In the name of God the merciful, the compassionate, and we ask
for your assistance, o Generous One!

Kiushyar ibn Labban ibn Bashahri al-JilT says: When I examined the zjjes
composed in the art of astronomy and reflected on them, <I found that>
there was incorrectness in some of them that needed rectification; some
had long-windedness and difficulty that needed simplification; and some
had omissions that needed completion. <Even> the A/magest is not free
of them (i.e., the defects). All of them (i.e., the zjes) <contain> careless
calculations, devoid of clear exposition and unsupported by adequate
demonstration. <Therefore,> 1 made up my mind to work out a zjj
combining theory and practice, in which 1 <would> rectify the
incorrectness, bring closer what was far-fetched, fill up for deficiencies,
elucidate every <technical> term with a comment, and provide proofs for
every calculation in it. Therefore, any difference found in anything
between this <zi7> and the others, is <caused by my> rectification of the
incorrectness or <my> bringing closer the far-fetched or <my> filling of
gaps. | have discussed practice before theory in order to facilitate the
beginner’s access to it and to quicken his benefiting by it. I have
composed this <work> in four Books: the first on elementary
calculations, the second on their (i.e., of the calculations) tables, the third
on commentary and astronomy, and the fourth on the demonstration of
the accuracy of the elementary calculations.

When [ resolved to do this and reaffirmed my intention about it, I
begged God for success and guidance.




<List of the chapters of> Book I: On elementary calculations,
<in> 8 sections and 85 chapters

Section 1: On eras, <in> 6 chapters

1. On the beginnings of ancient eras and <the difference> between any
two of them in years and days.

2. On the three eras used in our time.

3. On converting the years of these eras into days, and the days into
<corresponding> years by calculation and <by using> the table<s>.

4. On extracting <dates in> these eras from each other.

5. On the weekday of <any date of> these eras.

6. On the feasts and <other> events in these eras.

Section 2: On Sines and Chords, <in> 6 chapters

1. Introduction to the knowledge of the Sine <function>.

2. On interpolation between two lines of the Sine <table> and other
tables.

3. On <finding> the Sine of a <given> arc and the arc of a <given> Sine
from the table.

4. On <finding> the Sagitta of a <given> arc and the arc of a <given>
Sagitta from the <special> table and <from> the Sine table.

5. On <finding> the Chord of a <given> arc and the arc of a <given>
Chord from the Sine table.

6. On correcting the Sine whenever we have doubt about any <value> of
1t.

Section 3: On Tangents and Cotangents, <in> 3 chapters

1. On calculating the Tangent and Cotangent, their two Hypotenuses (1.€.,
Secant and Cosecant) and their two arcs.

2. On <finding> the Tangent of a <given> arc and the arc of a <given>
Tangent from the table.

3. On converting Tangents and Cotangents to different gnomons.

Section 4: On <finding> the true longitudes of the planets, and their
situations, <in> 12 chapters

1. On the epoch values and the preliminaries for <finding> the mean
longitudes of the planets.

2. On deriving the mean longitudes from their tables.

3. On converting the mean longitudes from <localities having> one
<geographical> longitude to another.

4. On the positions of the apogees and the nodes, and <on> their motions.
5. On the equation of time.



6. On the true longitude of the sun.

7. On the true longitude of the moon and its node<s>.

8. On the true longitudes of the five planets.

9. On the latitude of the moon.

10. On the latitudes of the five planets.

11. On the retrogradation of the planets, their direct motion, and their first
and last visibility.

12. On the ascension and descension of the planets in their spheres.

Section 5: On the operations relating to the ascendants during the day and
the night, <in> 22 chapters
1. On the first declination.
. On the right ascensions of the <zodiacal> signs.
. On the second declination.
. On the distance of the stars from the celestial equator.
. On the latitude of <any> locality.
. On the ortive amplitudes of the sun and <any> star.
. On the equation of daylight of the sun and <any> star.
. On the ascensions for a locality (i.e., oblique ascensions).

. On the maximum altitude of the sun and <any> star.
10. On half the day arc of the sun and <any> star.
11. On the <equinoctial> day hours of the sun and <the> stars and the
degrees of their <seasonal> hours.
12. On the <ecliptical> degree of the transit of a star through the
meridian.
13. On the <ecliptical> degree of the rising and setting of a star.
14. On <finding> the arc of revolution of the celestial equator since the
rising of the sun or the star<s> from the altitude of the <sun or the star at
a given> time.
15. On <finding> the <elapsed> hours from the arc of revolution.
16. On <finding> the ascendant from the arc of revolution.
17. On <finding> the arc of revolution from the ascendant.
18. On <finding> the altitude of the <sun at a given> time from the arc of
revolution.
19. On <finding> the arc of revolution since sunset from the ascendant.
20. On <finding> the ascendant from the arc of revolution since sunset.
21. On a base <value> applying to most operations concerning day and night.
22. On the equalization of houses.
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Section 6: On eclipses and what pertains to them, <in> 20 chapters

1. On the motion of the two luminaries in <one> day and <one> hour.

2. On the magnitude of the <apparent> diameter of the two luminaries
and the diameter of the shadow <of the earth>.



3. On the <ecliptical> degree of a conjunction and opposition, their hours
and ascendants.

4. On the absolute and adjusted magnitudes of a lunar eclipse in digits.

5. On the absolute and adjusted timing of a lunar eclipse.

6. On drawing the figure of a lunar eclipse.

7. On finding the distance of the moon from the earth.

8. On the altitude of the pole of the ecliptic which is called ‘the latitude of
the clime of visibility’.

9. On the altitude of any desired degree of the ecliptic.

10. On the <equatorial> distance between the meridian and the <right>
ascension of a known point of the ecliptic.

11. On the parallax of the two luminaries in the altitude circle.

12. On the six angles which are needed in <the calculation of> solar
eclipses.

13. On <finding> the longitudinal and latitudinal parallax of the moon
from these angles.

14. On the absolute and adjusted magnitudes of a solar eclipse in digits.
15. On the absolute and adjusted times of a solar eclipse.

16. On drawing the figure of a solar eclipse.

17. On <finding> the altitude of the moon taking account of its latitude.
18. On <finding> the longitudinal and latitudinal parallax of the moon by
a method which can be proved.

