation
is subtracted from the mean anomaly. That is what we wanted to
demonstrate.

Chapter 4: On the second equation of the moon and the planets.

<Let> ABG <be> the circle of the eccentric orb centered at £, Z the center
of the inclined orb, and HTD the epicycle centered at 4 (supposed to be
the apogee). Let T <be> the position of the moon, because the motion of
the moon is in this direction (i.e. clockwise on the epicycle). We join T4
and 7Z, and <we draw> TK perpendicular to AH. The angle 7ZH is the
angle of equation. 7K is the Sine of the adjusted mean anomaly, i.e. the
arc TH, and KA is its Cosine. Each one of them is known based on
<taking> T4 <equal to> 5 parts and a quarter. Since the ratio of AT to 7K
is equal to that of the greatest Sine to the Sine of the <adjusted> anomaly
and Z4 is <assumed equal to> 60 parts, the whole ZK is known. Then its
square plus that of K7 is equal to 7Z squared. Then 7Z is known. If we
take Z as the center and draw a circle with its radius <equal to> Z7, then
7K is the Sine of the arc of equation angle in terms of the known value.
But 7K is known based on <taking> 77 <equal to> 60 parts. It is the Sine
of the arc of the equation angle. In the same way, if we take the position
of the moon at D, then D/ is known, DL is its Sine and AL is its Cosine.
Then DL is found by the previous method based on <taking> ZD <equal
to> 60 parts. It is the Sine of DZL, the arc of the equation angle. That is
what we wanted to demonstrate.
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It is apparent from this figure that when the adjusted anomaly is less than
180 <degrees>, the arc of equation is subtracted from the mean longitude
of the moon. When the <adjusted> anomaly is greater <than 180
degrees>, it (i.., the arc of equation) is added to it (i.e., the mean
longitude of the moon). For the other planets, if the adjusted anomaly is
greater than 180 <degrees>, this equation is subtracted from the adjusted
center. If the adjusted anomaly is less <than 180 degrees>, it (i.e., the arc
of equation) is added to it (i.e., the adjusted center). This is because the
motions of their bodies in the epicycles are in the opposite direction of
that of the moon. That is what we wanted to describe.

Chapter 5: On the difference between the <apparent> radius of the
epicycle between its maximum and minimum distances <from the earth>.

<If> the center of the epicycle of the moon is supposed <to be> at the
maximum distance, and its distance from the center of the inclined orb is
<taken as> 60 parts, <then> the radius of the epicycle in terms of this
value is <equal to> 5 parts and a quarter. The maximum value of the
second equation depends on the radius of the epicycle. The apparent
value <of the equation> varies between the maximum and minimum
distances, because the angle at the center of the inclined orb and
subtended by the radius of the epicycle becomes greater when the center
of the epicycle gets nearer to the center of the inclined orb. The same
holds for the radius of the epicycles of the planets, however, <in this
case> the centers of their orbs (i.e., epicycles) are supposed to be at mean
distance when <the distance> between them and the center of the inclined
orb is <taken to be> 60 parts. Between the mean distance and the
maximum distance, the radius of their epicycles is less than the supposed
value <of the radius>. Between the mean distance and the minimum
distance, it (i.e., the radius of the epicycle) is greater than the supposed
value <of the radius>. This is because the maximum distance for each
planet is 60 <parts> plus half the eccentricity, and the minimum distance
is 60 <parts> minus half the eccentricity. The ratio of each of these two
(i.e., the minimum and the maximum) distances to the Sine of the
<maximal> second equation at the mean distance, is equal to the ratio of
60 <parts> to the Sine of the <maximal> second equation at that
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<minimum or maximum> distance. The same holds for other distances
(i.e., the Sine of the maximal value of the second equation for any
distance is inversely proportional to the distance).

Let ABGD centered at E be the circle of the inclined orb; A7M centered at
Z be the circle of the eccentric orb; 4 be the center of the epicycle at the
maximum distance; and 7 be its center at another distance. We draw EB
tangent to the circle at H and, we join AH. We draw EG tangent to the
circle at K and we join 7K and L/ both perpendicular to £G. The angle
LEG is greater than the angle 4EB, because E7 is smaller than E£A4. If we
place it on EA, TK falls outside the line EH. AH is the radius of the
epicycle at the maximum distance and its arc is AB. It subtends the angle
AEB. Then 4B is the maximum equation at maximum distance. 7K is the
radius of the epicycle at this <arbitrary> distance. The angle of equation
is LEG and its arc is LG. Then LG is the maximum equation at this
distance. The angle LEG is greater than the angle AEB. Then the arc LG
is greater than the arc 4B. The ratio of ET to 7K is equal to that of EL to
LI, because the two triangles TEK and LET are similar. £7 is known from
the figure relating to the first equation (i.e., IV.4.3). It is <the distance>
between the center of epicycle and the center of the inclined orb. The
magnitude of 7K is like AH, and EL is equal to £4. Then L/ is known. It
is the Sine of the arc LG. Then LG and its excess over 4B are known. It 1s
the total difference at this distance depending on <the length of> the line
<segment> ET. The total difference at other distances is known in this
<same> way. That is what we wanted to demonstrate.

We have written down the difference for the moon and the planets based
on this calculation. We incorporated the approximate <magnitudes> of
this equation (i.e., the difference, both for the moon and the planets) in a
single table in a manuscript, but we do not intend <to compute a table like
this here>. For the moon it (i.e., the difference) is uniformly additive
from the maximum distance to the minimum distance. But for the planets
<the difference is> diminutive from the maximum distance to the mean
distance, and additive from the mean distance to the minimum distance. It
is clear that this difference for the moon depends on the double
elongation, which corresponds to AL in the figure. For the other planets, it
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depends on the adjusted centrum. Then we look for the sixtieths, their
ratio to 60 minutes being equal to the partial second equation to the total
<second> equation. If we multiply these sixtieths by the <total>
difference for the moon, the amount of the <partial second> equation in
that position will result. Since there is no equation at the apogee of the
epicycle, no difference is necessary for it, and at maximum equation, the
total difference is necessary. That is why the difference is taken in terms
of double elongation for the moon, <but> for other planets <it is taken>
in terms of the adjusted center. The sixtieths are found from the
<corresponding values of> the mean anomaly. It has become clear for us
from this proof that the epicycle radius difference of Mars at maximum
distance is one part and a fifth less than what is written in Ptolemy’s
tables. At minimum distance, it is 2 parts and a fifth <less than Ptolemy’s
value>. This is something that we used in our calculation of the tables.
But the value in the <present> treatise is correct and this difference in the
calculations is inevitable.

Chapter 6: On the first equation for Mercury.

<Let> ABG <be> the circle of the equant orb; E its center; AG its
diameter; Z the center of the inclined orb; N the center of the small circle
carrying the center of the deferent for the center of the epicycle; and M
the center of the deferent. We imagine that M moves and describes the arc
MD <in the direction> opposite to the succession <of the zodiacal signs>
equal to the <amount of the> motion of the sun <from 4>, and the center
of the epicycle moves <simultaneously> with M in the direction <of the
zodiacal signs> until it moves from H to 7 and describes the arc AB of the
circle ABG similar to the arc DM. We take D as the center and we draw
the deferent <equal> to the equant in magnitude. It is H7K. We join £7B,
ZT, DT, DN, DE, <and we draw> DL and Z/ perpendicular to Bl. /TZ is
the angle of equation. The two angles MND and AEB are equal, because
their arcs are similar and each

of them is <equal to> the angle of the centrum. So they are known. Each
of the two arcs MD and DE are known. So, the chord DE is known in
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terms of the greatest diameter. Its ratio to it (i.e., to the greatest diameter)
is like the chord DE to the diameter EM. EM is equal to 6 parts and a
third. Then the chord DE is known. The angle DEN is half the angle
DNM. Then the angle DEN is half the angle AEB. Then the whole angle
DEB is known. The angle DLE is right. Then the angle LDE is known.
DE is known, so, the sides of the triangle LDE are known. DT is equal to
60 parts and its square is equal to the <sum of the> squares of DL and LT.
Then LT and LE are known. Then TE is known. The angle ZEI is also
known, because it is equal to the angle AEB. The angle / is right. Then the
angle IZE is known. ZE is known to be 3 parts and a sixth. Then the sides
of the triangle ZEI are known. TE is known, so, 77 is known and its
square plus the square of /Z are equal to the square of Z7. Then ZT is
known. If we take T as the center and draw a circle with its radius <equal
to> TZ, ZI is the Sine of the arc of the angle /77 in terms of the radius Z7.
Then ZI is known based on <taking> ZT <equal to> 60 parts. It is the Sine
of the angle of equation. This is what we wanted to demonstrate.

In this way, we obtain the equation for all sides of the circle. It is found
by calculation that the line <segment> 7Z is equal to 60; 30° for the
centrum being <equal to> zero; it is <equal to> 60" for the centrum being
<equal to> 66°; it is <equal to> 56; 50° for the centrum being <equal to>
90°; it is <equal to> 55; 20° for the centrum being <equal to> 120° and in
this case the line DT coincides with the line ET; it is again <equal to>
56; 50° for the centrum being <equal to> 180°. Its maximum <value
occurs> at the maximum distance. Its mean <value occurs> at the
distance <equal to> 66°. Its minimum <value occurs> at the distance
120°. <Its values> are the same at the distances 90°and 180°. Since the
angle AZT in this figure, being the angle of the centrum, is less than the
angle AET and the difference between them is <equal to> the angle /77, it
is necessary that we subtract the equation from the centrum and add <the
equation> to the mean anomaly, if the centrum is less than 180°. If the
center is greater than 180°, we should add <the equation> to the centrum
and subtract <the equation> from the mean anomaly.

Chapter 7: On the first equation for the other planets.

<Let> ABG centered at Z <be> the circle of the deferent; AG its diameter;
E the center of the equant; and H the center of the inclined orb. £Z and
ZH are equal. Each of them is <equal to> 3 parts plus a quarter and a
sixth for Saturn, 2 parts and a half and a quarter for Jupiter, 6 parts for
Mars, and one part plus 2 and half minutes for Venus <if AZ is 60 parts>.
B is the center of the epicycle. We join the line segments EB, ZB, and /B.
ZT and HI are perpendicular to BI. The angle EBH is the angle of
equation. 4EB is the <given> angle of the centrum; so the angle 7EZ is
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known. The angle 7 is right; so the angle 7ZF is known. ZE is <also>
known. So, both ET and 7Z are known. BZ is <taken equal to> 60 parts.
Its square is equal to the <sum of the> squares of Z7" and 7B. Then 7B is
known. Since the triangles /HE and 7ZF are similar and ZE is half EH,
then Z7T is half HI and £7 is half EI. Then 77 and 7B are known. So, the
whole /B is known. Its square plus the square of /H are equal to the
square of HB. Then HB is known. If we take B as the center and draw a
circle with HB as its radius, H/ is the Sine of the arc of the angle /BH
based on <taking> the magnitude of BH as the radius. Then HI is known
based on <taking> BE <equal to> 60 parts. It is the Sine of the arc of the
equation angle. That is what we wanted to demonstrate.

In this way, we obtain the equation for each side of the circle. Since the
angle EBH is the difference between the two angles AEB and AHB, the
equation is subtracted and added as explained for Mercury. If the center is
less than 180°, <the equation> is subtracted from the center and added to
the <mean> anomaly. If the center is greater than 180°, <the equation> is
added to the center and subtracted from the <mean> anomaly.

Chapter 8: On the latitude of the moon.

<Let> ABGD centered at £ <be> the circle passing through the poles of
the inclined <lunar> orb and the ecliptic; 4EG the circle of the inclined
<lunar> orb with 7 as its pole; DEB the circle of the ecliptic with / as its
pole; the point £ a lunar node; H the position (i.e., the orthogonal
projection) of the moon on the ecliptic; and K the body of the moon on
the inclined orb which is not different from its position on the epicycle,
because the plane of the epicycle is in (i.e., it coincides with) the plane of
the inclined orb. Then EH is the argument of latitude. We pass the arcs
THZ and /HK through H. HK is the latitude of the moon. Those engaged
in the art <of astronomy> take the arc HZ <for it> according to their
calculations. <However,> HZ is not the latitude of the moon. It is actually
an arc close <in magnitude> to the latitude of the moon. <Now> [ say
that HK is known.

147




Proof: As it was demonstrated in the fourth premise, <since> the angle //
in the triangle EHK is right, HEK is the total latitude angle, i.e., the arc
BG; thus the ratio of the Sine of EH to the Shadow of HK is equal to the
ratio of the greatest Sine to the Shadow of the angle HEK. EH is the
<given> argument of latitude, the angle E is the total latitude, and the
greatest Sine is known. Then the Shadow of HK is known, and so is HK.
But <we may also provide the proof> merely based on Sines: The angle Z
in the triangle EHZ is right, and the angle £ is the total latitude. As it was
demonstrated in the first premise, the ratio of the Sine of EH to the Sine
of HZ is equal to the ratio of the greatest Sine to the Sine of the angle E.
EH is the argument of latitude, the angle £ is the total latitude, and the
greatest Sine is known. Then HZ is known. We take the point K as the
center and draw the quadrant NML with its radius equal to the side of an
<inscribed> square. L is the center of the circle /HK. Then each of <the
arcs> NK and HL are quadrants. Then EL is the complement of £H. So, in
the triangle £LM, the angle M is right, and the angle £ is the total latitude
angle. Then the ratio of the Sine of EL to the Sine of LM is equal to the
ratio of the greatest Sine to the Sine of the angle £. EL is the complement
of the argument of latitude and the angle £ is known. Then LM is known.
So, its complement MN is known. It is the magnitude of the angle HKZ.
<In> the triangle HKZ, Z is a right angle and the angle K is known. Then
the ratio of the Sine of KH to the Sine of HZ is equal to the ratio of the
greatest Sine to the Sine of the angle K. HZ and the angle K are known.
So, HK is known and it is the latitude of the moon. That is what we
wanted to demonstrate.

Chapter 9: On the latitudes of the planets.

It was said in Book III that for each of the superior planets there are two
anomalies in the latitude. One of them is <due to> the inclination of the
inclined orb from the ecliptic and the other is the inclination of the
apogee and perigee of the epicycle from the inclined orb. The inclination
of the apogee of the epicycle is towards the ecliptic, and the inclination of
the perigee is <in the direction> opposite to it. For Venus and Mercury,
there are three anomalies. The first and second are those mentioned for
the superior planets. The third is <due to> the inclination of the diameter
passing through the two mean distances of the epicycle. The magnitudes
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of these inclinations as found by observation are provided in their (i.e.,
the planets”) descriptions.

Let the circle ABG centered at E be the ecliptic circle; AHGS the circle of
the inclined orb centered at Z; A4 the ascending node; and G the
descending node. AHG is northward except for Mercury. BIL is the
epicycle centered at H. We suppose HB <to be> towards the ecliptic and
HL in its opposite <direction>. We take H/, the radius of the “epicycle”,
equal to the Sine of the maximum inclination of the apogee or the perigee
of the epicycle. Let the circle intersect at right angles the plane of the
inclined orb, so that the half on which <falls> BTL, is towards the ecliptic
and the other half is towards the inclined orb. The angle HZ/ is the
maximum inclination of the apogee of the epicycle from the inclined orb
towards the ecliptic. The angle /ZF is the excess of the inclination of the
inclined orb <from the ecliptic> over the <maximum> inclination of the
apogee of the epicycle. The angle XZH is the maximum inclination of the
perigee from the inclined orb in the <direction> opposite to the
inclination of the apogee <of the epicycle>. The angle OZX is the excess
of the inclination of the inclined orb <from the ecliptic over the
maximum inclination of the epicycle>. These angles are known by
observation. /7 is the “adjusted anomaly” and 7B is its complement. 7N is
the Sine of 7B, and HN is equal to the Sine of /7. Both 7N and HN are
known in terms of HT, and ZH is <taken equal to> 60 parts. Then ZN is
known. Its square plus the square of N7 are equal to the square of Z7. So,
ZT is known. Then 7N is known based on <taking> 7Z <equal to> 60
parts. It is the Sine of the angle 7ZN. So, the angle 7ZN is known. Then
the angle 77/ is known. Therefore, the whole angle 7ZF (i.e., the required
latitude) is known. For Venus and Mercury, the resulting angle 7ZN is
subtracted from the angle HZ/ being the maximum inclination angle of
the apogee of the epicycle at one of the ascending or descending nodes.
Also, the arc XK is the excess over the adjusted anomaly towards 90°.
<Similarly,> KL is <equal to> the “adjusted anomaly”. KM is the Sine of
KL and MH is equal to the Sine of its complement XK. So, both KM and
MH are known in terms of HK. ZH is <equal to> 60 parts. Then ZM is
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known. Its square plus the square of MK are equal to the square of KZ.
Then KZ is known. So, MK is known based on <taking> KZ <equal to>
60 parts. It is the Sine of the angle MZK. So, the angle MZK and,
therefore, the angle KZX are known. Then the whole angle KZO (i.e., the
required latitude) is known. For Venus and Mercury the resulting angle
MZK is subtracted from the angle HZX as we said before. That is what we
wanted to demonstrate.

Description of its calculation: Minutes of the argument of latitude are <a
certain number of> minutes whose ratio to 60 minutes is equal to the ratio
of partial inclination of (i.e., the inclination of a point somewhere on) the
inclined orb to its total (i.e., maximal) <inclination>, and equal to the
ratio of partial latitude of the moon to its total magnitude (i.e., the
“minutes of latitude” are proportional to the lunar latitude). We divide the
partial latitude of the moon by its total magnitude, lowered. The result is
the partial <latitude> in terms of the minutes of the argument of latitude.
The inclination of Venus and Mercury at mean distance is called ‘slant’.
The ratio of its partial magnitude to its total (i.e., maximal) magnitude is
equal to the ratio of the partial magnitude of the second equation to its
total magnitude (i.e., the slant is proportional to the second equation). We
multiply the partial magnitude of the second equation by the total slant,
which is equal to 2 degrees and half, and divide <the product> by the
total magnitude of the second equation. The result is the partial value of
the slant. The inclination of the apogee and perigee of the epicycle is also
computed from the adjusted anomaly, as indicated by the figure and proof
that have been mentioned above.