19. On extracting the longitudes of localities.

20. On <determining> the visibility of the <lunar> crescent and the
planets from <certain> arcs defined for them.

Section 7: On the operations relating to astrology, <in> 6 chapters

1. On <finding> the distance between the <ecliptical> degree of a planet
and the cardines in <terms of> hours.

2. On <finding> the projection of the ray by means of equal (i.e.
ecliptical) degrees.

3. On <finding> the projection of the ray by means of ascension (i.c.
equatorial) degrees.

4. On <finding> the prorogations (i.c., astrological progressions).

5. On <finding> the transfers of the years and their ascendants.

6. On converting the ascendant of the world year from one locality to
another.

Section 8: On the operations which are less needed, <in> 10 chapters

1. On <finding> the latitude of a locality from the hours (ie., the
duration) of <its> longest day.

2. On the altitude with no (i.e., zero) azimuth.

3. On <finding> the azimuth for any altitude which we assume.



4. On <finding> the altitude from the azimuth.

5. On the distance between two stars of which <only> one has a <non-
zero> latitude.

6. On the distance between two stars both having <non-zero> latitudes.

7. On the extraction of the meridian line.

8. On the deviation of <the directions of> localities with known
longitudes and latitudes from the meridian of our locality.

9. On of the fixed stars, and the features of some of them in order to
recognize them by seeing.

10. On the names of the lunar mansions, and their rising days.

These are the <titles of the> chapters of this Book. I have presented
them in order of their importance, and I have devoted most attention to
the ones that are most necessary. God is the One who makes <us>
successful in what is correct, and to Him we shall return.




Section 1: On eras, <in> 6 chapters
Chapter 1: On the beginnings of the ancient eras and the <numbers of> years
and days between any two of them.

The famous eras preserved by the ancients (i.e., those who lived up to the
author’s time) are: the era of the Deluge, the era of Nabonassar, the era of
Philippus, the era of <Alexander> the Two-Homed, the era of Augustus, the
era of Diocletianus, the era of the Hejira, and the era of Yazdigird.

The Deluge: The era of the Deluge is used by the authors of the ancient zijs
such as the Sindhind zij and Shah zij. Its beginning was the Friday close to
the occurrence of the Flood in the time of Noah — peace be upon him! On
that day, at sunrise, the sun was in Aries and the moon was in conjunction
with it in the beginning of Aries, and the other planets were around the
beginning of Aries. Subsequent eras are related to it (i.e., the Deluge).
Nabonassar: He was Nabonassar I, among the kings of Babylon.* The first
day of his era was a Wednesday. Ptolemy rendered the mean motions of the
planets in the Almagest for this era,* and he rendered the positions of the
fixed stars for the beginning of the year 886 of it, which was the first day of
the reign of Antoninus. Between Friday, the first day of <the era of> the
Deluge, and Wednesday, the first day of this era, there are 860,172 days,
which are equal to 2,356 Persian-Egyptian years of 365 days, and 232
completed days.

Philippus: He was Philippus, known as the Mason,* father of the Two-
Horned*. He was one of the kings of Athens. He <reigned> after the death
of Alexander of Macedonia (Alexander III). Theon of Alexandria based his
zij, called the Canon, on this era. The first day of his era was a Sunday,
between which and the era of the Deluge there were 1,014,834 days or 2,780
years and 134 days.

The Two-Horned: He was Alexander 11, known as the Two-Horned.* The
first day of his era was a Monday, which was the first day of the seventh
year of his reign, when he left the land of Macedonia, traveled over the
<whole> Earth, and reached <very remote places of> the inhabited world.
Between the Monday <which was the beginning> of this era and the epoch
of the Deluge there were 1,019,273 days or 2,792 <completed> years and
193 completed days.

Augustus: He was one of the Roman kings. Christ was born in some year of
his <reign>. The first day of this era was a Thursday, between which and the
epoch of the Deluge there were 1,122,316 days or 3,074 years and 306 days.




Diocletianus: He was one of the kings of Christendom. The first day of his
era was a Wednesday, between which and the epoch of the Deluge there
were 1,236,639 days or 3,388 <completed> years and 19 completed days.
The Hejira was the emigration of the Prophet—God bless him and grant him
salvation!—from Mecca to Medina. He entered it (i.e., Medina) on Monday,
the eighth of the month Rabi‘ al-awwal, and the era is reckoned from the
beginning of that year, which was a Thursday, the first day of Muharram.
Thus between it and that <day of emigration> there are 67 days. The year
<of the Hejira calendar> is 354 days plus 1/5 plus 1/6 <of a day>. When
<the accumulation of> these fractions exceeds half a day, one day is added
to the days of Dhu’l-hijjah, so <the number of> its days becomes 30, and
<the number of> the days of this year becomes 355. This happens 11 times
in the computation of every 30 years, because 11 is 1/5 plus 1/6 of 30.
Between this epoch and the epoch of the Deluge there are 1,359,973 days or
3,725 years and 348 days. The determination of the intercalation is such that
you should cast out thirties from the <elapsed> years including the desired
year, and you should multiply the remainder by 11 and cast out thirties
<from the product>. If the remainder is greater than 15, then the <given>
year is a leap year, and if it is less, then it is not.

Yazdigird: He was Yazdigird, son of Shahriyar, son of Kisra, the last of the
Persian kings. The first day of the year in which he acceded to the throne
was a Tuesday, between which and the epoch of the Deluge there were
1,363,597 days or 3,735 years and 322 days.

If we want to know <the number of the days or years> between any two
epochs, we subtract the <number of> years or days closer to the epoch of the
Deluge from the <number of> years or days farther from it, and the
remainder is the <number of> years or days between them.

Chapter 2: On the three calendars used in our time.

The calendars used among us and in our time are: (a) The calendar of the
Two-Horned, which is the Greek and the Syrian <calendar> because there is
no difference between them except in the names of the months. The first
Greek month is Kanin al-thani (i.e., Kanian 11) with <its> Greek name, and
the following <months are based> on its arrangement (i.c., the arrangement
of the Syrian months regarding the number of the days in each month); (b)
the calendar of the Hejira, that is the Arabian calendar; and (c) the calendar
of Yazdigird, that is the Persian calendar.