Description of its tables: On the first <rows> of the tables <of planetary
latitudes of the superior planets> is written “north” and “south”, where
the excess of the inclination of the inclined orb over the inclination of the
apogee of the epicycle is <tabulated>. The “north” <column> is for the
case when the center of the epicycle is in the northern half of the inclined
orb. The “south” <column> is for the case when the center of the epicycle
is in the southern half of the inclined orb. The inclinations <tabulated>
for Venus and Mercury are their maximum inclination at one of the two
nodes: for Venus at the ascending node and for Mercury at the
descending node. In both cases the inclination of the apogee of the
epicycle is southward.

Description of the operation by <using> tables: We take the minutes of
the argument of the latitude from the adjusted centrum, to which
(adjusted centrum) we add 50 degrees for Saturn, subtract 20 degrees for
Jupiter, and <we take it> as it is for Mars. <We do so,> because the
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apogee of Saturn is shifted 50 degrees from the point / towards G which
is the descending node, and the apogee of Jupiter <is shifted> 20 degrees
from H towards A, and the apogee of Mars is at H. It (i.e., ) is the
<point of> maximum inclination of the inclined orb. As we have already
said, the minutes of the argument of the latitude take account of the
<variable> inclination of the inclined orb for <varying> distance of the
center of epicycle from the node. Then we take the Ilatitude
<corresponding to> the adjusted anomaly <from the “north” or “south”
column>. If the adjusted center is in the semicircle AHG, the latitude is
“north”, because the inclination of the epicycle is towards the north in
this semicircle. But if the adjusted center is in the semicircle ASG, the
latitude is “south”, because the inclination of epicycle in this semicircle 1s
towards the south. Then we multiply the latitude by the minutes of the
argument of latitude to obtain <the latitude> for <arbitrary> distance of
the center of the epicycle from <one of> the two nodes.

<The cases with> Venus and Mercury <are as follows>. The apogee of
Venus is at H, which is the northern extreme, and the apogee of Mercury
is at S, which is the southern extreme. We take the inclination and slant
for the <known> adjusted anomaly. The slant of Mercury at <its> apogee
is 2; 15°, and at <the position> opposite to the apogee, 2; 45°. It was
difficult to compose two tables for that. So, one table is composed for 2;
30°. Then a tenth of it is subtracted in <the region of> the apogee and a
tenth of it is added in <the region> opposite to the apogee. This is
sufficient for us. Then we add to the adjusted centrum, 3 <zodiacal> signs
for Venus and 9 <zodiacal> signs for Mercury. The result is the distance
from the ascending or descending node. If the result is less than 90° or
greater than 270°, the distance is <regarded> from the ascending node. If
the result is greater than 90° and less than 270°, the distance 1s
<regarded> from the descending node. We use it (i.e., the distance) to
find the minutes of the argument of latitude. We multiply it (i.e., the
minutes of the argument of latitude) by the inclination for finding it (the
latitude component) corrected for the distance from the node (i.e., for a
position of the epicycle not coinciding with the node), because the
extreme <magnitude> of this inclination is <achieved> at the two nodes.
If the augmented center and the true anomaly are in the same half of the
inclined orb, this latitude is southward. If their positions are <in>
different <halves>, the latitude is northward. <They are so,> because the
inclination of the apogee of epicycle is southward, and the inclination of
<its> perigee is northward, between SA4 and AH. Conversely, if the result
is between <the endpoints of the arc>, the center is between S4 and AH.
Then, if the true anomaly is also in the upper half, the inclination is
southward. If the result is between <the endpoints of the arc> GSA4, which
is the lower half, the center is between <the endpoints of the arc> HGS.
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<Now> if the true anomaly is also in the lower half, the inclination is
southward. From what we said, it is apparent that if the position of the
result and the position of true anomaly are different, the latitude is
northward. Then, we take the adjusted centrum of Venus as it is, and that
of Mercury by adding 6 <zodiacal> signs. We obtain thereby the minutes
of the argument of latitude, and we multiply these by the slant <at the
highest point of the deferent> to obtain it (the slant) corrected for the
distance of the center <of the epicycle> from the apogee for Venus, and
for the distance to the point opposite to the apogee for Mercury. <We do
so, > because the extreme of the slant is reached <when the epicycle
center is> at the <point of> extreme inclination of the inclined orb. If the
center is between <the endpoints of the arc> AHG, the upper half, and the
true anomaly is between <the endpoints of the arc> BIL of the epicycle,
then the latitude is northward. If the true anomaly is in the other half, the
latitude is southward. <It is so,> because the endpoint / of the diameter
HI is between <the endpoints of the arc> AHG <which lies> towards
north and its other endpoint <lies> towards south. If the center is between
<the endpoints of the arc> GS4, and the true anomaly is less than 180°,
the latitude is southward. If the true anomaly is more <than 180°>, the
latitude is northward. <It is so,> because the endpoint / of the diameter H/
is between <the endpoints of the arc> GSA <which lies> towards south
and the other endpoint <lies> towards north. Al-Battani has neglected
these directions in the text in his z7, if it is not a scribal mistake. Then we
multiply the <number of the> minutes of the argument of latitude which
we have found lastly, by 1/6 degrees for Venus, and by a half plus a
quarter of a degree for Mercury for finding the inclination of the inclined
orb <at the center of the epicycle> from the distance of the center <of the
epicycle> from the node. This inclination is always northward for Venus
and southward for Mercury. Adding 6 <zodiacal> signs to the center of
Mercury in the first and second <steps> is for shifting from the apogee
region to its opposite <region>. <In this way,> the assertions about its
latitudes and directions <become> like those for Venus. Then the single
words (i.e., the rule) for it (i.e., for Venus) will be <valid> in general (i.e.,
also for Mercury). That is what we wanted to demonstrate.

Chapter 10: On the retrogradation of the planets.

<Let> ABG <be> the circle of the deferent with D as its center and AG as
its diameter; £ the center of the inclined orb; ZHTI the circle of the
epicycle centered at B; and the line <segment> BE the distance of the
center of the epicycle from the center £, <the method for> knowing
which was already provided in the chapter on the first equation. We draw
ETH passing through the first station. We join BK perpendicular to HT.
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Based on what Ptolemy and his predecessors have demonstrated, the ratio
of K7 to TE is equal to the ratio of the motion (i.e., the motion during a
particular day) of the center of the epicycle to the motion (i.e., the motion
during the same day) of the planet on the epicycle.

BZ is the radius of the epicycle adjusted according to the distance of its
center from the <position corresponding to the> mean distance (i.e.,
Kushyar chooses £B8=60), and it is known. We join B7. Then the arc /7 is
half the arc of retrogradation on the epicycle. The angle BEK is half the
angle of retrogradation. BE and B/ are known, so the remainder /E and
the sum ZE are known. The product of ZE by £/ is known. According to
what has been demonstrated in the Elements (111.36), it is equal to the
product of HE by ET. Then the product of HE by ET is known. The ratio
of KT to TE is known, and HT is twice KT. Then the ratio of HT to TE is
known. Let it be equal to the ratio of <two given segments> NL and LM,
then the rectangle on HE and ET is similar to the rectangle on NM and
LM, because their angles are equal and their sides are proportional.
According to what has been demonstrated in the Elements (V1.23), the
ratio of <the area of> the rectangle on HE and E7 to

the <area of the> rectangle on NM and ML is equal to the ratio of the
square of HE to the square of NM. The <areas of the> rectangles on HE
and £7, and on NM and ML are known, and so is the square of NM. Then
the square of HE is known; so HE is known. The ratio of ZE to ET is
equal to the ratio of HE to £/, because the product of ZE by £/ is equal to
the product of HE by ET. But ZE, HE, and EI are known. Then £7 is
known. So, both £7 and TH are known. Then 7K and KF are known. So
KE 1s known based on <taking> BE <equal to> 60 parts. Then its arc
<Sine> is known, and it is <corresponding to> the angle £BK. Then the
angle £EBK is known. Also, K7 is known based on <taking> B7 <equal
to> 60 parts. Then its arc <Sine> is known, and it is <corresponding to>
the angle 7BK. Then the angle 7BK is known. If we subtract it from the
angle EBK, the remainder is the angle /BT. It is the angle <corresponding
to> the arc 7/. Then the arc 77 is known. It is half the arc of
retrogradation on the epicycle. If we subtract the angle £FBK from the
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right angle BKE, the remainder is the angle BEK. It is the angle of half
the arc of retrogradation on the ecliptic. If the center of the epicycle had
no movement towards east (i.e., if the distance of B from £ was constant),
the angle BEK and the arc IT would be adjusted (i.e., correct). But since it
has a movement, we rely on finding a number (for adjustment of the
retrogradation arc) whose ratio to the arc /7 is equal to the ratio of the
motion (i.e., the angular velocity) of the center of the epicycle to the
motion (i.e., the angular velocity) of the planet on the epicycle. We
subtract the obtained number from the angle BEK and the arc /7. The
remainders are adjusted <magnitudes of> the angle BEK and the arc /T .If
we divide the <magnitude of> the adjusted angle BEXK in degrees by the
daily mean motion of the planet, the result is half the <number of the>
days of its retrogradation and its double is the whole <number> of the
days of retrogradation. That is what we wanted to demonstrate.
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Commentary

IV.4.1 In this chapter Kishyar provides the definition of the equation of
time and mentions its approximate bounds. Without going into details, he
then shows that it is possible to calculate its magnitude. He presents the
method for calculating the equation of time in 1.4 and describes this
subject in more detail in III.13. What Kushyar says about the solar apogee
reaching the sign of Leo may happen after around 20,000 years from his
time. Kiishyar takes the mean solar longitude as the independent variable
in his method, whereas al-Kashi, for example, takes the true solar
longitude as the independent variable. Benno van Dalen [1994a, 104] has
shown that “as far as the computation of a table for the equation of time
or its application is concerned, it makes little difference whether the
independent variable is the true or mean solar longitude”; see also
[Kennedy, 1988].

Kishyar’s text is confused. The equation of time is actually the sum of
the differences between the successive mean and true solar days. The
equation of time £ () at day ¢ can be found by adding the solar equation
(true minus mean longitude) at ¢ to the mean solar longitude minus its
right ascension at ¢« The result can be positive or negative. In order to
avoid negative values, Kiishyar modifies his definition of equation of
time. First he chooses # such that £ () is minimal. This turns out to be
when the sun is in the middle of the sign Aquarius. Then Kishyar defines
his equation of time as £ (#) — E (u). This explains why he speaks about
“twice” the differences in what is actually the determination of an upper
bound of E () — E (u). See also the commentary to 1.4.5 where I have
discussed Kiishyar’s displacement method to avoid negative values of the
equation of time. Ptolemy deals with the equation of time and its
calculation in [1984, 169-72], and al-Battani discusses this subject in
[1907, 73-75]. See also [Pedersen 1974, 157-58; Neugebauer 1975, 61-
68; van Dalen 1996, 211-18].

IV.4.2 Kishyar’s model for the solar motion is similar to that of
Ptolemy. In this model, the sun B moves uniformly on a circle (the
deferent) whose center £ does not coincide with the earth D. Line DE
points to point A on the ecliptic, which is taken as Gemini 18;31 for the
beginning of the Yazdigird era (632 A.D.) and whose motion is very slow
(1 revolution in 24,000 years). The radius EA is taken as 60 “parts”.
Kiushyar supposes that the uniform motion of B around F£'is known. The
eccentricity is found to be 2; 29, 30° by Ptolemy [1984, 155], if the radius
of the deferent is taken as 60. Al-Battani, following Ptolemy’s method
but using his own observational data, found the eccentricity equal to 2
parts and 4 minutes plus half and a quarter of a minute (i.e.,
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2+4/60+1/120+1/240= 2;4,45°) [1988-1907, III, 66]. Kushyar accepted
the amount found by al-Battani. The angle EDB in the figure is called
“the angle of the true longitude”. In the mss. A and M there is the
justification that “if we add the true longitude of the apogee to it, the
result will be the true longitude of the sun”. Kushyar provides the values
of the equation of the sun in the table 11.16, and describes its application
in 1.4.6. For avoiding negative values of the equation, Kiishyar adds 2
degrees to all of the tabular entries in II.16. Then in order to cancel this
shift, he subtracts 2 degrees from all the tabular values of the table 11.13
for the mean longitude of the sun. See also [Kashino 1998, 7-8; Ptolemy
1984, 157-166; Pedersen, 149-151].

IV.4.3 In this chapter, Kiishyar computes the “equation of center” of the
moon, which is the difference between the mean epicyclic apogee M and
the true epicyclic apogee K (which is on ZB extended). See [Pedersen
1974, 194]. Kishyar’s lunar model is similar to that of Ptolemy [1984,
226-33]. In this model, the earth is at Z. The moon L moves on an
epicycle with center B. This center moves on a deferent circle whose
center E does not coincide with the earth Z. The motion of L on its
epicycle is contrary to the direction of the motion of B on the deferent. To
further define the motion of 4 and B it is useful to bisect angle AZB by
line ZS (not shown in the figure). Then ZS always points toward the mean
sun. Points 4 and B move uniformly in opposite directions so that ZS
always bisects the angle AZB, and angle BZS is the mean elongation, that
is the difference between the mean lunar and the mean solar positions.
We note that B moves on the circle with center E, but the motion is
uniform with respect to Z (so not with respect to E). Finally define point
H on EZ extended such that ZH=EZ, and extend HB to meet the epicycle
at point M. Then the motion of the moon L on the epicycle is uniform
with respect to M. All uniform motions are supposed to be known. See
also pp. xxxii-xxxiv above.

However, Kiishyar deviates from Ptolemy and al-Battan1 by taking the
radius of the deferent AE (and not the inclined orb 4Z) equal to 60 parts.
So, his value for the distance between the center of the deferent and the
center of the inclined orb is different from that of Ptolemy [1984, 226]
and al-Battani [1907, 82]:

10;19%60/(60-10;19)= (619/60)x(60-619/60)= 12.4589

Kishyar uses the approximate value 12.5. He increases the values of the
first equation of the moon tabulated in 11.20 by 14 (the smallest integer
greater than the maximum negative magnitude of the first equation) so
that the first equation is always additive. The application of I1.20 is
described in 1.4.7. In order to compensate the added 14 degrees, Kushyar
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subtracts 14 degrees from the entries of the table II.18 for the lunar
anomaly [cf. Kashino 1998, 12].

IV.4.4 For the moon, compare [Ptolemy 1984, 233-38; Pedersen 1974,
192-98]. Point Z is the earth, and £ the center of the deferent. Kuishyar
supposes that the epicycle is at maximum distance, so its center is at the
apogee of the deferent. He computes the second (anomalistic) equation of
the moon for any position of the moon on this epicycle. In the notation of
Pedersen, Kiishyar computes the function in p. 196 (6.53). In this case,
the mean and true anomaly are the same because the points X and M in
the figure for IV.4.3 coincide.

For the planets, compare [Ptolemy 1984, 456-67; Pedersen 1974, 287-
88]. Kishyar’s model for the planetary motion is similar to that of
Ptolemy. In what follows, we exclude Mercury, for which see Section
IV.4.6. The planet 7 moves on an epicycle whose center moves on a
deferent, of which the center £ does not coincide with the earth Z The
motion of the planet on its epicycle is in the same direction as the
direction of the motion of its center on the deferent. In chapter 1V.4.4,
Kishyar assumes that the center of the epicycle coincides with the apogee
A of the deferent. The motion of the center of the epicycle on the deferent
is uniform with respect to the equant point, that is a point P on ZF
extended such that EP=ZE.

Again the values of the second equation of the moon are tabulated in
I1.20 and their application is described in 1.4.7. Here Kishyar’s
description is different from that of al-Battani who follows Ptolemy
exactly. Kiishyar adds 8 degrees to all values of the second equation of
the moon to avoid negative values, and subtracts 8 degrees from all
entries in the table I1.17 for the mean longitudes of the moon. However,
for compensating this shift and the 2 degrees shift in the entries for the
mean longitudes of the sun, he subtracts 12 degrees from the entries of
the table II.19 for the double elongation. See [Kashino 1998, 13].

IV.4.5 This chapter is a preparation for the computation of the “second
equation”, which is the angle between the center of the epicycle and the
moon or planet, as seen from the earth. In the figure for IV .4.5, Eis the
earth, and Zthe center of the deferent. Kashyar discusses the case where
the center of the epicycle is at 7, not at the apogee of the deferent, and he
only computes the maximum anomalistic equation. First he describes the
computation and then he gives a proof. He assumes that the distance ET
to the center of the epicycle is known. This distance can be computed
from the angle AZ7 (mean motion from apogee) by the method of
Chapter IV.4.2. Unlike Ptolemy, Kushyar does not provide an exact
computation of the second equation for an arbitrary point on the epicycle

157



whose center is an arbitrary position on the deferent. However, he
presents a computation based on an interpolation method which is
somewhat different from the method used by Ptolemy, for which see
[Ptolemy 1984, 237-39; Pedersen 1974, 197-8]. Kiishyar briefly describes
his interpolation method at the end of Chapter IV.4.5. Chapters [V.4.4
and IV.4.5 are used for the construction of interpolation tables in Book II.
G. Van Brummelen [1998] studied Kushyar’s planetary tables and he
reconstructed Kishyar’s interpolation method from the tables. Van
Brummelen’s mathematical reconstruction of Kishyar’s method is
confirmed by the text at the end of Chapter IV.4.5 which Van Brummelen
apparently did not consult. (Compare [Van Brummelen 1998, 273]
“Kishyar’s second function gives the difference” with the text at the end
of Chapter IV .4.5.)

Some of Kiishyar’s parameter values are different from those of Ptolemy.
Kushyar mentions that he found the difference for the radius of the
epicycle of Mars at its maximum distance one and a fifth degree less than
the value found by Ptolemy, and that at its minimum distance two and a
fifth parts less than that found by Ptolemy. Compare [Van Brummelen,
1998, 268]. For the moon, Kiishyar prescribes an interpolation procedure
which is the same as his interpolation procedure for the planets, and
different from the procedure in Ptolemy, for which see [Pedersen 1974,
196, (6.58)]. The “equation of center” of the planets is discussed in IV.4.6
for Mercury and in IV.4.7 for the other planets. Similar discussions are
found in [al-Battani 1899-1907,11I1, 80-81].

IV.4.6 See [Ptolemy 1984, 443-67] and especially [Pedersen 1974, 315-
20] for a clear description of the very complicated Ptolemaic model for
the motion of Mercury. Klishyar uses the same model as Ptolemy. Zis the
earth, and line ZA points towards a point on the ecliptic which moves so
slowly that its motion is only noticeable after centuries. Points £, N and
M are on ZA such that ZE=EN=NM. A small circle is drawn with center
N and radius ND. On this circle, point D moves in the opposite direction
of the sun, and with a velocity equal to the solar velocity; the exact
position will be defined below. D is the center of the deferent with radius
DT Point T’ moves on the deferent such that the line £7 is parallel to the
direction of the mean sun (the direction of the line from the center of the
solar deferent to the sun in the figure for IV.4.2). This also defines the
position of D.

The values of the first equation of Mercury are tabulated in I1.36 of
Kushyar’s zij. The magnitudes provided by Kushyar for line segment Z7T°
corresponding to the center being equal to 0°, 66°, 90°, 120° and 180° are
correct and very close to the results of my recalculation. However, at the
end of this chapter Kishyar erroneously mentions the angle AZ7 — and
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not AET — as the angle corresponding to the center. See also the
commentary to 1.4.8 and [Kashino 1998, 14-19; Pedersen, 315-28].

IV.47 Compare [Ptolemy 1984, 545-54] and [Pedersen 1974, 279-80,
283-85], and see the commentary to section IV.4.5 for a description of the
model for the motion of the planets except Mercury. H is the earth, Zthe
center of the deferent, £ the equant point, and B the center of the epicycle
(which is not drawn). The values of the first equation of Saturn, Jupiter,
Mars and Venus are provided in the relevant tables of Book II.

IV.4.8 In table I1.37 are provided the values of the latitude of the moon
for different values of the argument of latitude. Kiishyar presents two
methods for calculating the latitude: one using both Sine and Shadow
functions, and another using merely the Sine function. In the figure, HZis
the required latitude, but Kushyar erroneously calculates HK as the
latitude of the moon. See also the commentary on 1.4.9.

IV.4.9 Kishyar’s theory for the latitudes of the planets is essentially
Ptolemy’s theory of latitudes in the A/magest for which see [Ptolemy
1984, 597-647] and [Pedersen 1974, 355-86]. Ptolemy’s theory for the
latitude of the superior planets (Saturn, Jupiter and Mars) is basically as
follows. He supposes that the planes of the deferent and the ecliptic
intersect in the nodal line, that is a straight line through the center of the
earth, and that the plane of the deferent (Kishyar’s “inclined orb”) makes
a (small) angle with the plane of the ecliptic. The line through the earth Z
perpendicular to the nodal line will intersect the deferent in a point A, the
highest point, where the center of the epicycle has maximal northern
distance from the ecliptic. For Mars, the highest point coincides with the
apogee of the deferent, as in Kaishyar’s figure. For Jupiter and Saturn, if £
is the center of the deferent, angle HZF is equal to 20 or 50 degrees.

The epicycle makes a variable angle with the deferent which is maximal
when the center of the epicycle is at the highest point A and the lowest
point S of the deferent, and zero when the center of the epicycle is at the
nodes, i.e., the two points of intersection of the deferent and the plane of
the ecliptic. The apogee of the epicycle is between the deferent and the
ecliptic, but the perigee on the other side of the deferent, so that the
latitude of the planet is maximal when it is at the perigee of the epicycle.
As usual, Kushyar only considers a special situation, where the center of
the epicycle is in the highest point A of the deferent. He wants to show
how the latitude of the planet can be computed from its true anomaly in
this situation. He assumes that the angle between deferent and the ecliptic
is known, and also the latitudes of the apogee and the perigee of the
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epicycle are known. He approximate computation is similar to, but easier
than Ptolemy’s (which is also an approximation).

Kiishyar’s figure is confusing for the modern reader because it is a
superposition of two different figures, which are in two different planes.
Some of the points in the paper play different and inconsistent roles in the
two figures. The procedure to superpose different figures in two or
sometimes even three planes in plane of the paper was sometimes used in
ancient Greek and medieval Islamic geometry in a type of constructions
which are called analemma-construction by modern historians of science.
The first figure (which we call the “horizontal figure”) consists of the
earth E, the ecliptic ABGD, the deferent ASGH with center Z, the nodes
A and G, and the epicycle BILX with apogee B and perigee L. The center
H of the epicycle is supposed to be at the highest point of the deferent.
The second figure (which we call the “vertical figure”) describes the
situation in the plane through HZ perpendicular to the ecliptic. In this
second figure, ZF is the intersection with the ecliptic, and one considers a
circle with center A and radius the “sine of the maximum inclination” of
the apogee and perigee of the epicycle from the plane of the deferent.
This has to be understood in the sense that the radius is equal to the
(equal) distances of the apogee and perigee of the epicycle to the
deferent. This small circle is essentially an interpolation device. Kushyar
also indicates this new circle by the same letters B/LX. However, in the
“vertical” figure, 7is the position of apogee (which has approximately the
minimum latitude in this model), and X the position of the perigee (the
point on the epicycle with approximately the maximal Ilatitude).
Therefore, /in the vertical figure corresponds to Bin the horizontal figure
and vice versa. In the vertical figure, the angle F.ZH is the inclination of
the deferent.

If Tin the vertical figure is the position of the planet, /7 is its “adjusted
anomaly”, and 7B is its complement (we have emended the manuscript
texts which say that BT'is the adjusted anomaly and 77is its complement-
this is true in the horizontal figure). Kiishyar can now easily compute the
angle 7ZF.

It is instructive to express his result in the notation in [Pedersen 1974,
365-67], so that it can be compared to Ptolemy’s much more complicated
computation. In the notation of Pedersen, the quantity to be computed is
B(90°, a,)= angle FZT. The radius of the epicycle is rsin j,, where j, is

the angle between the epicycle and the deferent. In Kashyar’s vertical
figure we have 77=a, (the “adjusted anomaly”), HN=rsin j,sina,,

TN =rsinj, cosa,, ZH= p, ZT ? =(p*+ rsinj,sina,)* +(rsin j,cosa,)?
and finally £#(90°, a, )= (angle) FZH— (angle) 7ZH
= /—arc sin [rsin j_ cosa,/((p+ rsin j,sina,)? +(rsinj, cosa,)?) "],
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where 7is the angle between the deferent and the ecliptic.
Then Kishyar wants to compute the latitude when the adjusted anomaly
of the planet is between 90 and 180 degrees. He now constructs a new
vertical figure, in which angle XZO is the latitude of the center of the
epicycle (and also of the point X'). Kaishyar now considers the position of
the planet at K between X and O, in the horizontal and at the same time in
the vertical figure. He computes the angle KZO and considers this to be
the latitude. However, the resulted latitude function is strange, increasing
slowly when K moves away from X, and sharply when K approaches the
perigee L. This is in contrast with Ptolemy’s more sensible method of
interpolation. It is likely that Kishyar copied the latitude tables of
Ptolemy and did not use his own method of computation.
For reasons of space, I will not describe the complicated geometric theory
of the latitude of the inferior planets here. However, I will provide some
formulas. To compute the latitude of any (superior or inferior) planet, one
needs the adjusted anomaly (of the planet on its epicycle, reckoned from
the true apogee), and the difference x between the ecliptical longitude of
the center of the epicycle minus the longitude of the ascending node (for
all planets except Mercury this can be defined as the node where the
epicycle center passes from southern to northern latitude). For the
superior planets, Ptolemy’s tabular computation of latitudes boils down to

sin(x) f(a) for x between 0 and 180 degrees, and

sin(x)g(a) for xbetween 180 and 360 degrees.
Kushyar calls x90 the “argument of latitude”, and the function
Isin(x-90)|= cos(x) “minutes for the argument of latitude”; the function is
expressed in minutes (1/60) of unity. Kashyar tabulates f(a), g(a) and
sin(x-90)| for a and x between 0 and 360 degrees. For x between 0 and
180 degrees, the latitude is northern, and f(4) is tabulated in the column
“north”. For x between 180 and 360 degrees, the latitude is southern, and
g(a) is tabulated in the column “south”.
For Venus and Mercury, the latitude is the sum of three components:
csin’x +sinx f(a)+k cosx g(a) for a and x between 0 and 360 degrees.
Here ¢ =6 for Venus and ¢ =0.75 for Mercury. The “inclination” f(4) and
“slant” g(a) are tabulated in the third and fourth columns. They are the
differences between the latitude of the planet and the latitude of the center
of the epicycle, at x =90 (inclination) or x = 0 (slant of Venus). For
Mercury g(a) is a hypothetical slant with maximum value 2.5; the real
slant is computed by multiplication by the constant &, which is 0.9 for x
between 0 and 180 degrees, and 1.1 for x between 180 and 360 degrees.
The constant & is 1 for Venus. The fifth column displays again values of
sinx in “minutes” for the “argument of latitude” x — 90.
The last part called “description of the operation by tables” closely
resembles Almagest [Ptolemy 1984, 635-36]. Kishyar reproaches
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al-Battani of not giving the correct rules for the determination of the
direction of the latitude components (northern or western). However,
these rules are found in the text of al-Battani [1899, 174]. To find the
third latitude component, Kishyar multiplies the minutes of latitude by
1/6 degrees for Venus and by 0.75 degrees for Mercury (so he obtains
csinx). Kushyar then forgets to multiply the result again by the “minutes
of latitude”. The same mistake is found in al-Battani’s zij [1899, 175,
lines 14-16]. Ptolemy explains the computation correctly in A/magest
[Ptolemy 1984, 636]: “Then we take these same sixties which were found
by the second entry with the longitude, calculate the amount which is the
same fraction of them as they are of 60, and for Venus, take 1/6™ of this
and set it out ....”

The tables for the latitudes of the five planets are presented in I1.38 to
11.42.

IV.4.10 Kishyar starts this chapter with the Apollonius Theorem
provided also in the Almagest [Ptolemy 1984, 555-62; Pedersen 1974,
329-51], where he says that this preliminary lemma was demonstrated by
a number of mathematicians, notably Apollonius of Perga [ibid, 555].
Kiashyar’s wording corresponds to the generalized theorem of Apollonius
[Pedersen 1974, 341-43]. Ptolemy [1984, 562-81] also provides the
numerical calculation of the retrogradation arc for each planet at mean,
greatest and least distances. Then he uses his usual interpolation method
for other distances. See also [Pedersen 1974, 329-54], where the author
also quotes a beautiful and interesting proof of Apollonius Theorem
devised by B. L. van der Waerden [ibid, pp. 331-32]. The correction to
the retrograde arc at the end of this chapter (to account for the eastward
motion of the epicycle) corresponds to formula (11.40) in [Pedersen
1974, 347].
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Section 5: On the operations relating to the ascendants of the day and
night, <in> 16 chapters

Chapter 1: On the first declination.

Let ABGD be the circle passing through the two poles of the <celestial>
equator and the ecliptic, AEG the celestial equator with its pole at 7, BD
the ecliptic, and E one of the two equinoxes. We take EH as <the arc>
from the ecliptic, whose first declination we want. We draw the arc 7THZ.
Then HZ is the first declination of the arc £H. 1 say that it (i.e., HZ) is
known.

B A

G “ D

Proof: The angle Z of the triangle FHZ is right and the angle £ is <equal
to> the greatest declination. So, the ratio of the Sine of £H to the Sine of
HZ is equal to the ratio of the greatest Sine to the Sine of the angle £. But
EH is known, and the greatest Sine is known through observation, so HZ
is known. This is what we wanted to demonstrate.

Chapter 2: On the right ascensions of the <zodiacal> signs.

Let ABGD be the circle passing through the poles <of the celestial
equator and the ecliptic>, AEG the celestial equator with its pole at 7,
BED the ecliptic, and £ one of the two equinoxes. We take EH as <the
arc> from the ecliptic, whose right ascension we want. We draw the arc
THZ. Then EZ is the <right> ascension of the arc EH. | say that it is
known.
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Proof: The angle Z of the triangle EZH is right. £ is the angle of the
greatest declination, and HZ the declination of HE. According to what
was demonstrated in the fourth premise, the ratio of the Sine of £Z to the
Tangent of ZH is equal to the ratio of the greatest Sine to the Tangent of
the angle £. But ZH and the greatest Sine are known, so £Z is known.
This is what we wanted to demonstrate.

Another method: Again, the angle Z of the triangle £ZH is right. Then,
according to what was demonstrated in the second premise, the ratio of
the Sine of the complement (i.e., Cosine) of EZ to the Sine of the
complement (i.e., the Cosine) of EH is equal to the ratio of the greatest
Sine to the Sine of the complement (i.e., the Cosine) of ZH. The
complements of £H and ZH are known. Then the complement of £Z is
known. So, EZ <itself> is known. This is what we wanted.

Chapter 3: On the second declination.

ABGD centered at E, is the circle passing through the poles <of the
celestial equator and the ecliptic>. AEG is the celestial equator with pole
at T, BED the ecliptic with pole at /, and E one of the two equinoxes. We
take <the arc> EH from the ecliptic whose second declination we want.
We draw the arc /HK. Then KH is the second declination of the arc EH. |
say that it is known.

Proof: The angle / of the triangle £EHK is right and the angle £ is <equal
to> the angle of the greatest declination. Then the ratio of the Sine of EH
to the Tangent of HK is equal to the ratio of the greatest Sine to the
Tangent of the angle £. But EH is known. Therefore the Tangent of HK 1s
known. So, <HK> itself is known. This is what we wanted.

Another method: Again, we draw the arc THZ. We <also> draw the arc
NML, taking its pole at K and its radius equal to the side of the
<inscribed> square. Then L is the pole of the circle /HK, and both KN and
NL are quadrants. HZ is the first declination of the arc £H, and EL is the
complement of £H. ML is the first declination of the arc £L, and MN is
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the complement of ML, <equal to the> magnitude of the angle NKM. So
the angle Z of the triangle HKZ is right and the angle K is known. So the
ratio of the Sine of KH to the Sine of HZ is equal to the ratio of the
greatest Sine to the Sine of the angle K. But HZ is known and the angle K
is known, therefore, HK is known. This is what we wanted.

Another method: If we take the known <arc> EH <as a part> of the
celestial equator, and <the arc> EK <as a part of> the ecliptic, <then>
KH will be the first declination of the arc EK. If we find the arc
corresponding to EH in <the table for> right ascensions, £EK will become
known, and it is called ‘the inverse ascension’. If we take its first
declination, it will be <equal to> HK, being the second declination of the
arc EH. Then HK is known. This is what we wanted to demonstrate.
<Finding right> ascensions from the two declinations: FH is <an arc> of
the ecliptic and £Z is <an arc> of the celestial equator. HZ is the first
declination of the arc EH and the second declination of the arc EZ. If we
find the arc corresponding to HZ in the table of the second declinations,
EZ will become known. It is the right ascension of EH.

So the right ascension is known from the two declinations. This is what
we wanted to demonstrate.

Chapter 4: On the distance of the stars from the celestial equator.

ABGD is the circle passing through the poles <of the celestial equator and
the ecliptic>. AEG is the celestial equator with poles at L and M. BED is
the ecliptic with poles at X and N. First, we suppose the star <to be at>
the point Z, so that the latitude and the second declination are in the
<same> direction. We draw the arcs K77 and LIZ. Then HZ is the latitude
of the star, HT is its second declination, and Z7 is its distance from the
celestial equator. [ say that it (i.e., Z7) is known.

Proof: The two triangles Z77 and K7G are similar, because their angles 7'
are equal and the angles / and G are right. Then the ratio of the Sine of 772
to the Sine of ZI is equal to the ratio of the Sine of 7K to the Sine of KG.
TZ is known, being <equal to> the latitude plus the second declination
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<of Z>. TK is the complement of the second declination. KG is the
complement of the greatest declination, because KL is <equal to> the
greatest declination. So, Z/ is known.

Again, we suppose the star <to be at> the point S, so that the latitude and
the second declination are in two <opposite> directions. We draw the arcs
MSO and NSF. Then FS is its latitude, FC its second declination, and SO
its distance from the celestial equator. 1 say that it (i.e., SO) is known.
Proof: The triangles CSO and CNA are similar, because the angle C is
common <to them> and the angles 4 and O are right. Then the ratio of
the Sine of CS to the Sine of SO is equal to the ratio of the Sine of CN to
the Sine of NA. CS is known and CN is the complement of the second
declination. N4 is the complement of the greatest declination because NM
is <equal to> the greatest declination. Therefore SO is known. This is
what we wanted to demonstrate.

Chapter 5: On the latitude of a <given> locality.
ABGD 1is the horizon circle, E the zenith, A£D the meridian, G/K the

celestial equator with T as pole, and BIZ the ecliptic. Then EH is <equal
to> the latitude of the locality. 1 say that it is known.

D

Proof: AZ is the maximum altitude of the sun, found by some altitude
<measuring> instrument. ZH is the declination of the sun. Therefore AH
is known, but it is the complement of EH. Therefore, £H is known and it
is <equal to> the latitude of the locality. If the point H is on the ecliptic,
<the point> Z on the celestial equator, and £Z the latitude of the locality,
then AH is the maximum altitude of the sun and Z/ the declination of the
sun. So, the sum AZ is known, but it is the complement of £Z. Thus £Z,
the latitude of the locality, is known. This is what we wanted to
demonstrate.
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Chapter 6: On the ortive amplitude of the sun and the stars.

ABGD is the horizon circle, £ the zenith, AEG the meridian, and BZD the
celestial equator with its pole at H. Let / be the rising point of the sun or
the star on that day, then B/ is the ortive amplitude. 1 say that it is known.

G

Proof: We draw the arc HT/. Arcs BZ and BA are both quadrants. AZ is
the complement of the latitude of the locality. It is equal to the magnitude
of the angle ZBA. In the triangle BIT, T is a right angle, the angle B is
known, and I7 is the declination of the sun or the star from the celestial
equator. Then the ratio of the Sine of B/ to the Sine of /7 is equal to the
ratio of the greatest Sine to the Sine of the angle B. So B/ is known. This
is what we wanted.