As to the Syrian <calendar>, its beginning was a Monday as has been
mentioned before. The Syrian names of the months and the numbers of their



days, added up and separately, are as I say: 7ishrin1, 31 days, 31; Tishrin1I,
30 days, 61; Kanan 1, 31 days, 92, Kanan 11, 31 days, 123; Shubat, 28 days
and a quarter of a day, 151, Adhar, 31 days, 182; Nisan, 30 days, 212;
Ayvyar, 31 days, 243; Haziran, 30 days, 273; Tammiz, 31 days, 304, Ab, 31
days, 335; Aylil 30 days, 365. So a year has 365 days and a quarter of a
day. Whenever <the accumulation of> the quarter is greater than half a day,
the number of days of Shubat is increased by one, so <the number of> its
days becomes 29. The <number of> days of this year becomes 366, and it is
a leap year. To know it (i.e., the leap year), you cast out fours from the
number of years including the desired year. If the remainder is 3, then this is
a leap year, and if the remainder is less, it is not.

As to the Arabic <era>, its beginning was a Thursday, the first day of the
year in which the Prophet <Muhammad>—God bless him and grant him
salvation!—emigrated <to Medina>. It is the 15th of 7ammuiz of the year
933 of <the era of> the Two-Horned. The names of its months and the
numbers of their days, added up and separately, are as | say: Muharram, 30
<days>; Safar, 29 <days>, 59; Rabi* [, 30 <days>, 89; Rabi* II, 29 <days>,
118; Jumada I, 30 <days>, 148; Jumada I, 29 <days>, 177, Rajab, 30
<days>, 207; Sha ‘ban, 29 <days>, 236, Ramazan, 30 <days>, 266, Shawwail,
29 <days>, 295; Dhu’l-ga‘da, 30 <days>, 325; Dhu’l-hijja, 29 <days> plus a
fifth and a sixth of a day, 354; <22>. Thus a year <has> 354 days plus a fifth
and a sixth of a day. Whenever <the accumulation of> these fractions
exceeds half a day, its calculation is as has already been mentioned. The
<numbers of> the days of these months are found in this way: You subtract
the mean daily motion of the sun from the mean daily motion of the moon,
and a complete revolution (i.e., 360°) is divided by the remainder. The result
is 29;31,50 days approximately. Thus the months were established <as
having> 30 days and 29 days alternately, and we add the extra fractions, i.e.
the excesses over half a day, at the end of the year; this adds up to a fifth and
a sixth of a day.

As to the Persian <calendar>, its beginning was a Tuesday, the first day of
the year in which Yazdigird, son of Shahriyar, acceded to the throne. It is the
22nd of RabT I of the year 11 of Hejira, and the 16th of Haziran of the year
943 of the <era of the> Two-Horned. The names of its months and the
numbers of their days, separately and added up, are as | say: Farwardin-mah,
30 <days>, 30; Ardibahisht-mah, 30 <days>, 60; Khurdad-mah, 30 <days>,
90; 7ir-mah, 30 <days>, 120; Murdid-mah, 30 <days>, 150; Shahrir-mah,
30 <days>, 180; Mihr-mah, 30 <days>, 210; Aban-mah, 35 <days>, 245,
Adhar-mah, 30 <days>, 275; Day-mah, 30 <days>, 205; Bahman-mah, 30
<days>, 235; [sfandarmadh-mah, 30 <days>, 265. Thus a year <has> 365




days. The five days added at the end of Aban-mah are called the mustaraga
(“stolen”) <days>. Since the Persian year is approximately a quarter of a day
less than a solar year, this becomes one day in every four years and one
month in every 120 years. During the period of their domination, the
Persians observed one intercalary month every 120 years. Thus this year had
13 months. They counted the first month of this year twice: once at the
beginning of the year and once more at the end of the year. They put the
extra five <days> in the intercalary month (i.e., at the end of the year).
<Thus,> the first month of the year was the one in which the sun entered
Aries. So, the five <days> and the beginning of the year were moved from
one month to the next every 120 years. In the time of Kisra, son of Qubad,
Anitishervan, the sun entered Aries in Adhar-mah, and the five <days> were
placed at the end of Aban-mah. When 120 years had passed, it was the end
of the reign of the Persians, the disruption of their government, and <the
beginning of> the domination of the Arabs over them. So, this tradition was
neglected, and the five <days> remained at the end of Aban-mah until the
year 375 Yazdigird, when the sun entered Aries on the first day of
Farwardin-mah. We have been informed that in <the province> Fars and
those areas <near it>, the five <days> were moved to the end of
Isfandarmadh-mah according to the ancient tradition. But in our areas, which
are Rayy, Jurjan and Tabaristan, they are <still observed> at the end of
Aban-mah. People think that it is <something related to> the Zoroastrian
religion and tradition, and should not be replaced and changed. Each day of
the <Persian> months has a special name by which it is called, viz.:
Hurmazd, Bahman, Ardibahisht, Shahrir, Isfandarmadh, Khurdad, Murdad,
Day-ba-adhar, Adhar, Aban, Khar, Mah, Tk, Kish, Day-ba-mihr, Mihr,
Suriish, Rashan, Farwardin, Bahram, Ram, Bad, Day-ba-Din, Din, Ard,
Ashtad, Asman, Zamyad, Marasfand, Aniran, and the five ‘stolen’ days
<are> Ahunavad, Ushtavad, Isfandmad, Vahukhshatra, <and> Vahishtavasht

Chapter 3: On converting the years of these calendars into days, and the days
into <the corresponding> years by calculation and by <using> table<s>.

Calculation for the Syrian <calendar>: You multiply the <number of>
completed Syrian years by 21,915, you divide the product by 60, and thus
the <number of> days in those years will be obtained. If the division has a
remainder greater than 30, we restore it to one day. You multiply the given
<number of> days by 60 and you divide the product by 21,915: The
<number of> years <contained> in those days will be obtained. We divide



the remainder of the division by 60: The <number of > days of the
incomplete year will be obtained.

<Calculation for> the Arabian <calendar>: You multiply the <number of>
completed Arabian years by 21,262 and you divide the product by 60: The
<number of> days in those years will be obtained. You multiply the given
<number of> days by 60 and you divide the product by 21,262: The
<number of> years <contained> in those days will be obtained. We divide
the remainder of the division by 60: The <number of> days of the
incomplete year will be obtained.

<Calculation for> the Persian <calendar>: You multiply the <number of>
completed Persian years by 365: The <number of> days in those completed
years will result. You divide the given <number of> days by 365: The
<number of> completed years will be obtained. The remainder is the
<number of> days in the incomplete year.

<Conversion by means of> the table: If we compile tables, we record in
them the multiple or single years, and months, and opposite them, the
numbers of days in them in sexagesimals. Then the first <digit> of them
(i.e., these numbers) is the absolute <number of> days. The second of them
is a multiple of 60, i.e., once divided by 60. The third one is a multiple of
60%60, i.e., twice divided by 60. The fourth one is a multiple of 60x60x%60.
If we want <to find> the <number of> days of given years and months, we
enter with the completed years in the table of the multiple years. We take the
<number of> days corresponding to the nearest number below it, and write it
down (B adds: “on the <dust> board”). Then we enter with the remainder
<of the years> in the table for the single years, take the <number of> days
corresponding to it, and add it to what we wrote down before, any
<sexagesimal> digit to its corresponding <sexagesimal> digit. Then we take
the <number of> days corresponding to the completed months and add it to
the sum already obtained. Then the <number of> days in the given years and
months will be obtained.

If we want <to find> the <numbers of>> years and months <corresponding to
a certain number> of days, we enter with the days in <the column for> the
multiples of days, take the <number of> years corresponding to the nearest
lesser number, and write it down. Then we subtract the <number of> days
found in the table from the given <number of> days, each digit from its
corresponding digit. Then we enter with the remainder of the days in <the
column for> the single days and take the <number of> years corresponding
to the nearest lesser number. Then we add it to the <number of> years that
we wrote down before. We subtract the <number of> days found in the table
of single <days> from the <remaining> days that we have, any digit from its




corresponding digit. We take the <number of> months corresponding to the
nearest number below the <number of> remaining days. What remains from
the <number of> days is the <number of> days of the incomplete month.

Chapter 4: On extracting <dates in> these calendars from each other.

If <a date in> one of these three calendars is known and we want to know
<the corresponding date in> another calendar, we convert the known date
into days until the present day, and keep it in mind. Then if <the era of> the
known <date> precedes the <era in which the date is> unknown, we subtract
the <number of> days between the two eras from the <number of> days that
we kept in mind. If the <epoch of which the date is> unknown precedes the
<epoch of which the date is> known, we add the <number of> days between
the two eras to the <number of> days that we kept in mind. Then the
remainder or the sum is the unknown <date of the desired> calendar in days.
Then we convert it into years as already described. The <beginning of the>
Syrian era precedes the <beginning of the> Arabian era by 340,700 days,
and precedes the <beginning of the> Persian era by 344,324 days; the
<beginning of the> Arabian era precedes the <beginning of the> Persian era
by 3624 days. In order to check <the correctness of> the result of
<converting> the calendar, we determine the weekday of the given date in
the known calendar, and the weekday of the unknown date <in the desired
calendar>. If they agree, then it is correct, and if they differ one or two days,
we adjust the unknown <date> according to the known <date>.

Chapter 5: On the weekday of <any date of> these calendars.

The Syrian <calendar>: We convert its date into the <number of> days up to
the desired day, plus this day. Then we cast out sevens and count the
remainder from Monday. The <week->day at which <the number> finishes,
will be the weekday <corresponding to> the given day. If we want to, we
<may> cast out twenty-eights from the <number of> years including the
desired year. We enter with the remainder in the weekday table, and take the
weekday of <the beginning of> the desired month.

The Arabian <calendar>: We convert its date into the <number of> days as
has already been discussed for the Syrian <calendar>.Then we cast out
sevens and we count the remainder from Thursday. The <week->day at
which the number finishes will be the weekday of the <given> day. If we
want to, we <may> cast out multiples of twohundred-ten from the <number
of> years including the given year. We enter with the remainder in the




weekday table and we take <the number corresponding to> the weekday <of
the beginning> of the desired year. Then we add to it <the number
corresponding to> the weekday of the desired month.

The Persian <calendar>: We cast out sevens from the <number of> years
including the given year and we count the remainder from Tuesday. The
<week->day at which <the number> finishes will be the weekday of <the
beginning of> that year. For each month after Farwardin we add two days,
but we do not add anything for the weekday of Adhar-mah because the
weekday of <the first of> Aban-mah and that of Adhar-mah are the same on
account of the <five> “stolen” <days>.

Chapter 6: On the feasts and <other> events in these calendars.

Syrian <feasts>:

Ma‘altha (for the literal meaning of the names of the feasts and their
equivalents, see the commentary): If the 29th of Tishrin I (October) is a
Sunday, it is Maalthz, otherwise, <it is> the Sunday which follows it.
Subbar. 1f the 28th of Tishrin II (November) is a Sunday, it is Subbar,
otherwise, <the Sunday> that follows it.

Milad the night which is followed by the morning of the 25th of Kantn 1
(December).

Dinh: the 6th of Kaniuin 1T (January).

Saum al-‘adhara It is the feast of Ghaytas, the Monday which follows Dinh.
Saum Naynawi. <It consists of> three days beginning on a Monday 22 days
before al-Saum al-kabir.

Id al-haykal the 2nd of Shubat (February).

Al-Saum al-kabir. <For its> calculation we take the years of the Two-
Homned <era> with the year we desire (i.e., the current year), and we add
five to it. We cast out nineteens and we multiply the remainder by nineteen.
If the product is greater than 250, we always subtract one from it; if it is less,
we do not subtract anything. We cast out thirties from the result. Then we
observe the remainder. If it is equal to <the number of days of> Shubat <in
that year> or less than that, then the <beginning of the> fast is on that day of
Shubat, if it is a Monday. Otherwise, the Monday after it <is the beginning
of the fast>. If it (i.e., the remainder) is greater than the <number of> days of
Shubat <in that year>, we subtract the <number of> days of Shubat from it.
The remainder, <taken> as <number of the day> of Adhar, is the beginning
of the fast if it is a Monday. Otherwise, the Monday after it <is the
beginning of the fast>.
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We have compiled a table for it. For working with it, we take the years of
<the era of> the Two-Horned with the year we desire (i.e., the current year),
and we write it down in two positions. We divide one of the <numbers
written in the> two positions by twenty eight and we divide the <number in
the> other position by nineteen, after adding five to it. We enter along the
length of the table with the remainder of the division by twenty eight, and
along the width of the table with the remainder of the division by nineteen.
The crossing position of the <column and the row of the> two numbers is
the beginning of the fast. If it is <written> in black, it is in Shubat, and if it is
<written> in red, then it is in Adhar.

Another method: It (i.e., the beginning of the fast) is on the nearest Monday
to the conjunction which occurs between the 2nd of Shubat (February) and
the 8th of Adhar (March). If we are in doubt about the nearest Monday, then
it is <the Monday> which lies between Sha‘anin and the Fizrthat follows it.
Sha anirr. the Sunday, the 42nd of the days of the fast.