Another method: Based on what we will demonstrate in Chapter 10, 77 1s
half the day arc. Z and 4 in the two triangles H7Z and HIA are right
angles. 7Z is <equal to> the magnitude of the angle H, because 7H is a
quadrant. The ratio of the Sine of HT to the Sine of /4 is equal to the ratio
of the greatest Sine, being the Sine of AT, to the Sine of the angle /. The
Sine of /1 is equal to the Cosine of /7, and /7 is the declination of the sun
or the distance of the star from the celestial equator. The angle / 1s
known, since it is <equal to the magnitude of> the arc 7Z. Then I4 is
known, but it is the complement of /B, and /B is the ortive amplitude.
Therefore the ortive amplitude is known. If we substitute the point G for
the point A4, the proof for finding the complement of the ortive amplitude
in the northern and southern directions will be the same. This is what we
wanted to demonstrate.

Chapter 7: On the equation of daylight of the sun and the star<s>.
ABGD is the horizon circle, E the zenith, AEG the meridian, and BHM the

celestial equator with its pole at 7. Let the point D be the degree whose
equation of daylight is desired. We draw the arc 7D through it. Then DZ
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is the declination of the point D, BZ its equation of daylight, and BD its
ortive amplitude. I say that BZ is known.

Proof: BZD is a right triangle, and <its right angle> is Z. Then the ratio of
the Cosine of DZ to the Cosine of DB is equal to the ratio of the greatest
Sine to the Cosine of BZ. But DZ and DB are known. Then BZ is known.
This is what we wanted to demonstrate.

Another method: We draw the arc EZN. The angles D in the two triangles
DZN and DTG are equal, and N and G are right angles. Therefore,
according to what was demonstrated in the first premise, the ratio of the
Sine of DZ to the Sine of ZN is equal to the ratio of the Sine of DT to the
Sine of 7G. DZ is the declination <of the sun> or the distance <of the star
from the celestial equator>. <For northern D,> DT is the complement of
the declination or of the distance. 7G is the latitude of the locality.
Therefore ZN is known. Again, the ratio of Sine of BZ to the Sine of ZN is
equal to the ratio of the Sine of BH to the Sine of //4. But ZN is known,
BH is a quadrant, and /A4 is the complement of the latitude of the locality.
Therefore BZ is known. This is what we wanted.

Another method: In the triangle BZD, Z is a right angle. The angle B 1s
equal to the complement of the latitude of the locality, being <equal to
the magnitude of the arc> HA, because the arcs BH and BA are both
quadrants. In view of what was demonstrated in the fourth premise, the
ratio of the Sine of BZ to the Tangent of ZD is equal to the ratio of the
greatest Sine to the Tangent of the angle B. So, we have to divide the
Tangent of the declination, i.e. ZD, by the Tangent of the complement of
the latitude of the locality, lowered. According to what was demonstrated
in the third notice, being Chapter 7 of Section 3 <of Book IV in this zi>
on the premises, that <quotient> is equal to the product of the Tangent of
the declination by the Tangent of the latitude of the locality, lowered. The
result is the Sine of BZ. So BZ is known. This is what we wanted to
demonstrate.
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Another method <applicable> if the equation of daylight for the solstices
is known: We draw the arc BT, being a quadrant. The circle DZT takes
the place of the celestial equator, because if we fix the point Z and we
rotate the arc 7ZD, it coincides with the arc HBZ of the celestial equator.
We take on it the <right> ascension of the arc whose equation of daylight
is desired. Let it be 7K. We pass the arc HKL through it. It (i.e., HKL) is a
quadrant, because the arc B7 is drawn with H as its pole. Then L is a right
angle. In the triangle 7KL, L is a right angle and the angle 7 is equal to
the total (i.e., maximal) equation <of the daylight>. On the basis of what
was demonstrated in the first premise, the ratio of the Sine of 7K to the
Sine of KL is equal to the ratio of the greatest Sine to the Sine of the
angle 7. But 7K is the ascension that was assumed, and the angle 7 is
known. Then KL is known, and it is the partial equation of daylight. This
is what we wanted.

Another method for <finding> the equation of daylight <applicable>
when the total equation <of daylight> is known: ABGD is the horizon
circle, AEG the meridian, BED the celestial equator with its pole at 7, and
ZEH the ecliptic. Let the point Z be the first of Capricorn, and let us draw
the arc 71Z. Then BI is the total (maximal) equation of daylight. We draw
the arc 7B. Both of the arcs 77/ and 7B may take the place of the celestial
equator, because if the intersection point / is fixed and the arc is rotated, it
will coincide with the celestial equator. We take from the arc 77 a
magnitude <equal to the arc> whose equation of daylight is desired. Let

it be 7K. We draw EKL <which> intersects the arc 7B at right angles,
because 7B is drawn with £ as the pole. So, EL is a quadrant. Then the
ratio of the Sine of 7K to the Sine of K/. is equal to the Sine of 77, being
the greatest Sine, to the ratio of the Sine of /B. But 7K is taken from the
celestial equator, 77 a quadrant, and /B the total equation. So KL 1s
known. This is what we wanted to demonstrate.
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Chapter 8: On ascensions for a locality (i.e., oblique ascensions).

Let ABGD be the horizon circle, BED the meridian (this 1s not necessary;
see commentary), AEG the celestial equator, ZE/ the ecliptic, and K the
pole of the celestial equator.

We draw the two arcs K77 and KZH. Then the arcs 74 and GH are the
equation of daylight for the points / and Z. The arcs E7 and EH are the
right ascensions of the two arcs £/ and E£Z. Let £Z be northern and £/
southern. If we add 74 to ET, the result is £A, the oblique ascension of
EI 1f we subtract GH from EH, the result is £G, the oblique ascension of
EZ. This is what we wanted to demonstrate.

Chapter 9: On the maximum altitude of the sun and the star<s>.

ABGD is the horizon circle, BED the meridian, 4EG the celestial equator,
and ZHT the ecliptic. We suppose the sun or the star <to be at> the point
H. Then the arc BH is its maximum altitude, BE£ the complement of the
latitude of the locality, and EH the declination of the sun or the star

from the celestial equator. Then B/ is known. Again, let ZHT be the
celestial equator, AEG the ecliptic, and E the position of the sun or the
star. Then BH is the complement of the latitude of the locality, and £H
the declination or the distance. So, BE is known. This is what we wanted
to demonstrate.
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Chapter 10: On half the day arc of the sun and the star<s>.

ABGD is the horizon circle, BED the meridian, and 4EG the celestial
equator. We assume the two points / and 7 as <two> rising positions of

H ‘
X
the ecliptic, and K as the pole of the celestial equator. We draw the two
arcs KZI and KTH. Then GZ is the equation of daylight for the point /,
which is southern, and ZE is half its day arc. But £G is a quadrant, so ZE
is known. GH is the equation of daylight for the point 7, which is

northern. EH is half its day arc and E£G is a quadrant. So EH 1s known.
This is what we wanted to demonstrate.

Chapter 11: On the <ecliptical> degree of the transit of a star through the
meridian.

ABGD is the horizon circle (not necessary;, see commentary), BED <the
circle> passing through the poles <of the ecliptic and the celestial
equator>, AEG the celestial equator with its pole at L, AZG the ecliptic
with its pole at D, and H the body of the star. We draw <the arcs> LHT,
DHI, and AHG. Then [/ is the <ecliptical> degree of the star, IH its
latitude, HT its distance from the celestial equator, M the <ecliptical>
degree of its transit, and Z the point of one of the two solstices. In the
triangle KDH, K is a right angle, and the angle D is known, being <equal
to the magnitude of> the arc Z/, because DH/ is a quadrant.
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ZI is the <longitude> distance of the <ecliptical> degree of the star from
the solstice, and DH is the complement of the latitude <of the star>. The
ratio of the Sine of DH to the Sine of HK is equal to the ratio of the
greatest Sine to the Sine of the angle D. So, HK is known. Again, in the
triangle LHK, K is a right angle, LH is the complement of the distance of
the star from the celestial equator, and HK is known. The ratio of the Sine
of LH to the Sine of HK is equal to the ratio of the greatest Sine to the
Sine of the angle L. It (i.e., the Sine of L) is <equal to the magnitude of>
the Sine of the arc TE. The arc TE is the right ascension of ZM <starting>
from the first <degree> of the solstitial <sign> (i.e., Cancer or Capricorn).
In view of what was demonstrated in the first notice (i.e., VI.3. 3),
<since> the two middle terms in the <ratio of the> first <four>
magnitudes are equal to the two middle terms in the <ratio of the> other
<four> magnitudes, by ex aequali <of ratios>, the ratio of the Sine of DH,
the complement of the latitude, to the Sine of 7%, the right ascension of
the <ecliptical> degree of the transit <taken> from the first <degree> of
the solstitial <sign>, is equal to the ratio of the Sine of LH, the
complement of the distance from the celestial equator, to the Sine of /Z,
the distance of the <ecliptical> degree of the star from the solstice. 7F is
known, so ZM is known. Therefore the point M is known. This is what
we wanted to demonstrate.

Chapter 12: On the <ecliptical> degree of the rising and setting of a star.

ABGD is the horizon circle, AEG is the celestial equator with pole at /, £
is one of the two equinoxes, £K a southern <part> of the ecliptic, and E£L
a northern <part> of it. We assume B as the body of the star in the south,
and D as its body in the north. M and N are the <ecliptical> degree of the
transit of the star <in each of these two cases>. We draw /BT and /DZ.
Then GT is the equation of daylight for B. If it (i.e., GT) is added to ET,
the right ascension of the <ecliptical> degree of the transit of the star B,
the result is £G, the oblique ascension of EK, and K is the <ecliptical>
degree that rises <simultaneously> with the star.
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Again, EZ is the right ascension of the <ecliptical> degree of the transit
of the star D, and GZ is its equation of daylight. If it (ie., GZ) is
subtracted from £Z, EG remains, the oblique ascension of EL. But L is
the <ecliptical> degree that rises <simultaneously> with the star. So £G
is the <oblique> ascension of the <ecliptical> degree that rises
<simultaneously> with the star B, and <with> the star D. If we imagine
that the point G moves according to the general motion <of the celestial
sphere> and arrives at the western horizon, i.e., at the point 4, <then> it
would have moved by the amount of the day arc of the star. <Then a
certain> point of the celestial equator will have arrived at the eastern
horizon, which <point> is (i.e., defines) the <oblique> ascension of the
opposite to the <ecliptical> degree which sets <simultaneously> with the
star. This is what we wanted to demonstrate.

Chapter 13: On <finding> the arc of revolution <of the celestial equator>
since the rising of the sun and the star<s> from the altitude of the <sun or
the star at a given> time, and <finding> the altitude from the arc of
revolution.

ABGD is the horizon circle, ASD the mernidian and AED its diameter, BSZ
the altitude circle, and BEZ its diameter. Then S is the zenith. Arc GHN 1s
<a part> of the parallel circle <to the equator> above the earth, and G its
chord. Then H is the intersection <point> of the parallel circle and the
meridian, and K the intersection <point> of the parallel circle and the
altitude <circle>. We draw HT perpendicular to AE. Then it (i.e., HT) 1s
the Sine of the arc AH, the meridian altitude for the point / of the parallel
circle. We join HI; it is the Sagitta of the arc GKH, and GKH is half the
day arc. We draw KL perpendicular to BE; it is the Sine of the arc BK,
and BK is the altitude of the <sun or the star at a given> time. We draw
KM perpendicular to the chord GN. It (i.e., KM) is the ‘arrangement Sine’
of the arc of revolution. If we imagine ASD and BSZ to be vertical
<semicircles> in the <celestial> sphere, with diameters 4D and BZ, it is
clear that, as we said, H7 is the Sine of the arc AH, H/ the Sagitta of the
arc GKH, KL the Sine of the altitude, and that KM is parallel to H/.

u
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Then the two triangles /HT and MKL are similar, because 7" and L are
right angles, and the two angles H and K are equal because the two line
<segment>s /H and HT are parallel to the line <segment>s MK and KL,
<respectively>. Then the ratio of H7, the Sine of the meridian altitude, to
KL, the Sine of the altitude of the <sun or the star at a given> time, is
equal to the ratio of HI, the Sagitta of half the day arc, to KM, the
‘arrangement Sine’ of the arc of revolution. So KM is known. We join
KO perpendicular to HI. KM is equal to O/ in the <celestial> sphere. The
rest <from HI> is HO, the Sagitta of the arc HK <so HK is known>. HK
is the excess of the arc of revolution, <and AS, half the day arc is
known>, so KG, the arc of revolution, is known. This is what we wanted
to demonstrate.

<Finding> the altitude from the arc of revolution: Again, if KG, the arc of
revolution, is known, <then> the altitude BK is known. That is <based on
the following proof:> The arc GKH, being half the day arc is known. The
arc of revolution GK is also known. So KH, the excess of the arc of
revolution, is known. Thus its Sagitta is known, and it is the excess of /H
over MK. <IH is known> so MK is known. But the ratio of MK, the
‘arrangement Sine’ of the arc of revolution, to KL, the Sine of the
altitude, is equal to the ratio of /H, the Sagitta of half the day arc, to HT,
the Sine of the meridian altitude. So KL is known. So the altitude is
known. This is what we wanted.

Chapter 14: On <finding> the ascendant from the arc of revolution <of
¢.g., the sun> and <finding> the arc of revolution from the ascendant.

ABGD is the horizon circle, AEG the meridian, BLD the celestial equator
with £ as its pole. HLT is the ecliptic, its point H is <situated> on the
horizon, and it (i.e., H) is required. I say that it is known. So we assume Z
as the <known> position of the sun or the star on the ecliptic, and the arc
Z0 is its <known celestial> parallel. We draw two arcs passing through
the pole of the celestial equator and the points Z and O. They intersect the
celestial equator at K and M.
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Then the arc MK is similar to the arc ZO, and ZO is the <known> arc of
revolution, so MK is <also> the arc of revolution. BM is the equation of
daylight for the point Z, and LK is the right ascension of LZ. We cut off
KN equal to BM. Then LN is the oblique ascension of LZ, BM is equal to
KN, and MN is a common <part>. So MK is equal to BN. But MK is the
arc of revolution, so BN is equal to the arc of revolution. If BN is added to
LN, the result is LB, which is known, because it is the oblique ascension
of LH. Then the point H, which is the <ecliptical> degree of the
ascendant, is known. This is what we wanted to demonstrate.

<Finding> the arc of revolution from the ascendant. Again, if the point //
is known, and Z is the <ecliptical> degree of the sun or the star, <then>
both <oblique> ascensions of LH and LZ are known, and they are L5 and
LN <respectively>. Then BN, equal to the arc of revolution, is known.
This is what we wanted.

Chapter 15: On the proof <using> a base generally applicable to the arc
of revolution and to what is related to it.

It is known from the forty-first figure (i.e., [V.5.13, see commentary),
on the proof of the <method for finding the> arc of revolution from the
altitude, that the ratio of the Sine of any altitude to the “arrangement Sine’
of its <corresponding> arc of revolution is equal to the ratio of the Sine of
any other altitude to the ‘arrangement Sine’ of its <corresponding> arc of
revolution. It is known that through any point from the ecliptic which is
assumed on the horizon, a circle can be drawn passing through the two
poles of the celestial equator. <The arc> between the assumed point and
the celestial equator, of the circle passing through the two poles of the
celestial equator, is the declination of the assumed point. The line drawn
from the assumed point perpendicular to the diameter of the celestial
equator is the Sine of the declination of the point. The diameter is <the
line> drawn from the intersection of the celestial equator and the circle
passing through its poles. <The line segment> between the foot of the
perpendicular on this diameter and the complement of the radius is the
Cosine of the declination of the <assumed> point, and it is equal to the
radius of the parallel circle passing through the assumed point. The
diameter <of the parallel circle> is drawn from that point, so the radius of
any parallel circle is equal to the Cosine of its declination.

After this premise, let ABGD be the horizon circle, BEG the meridian,
EHD <a part> of the altitude circle, 47 the celestial equator, and ZHT <a
part> of the parallel <circle>. Then the ratio of the Sine of DH, the
altitude, to the ‘arrangement Sine’ of HZ, is equal to the Sine of /G, i.e.
the altitude of the point 7, to the ‘arrangement Sine” of A/. But 4/ 1s a
quadrant, and /G is the complement of the latitude of the locality.
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So the product of the Sine of the altitude and the greatest Sine is equal to
the product of the Cosine of the latitude of the locality and the
‘arrangement Sine’ of HZ. So the ‘arrangement Sine’ is known in terms
of the magnitude (i.e., unit) for which the radius of the circle A/ 1s 60
parts. We want to know this in terms of the radius of the circle Z7. The
radius of the circle Z7 is equal to the Cosine of the declination. So the
ratio of the ‘arrangement Sine’ of HZ to the Cosine of the declination is
equal to the ratio of the desired base (i.e., the ‘arrangement Sine’ HZ in
terms of the radius of Z7) to the greatest Sine. So, the product of the
known ‘arrangement Sine’ of HZ and the greatest Sine is equal to the
product of the base (i.c., the value of the ‘arrangement Sine” of HZ) in
terms of the desired magnitude (i.e., the radius of Z7) and the Cosine of
the declination of the degree (i.¢., the point /7 on the parallel circle). Then
the ‘arrangement Sine” of //Z in terms of the radius of the circle ZHT is
known. So, <to carry out> the multiplication, we may <actually>
multiply the Sine of the altitude by the greatest Sine and <then> divide it
by the Cosine of the latitude of the locality. Then we multiply the result
by the greatest Sine and we divide it by the Cosine of the declination of
the <ecliptical> degree. This is as if we multiply the Sine of the altitude
by the greatest Sine twice and divide <the result> by the Cosine of the
latitude of the locality, and then <we divide the final result> by the
Cosine of the declination. That is <also> equal to multiplying it (i.e. the
Sine of the altitude) by the greatest Sine twice and dividing it by the
product of the Cosine of the latitude of the locality and the Cosine of the
declination of the <ecliptical> degree. If we multiply the Cosine of the
latitude of the locality by the Cosine of the declination of the <ecliptical>
degree, lowered twice, because it should be multiplied by the greatest
Sine twice, the result is the base from which the arc of revolution and
what relates to it may be derived (i.e., computed). This is what we wanted
to demonstrate.