Fitr. the Sunday next to Sha anin.

Al-Sha‘anin al-saghira. the Friday following Fifr.

Sullag. the Thursday 40 days after Fitr.

FintigustT. the Sunday 10 days after Sullag.

Saum al-Salthin. the Monday after Finfiqust.

Saum Mart Maryam. the first day of Ab (August).

Zuhiir al-Masih. 6th of Ab (August).

Fitr Maryam:. 15th of Ab (August).

Td al-salit: 14th of Tlul (September); 13th of Ilal (September) according to
the Nestorians; 15th of Tlal (September) according to the Romans and the
Jacobites. _

Suqat al-jimar. the 7th, 14th, and 21st of Shubat (February).

Ayyam al-‘ajiiz. Seven days starting on the 26th of Shubat (February).
Nayrilz al-Mu ‘tazid: 11th of Haziran (June).

Ayyam al-bahir. Eight days starting on the 19th of Tammiuz (July). The
variation of the weather on these days indicates that during (the first to the
eighth month of) the next year.

Arabian <feasts>:

‘Ashira Tt is the date of the murder of Husayn b. ‘Ali—May God honor him
and be pleased with him!—<which occurred on> the 10th of Muharram.

Maulid al-Nabf - may the exalted God bless him and grant him salvation!:
12th of Rabi" 1.

Yaum al-jamal 15th of Jumada L.
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Mab ‘ath al-Nabi - may God bless him and grant him salvation!: 26th of
Rajab.

Mi74j. the night of the 27th of Rajab.

Laylat al-sakk: the night of the 15th of Sha‘ban.

Saunr. the days of Ramazan.

Fath Makka. 20th of Ramazan.

1d al-Fitr. 1st of Shawwal.

Al-Tarwiya 8th of Dhu’l-hijja.

‘Arafz 9th of Dhu’l-hijja.

1d al-azha 10th of Dhu’l-hijja.

Ghadir Khummnz, 18th of Dhu’l-hijja.

Persian <feasts>:

Nayriiz. 1st of Farwardin-mah (i.e., the month of Farwardin).

Nayriiz al-khassa. 6th of Farwardin-mah.

Mihrajan: 16th of Mihr-mah.

Mihrajan al-khassat al-saghir. 21st of Mihr-mah.

Gagil 15th of Day-mah.

Bahmanyjana. 2nd of Bahman-mah.

Sadagq. the night of the 10th of Bahman-mah.

Wadhira 22nd of Bahman-mah.

Katb al-ruga‘ 5th of Isfandarmadh-mah, <based on placing> the “stolen”
days at the end of Aban-mah.

The six Jahanbars: first, 26th of Ardibahisht-mah; second, 26th of Tir-mah;
third, 16th of Shahrir-mah; fourth, 15th of Mihr-mah; fifth, 11th of Day-
mabh; sixth, the five “stolen” <days> of Isfandarmadh-mah.
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Commentary

I.1.1 Historians from the Islamic period have confused Nabonassar, the king
of Assyria whose reign began in 747 B.C. and whose era was later used in
Ptolemy’s Almagest, with Nabuchadnezzar (Nabokolassar), king of
Babylonia, who reigned in the period 604-562 B.C., and who conquered
Jerusalem. So, they have referred to the former by the arabicized form of the
latter’s name, i.e., Bukhtanassar.

Ptolemy lived in the time of Antoninus Pius (fl. 137 C.E.) and used the
era of Nabonassar because, as he says in A/magest 111.7, this was the era
beginning from which ancient observations were preserved down to his time.

The Philippus after whom the epoch 324 B.C. is named, is a son of
Alexander 1l (the Great) and a halfbrother of Alexander 1V. His reign
started in the same year as that of Alexander IV (323 B.C.), namely with the
death of Alexander the Great. The title Mason (a/-banna’) is mentioned in all
mss. except L. It does not occur in other sources that I have seen, save the
Mustalah Zij (MS BN arabe 2513), whose chapter on chronology seems to
depend, to some extent, on Kuishyar.

In fact, it was Ptolemy’s Handy Tables (Theon did not write a z7j), in
which the Philippus era was adopted. This era also occurs in the Almagest as
‘the death of Alexander’ [Ptolemy 1984, 10, fn. 16].

It is generally accepted both by Muslim commentators and occidental
scholars that the ‘Two-Homed’ (Dhu’l-garnayn) mentioned in the Holy
Koran, and used by Arab authors, Muslims, and Christians is to be identified
with Alexander the Great (356-323 B.C.). He was Alexander III (not
Alexander II, as Kishyar calls him) of Macedonia. The era erroneously
named after Alexander is actually the Seleucid era, which started with the
death of Alexander 1V and the accession of Seleucus, the founder of the
Seleucid dynasty, to power [Ginzel 1906-1914, 1, 136; Taqizadeh 1939, part
2, 124-27].

Al-Birini also mentions Diocletianus as “one of the kings of
Christendom” [1879, 105], and says elsewhere that “He was the last of the
pagan Emperors of Rome; after him they became Christians” [1934, 173]. In
the Byzantine tradition, Diocletianus is primarily remembered as a
prosecutor, for his edict of prosecution against the Christians that started in
303 CE.

In early zijes, if the remainder of a division for the determination of the
intercalation of the Arabian years was 15, the resulting half of a day was
usually truncated, which led to an ordinary 15™ year and an intercalary 16"
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year in every 30-years cycle. However, in table 2 of Book IlI of the Jami‘ Zj
for the number of days in multiples of Arabian years, Kiishyar gives the
number of days in 15 Arabian years equal to 5316 =15x(354+11/30)+0.5
days. This means that, as was more common in later Persian zigs, he
rounded upwards the half of a day resulting from the accumulation of the
fractions which led to an intercalary 15" year [cf. van Dalen 2000, 267].

Following is a summary of the numerical data given in this section:

Era Weekday  Days after Years+days

the Deluge
Nabonassar (Assyrian, 26 Feb. 747 B.C.) Wednesday 860172 2356y+232d
Philippus (Greek, 12 Nov. 324 B.C)) Sunday 1014834 2780y+134d
Alexander (Seleucid, 1 Oct. 312 B.C.) Monday 1019273 2792y+193d
Augustus (Roman, 30 Aug. 30 B.C)) Thursday 1122316 3074y+306d
Diocletianus (Roman, 29 Aug. 284 C.E.) Wednesday 1236639 3388y+19d
Hejira (Arabian, 15 July 622 C.E.) Thursday 1359973 3725y+348d
Yazdigird (Persian, 16 June 632 C.E.)  Tuesday 1363597 3735y+22d

In this table, we see the number of days that had passed since the Deluge,
at the beginning of each of the seven eras. Each number of days is also
converted by Kiishyar into Persian years plus remaining days. Kashyar’s
data imply that the epoch of the Deluge was taken to be Friday, 18 Feb. 3102
B.C., which was commonly used and is also implied in Kishyar’s
astrological treatise [Kiishyar 1997, 140/141].

The above numbers of days for the Nabonassar, Alexander, Hejira and
Yazdigird epochs are the most common ones [cf. van Dalen 2000, 266, table
2]. The correct number of days since the Deluge for the Philippus epoch is
1014932. The above number given by Kiishyar (1014834, found in the mss.
C, Y, B and P) is probably an error by Kiishyar or the scribes. In the ms. L
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this number is given as 1014934, which is still wrong but closer to the
correct number. Presumably the original digit 9 was miswritten as 8 (a
possible error in the Arabic script), and the digit 2 was then changed to 4, in
order to accord with the correct weekday (Sunday). For the Augustus era,
the number given by Kishyar (1122316, corresponding to 13 Nov. 30 B.C))
is one of two that are found in various other sources. It is based on the
assumption that New Year in the ancient Egyptian and the Coptic calendar
coincided in the time of Philippus instead of Augustus [cf. van Dalen 2000,
266]. Also the implied date for the Diocletian era, 12 Nov. 284 C.E., is one
of two that were used in various early sources [cf. van Dalen 2000, 266].

[.1.2 In Arabic texts from the Islamic period, the adjective Rimi (Roman)
means either ‘Roman’ or ‘Greek’. Here it refers to the Greek era. The
modern names (and the numbers of days) of the ‘Greek’ months are for
instance given by al-Biriini in a/~-7afhim and his Chronology. Y anwaris
(31), Febrariiis (28), Martias (31), Afrilias (30), Mafas (31), Yunias (30),
Yilias (31), Aghustiis (31), Sebtembriiis (30), Aqtubriis (31), Nuambriis
(30), and Dugambriiis (31). Kishyar has observed the rule for determining
the Syrian leap years in table 1 of Book I1 of the Jami‘ Zij for the number of
days in multiples of Syrian years.

The “conventional” Arabian lunar months have alternately 30 and 29
days. In the lunar months based on the visibility of the lunar crescent,
generally used in modern time, the first day of any lunar month is the day
following the first observation of the lunar crescent. In this system it is
possible to have two consecutive 30-day months, or two consecutive 29-day
months.

The Iranian calendar at the time of the advent of Islam was based on a
vague solar year of 365 days consisting of 12 months of 30 days plus five
extra days that were added at the end of the eighth month Aban. This year
was originally taken from the Egyptian calendar. Some modern scholars
have tried to determine the date of introduction of the Egyptian year in Iran
on the basis of Kushyar’s description of the five epagomenai being at the
end of Aban in the year 375 of the Yazdigird era (1006-7 C.E.), found in this
chapter. For instance, Tagizadeh [1938, 12] believes that the introduction
happened in the second decade of the fifth century B.C. However, none of
the results have been fully satisfactory [Tagizadeh 1938, 5]. According to
Kiishyar, as well as al-Birini and some other authors, Iranians intercalated
one full month in each 120 years to compensate for the difference between
the Egyptian year and the tropical year (about one-fourth of a day) and to
keep the beginning of their year close to the vernal equinox [see e.g., Ginzel
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1906-1914, 290-91]. Taqizadeh thinks that this sort of year was by no means
a wholly fictitious year, as some seem to believe [1938, 57]. Recently
Francois de Blois [1996] has tried to show that such an intercalation process
was a mere “legend”. However, in particular his “negative” argumentation
has not convinced me.

De Blois starts his discussion with the assertion that no reference to an
Iranian intercalary month is found in ancient sources and no event is
reported to have happened in such a month. But from a mathematical point
of view, the probability of a random event happening in an intercalary month
following a 120 years period as mentioned above is 1/(120x12+1)=1/1440,
which is less than 0.07%. He then casts doubt on the reliability of the
accounts provided by Kiushyar and al-Biriin1 for the intercalation in the
Iranian calendar. Here his argument that Kushyar prepared a manuscript of
his Jami‘ Zij in 393 A.H./1002-3 C.E. and hence could not have mentioned a
calendar reform in 375 A.Y./1006-7 C.E. turns out to be invalid. Inspection
of the Alexandria manuscript of the zij shows that the date of Kiashyar's
autograph was ‘Sunday the 2™ of Bahman-mah of the year 393’ [A.Y./8
Dhu’l-qa‘da 415A.H./10 January 1025 C.E.], so Kushyar's reference to the
reform can be correct. Moreover, in the second chapter of the text presented
in this article, Kashyar says that the transfer of the five epagomenai had not
yet been accepted by the inhabitants of Rayy, Jurjan and Tabaristan, but in
the Persian translation, ms. P, prepared in 483 A H., Rayy is omitted from
the names of the cities. This indicates that Kushyar and the translator were
giving a realistic and up-to-date account of what was going on around them.

In my opinion, de Blois’s arguments regarding the problem of having two
anniversaries for Zoroastre’s death being 8 months apart, mentioned in
Zadspram (chapter 25), the other passage that he quotes from Zadspram
(chapter 34), and finally, the reference he makes to Dinkard [de Blois 1996,
43] are consistent with Kuashyar's clear description that after each
intercalation the first month of the year shifted to the next one, so that the
months drifted slowly through the seasons but the epagomenai always kept
trace of the vernal equinox (e.g., before 375 A.Y. the year began with
Adhar-mah, but the vernal equinox was at the beginning of Farwardin-mah).
Kiishyar’s description of the arrangement of the Jahanbars also confirms that
a calendar reform took place in 375 A.Y. that followed the intercalation
system of the pre-Islamic Iranian calendar (see Chapter 6 and its
commentary). For a recent discussion of the subject that confirms the
intercalation system mentioned by al-Birtini and Kashyar, see [Ghasemlou
2003, 825-26].

18



Even after the advent of Islam the Persian solar calendar was used in Iran
beside the Hejira lunar calendar until the 5%/11™ century. In the year 471 A
H./1079 C.E., the Jalall or Maliki calendar was constituted. In this calendar
the years began with the vernal equinox based on astronomical observation
or calculation.