Chapter 16: On the equalization of the houses.
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ABGD is the horizon circle, AEG the meridian, BHD the celestial equator
and E its pole, ZHT the ecliptic, the point Z the ascendant, H the
midheaven, and 7 the descendant. We draw <the arcs> EZF and £ECT..

Then HF is half the day arc of the ascending degree, and HC is half its
night arc. If we divide HF into the three divisions F7, IK and KH, each
division thereof will be equal to twice <the number of> the parts (i.€.,
degrees) <corresponding to> the hours of the ascendant. If we divide FC
into three <equal> parts HW, WN and NC, each part will be equal to twice
the <number of the> degrees <corresponding to> the hours of the
descendant. <This is> because the time <-degrees corresponding to> each
of <the arcs> HF and HC are 6 seasonal hours. If we draw circles from
the pole of the celestial equator passing through these division <point>s,
they cut the ecliptic at the division <point>s being the equal <i.e.,
ecliptical> degrees for the first division <point>s of the celestial equator.
They are the divisions HL, LM and MZ, and the divisions HO, OS and ST.
If we subtract 90 from the <right> ascension of the ascendant, i.e. HB, the

right ascension of the tenth <house> remains. If we write down the right
ascension of the tenth <house> in two positions, and add to it twice the
<number of the> parts <corresponding to> the hours of the ascendant
repeatedly, and if we subtract <in the other position> from it twice the
<number of the> parts <corresponding to> the hours of the descendant
repeatedly, the result of additions will be the right ascensions of the
eleventh <house>, the twelfth <house>, and the ascendant. The result of
the subtractions will be the right ascensions of the ninth <house>, the
eighth <house>, and the descendant. If we write down the right ascension
of the ascendant in two positions, and subtract from it twice the <number
of the> parts <corresponding to> the hours of the ascendant repeatedly,
and if we add <in the other position> to it twice the <number of the>
parts <corresponding to> the hours of the descendant repeatedly, the
result of these subtractions will be the right ascensions of the twelfth
<house>, the eleventh <house>, and the tenth <house>. The result of the
additions will be the right ascensions of the second <house>, the third
<house>, and the fourth <house>. This is what we wanted to demonstrate.
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Commentary

IV.5.1 The subject of first declination (the distance of any ecliptical
degree from the celestial equator) is also discussed by Ptolemy [1984, 69-
70]. Kashyar’s method based on the Sine theorem is general and simple,
but Ptolemy’s proof is longer and he performs the calculation for the
specific arcs 30° and 60°. See also the commentary on L.5.1. The distance
of a star to the equator is nowadays also called “declination”.

IV.5.2 Kiishyar applies what he has proved in the premises IV.3.5 and
IV.3.2 in the first and the second proofs, respectively. They are the
Tangent Theorem and the Cosine Theorem for the right spherical
triangles. See also the commentary on 1.5.2.

IV.5.3 Here Kishyar first proves his second method in [.5.3. See the
commentary on 1.5.3.

IV.5.4 In this chapter, Kiishyar supposes that the (ecliptical) latitude HZ
and second declination HT are known. The application of the concept
“similarity” for spherical triangles by Kushyar is rather strange. He
applies the so called “Rule of Four” for spherical right triangles that have
an acute angle in common or equal acute angles. The same concept of
“similarity” of spherical triangles is used in the solution of the problem in
al-Kashi’s Khagani Zij, see [Kennedy 1985, 9]. See also the commentary
on 1.5.4.

IV.5.5 Kaushyar uses the same figure for the two cases in which the
declination of the sun is towards north and south, thereby interchanging
the circles representing the ecliptic and the celestial equator. See also the
commentary on [.5.5.

IV.5.6 See the commentary on 1.5.6.

IV.5.7 In the first method for finding the equation of daylight for the sun
and the stars, it is assumed that the declination and the ortive amplitude of
the sun or the star are known. In the second and the third methods, it is
assumed that the latitude of the city and the declination of the sun or the
star are known. In the fourth method, it is assumed that the right
ascension of the arc whose equation of daylight is requested and the
equation of daylight for the solstices, BZ, are known. It is interesting that
Kishyar applies a rotation in this method. The last method is not
mentioned in 1.5.7 where the first four methods are provided. However,
this additional method is similar to the fourth one, except that 7K is taken
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equal to the arc whose equation of daylight is desired, and not its right
ascension as taken in the fourth method. In both fourth and fifth methods,
the values found for the equinoxes and the solstices are accurate, and the
intermediate values vary uniformly. The results can be good
approximations for the desired equation of daylight. Kiishyar’s proofs for
these two methods show that KL can be found from the existing data. But
he does not prove that KL is equal to the desired equation of daylight. See
also the commentary on 1.5.7. The fourth and the fifth methods are
mathematically correct.

Proof: since Sind=Tgdx Tge/R and SinM=TgexTge/R, we have
Sind / SinM = Tgd / Tge = Sina /R, where M is the known equation of
daylight for solstices. Kishyar’s proof seems to imply some sort of
geometrical transformation, but the idea escapes us.

IV.5.8 In this chapter, if we take BED as the meridian, then the problem
will lose its generality. So this is a superfluous phrase possibly inserted
into the text because it exists in the next chapters. BED can be any great
circle through the celestial pole K. See also the commentary on 1.5.8.

IV.5.9 Again, for using the same figure for the cases in which the
declination of the sun or a star from the celestial equator is towards the
north or south, Kiishyar interchanges the circles representing the ecliptic
and the celestial equator for the second case. See also the commentary on
I.5.9.

IV.5.10 See also the commentary on 1.5.10.

IV.5.11 In this chapter, the starting phrase “ABGD is the horizon circle”
is superfluous. It has possibly been inserted to the text by mistake,
because it appears at the beginning of the former and the next chapters.
ABGD is a great circle through the intersections 4 and B of the ecliptic
and the equator. Kiishyar assumes that the ecliptical latitude H7 and the
ecliptical distance along the ecliptic to the solstice ZZ are known (this
distance can be derived from the ecliptical longitude).

Kiishyar concludes the desired proportion SinDH :SinTE =SinLH :SinlZ
by IV.3.3 from SinDH :SinHK =R/SinD, SinLH:SinHK=R/SinL and
from the fact that the magnitudes of the angles D and L are measured by
arcs IZand TE respectively. The technical term “ex aequali” is defined in
definition 17 of Book V of Euclid’s Elements. On the problem of finding
TE (the right ascension of the star at H), see also al-Kashi’s Khagani Zij
[Kennedy 1985, 10-14]. See also the commentary on 1.5.12.
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IV.5.12 In the last part: “If we imagine...”, the description is confusing.
Apparently, Kiishyar means that “If we imagine that the point G moves
according to the general motion <of the celestial sphere> and B arrives at
the western horizon, then the point G would have moved by the amount
of the day arc of the star. Then a certain point of the celestial equator will
have arrived at the eastern horizon, which is the oblique ascension of the
<ecliptical degree> opposite to the <ecliptical> degree which sets
<simultaneously> with the star.” See also the commentary on 1.5.13.

IV.5.13 For a modern mathematical formula for finding the arc of
revolution from the altitude of the time, and a definition of the
‘arrangement Sine’, see the commentary on 1.5.14.

IV.5.14 Here Kiishyar provides the proof for the method described in
1.5.16 and for its inverse described in I.5.17.

IV.5.15 The chapter on the proof of the validity of the method for finding
the arc of revolution from the altitude of the sun or the star, IV.5.13,
corresponds to the 41st figure (shakl) in Book IV. However, in the ms. A,
it is referred to as the ‘44th figure’. IV.5.13 is Chapter 44 in the ms. A
(which presents the chapters of Book IV as numbered consecutively) and
apparently the word shak/ in the reference is used in its other meaning
“theorem”.

In this chapter Kiishyar demonstrates that the ‘arrangement Sine’ can be
found by dividing the Sine of the altitude by Cosg Cosd/R.R . He calls
this expression the “base”. In 1.5.21 this base is used in short efficient
methods for finding different astronomical quantities. For a modern
mathematical formulation of these methods see the commentary on
1.5.21.

In finding the value of the arrangement Sine of HZ in terms of the radius
of the parallel ZT , all manuscripts erroneously put ‘60’ instead of ‘the
Cosine of the declination of the degree (i.e., the point /)’, and the correct
version is only mentioned in a marginal note of the ms. M.

The concept of “base” was widespread in medieval Islamic astronomy,
see for example [King 2004, 114,909].

IV.5.16 Here Kishyar actually explains the geometrical basis of the
method for the equalization of the houses which was the most popular
one among the medieval Islamic authors of astrological works. See also
the commentary to 1.5.22.
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Section 6: On  eclipses and what pertains to them, <in> 14 chapters

Chapter 1. On the absolute and adjusted magnitudes of a lunar eclipse in
digits.

ABGD is the disk of the <earth’s> shadow in the transition position <of
maximum obscuration> of the moon, and GTEK is the disk of the moon’s
surface. They are perceived as being in the same plane. 4D is the
diameter of the disk of the shadow, and K7 is the diameter of the disk of
the moon. SD <plus> KO is the sum of the two radii. SO is the latitude of
the moon. KD is the excess of SD <plus> KO over SO. So, KD the
magnitude of the lunar eclipse in minutes, is known. K7 is <also> known.
So KD is known by taking K7 <equal to> 12 digits. It (i.e., the
magnitude of 12KD/KT ) is <called> ‘the absolute magnitude of the lunar
eclipse in digits”. The area of <the segment> DGEK, the surface of the
moon’s disk is <called> the ‘adjusted magnitude of the lunar eclipse in
minutes’. It is <called> the ‘adjusted magnitude of the lunar eclipse m
digits’, by assuming the area of the moon’s disk <equal to> 12 digits. It
(i.e., the adjusted magnitude in digits) is desired <if the absolute
magnitude is known>. <To this end>, we join EG and we draw the line
<segments> SG, SE, OG and OF. Since AD and GE intersect in a circle,
the product of AC by CD is equal to the product of GC by CE (Elements,
[11.36), and the product of 7C by CK is equal to the product of GC by CE.
Thus the product of AC by CD is also equal to that of 7C by CK. So, the
ratio of AC to CT is equal to that of KC to CD. If we subtract KD from
both diameters AD and K7, the ratio of the remainder, AK, to DT is equal
to that of KC to CD (Elements, V.17). By composition of ratios, the ratio
of the sum of AK and DT to TD is equal to that of KD to DC. The sum of
AK and DT, DT, and KD are known. So, DC is known, and it is the
Sagitta of the <arc GFE of the> shadow’s disk. KC is <also> known, and it
is the Sagitta of the <arc GE of the> the moon’s disk. So both 7C and CK

The first <figure>
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are known. The product of 7C by CK is equal to the square of GC,
because GC is equal to CE. So, GC is known, and it is the Sine of the arc
GK by assuming OG as the radius of the moon. Thus it (i.e., GC) is
known by assuming OG <equal to> 60 parts. Hence the arc GK of the
great circle is known, and it is the complement of the arc GT towards 180
<degrees> in the second figure. Its ratio to 360 <degrees> is equal to the
ratio of the arc GK on the circumference of the moon’s disk to the whole
circumference of the moon’s disk. Thus <the ratio of the length of> the
arc GK to <the circumference of> the moon’s disk is known. OK is
<also> known. So the area of the sector OGKE is known. OC and GC are
known, so, the area of the triangle OGE is known. So the area of the
segment GKEC of the moon’s disk is known. Again, GC is the Sine of
the arc GD <based> on <taking> SG the radius of the disk of the shadow.
So, it (i.e., GC) is known <based> on <taking> SG <equal to> 60 parts.
So the arc GD of the great circle is known. Its ratio to 360 <degrees> is
equal to the ratio of the arc GD of the disk of the shadow to the whole
circumference of the disk <of the shadow>. Therefore the arc GD of the
disk of the shadow is known and SD is known. Thus the area of the sector
SGDE is known. <Also> SC and GC are known. So, the area of the
triangle SGE is known. Then the area of the segment GDEC of the disk of
the shadow is known. <Now> the sum of GKEC and GDEC is known,
and it is the ‘adjusted magnitude of the lunar eclipse in minutes’. Its ratio
to the area of the surface of the moon’s disk is equal the ‘adjusted
magnitude of the lunar eclipse in digits’ to 12. This is what we wanted.

The second <figure>

Chapter 2: On the absolute times of a lunar eclipse.

Let AB be a segment of the inclined <lunar> orb, AG a segment of the
ecliptic, and the point E the center of the <earth’s> shadow disk. ED is a
segment of the circle /EF passing through the two poles of the ecliptic,
<the part> £Z on it being the latitude of the moon in the middle of the
eclipse. 7 is the center of the moon’s disk at the beginning of the eclipse
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when it is tangent to the shadow’s disk at the point M. <Then the moon>
proceeds to enter the eclipse. H is the center of the moon’s disk when it is
totally eclipsed and the beginning of its total immersion when it is tangent
to the shadow’s disk at N. <Then the moon> proceeds to enter the <total>
eclipse, and Z is the center of the moon’s disk in the middle of the
eclipse, being nearest to the center of the shadow <disk>. K is the center
of the moon’s disk at the end of the total immersion and at the beginning
of emersion, and it is tangent to the shadow’s disk at S. <Then the moon>
proceeds to go out of it (i.e., out of the shadow) and L is the center of the
moon’s disk at the end of emersion, and it is tangent to the shadow’s disk
at 0. <Then the moon> proceeds to separate from the shadow. Both the
line segments E7 and £L are the sum of the two radii, and both £H and
EK are <equal to> the radius of the shadow <disk> minus the radius of
the moon <disk>. ZT <corresponds to the duration of> immersion in
minutes, from the beginning of the eclipse up to its middle. ZH
<corresponds to> the duration <of totality> in minutes, from the
beginning of the total immersion up to the middle of the eclipse. ZK
<corresponds to> the duration <of totality> in minutes, from the middle
of the eclipse up to the beginning of emersion. ZL <corresponds to the
duration of> immersion in minutes, from the middle of the eclipse up to
the end of emersion. <The lengths of> these line <segments> are desired,
because each of them being divided by the lunar gain, provides the hours
(i.e., time interval) corresponding to these minutes <of arc>. We assume
all <the arcs> AB, AG and ED to be straight line <segments>, because
they are small, and there is no <noticeable> difference between taking
them as arcs or as straight line <segments> in the eclipses. £7 is the sum
of the two radii, £Z the latitude of the moon at the middle of the eclipse,
and Z 1s approximately a right angle. If the square of EZ is subtracted
from the square of £7, the result is the square of 7Z. So 77 is known, and
it is <corresponding to the duration of> the immersion. If we subtract its
<time in> hours from the <time in> hours of the middle of the lunar
eclipse, the <time in> hours of the beginning of the lunar eclipse will
result.
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If it is added <to the time of the middle of the eclipse>, the <time in>
hours of the end of emersion will be obtained, because £7 is equal to EL.
Again, EH is <equal to> the radius of the shadow <disk> minus the
radius of the moon <disk>. If we subtract the square of £Z from its square
(i.e., from EH squared), the result is the square of //Z. Thus HZ is known.
If its <time in> hours are subtracted from those of the middle of the lunar
eclipse, the result is the <time in> hours of the beginning of its total
immersion. If it is added <to the time of the middle of the eclipse>, the
result is the <time in> hours of the beginning of emersion, because £H 1s
equal to EK. These are the five <desired> times. If there is no total
immersion in the eclipse, the <time in> hours of the beginning of the total
immersion and of the beginning of emersion will be deleted. This is what
we wanted.

Chapter 3: On the correction of the times.

Let AB be a segment of the inclined <lunar> orb, EG a segment of the
ecliptic, and E the center of the shadow’s disk. £D passes through the two
poles of the ecliptic, and <the part> EL of it is the latitude of the moon in
the middle of the eclipse. The points 7, S, L, O and / are the centers of the
moon at the beginning of the lunar eclipse, the beginning of total
immersion, the middle of the lunar eclipse, the beginning of the emersion,
and the end of emersion, <respectively>. From these points, we draw the
line <segments> TF, SC, OQ and IR parallel to the line <segment> LE.
Each of them is the latitude of the moon corresponding to these centers.
We draw the line <segments> TN, SM, OK and [X parallel to the line
<segment> AG. LEG is a right angle. We join the line <segments> TE,
SE, OF and /E. Since TN is parallel to FE, EN is equal to 7F, both being
the latitude of the moon at the beginning of the lunar eclipse (whose time
is known from Chapter 2). 7E is the sum of the two radii, and ENT'is a
right angle. Then TN is known, and NL is <the difference> between the
latitude <of the moon> at the beginning <of the eclipse> and its latitude
in the middle <of the eclipse>. Then L7 is known, and it is
<corresponding to> the adjusted <duration of> immersion in minutes.

8 [ D
/"X
0 ¥

184



Again, £S is the remainder of subtracting the radius of the moon from
that of the shadow. SC is the latitude <of the moon> at the beginning of
total immersion. £CS is a right angle. Then EC is known, being equal to
SM. So, SM is known. LM is <the difference> between the latitude <of
the moon> at the beginning of total immersion and <the latitude in> the
middle of the eclipse. LMS is a right angle. Then LS is known, and it 1s
<corresponding to the adjusted> duration <of totality> in minutes. Also,
EO is the remainder of subtracting the radius of the moon <disk> from
that of the shadow <disk> OQ is the latitude of the moon at the
beginning of emersion. Then QF is known, being equal to OK. KL is <the
difference> between the latitude <of the moon> in the middle <of the
eclipse> and <the latitude at> the beginning of emersion. OKL is a right
angle. Then LO is known, being <corresponding to the adjusted> duration
<of totality> up to the beginning of emersion in minutes. Again, £/ is the
sum of the two radii, and /R the latitude <of the moon> at the end of
emersion. Then RE is known, being equal to /X. LX is <the difference>
between the latitude <of the moon> at the middle <of the eclipse> and
<its latitude at> the end of emersion. Then L/ is known, and it is
<corresponding to the adjusted duration of> immersion from the middle
<of the eclipse> to the end of emersion. So, the five adjusted times are
known. This is what we wanted.