The modern version of the Persian names of the months as mentioned by
Kiishyar in this chapter has been used in the formal Iranian calendar since
1925. In this calendar, the year begins with Farvardin; the first six months
have 31 days, the next five months have 30, and the last month, Esfand has
29 days in normal years and 30 days in leap years. The leap years usually
occur every four years, but sometimes they are five years apart. This is
determined by the exact moment of the vernal equinox being before or after
local solar noon on the 29 of Esfand. The 1* of Farvardin is the first day
whose noon is after the exact time of the vernal equinox.

13 The lengths of Syrian and Arabian years are 21915:60=36521‘— and

21262:60=354 % days, respectively.

By “completed” years and months, Kishyar means those which have
passed. An “incomplete” year or month refers to a year or month which has
not yet been completed. So, when we are in the month m of the year y of any
calendar, m-/ completed months and y-/ completed years have passed from
the beginning of the era. The month m and the year y themselves are
incomplete.

The results of Section 1.1.3 are used in Section 1.1.4.

1.1.4 The Syrian date is based on the Seleucid era. The following chapter
gives the method of determining the weekday for any date in each of the
calendars. These methods can be used for checking the correctness of a date
conversion from one calendar to another.

1.1.5 The second method for finding the weekday of a date in the Syrian
calendar is based on the fact that 28 times 365.25 (days) is a multiple of 7. In
table 4 of Book Il of the Jami‘ Zij, the weekdays of the first day of any
Syrian month for the years 1 to 28 are given directly. Then it will be easy to
find the weekday of any date in a given month. The weekdays are shown in
the table in the conventional abjad numbers from 0 to 6, corresponding to
Saturday, Sunday,..., Friday, respectively. This allows us to convert the final
remainder into weekdays directly, because the Arabic names for Sunday up
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to Thursday are derived from the Arabic words for ‘one’ to “five’,
respectively.
The second method for finding the weekday of a date in the Arabian

calendar works because 210 times 354% is a multiple of 7. Table 5 of Book

11 of the Jami‘ Zjj is in two parts: In one part, the weekdays of the first day
of the years 1 to 210 are listed. The other part displays the weekdays of the
first day of the 12 Arabian months (assuming 0 for the first month, because
its beginning is the same as the beginning of the year).

The method for the Persian years is valid because 365 is a multiple of 7,
plus 1. For any month we add 2 days, because 30 = 4x7+2. We do not add
anything for Adhar-mah, because with the five epagomenae Aban-mah has
35 days, which is a multiple of 7. Table 6 of Book II gives the number (0 to
6) corresponding to the weekday of the beginning of each Persian month for
each remainder r (1 to 7) of the number of years y of the Yazdigird era, if y
= 7k +rfor an integer k.

Examples.

The weekday of the first day of Tishrin 1 of the Syrian year 1359 is found
as follows:
1358 (completed years)=21,915+60 = 496,009
496,009+1=496010=7x70858+4
The fourth day counting from the epoch Monday is Thursday. So the desired
weekday is Thursday.
If we want to use table 4 of Book II, we proceed as follows:
1359 = 28x48+15
The table entry for 15 (remainder of the Syrian year) is 5, which corresponds
to Thursday.

The weekday of the first day of Ramazan of the year 439 of the Hejira era
is found as follows:
438 (entire years)>21,262+60~155,213
The number of the months from the beginning of the year to the first of
Ramazan is 4x30+4x29=236, and we add one for inclusion of the desired
day itself:
155,213+236+1=155,450=22207x7+1
The first day counting from the epoch Thursday is Thursday itself. So, the
desired weekday is Thursday.
If we want to use table 5 of Book II, we proceed as follows:
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439=210x2+19
The table entry for 19 (remainder of the Arabian year) is 0, and the table

entry for Ramazan is 5. Since 5+0=5, the corresponding weekday is a
Thursday.

The weekday of the first day of MiAr-mah of the year 416 of the
Yazdigird era is found as follows:
416=59%7+3
The third day counting from the epoch Tuesday is Thursday. So, the
weekday of the beginning of the year is a Thursday. Now, since Mihr-mah is
the 7th month of the Persian year, we add 12 for the six preceding months:
3+12=15=2x7+1
The first day counting from the epoch Tuesday is Tuesday itself. So, the
weekday of the beginning of Mihr-mah is Tuesday. In table 6 of Book II, the
entry corresponding to r = 3 and MiAr-mah is 3, which corresponds to
Tuesday.

[ have taken these examples from the treatise a/~Lamu‘ fi amthilat al-Zij
al-jami‘ (“Explanation of the examples of the Jami Zij ) by Abu’l-Hassan
‘All b. Ahmad al-Nasawi mentioned in the introduction of this dissertation.
Al-Nasawi’s calculation (fols. 51r-52r) shows some insignificant differences
with what I have provided above because he made a mistake in finding the
weekday of the beginning of 7ishrin [ of the year 1359 of the Syrian era by
calculation. Note that all three examples are for the years 1047-8 C.E., the
time of composition of al-Nasaw1's commentary.

1.1.6 The modern equivalents and the meanings of these feasts are as follows:

NAME EQUIVALENT MEANING
Syrian:
M3 altha Presentation of Christ
Subbar Annunciation
Miiad Christmas Birth of Christ
Dinh Epiphany
Saum al- ‘adhari( Ghaytas) The Fast of the Virgins
Saum Naynawi The Fast of Nineveh
Td al-haykal Wax Feast The Feast of the Temple
Al-Saum al-kabir lent The great Fast

Sha anin Palm Sunday
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Al-Sha ‘dnin al-saghira The lesser Sha‘anin
Fitr Easter Fast-breaking

Sulldq Ascension day
Fintiqusti Pentecost, Whitsunday

Saum al-Salthin Fast of the Apostles

Saum Mért Maryam Fasting for the illness of Mary
Zuhir al-Masih Advent of Christ
Fitr Maryam Fast-breaking in commemoration

of Mary’s death

7d al-salib Feast of the Cross

Suqit al-jimar Falling of pebbles
Ayyam al-sjiz Days of the old woman
Nayriz al-Mu ‘tazid Mu‘tazid’s New Day

Ayyam al-badhar Dog days

Arabrc:

‘Ashiara’ The 10th day of Muharram
Maulid al-Nabr Birth of the Prophet

Yaum al-jamal The day of the Camel Battle
Mab ath al-Nabr Appointment day of the Prophet
Mi'‘raj Ascension day of the Prophet
Laylat al-sakk The great Liberation night
Saum Fasting

Fath Makka Conquest of Mecca

Td al-Fitr Feast of fast-breaking
Al-Tarwiya Watering

‘Arafa Recognition

Td al-azha Feast of Immolation

Persian.