Chapter 4: On drawing the figure of a lunar eclipse.

Let ABGD be a circle whose radius is equal to the sum of the two radii in
minutes, centered at E. <Also let> ZHTI <be> a circle centered at this
<point £>, its radius being equal to that of the shadow. The two line
<segments> AG and BD intersect at E at right angles. Let £B be the south
line, ED the north line, EA4 the east line, and EG the west line, and let £S
be the latitude of the moon in the middle of the lunar eclipse.
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KLMN is the moon circle centered at S. Its arc KLM is situated in the
shadow circle and it (i.e., the lunule KLM) is the magnitude of the
eclipsed part of the surface of the moon, by taking its whole surface
<equal to> 12 digits. LH is the non-adjusted (i.e., absolute) <magnitude
of the> lunar eclipse in digits (based on taking NL equal to 12 digits). EB
is <equal to> the radius of the shadow plus the radius of the moon. Its
<part> EH is the radius of the shadow. The remaining <part> HB is the
radius of the moon, and LH is the <absolute magnitude of the> lunar
eclipse in digits. This is what we wanted to demonstrate.

Chapter 5: On the distance of the moon from the earth.

Let the circle ABG be the eccentric orb centered at D, AG its diameter, £
the center of the ecliptic, B the center of the epicycle of the moon, T the
apogee of the epicycle, and / the body of the moon. We join the lines.
EH is, as desired, the distance of the moon from the earth. The two lines
DZ and HI are perpendicular to ET. The angle AEB is known, being the
double elongation. Z is a right angle. So the angle £DZ is known. DE is
<equal to> 10 parts and a third, if we take AE <equal to> 60 parts. So
both DZ and ZE are known. DB is <equal to> 49 parts and two thirds, and
its square is equal to <the sum of> the squares of BZ and ZD. Then BZ
and ZF are known. So is EB, being the distance of the center of the
epicycle of the moon from the earth. Also, the angle 7BH is the adjusted
mean anomaly (i.e., true anomaly) of the moon. / is a right angle. So the
angle BHI is known. BH is the radius of the epicycle in terms of the
distance of its center from the point 4. Both H/ and /B as well as EB are
known. So, £/ is known, its square plus the square of H/ being equal to
the square of EH. So, EH is known, being the distance of the moon from
the earth. This is what we wanted to demonstrate.
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Chapter 6: On the altitude of the pole of the ecliptic.

<Let> ABGD <be> the horizon circle, BED the meridian, AHG the
ecliptic, and ET <a part> of the altitude circle drawn with its pole at A4
and its radius equal to the side of an <inscribed> square. Then HT i1s
<equal to> the magnitude of the angle HAT, for AT and AH are both
quadrants. <Now> EH is desired, for it is equal to the altitude of the pole
of the ecliptic. In the triangle 4ADZ, D is a right angle, the side AZ <the
distance> between the ascendant and the midheaven along the ecliptic,
and ZD the altitude of the <ecliptical> degree of the midheaven. The ratio
of the Sine of AZ to that of ZD is equal to the ratio of the greatest Sine,
being the Sine of AH, to the Sine of H7. So HT is known. Therefore its
complement £/ is known. This is what we wanted to demonstrate.

Chapter 7: On the altitude of any desired degree of the ecliptic.

<Let> ABGD <be> the horizon circle, BED the meridian, AZG the
ecliptic, the two points 4 and Z the ascendant and the tenth <house, £ the
zenith>, ET <a part> of the altitude circle, and H the <ecliptical> degree
whose altitude is desired. <So,> the arc H7 is desired. In the two triangles
AHT and AZD, D and T are right angles. AH is <the distance> between
the ascending <ecliptical> degree and the <ecliptical> degree whose
altitude is desired. ZD is the magnitude of the altitude of the midheaven
degree. The ratio of the Sine of AH to that of H7 is equal to the ratio of
the Sine of AZ to that of ZD. So, H7 is known. This is what we wanted to
demonstrate.
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Chapter 8: On the parallax of the two luminaries in the altitude circle.

<Let> ABGD <be> the altitude circle on the surface of the Sphere of the
Whole (i.e., the Universe), 7KL the altitude circle on the surface of the
sphere of the moon (i.e., a sphere through the moon with center the center
of the earth) with the point L as the moon on it, and the circle ZMN the
surface of the earth. The three circles are in the same plane and centered
at E. The line <segments> AE, TE, and ZE are the radii of these circles
passing through the zenith. From the two points £ and Z, we draw two
lines intersecting at the point L and ending at the two points G and D. The
angle ELZ is the parallax, because it is the excess of the angle LZ7, i.e.
the arc AG visible on the surface of the earth, over the angle LET, i.e. the
arc AD visible from the center of the earth. From the point Z, we draw ZH
perpendicular to EL. The arc AD is the complement of the altitude visible
from the center of the earth. So, the angle ZEH is known <from the
computation of the lunar position>. ZHE is a right angle, and ZE is the
radius of the earth, being <equal to> one degree (i.e. the unit of length).
So, both EH and HZ are known. EL is the distance of the moon from the
earth. Then HL is known, and so is LZ. Then ZH is known by taking LZ
<equal to> 60 parts, and its arc is known. Then the angle £LZ is known
and its magnitude is <equal to> the arc GD. This is what we wanted to
demonstrate.

Chapter 9: On the six angles needed in <the calculation of> solar eclipses.

First <case>, when the position of the moon is at the first <degree> of
Aries or Libra and it is at the ascending <ecliptical> degree of the time:

B

<The first figure> N ‘ 5
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Let ABGD in the first figure be the horizon circle, BED the meridian, £
the zenith, 4ZG the ecliptic, £4 <a part> of the altitude circle, and the
point 4 the rising position of the equinox. The angle £AZ is desired, its
magnitude being <equal to> the arc £Z. Both AZ and EA are quadrants,
and £Z i1s known, because the point Z is the first of Cancer or the first of
Capricorn. Therefore the angle £4Z is known (see commentary).

Second <case>, when the position of the moon is at the first <degree> of
Aries or Libra and it is at the <ecliptical> degree of the tenth <house> of
the time: It (i.e., the desired angle) is the angle GZD in the second figure,
taking AZT as the celestial equator, //ZG as the ecliptic, the point Z as the
equinox, and BED as the meridian. 7ZD is a right angle, and the angle
TZG 1s the total declination. So the remaining angle GZD is the
complement of the <total> declination.

H
<The second figure> (

A T

D
Third <case>, when the position of the moon is other than the first

<degree> of Aries or Libra, and it is at the ascending <ecliptical> degree
of the time: It 1s the angle ZAFE in the third figure, assuming A4 to be other
than the rising position of the equinox, and the circle BED drawn with its
pole at A4 and its radius <equal to> the chord of the quadrant of <a great>
circle. Then the arc EZ is equal to the altitude of the pole of the ecliptic
(computed i Chapter 6), and its magnitude equal to the angle £A4Z.

B
<The third figure>

139



-

Fourth <case>, when the position of the moon is the first <degree> of
Cancer or the first <degree> of Capricorn, and it is the <ecliptical>
degree of the tenth <house> of the time: It is the angle AZD in the fourth
figure, AZG being the ecliptic and BED the meridian. It (i.e., the desired
angle) is a right angle, for AZ is a quadrant (4 is an equinox).

B
<The fourth figure>

Fifth <case>, when the position of the moon (H in the fifth figure) is
other than an equinoctial or solstitial point, and it is the <ecliptical>
degree of the tenth <house> of the time: Let ABGD in the fifth figure be
the horizon circle, BED the meridian, L the pole of the celestial equator,
GKA the ecliptic, and Z its pole. KHE is the desired angle. In the triangle
KHE, K is a right angle. The side EH is <the distance> between the zenith
and the ecliptic along the meridian. EX is equal to the altitude of the pole
of the ecliptic. The ratio of the Sine of HE to that of £K is equal to the
ratio of the greatest Sine to that of the angle H. So the angle / is known.
(Some manuscripts contain an alternative method which uses the points /
and S, see the commentary to this chapter.)

<The fifth figure>

Sixth <case>, when the position of the moon is any <arbitrary ecliptical>
degree between the ascendant and the descendant: Let ABGD in the sixth
figure be the horizon circle, 4ZG the ecliptic, its point K the <ecliptical>
degree of the moon, BED passing through its (i.c., ecliptic’s) poles <and
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the zenith E>. EKN is <a part> of the altitude circle. EKZ is the desired
angle. In the triangle EKZ, Z is a right angle. The side KE is the
complement of the altitude of the <ecliptical> degree of the moon
(computed in Chapter 7). The side EZ is equal to the altitude of the pole
of the ecliptic (computed in Chapter 6).

D
N
<The sixth figure> ‘
A

The ratio of the Sine of KE to that of EZ is equal to the ratio of the
greatest Sine to that of the angle K. Then the angle K is known. This is
what we wanted.

Chapter 10: On <finding> the longitudinal and latitudinal parallax of the
moon from these angles.

Let AH be an arc of the ecliptic, /L an arc of the latitude circle, £7 the
northern latitude of the moon, £ the <ecliptical> degree of the moon, T’
the body of the moon, and S the zenith. We draw two arcs of the <two>
altitude circle<s> passing through the two points 7 and E. They are the
arcs SA4 and SE. Let 70 be the parallax in the altitude circle. We draw OK
parallel to AH, and OG parallel to /E. The lines in this figure are arcs.
However, there is no <noticeable> difference between taking them as arcs
or as straight lines, because they are small at the time of eclipses (because
the lunar latitude is almost zero).
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The two line <segments> EG and OG are desired. £G is the difference in
longitude, and OG the apparent latitude. The angle SEH is the latitude
angle (computed in Chapter 9). There is no noticeable <difference>
between it and the angle SAH. The angle SAH is equal to the angle 70K,
because OK is parallel to AE. Both the angles SAH and 7OK are equal to
the angle SEH, so they are known. OKT is a right angle; so the angle OTK
is known. Since OT, the hypotenuse of the right angle is known, both OK
and KT are known. K7, the difference in latitude, <is known>, so KE is
known, and it is equal to OG. Then OG is known, and it is the apparent
latitude. OK is equal to GE. So GE is known, and it is the difference in
longitude. So because of its latitude E7, the moon is seen at the point G
of the ecliptic. Again, let £Z be the latitude in the south <direction>, and
ZM the parallax in the altitude circle. We join ML parallel to AH and MN
parallel to £L. The two line <segments> MN and NE are desired. The
angle SDH is approximately equal to the angle SEH. The angle ZML 1s
equal to the angle SDH, because ML is parallel to EH. So the angle ZML
is equal to the angle SEH. L is a right angle, and ZM is known. Then the
angle MZL is known; so the sides of the triangle MLZ are known. EZ is
known; so EL is known, and it is equal to MN. So MN is known, and 1t is
the apparent latitude. ML is known, so EN is known, and it is the
difference in longitude. So because of its latitude £Z, the moon is seen at
the point N of the ecliptic. This is what we wanted to demonstrate.

Chapter 11: On drawing the figure of a solar eclipse.

<Let> ABGD <be> a circle <with its radius equal to> the sum of the two
radii, centered at £, EB equal to the radius of the moon plus the radius of
the sun, EL the radius of the sun and ZLH/ the circle of its surface. £7 is
the <apparent> latitude of the moon, 7K its radius, and ZKHM the circle
of its surface. Then <the segment> ML of the diameter of the sun is <the
magnitude of> the solar eclipse in digits. The line <segment> AG is the
east-west line, and the line <segment> BD is the north-south line. This is
what we wanted.




Chapter 12: On <finding> the altitude of the moon, taking account of its
latitude.

<Let> ABGD <be> the horizon circle, BHD the ecliptic with its pole at L,
AEG passing through its poles <and the zenith>, and / the body of the
moon. We draw through it (i.e., the point /) <the arcs> LIK, BID <,and>
EIT. The arc IT is desired. <The arc> /K is the latitude of the moon. In the
two triangles L/Z and LKH, the angle L is common, and Z and H are right
angles.

So the ratio of the Sine of L/ to the Sine of /Z is equal to that of the Sine
of LK to the Sine of KH. But L/ is the complement of the latitude of the
moon, LK is a quadrant, and HK is the complement of the distance of the
<ecliptical> degree of the moon from the ascendant. So /Z is known,
therefore, its complement /B is known. Again, in the two triangles B/K
and BZH the angle B is common, and K and H are right angles. So the
ratio of the Sine of B/ to that of /K is equal to the ratio of the Sine of BZ
to the Sine of ZH. But BI is known, /K is the latitude of the moon, and BZ
is a quadrant. So ZH is known. But 4H is the complement of the altitude
of the pole of the ecliptic <, so it is> known. Thus the whole AZ is
known. Also, in the two triangles B/T and BZA, the angle /BT is common,
and 7 and A are right angles. So the ratio of the Sine of B/ to that of /7 is
equal to the ratio of the Sine of BZ to the Sine of Z4. But B/ is known,
BZ is a quadrant, and Z4 is known. So /7 is known. This 1s what we
wanted to demonstrate.

Chapter 13: On <finding> the longitudinal and latitudinal parallax of the
moon by a method <the validity of> which can be proved.
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It was said in Chapter 11 of Section 6 in the First Book that the altitude
obtained from the calculation is true altitude. <If> the parallax is
subtracted from it, <the remainder> is the apparent altitude. Having said
that, <I add that the subject of> this chapter occurs in five cases.

First <case>, when the altitude of tenth house at the time is 90 degrees
and the moon has no <non-zero> latitude: The parallax in the altitude
circle is longitudinal parallax alone.

Second <case>, when the distance of the <ecliptical> degree of the moon
from the ascendant of the time is 90 degrees, whether the moon has or
does not have a <non-zero> latitude: The parallax in the altitude circle is
the apparent latitude alone (there is no longitudinal parallax).

Third <case>, when the altitude of the tenth <house> at the time 1s 90
degrees and the moon has a <non-zero> latitude. Let ABGD in the first
figure be the horizon circle, BED the ecliptic and the two points 4 and G
its poles (£ is the zenith). AEG passes through these two poles. £O is <a
part> of the altitude circle, L the body of the moon, and LK the parallax in
the altitude circle.

The first <figure> D

We draw the arcs ALT, AKI and BLW through the points L and K. Then
LT is the southern latitude of the moon (the method is also valid for
northern latitudes), K/ the apparent latitude, and 77 the difference in
longitude. In the two triangles £LT and EK/ the angle £ is common, and
7 and ] are right angles. So the ratio of the Sine of £L to the Sine of L7 is
equal to the ratio of the Sine of EK to the Sine of KI. EL is the
complement of the true altitude (computed in Chapter 12), L7 the latitude
of the moon, and EK the complement of the apparent altitude. So K/ 1s
known, and it is the apparent latitude. Also the angle 4 is common to the
two triangles AKO and AIB, and O and B are right angles. So the ratio of
the Sine of AK, the complement of the apparent latitude, to the Sine of
KO, the apparent altitude, is equal to the ratio of the Sine of A/, the
greatest Sine, to the Sine of /B. So /B is known, and 7B is the distance of
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the <ecliptical> degree of the moon from the ascendant. So 77 is known,
being the difference in longitude.

Fourth <case>, when the altitude of the tenth <house> of the time is less
than 90 degrees and the moon has no <i.e., zero> latitude. Let ABGD in
the second figure be the horizon circle, BHD the ecliptic and the two
points 7 and M its poles through which passes the circle 4AEG (£ is the
zenith). £O is <a part> of the altitude circle, L the body of the moon, and
LK the parallax in the altitude

The second <figure>

circle. We draw the arc 7K/ and through the two points Z and K. So K/ is
the apparent latitude, and L/ is the longitudinal parallax. In the two
triangles KL/ and HLE their two angles L are equal, and / and H are right
angles. So the ratio of the Sine of LE to the Sine of EH is equal to the
ratio of the Sine of LK to the Sine of K/. LK is the parallax in the altitude
circle, LE is the complement of the true altitude, and £H is the altitude of
the pole of the ecliptic. So K/ is known, and it is the apparent latitude.
Difference in longitude: In the triangle LK/, / is a right angle. So the ratio
of the Cosine of /K, the apparent latitude, to the Cosine of KL, the
parallax in the altitude circle, is equal to the ratio of the greatest Sine to
the Cosine of L/, the longitudinal parallax. So L/ is known, <and it is the
difference in longitude>.

Fifth <case>, when the altitude of the tenth <house> of the time is less
than 90 degrees and the moon has a <non-zero> latitude. Let ABGD in
the third figure be the horizon circle, BHD the ecliptic and M its pole.
AEG is the circle passing through it (i.e., M) <and the zenith £>. EO is <a
part> of the altitude circle, L the body of the moon, and LK the parallax in
the altitude circle. We draw the arcs BKZ, BLW, MLT, and MKI through
the points L and K. Then 7L is the northern latitude of the moon, K/ the
apparent latitude, and 77 the longitudinal parallax.
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The third <figure>

In the two triangles MLW and MTH the angle M is common, and W and H
are right angles. So the ratio of the Sine of ML to the Sine of LI is equal
to the ratio of the Sine of M7 to the Sine of TH. ML is the complement of
the latitude of the moon, M7 is a quadrant, and 7H is the complement of
the distance of the <ecliptical> degree of the moon from the ascendant.
So LW is known. Also, in the triangles ELW and EKZ the angle E is
common, and W and Z are right angles. So the ratio of the Sine of £L to
the Sine of LW is equal to the ratio of the Sine of £X to the Sine of KZ.
EL is the complement of the true altitude, LW is known, and EK is the
complement of the apparent altitude. So KZ is known, and its
complement KB is known. Also, in the triangles BKO and BZA the angle
B is common, and O and A are right angles. So the ratio of the Sine of BK
to the Sine of KO is equal to the ratio of the Sine of BZ to the Sine of Z4.
BK is known, KO is the apparent altitude, and BZ is a quadrant. So Z4 is
known. AH is the complement of the altitude of the pole of the ecliptic.
So HZ is known. Also, in the triangles BK/ and BZH the angle B is
common, and H and [ are right angles. So the ratio of the Sine of BK to
the Sine of K/ is equal to the ratio of the Sine of BZ to the Sine of ZH. BK
is known, BZ is a quadrant, and ZH is known. So K/ is known, being the
apparent latitude.

Difference in longitude: In the triangles MKZ and M/H the angle M is
common, and Z and H are right angles. So the ratio of the Sine of MK to
the Sine of KZ is equal to the ratio of the Sine of M/ to the Sine of /.
MK is the complement of the apparent latitude, KZ is known, and M/ is a
quadrant. So /H is known. TH is known, and so is 77, which is the
longitudinal parallax. So the apparent latitude and the longitudinal
parallax in <all> different situations are known. That is what we wanted
to demonstrate.
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Chapter 14: On the visibility arc<s>.

<Let> ABGD <be> the horizon circle, BZD the ecliptic and ! its pole.
AEG passes through the two poles of the ecliptic <and the zenith E>.
EHT is the altitude circle <through the sun 7>, D the <ecliptical> degree
with which the moon sets <simultaneously>, Z4 is the complement of the
altitude of the pole of the ecliptic, and it is <equal to> the magnitude of
the angle 4DZ which is equal to the angle 7DH. The arc 7H is desired. In
the triangles DHT and DZA the two angles D are equal, and / and 4 are
right angles. So the ratio of the Sine of DT to the Sine of 7H is equal to
the ratio of the Sine of DZ to the Sine of Z4. DT is the distance between
the sun, being the point 7, and the <ecliptical> degree with which the
moon sets <simultaneously>, being the point D. DZ is a quadrant and ZA4
is the complement of the altitude of the pole of the ecliptic. So 7TH is
known, being the desired <arc>. As found up to now, its minimum value
<for the visibility of the lunar crescent> is 6%z degrees to 7 degrees. That
is what we wanted to demonstrate.
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Commentary

IV.6.1 This is a proof of the validity of the method for converting
‘absolute digits’ (=linear digits) into ‘adjusted digits’ (=area digits) in the
eclipses. Here, and in the subsequent “proofs”, Kuishyar assumes that all
arcs of great circles on the sphere can be represented as straight lines in a
plane. See also 1.6.4 and its commentary.

1V.6.2 In the figure, the angle Z is usually very close to 90 degrees. So to
simplify the calculations, Kiishyar assumes it to be a right angle. This
implies that AB and AG are approximately parallel, although they actually
intersect in the figure. See also 1.6.5 and its commentary.

IV.6.3 Here, 4B is no longer assumed parallel to 4G, and the small
change of the moon’s latitude during the eclipse has been taken into
account. Since point L is the midpoint of the chord through S and O,
which is not parallel to AG, the angle LEA is not exactly equal to 90
degrees. According to my computation, the maximum difference between
the results from the methods of Chapter 2 and Chapter 3 is less than
0.08%.

IV.6.4 This is merely an illustration of what Kushyar describes in 1.6.6.
The figure illustrates the situation in the middle of the eclipse. The
references to the four cardinal directions are merely symbolic, since the
moon can be on every side of the shadow cone of the earth (depending on
the lunar latitude).

IV.6.5 The proof is correct. The determination of the distanceEB of the
epicycle center corresponds to the procedure which Kiishyar describes in
1.6.7. Here Kiishyar deviates from the Ptolemaic lunar model by
measuring the adjusted mean anomaly from the epicyclic (or true)
apogee, while Ptolemy takes it from another point on the epicycle (mean
apogee) which lies on the extension of the line connecting B and a new
point £°, so that E is the midpoint of the line segment DE" [Ptolemy
1984, 249-251; Kashino 1998, 9].

Kashyar then determines an “adjusted radius™ of the epicycle which does
not seem to play a role in the proof of IV.6.5. In the light of the proof of
1V.6.5, the “adjusted radius” in 1.6.7 seems superfluous, and can be
replaced by the normal value of the epicycle radius (which Kiishyar also
used in the computation of the solar distance).

IV.6.6 In the figure, £ represents the zenith and EH is drawn
perpendicular to the ecliptic. Since £ is the pole of the horizon, the pole 4
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of circle ET is on the horizon. Since circle EHT is perpendicular to the
ecliptic, the pole of ecliptic is on circle EHT, 90 degrees away from point
H. Thus the altitude of the pole of the ecliptic is equal to the complement
of EH of the zenith distance.

IV.6.7 This is a proof of the validity of the method provided m 1.6.9

IV.6.8 This is a proof of the validity of the method provided in 1.6.11. In
a personal communication, Prof. E. S. Kennedy remarks: “’The Sphere of
the Whole’ (in Arabic kurrat al-kull) means ‘the celestial sphere together
with its contents’: the immobile terrestrial sphere at the center (containing
us), next the moon, next the five planets, comets etc. in between, and
finally the fixed stars on the inside of the celestial sphere.”

The figure is very similar to that used by Ptolemy [1984, 248] for finding
the distance of the moon from a known lunar parallax. Since the
computation of parallax is mostly used for the prediction of lunar
eclipses, which happen when the center of the lunar epicycle is at
maximal distance from the earth, it is reasonable to take the lunar
distance equal to 60 earth radii. Kiishyar’s assumption that the magnitude
of the angle L is equal to arc GD is approximately true, since the radius
EA of the universe is very large compared to the radius of the lunar
sphere ET.

IV.6.9 The proofs of the validity of the methods provided in 1. 6.12 for
the six cases of the angle between the ecliptic and the altitude circle
passing through the ecliptical degree of the moon are presented in this
chapter. These angles are used in Chapter 1V.6.10 for finding the
longitudinal and the latitudinal parallax of the moon.

In the first case, the required angle is equal to 90" —¢ * &, where ¢ is the
geographical latitude of the locality and ¢ is the obliquity of the ecliptic.
In the second case, this angle is equal to 90" —¢ (note that we always take
the smaller angle). The tenth house is the point of intersection of the
ecliptic with the meridian above the horizon.

In the fifth case, the ms. A only contains an alternative proof which is
found as marginal note in F, V and L. The points / and § in the figure are
related to this alternative proof. The ms. Y only provides a proof almost
similar to that of A, but using the triangle KHM. The ms. M only contains
the proof of the main method in the text of F, V and L. As mentioned in
the footnote of the Arabic text, the mss. F, V, L and M use the first figure
for the cases one to four. But in A and Y one figure is drawn for each
case, and we have followed them in this regard.
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IV.6.10 This chapter presents the proofs of the validity of the methods
for the two cases provided in 1.6.13 in which the latitude of the moon is
towards north or south, respectively. In the figure, O is the apparent lunar
position, as seen by the observer, and 7 is the “real” lunar position, as
seen from the center of the earth. See IV.6.12 for a more refined
treatment (in which SHE and SAH are no longer considered as equal).

IV.6.11 This is an example of the drawing described in 1.6.16. Also see
the commentary to 1V.6.4.

IV.6.12 This is a proof of the method provided in 1.6.17. In that method,
‘the first arc’ is /B, ‘the second arc’ is HZ, and ‘the result from the
complement of the altitude of the pole” is AZ. Here we have provided the
version found in A and Y. Other mss. contain proofs of the case in which
BHD is the celestial equator. They correspond to ‘another method’ in
1.6.17 which 1 have deleted, because that method and its proofs do not
seem authentic. See 1.6.17 and the footnote to the Arabic text of IV.6.12.

IV.6.13 In this chapter more accurate methods of computation of the
longitudinal and latitudinal parallax are provided, in contrast to the
approximate methods of Chapter 10. We have not seen this refined
determination of the longitudinal and latitudinal parallax in other Arabic
sources. Of course, since the arcs involved in this subject are very small,
the results of the approximate methods are sufficient for practical
purposes and the accurate methods merely have theoretical significance.
The first and the second cases are trivial. The proof of the third and the
fourth cases are provided only for the first method of these cases in
1.6.18. No proof is given for the alternative methods relating to the third
and the fourth cases in 1.6.18. In the proof of the validity of the method
for finding the apparent latitude in the fifth case, the arcs LK, KZ, ZA and
ZH are corresponding to the ‘first’, ‘second’, ‘third’ and ‘fourth’ arcs
mentioned in the description of the method in 1.6.18. For finding the
difference in longitude in this case, /H represents ‘the first arc’.

[V.6.14 This is a proof of the procedure of 1.6.20 for finding the visibility
arc. The minimum value of the visibility arc for the moon is mentioned to
be 6 degrees in 1.6.20 (less than 6% to 7 degrees in this chapter). The
limit values of the visibility arc for the planets are mentioned in 1.6.20.

In the single chapter of Book III on the definition of the astronomical
terms, Kiishyar defines the visibility arc (qaus al-ru ya) as follows: “The
arc <which is part> of the altitude circle, between the horizon on which
lies the planet, and the sun <situated> under the earth (i.e., the horizon); it
may also be regarded as the arc of the altitude circle between the planet
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<situated> above the earth (i.c., the horizon) and the horizon on which
lies the sun.” Ptolemy gives the limit magnitudes of arcus visionis
(visibility arc) for the stars and the planets as the sun’s depression at the
moment the celestial body is on the horizon [Ptolemy 1984, 413-415,
639-640]. In 1.6.20, Kashyar uses both cases of the visibility arc, below
and above the horizon. Birjandi states that the arc of visibility was
considered above the horizon because the depression is a calculated
value, whereas an altitude could be observed [al-TuisT 1993, 11, 464]. For a
description of the visibility arc (arc of vision, arcus visionis) see
[Pedersen 1974, 388; Neugebauer 1975, I, 234-236].
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Section 7: On what pertains to astrology, in one chapter
On the projection of the ray taking the latitude of the planet into account.

Those earlier astrologers who had some knowledge of astronomy said
that when the planet has a <non-zero> latitude, its rays are not taken from
the ecliptic, but from the <great> circle passing through the planet and
cutting the ecliptic at <a distance equal to> the supposed distance. Al-
Battani (in Chapter 54 of his al-Zjj al-Sabr [1899, 196-197]), wishing to
calculate this, has gone to great lengths to calculate and describe this. If
this (i.e. the projection of the ray) is influential in astrology, and if it is
needed in astrology, the way to <find> it is really short and its calculation
is as | have demonstrated in Book 1.

Proof: Let ABGD be the ecliptic circle, £ its pole, and the point / the
body of the planet. LHT7 passes through the two poles of the ecliptic. So 7
is the <ecliptical> degree of the planet, 7/ is its latitude, and £H is the
complement of the latitude. Let A/G pass through the planet, and Z <be>
its pole. BED passes through the two poles (i.e., £and 2). GH is assumed
to be 60 degrees, being the sextile arc on this circle, and its complement
HI is 30 degrees. In the two triangles EHI and ETB, the angle £ is
common, and /and B are right angles. So the ratio of the Sine of £H to
that of H/is equal to ratio of the Sine of E7, being the greatest Sine, to
the Sine of BT, Then BT is known, being the desired magnitude on the
ecliptic. If it is subtracted from BG (i.e., 90), the remainder 7G is the
sextile arc. If it (i.e., B7) is added to BG, the result is the trine arc. If the
arc GT is assumed <to be> 60 degrees, and the arc GH is desired, the
ratio is the same as before. The arc H/ will be known, its complement /G
will be the sextile arc, and its addition to G/ <will result> in the trine arc.
Gl and GB are the quartile arcs, any of which may be taken. That is what
we wanted to demonstrate.
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Commentary
IV. 7 This is a proof of the method presented in 1.7.2 for the calculation

of the projection of the rays when the planet has non-zero latitude. See
[.7.2 and its commentary.
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Section 8: On the operations which are less needed, <in> 8 chapters

Chapter 1: On <finding> the latitude of a locality from the hours (i.e., the
duration) of <its> longest and shortest days.

<Let> ABG <be> the horizon circle, AEG the meridian, BED the celestial
equator, /{ its pole, and Z the rising position of <the beginning of>
Capricorn or Cancer. We draw HTZ. BZ is the ortive amplitude and Z7' is
the total declination (i.e., the obliquity of the ecliptic). TE is hall the day
arc. It is known from the multiplication of half the <number of
equinoctial> hours of the day by 15. E4 is the complement of the latitude
of the locality. £/ is the desired latitude of the locality (/ is the zenith). In
the two triangles THE and HZA the angle H is common, and £ and A are
right angles. So the ratio of the Sine of HZ to that of Z4 is equal to the
ratio of the Sine of TH to that of TE. The Sine of HZ is equal to the Sine
of the complement of the <total> declination. H7T is a quadrant and 7E is
known. So ZA4 is known, and it is the complement of the ortive amplitude.
Then ZB, the ortive amplitude, is known. In the two triangles B7Z and
BEA the angle B is common, and 7" and E are right angles. So the ratio ol
the Sine of BT, the equation of the daylight, to the Tangent of 7Z, the
total declination, is equal to the ratio of the Sine of BE, the greatest Sine,
to the Tangent of £4, the complement of the latitude of the locality (see
the premise proved in 1V.3.5).

<Proof of another method:> In the two triangles BZT and BAE the angle
B is common, and 7 and £ are right angles. So the ratio of the Sine of BZ
to that of Z7 is equal to the ratio of the Sine of BA to that of AE. BZ is the
ortive amplitude, Z7 is the <total> declination, and BA is a quadrant.
Then AL is known, and it is the complement of the latitude of the locality.
Then /E is known, and it is the latitude of the locality. This is what we
wanted to demonstrate. Now it has become clear that this proof is
generally valid for the hours of every day of the year, if the declination of
the sun corresponding to its ecliptical degree is taken (instead of the total

declination). A
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Chapter 2: On <finding> the altitude without (i.e., with zero) azimuth.

<Let> ABGD <be> the horizon circle, Z the zenith, AZG the meridian,
and BHD the celestial equator. Z7TB is <a part> of the altitude circle
passing through the rising position of the equinox (i.e., the East point
with zero azimuth), and T is the body of the sun or the planet. So /7 is the
declination of the sun or the distance of the planet from the celestial
equator. In the two triangles BT/ and BZH, the angle B is common, and /
and / are right angles. So the ratio of the Sine of BT to that of 77 is equal
to the ratio of the Sine of BZ to that of ZH. TI is the declination or the
distance, BZ is a quadrant, and ZH is the latitude of the locality. So BT is
known, and it is the altitude without (i.e., with zero) azimuth. This is what
we wanted to demonstrate.

K| :

Chapter 3: On <finding> the azimuth of <a point of given declination
and> any assumed altitude.

<lLet> ABGD <be> the horizon circle, 4EG the intersection of the
meridian <plane> and the horizon, BED the intersection of the cclestial
equator <plane> and the horizon, LK the intersection of the parallel circle
<plane> and the horizon, and EH the radius of the altitude circle. OZ is
the perpendicular drawn from the intersection <point> of the altitude
circle and the parallel circle to the horizon plane. So it is the Sine of the
altitude. We draw Z7 perpendicular to £B. It is also perpendicular to LK,
because BE and KL are parallel. We draw H/ perpendicular to BE. It is
the Sine of the azimuth. MN is the perpendicular drawn from the
intersection <point> of the meridian and the celestial equator to the
horizon plane. It is the Cosine of the latitude of the locality. We join ME
and OS. The <corresponding> sides of the two triangles MNE and OZS
are parallel. So the ratio of MV, the Cosine of the latitude of the locality,




to NE, the Sine of the latitude of the locality, is equal to the ratio of OZ,

>

m\j
Kd
=)

L

& o i
southern declination northern declination northern declination

and azimuth and southern azimuth and azimuth

the Sine of the altitude, to ZS, <which is called> ‘the argument of the
azimuth’. So ZS is known, and S7 is the Sine of an arc equal to BK, the
ortive amplitude. Then ZT is known, and it is <called> ‘the equation of
the azimuth’. Again, in the two triangles £Z7 and EHI, the two bases ZT
and H/ are parallel. So the ratio of £Z, the Cosine of the altitude, to Z7,
the equation of the azimuth, is equal to the ratio of £H, the greatest Sine,
to HI, the Sine of the azimuth. So H/ is known, and it is the required
azimuth. This is what we wanted to demonstrate.

In the second figure, ZS, the argument of the azimuth, is greater than 7§,
which is equal to the Sine of the ortive amplitude. If S7"is subtracted from
SZ, the remainder is the equation of the azimuth, and the azimuth B/7 is
southern. In the third figure, ZS, the argument of the azimuth, is less than
7S, which is equal to the Sine of the ortive amplitude. If ZS is subtracted
from S7, the remainder is Z7, which is the equation of the azimuth, and
the azimuth is northern. This is what we wanted to demonstrate.

Another method <for the case> when the ascendant and the tenth
<house> are¢ known: <Let> ABGD <be> the horizon circle, AEG the
meridian, K the pole of the celestial equator, and BHD the celestial
equator. A

A*g\
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I is the <ecliptical> degree of the sun, and B/D passes through it. E/L is
<a part> of the altitude circle. K/T passes through the pole of the celestial
equator and the <ecliptical> degree of the sun. The arc BL is required,
and I say that it is known.

Proof: In the two triangles K/Z and KTH, the angle HK7 is common, and
Z and H are right angles. So the ratio of the Sine of K/ to that of /Z is
equal to the ratio of the Sine of K7 to that of TH. So /Z is known, because
Kl is the complement of the declination and 7H is the right ascension (in
the ancient sense) of the distance of / from the meridian (7H is known
because the ascendant and the tenth house are known). Again, in the two
triangles E7Z and ELA, the angle ZE/ is common, and Z and A are right
angles. So the ratio of the Sine of E/ to that of /Z is equal to the ratio of
the Sine of EL to that of LA. Then LA, the complement of BL, is known.
So BL is known. This is the case, because £/ is the complement of the
altitude, and /Z is known. Since the two middle terms in the first
proportion are equal to the two middle terms in the other proportion, the
ratio of the Sine of K/ to that of E/ is equal to the ratio of the Sine of AL
to that of H7T. So AL, the complement of the azimuth, is known.
Therefore, BL 1s known. This is what we wanted.

Chapter 4: On <finding> the altitude from the azimuth <and the
declination>.

Premise: If the circle of the celestial equator and an altitude circle
interscct, and we take an arc of the meridian <starting> from the horizon
and equal to the latitude of the locality, then <the distance > between the
zenith and the celestial equator on the altitude circle is equal to <the
distance> between the horizon and the circle passing through the pole of
the altitude circle and <the endpoint of an arc> equal to the latitude of the
locality.
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<Proof:> Let ABG be the horizon circle, AEG the meridian, BZD the
celestial equator and N its pole. JEL is the altitude circle, and each one
<of the arcs> GN, ED and S4 is <equal to> the latitude of the locality. 7
and M are the two poles of the altitude circle. We draw <the arcs> MNK
and 7SH. 1 say that EZ is equal to HI. <Proof:> The point Z is the pole of
the circle MNK; <so> KZ is a quadrant. LE is <also> a quadrant. We
subtract the common <arc> KE; the remaining <arcs> LK and EZ are
equal. The ratio of the Sine of MN to that of NG is equal to the ratio of
<the Sine of> MK to that of KL. MN is equal to 7S, NG is equal to S4,
and MK is equal to TH. So the remaining arcs H/ and KL are equal.
Hence it is demonstrated that KL is equal to EZ. Then HI is equal to EZ.
This is what we wanted to demonstrate.

When the azimuth is northern: <Let> ABGD <be> the horizon circle,
AEG the meridian, / the pole of the celestial equator, BHZ <a part> of the
celestial equator, ED <a part> of the altitude circle, <E is the zenith,> and
K the <ecliptical> degree of the sun. Then BD is the given azimuth, and
DG is its complement. IG is the latitude of the locality. We take GL equal
to BD, and we draw LIT and HKI. The arc KD, the altitude <of the sun>
at the <given> time, is desired. KH, the declination of the sun, is always
northern, and K1/ is its complement. So the ratio of the Sine of £/ to that
of IT is equal to the Sine of EG to that of GD. EI is the complement of the
latitude of the locality, and DG is the complement of the azimuth. So /7' 1s
known, and its complement, L/, is known. This is the case (i.e., the above
proportion holds), because in the two triangles E/7 and EGD the angle E
is common, and 7 and D are right angles. Also, in the two triangles LIG
and LTD the angle L is common, and G and D are right angles. So the
ratio of the Sine of L/ to that of /G is equal to the ratio of the Sine of LT
to that of 7D. LI is known, and /G is the latitude of the locality. So 7D is
known. Also, in the triangle /K7, T is a right angle. So the ratio of the
Cosine of 77 to the Cosine of /K is equal to the ratio of the greatest Sine
to the Cosine of K7. TI is known, and /K is the complement of the
declination of the sun. So the complement of 7K is known. Then, 7K 1s
known. 7D was already known, so the remainder KD, which is desired, is
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When the azimuth is southern: <Let> ADG <be> the southern horizon
semicircle, £D the meridian, 4K <a part> of the celestial equator and L its
pole, and EZ <a part> of the altitude circle. Then AZ is the given azimuth.
We take DB equal to AZ, and DI equal to EK, which is the latitude of the
locality. We draw BIT. M is the body of the sun. We draw MLN. HZ is the
argument of the altitude, MH the equation of the altitude, A/ the
argument of the arc of revolution, and NH the equation of the arc of
revolution. Based on what was demonstrated in the premise, £H is equal
to 7Z. If EH and ZD are known, HK is <also> known, and so is its
complement HA. So the circle of the celestial equator and the altitude
circle intersect at a point <that can be> known either from the two
triangles EHK and EZD, or from the two triangles AHZ and AKD. In the
triangle MNH, N is a right angle. So the ratio of the Cosine of MN to the
Cosine of MH is equal to the ratio of the greatest Sine to the Sine of HN.
So AN is known. In this figure, the arc MZ is desired. In the two triangles
ETI and EZD, the angle E is common, and 7 and Z are right angles. So
the ratio of the Sine of £/,the complement of the latitude of the locality, to
the Sine of IT is equal to the ratio of £D,the greatest Sine,to the Sine of
DZ, the complement of the azimuth. Then 77 is known, and its
complement B/ is known. Also, in the two triangles BID and BTZ the
angle B is common, and D and Z are right angles. So the ratio of the Sine
of BI, which is known, to that of /D, the latitude of the locality, is equal to
the ratio of the Sine of BT, which is the greatest Sine, to the Sine of 77,
which is unknown. So Z7 is known. It was already demonstrated to be
equal to £H. So EH is known. Then ZH, the argument of the altitude, is
known. Also, L is the pole of the celestial equator and M is the
<ecliptical> degree of the sun. Then, LMN is the declination circle, and
MN, the declination, is southern. In the two triangles HMN and HEK,
their angles / are equal, and K and N are right angles. The ratio of the
Sine of HM, which is the equation of the altitude, to the Sinc of MN, the
declination of the sun, is equal to the ratio of the Sine of HE, the
complement of the argument of the altitude, to the Sinc of £K, the
latitude of the locality. So //M and ZI1 arc known. Then MZ, which is the
desired altitude, is known. This is what we wanted to demonstrate.




Chapter 5: On the distance between two stars, one of which has a <non-
zero> latitude.

<Let> ABGD <be> the latitude circle centered at £, AEG the ecliptic with
H and T as its poles and centered at £. We assume the point B as the star
having a <non-zero> latitude. DZB is the circle passing the star and
cutting the ecliptic at Z, where Z is a degree on the ecliptic, or the
position of the star without a (i.e., with zero) latitude. The arc BZ is
desired. GB is the latitude of the star, and GZ is <the distance> between
the <ecliptical> degree of the star and the <ecliptical> degree from which
the distance of the star is desired. In the triangle ZGB, G is a right angle.
So the ratio of the Cosine of GZ to that of ZB is equal to the ratio of the
greatest Sine to the Cosine of GB. So BZ is known. This is what we
wanted to demonstrate.

D
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Chapter 6: On the distance between two stars <both> having <non-zero>
latitudes.

<Let> ABG <be> the latitude circle, AEB the ecliptic and Z its pole. First,
we assume the two stars <to be> the points G and /1 <with latitudes> in
opposite dircctions. We draw <the arcs> G//K, ZHT, and EHD (£ is the
pole of the circle ABG). The required arc is <the arc> GH which passcs
through the two stars. In the triangle HET, T is a right angle. So the ratio
of the Cosine of TE, the complement of <the distance> between the two
stars <measured> in terms of the ecliptical degrees, to the Cosine of £H,
is equal to the ratio of the greatest Sine to the Cosine of H7, the latitude
of one of the two stars. Thus £77 is known. In the two triangles £/7 and
EDA, the angle E is common, and 7 and A4 are right angles. So the ratio
of the Sine of £H, which is known, to that of H7, the latitude of the first
star, is equal to the ratio of the Sine of £D, the greatest Sine, to that of
DA. So DA is known. AG is the latitude of the other star. So the sum GD
is known. In the triangle GHD, D is a right angle. So the ratio of the
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Cosine of GD, which is known, to the Cosine of /G, which is desired; is
equal to the ratio of the greatest Sine to the Cosine of HD, which is
already known. So HG is known.

Again, we assume the two stars <to be> the points H and L <with
latitudes> in the same direction. We draw LHM. Based on what has
already been explained above, EH, HD, and DA are known. AL is the
latitude of the other star. So LD is known. In the triangle LHD, D is a
right angle. So the ratio of the Cosine of LD, which is known, to the
Cosine of LH, which is desired, is equal to the ratio the greatest Sine to
the Cosine of DH, which is known. So LH is known. It is <also> known
that if DA is less than AL, and this is <possible> if the point D is situated
between the points 4 and L, then <DA> must be subtracted from AL.
Then the remainder DL is known. In the triangle DHL, D is a right angle,
so LH is known. This is what we wanted.

Chapter 7: On the extraction of the meridian line.

Let AGZ be the horizon semicircle, and A7Z the semicircle of the celestial
equator coinciding with the <plane of the> horizon circle or
perpendicular to it; and let their <common> center <be> E. We suppose
the sun rotating on it (i.e., the equator) or parallel to it in its universal
rotation. 7" is the midheaven. The arcs 7/ and 77 are equal. A gnomon
should be mounted evenly and vertical at £. When the sun is at the point
H., the shadow of the gnomon is £B. When it is at the point /, its shadow
is £D. We join BD, and we bisect it at K. We draw KE and extend it to L.
Then the line KL is the meridian line. This is because the shadow of the
gnomon is always opposite to the body of the sun. So ED is in the
direction of £/, and EB in the direction of £H. So the arc BD is equal to
the arc H/. When we bisect it at G and join GEL, <it> will be the
intersection of the plane of the meridian circle and the plane of the
horizon circle. This is what we wanted to demonstrate.




Another method <for the case> when the azimuth of the sun is known:
Let AGZT be the horizon circle, 4 the equinoctial rising point <of the
sun>, and Z its <equinoctial> setting point. If the azimuth of the sun is
along the point /, the shadow of the gnomon will be £D. A/ is the known
azimuth, and it is equal to ZD. Then ZD is known, and so is its
complement DG. If we draw the line GET, <it> will be the intersection of
the plane of the meridian circle and the plane of the horizon circle. This is

what we wanted to do. ¢
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Chapter 8: On the deviation of <the directions of> the <other> localities
from the meridian of our locality.

<Let> ABGD <be> the horizon circle, £ the zenith, 4 and G the
equinoctial rising position and setting position, BED the meridian, C the
pole of the celestial equator, ASG the celestial equator, and £S the latitude
of our locality (then £ is the zenith). We assume SO <to be the
difference> between the longitude of our locality and that of Mecca. We
draw CO as a quadrant of the meridian of Mecca. We take C as the pole,
and we draw a circle with its distance (i.e., radius) <equal to> the chord
of the colatitude of Mecca, and parallel to the celestial equator. It is
<marked as> TNK. It intersects the arc CO at L. Then L is the zenith of
the inhabitants of Mecca. The two arcs SN and OL are <equal to> the
latitude of Mecca. So EN is <the difference> between the two latitudes
(i.e., that of our locality and of Mecca). We draw ELZ <as a part> of the
circle passing through <our> zenith. It is the circle of the distance
between the two localities, because £L is the distance <on the sphere>
between our locality and Mecca. Then the arc ZD is the deviation of <the
direction of> Mecca <from the meridian of our locality>. We draw the
semicircle passing through the equinoctial rising position and the point L. -
It is <marked by> AMLG. In the two triangles CLM and COS, the angle C
is common, and M and S are right angles. <So> the ratio of the Sine of
CL, the colatitude of Mecca, to the Sine of ML, <which is called> ‘the
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equation of longitude’, is equal to the ratio of the Sine of CO, the greatest
Sine, to the Sine of OS, <the difference> between the two longitudes. So
LM and its complement LG are known. In the two triangles GLO and
GMS, the angle G is common, and O and § are right angles. So the ratio
of the Sine of the known GL, to that of LO, the latitude of Mecca, is equal
to the ratio of the Sine of GM, the greatest Sine, to the Sine of MS,
<which is called> ‘the equation of the latitude’. Then MS is known, and
SE is the latitude of our locality. Then, ME is known, and it is <called>
‘the adjusted latitude of the locality’. Then MD is known. In the two
triangles GLZ and GMD, the angle G is common, and Z and D are right
angles.

D
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So the ratio of the Sine of the known GL to that of LZ, the complement of
the distance between the two localities, is equal to the Sine of GM, the
greatest Sine, to the Sine of the known MD. Then LZ is known, and it is
the complement of the distance between the two localities. So its
complement LE is known, and it is the distance <between the two
localitics>. In the two triangles £LM and EZD, the angle £ is common,
and M and D are right angles. So the ratio of the Sine of EL, the distance
between the two localitics, to the Sine of the known LM, is equal to the
ratio of the Sine of £Z, which is a quadrant, to the Sine of ZD, the
deviation of Mecca. Then, the deviation of <the direction of> Mecca from
the meridian of our locality is known. This is what we wanted to
demonstrate. Based on this figure, it is possible that while the two
latitudes are equal, <the direction of> Mecca be not along the east-west
line. It is because <the direction of> the zenith of the inhabitants of
Mecca will be situated on the side inclined towards the <north> pole (i.e.,
() from the circle passing through the equinoctial rising position and our
zenith. That will be demonstrated il we draw a parallel circle with the
same pole as the celestial equator and with its distance (i.e., radius) equal
to the chord of the colatitude of our locality.
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Having kept our promise at the beginning of the Book on Chapters and
Proofs, we finish the section in this chapter, the book in this section, and
the treatise in this book. Praise be to Allah alone, and that is enough, and
His blessing be on the best of His creatures, Muhammad the Chosen
<prophet by Allah>!

[The copying was finished on 18 Ramazan of the year 545 of Hejira, by
the hands of Mahmiud b. Ahmad b. al-Husayn al-Mu‘allimi.]
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Commentary

IV.8.1 The first proof corresponds to the second method in 1.8.1. Cf. the
second proof in IV.5.6. The second proof corresponds to the first method
in 1.8.1. Cf. the first proof in IV.5.6. Both methods are applicable for the
solstices and for any other day for which the length of the day and the
declination of the sun is known. See also the commentary of 1.8.1.

IV.8.2 This is a proof of the method provided in 1.8.2 for the calculation
of the altitude for zero azimuth. In the figure, £'is the pole of the celestial
equator.

IV.8.3 The first proof is for the second method provided in [.8.3, and the
second proof is for the first method thereof. See 1.8.3 and its commentary.
In the first proof, Kiishyar applies the archaic “analemma” construction
which was known in classical times and the Middle Ages. In this case, the
plane of the horizon is the plane of the paper. Points may be projected
perpendicularly on the horizon plane. For performing any operation upon
an arc or line in a different and nonparallel plane, it is rotated into the
plane of projection. Then arc or line will appear in its true shape and size.
For more details about the “analemma” construction see [Neugebauer
1969, 214-20; Id 1969, 669-72]. The terms ‘argument of azimuth’ and
‘equation of azimuth’ used by Kushyar are rather strange. Al-Battant who
uses chords instead of sines, applies the term watar ikhtilaf al-ufuq (i.e.,
“chord of the horizon difference”) in his description of a similar method
[al-Battani 1989-1907, III, 33-34]. For a discussion of the terms /fissa
(“argument”) and #a dil (“equation”) as used by al-Sijzi, Abu’l-Wafa and
Habash al-Hasib see [Kennedy-Kunitzsch-Lorch 1999, 101].

IV.8.4 In the premise, point Z is the pole of the great circle through A
and N since M and N are the poles of the circles 7Z and BD, which
intersect at Z In the proof itself, arc L Tis 90 degrees since point L is the
pole of DE (because arc LD is assumed to be 90 degrees and arc LEis 90
degrees since E is the zenith) The proof of the validity of the methods
provided in 1.8.4 for finding the altitude of the sun when its northern or
southern azimuth is known are presented here. For a modern formulation
of these methods see the commentary of 1.8.4. In the figure for the
northern azimuth, /7 is the first arc, 7D is the second arc or the
complement of the argument of the altitude, and (90°-7K) is the third arc
or the equation of altitude, mentioned in 1.8.4. In the figure for the
southern azimuth, /7 is the first arc, Z7T is the second arc or the
complement of the argument of the altitude, and /A{ is the third arc or
the equation of the altitude. In the figure for the northern azimuth, 7D is
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greater than 7K; so, the argument of the altitude is smaller than the
equation of the altitude. Therefore, we should subtract the argument of
the altitude from the equation of the altitude to obtain a positive value for
the altitude. We are unaware of other occurrences of this proof in the
medieval Arabic astronomical literature.
In a short fragment following the proof for the northern azimuth, only
found in the manuscript A, we read:
3 Caans Ji e b Lee i) a0 ) (SLad) Lan (puadil) (3 Ja o (ke oy ol Ak o) OlaY
O 3 g ypad o Aty gL Y1 gm0 Al e b Akl 0 8
(“It is not be expected that the point K lies between the two points £'and
7, because when the altitude of the sun increases, it leads to decrease of
the azimuth BD, and to the approach of the point 7 towards the point £,
until the altitude <circle> passes through the point B, and the arc DT
becomes <equal to> 90°”).

IV.8.5 See I.8.5 and its commentary. In the figure, E is the pole of the
celestial sphere and the vertical projection of the ecliptic passes through
its projection.

IV.8.6 See 1.8.6 and its commentary. The arcs DH and DA are the first
arc and second arc mentioned in 1.8.6, respectively. The arcs GD and LD
are the “third arc” for the cases in which the latitudes are in different or in
the same directions, respectively.

IV.8.7 Here Kiishyar first shows the validity of the method of the Indian
circle for finding the meridian line, but not the validity of the shortest
shadow method provided in 1.8.7. Then he demonstrates the validity of
the second method in 1.8.7, based on the known azimuth of the sun. This
is of course trivial. Here Kiishyar applies the “analemma” method again
(see the commentary to IV.8.3). The equinoctial rising/setting points are
East/West points.

IV.8.8 A proof for the method of finding the direction of Mecca,
essentially al-Birani’s ‘method of the zijes’, provided in 1.8.8, is
presented here. The distance between two localities is described as the arc
of the terrestrial great circle passing through them. This is equal to the arc
joining the zenith points of the two localities on the celestial sphere. It is
supposed that the longitude difference and the two latitudes are known. In
the figure, ML, MS and ME are the arcs of the “equation of longitude”,
the “equation of latitude”, and the “adjusted latitude of the locality”,
respectively. The figure is drawn for a locality North-East of Mecca, of
course, since Kashyar lived in Iran. See also 1.8.8 and its commentary. It
is interesting that Kiishyar shows here that in a locality having the same
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latitude as Mecca, the direction of Mecca is not necessarily on the east-
west line. For an account of different texts that use the terms “equation
[or correction] of latitude” (za2'dil al-‘arZ) and “adjusted [or corrected]
latitude” (a/- arz al-mu ‘addal) in the calculation of the direction of Mecca,
see [Berggren 1985]. Abu Ja‘far al-Khazin stated in his Zjj al-Safz’ih that
if Mecca is at the same latitude as your locality, the gib/a is towards the
East or the West. This is why Kishyar may have discussed the error at
the end of this chapter [Abu Nasr ibn ‘Iraq 1948, 34].
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