Ghadir Khumm Khumm pool

Nayriiz Pers. Nowriz New Day

Al-Nayriz al-khassa Nayriiz of the nobility
Al-Mihrajan al-khassat al-saghira The lesser specific Mihrjan
Katb al-ruqa‘ Charms against scorpions
Jahanbars Pers. Gahanbar-ha  Seasonal feasts

The calculation of Lent by means of Kishyar's tables is explained in
[Saliba 1970, 197-98]. The explanation for Ayyam al-bahir in parentheses
in the translation is taken from al-Biriini, whose account is clearer [1934,
184]. All of the feasts and fasts mentioned by Kushyar are also described by
al-Bironi [1879, 199-334; 1934, 174-186; 1954-1956, 1, 238-270] whose
account is more complete and gives a more extensive explanation for each
case. Since al-Birtini dedicated his Chronology to Qabus in 390 A H/999-
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1000 C.E., it is highly probable that Kishyar made use of it. In fact, he
repeats the mistakes made by al-Birni (see below). In only a few cases he
gives different data.

Thus Kishyar says that first of Ab is called Saurn Mart Maryamn. But
according to al-Birani [1879, 296, 1954-1956, 1, 242] this is the Saum maraz
Maryam (“Fasting on account of the illness of Mary”), and he puts Saum
Mart Maryam on the Monday that follows Subbar [1879, 310; 1954-1956,
245). Kashyar says that the Ayyam al-bahir are eight days beginning on the
19" of Tammiiz. Al-Biriini’s account in a/-Tafhim [1934, 184] is the same as
Kashyar's, but in [1879; 268; 1954-1956, 1, 270] al-BirtnT says that they are
seven days beginning on the 18" of Tammiiz.

Al-Birtni [1879, 329; 1954-1956, 256] puts Yaum al-jamal on the 3 of
Jumada 1. Only in ms. C of the Jam:‘ Zjj it is mentioned to be on the 15" of
Jumada I. Other mss. do not mention it at all. According to Kiishyar (as
found in all mss. that contain Book 1), Fath Makka (“the Conquest of
Mecca”) was on the 20" of Ramazan, but al-Biriini [1879, 330; 1954-1956,
256] puts it on the 19" of Ramazan.

Al-BiranT [1879, 214] calls the feast on the 22™ of Bahman Bad-riz
instead of Kashyar’s Wadhira. Also instead of Gagil, we read Kakthl and
Kavkil in al-Biriini [1879, 212; 1954-1956, 260].

Each Jghanbar (Persian (Gzhanbar, lit. “The feasts of the [six] times [of
creation]”) consists of five days and Kuashyar defines their beginnings. Al-
Bironi’s account of the beginnings of the six Jahanbars [1879, 204, 205, 207,
210, 212, 217; 1954-1956, 259-60] is different from Kishyar's. The dates
according to al-Biriin1 are as follows: I) 11" of Day-mah, II) 11" of
Isfandarmadh-mah, I1) 26™ of Ardibahisht-mah, V) 26" of Tir-mah, V) 16"
of Shahriwar-mah, VI) the five ‘stolen days’ at the end of Aban-mah. There
is a shift of two in the numbers of the Jzhanbars between Kiashyar and al-
Biriini. Kiishyar puts the 6™ Jahanbar at the end of Isfandarmadh-mah and
al-Birtini puts it at the end of Aban-mah. Zoroastrian sources are not
consistent in this regard [Taqgizadeh 1938, 11] and there were different
accounts of the beginnings of the Jahanbars. Kishyar’s account matches
with an old Pahlavi text Afaringan Gahanbar and with the calendar reform of
375 A.Y., and his system is now used by the Zoroastrians [Tagizadeh 1937,
footnotes of pp. 18-10].

Most of the feasts listed by Kashyar (and al-Birtni) are still celebrated,
but not always on the same dates. In the present lithurgical calendar of the
Syrian Orthodox Church M#althi is celebrated on February 2™ as the
presentation of Christ at the Temple of Jerusalem. Kiishyar’s description for
Ma‘altha 1s valid for the present feast Sanctification of the Church, which
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corresponds to 7d al-haykal The latter falls on a Sunday in late October or
early November. Kiashyar confused these two feasts with each other. The
first Sunday of the Advent now falls on the 28" of November if it is a
Sunday; otherwise it is the next Sunday. Kushyar mentions this as Subbar.
However, at present Subbar is celebrated on March 25" Saum Maryam now
begins on the 10™ of August, and ends at the date given by Kashyar (the 15t
of August). The fast of the Apostles is now celebrated on June 26M-29"
while the corresponding fast in Kushyar’s account, Saum al-Salthin, was on
the Monday after Pentecost, so depended on Easter.

Nayriiz al-Mu tazid was actually a Persian feast, but it was adjusted with
the Syrian date 11" of Haziran (June) [cf. al-BiriinT 1934, 185-86]. Ayyam
al-‘ajiiz and Soqiit al-jimar are Arabian occasions but defined by the solar
(Syrian) dates. Al-Biriini says that, according to the Greeks, Ayyam al-bahur
(Dog days) are connected with the (heliacal) rising of the Dog-star of Orion,
i.e., Sirius [see al-BiriinT 1934, 183].

The Arabian feasts have mostly been preserved up to now, because they
are actually connected to Islamic occasions and rituals. However, their
importance (manifested in being a formal holiday or not) is not the same in
different Islamic countries and among different sects. Also their exact dates
are not always agreed unanimously. Rammazan (the month of fasting) and 7d
al-Fitr (the feast of fast breaking), as well as the occasions connected with
the Prophet, i.e., Maulad al-Nabri (his birth), and Mab ‘ath al-Nabr (his
appointment), and those connected with Hay (pilgrimage to Mecca), ie,
‘Arafa (recognition) and ‘/d al-azha (immolation), are evenly important in all
the Islamic world. ‘Ashird and Ghadir Khumm are of particular importance
in Shi’ism.

In present Iran, Nowriz (in Arabic Nayriz) is celebrated as the most
important formal national feast on 1-4 Farvardin (usually 21-24 March).
Mihrgan (in Arabic Mihrajan) now falls on the 10" (and not 16™) of Mihr
because each of the first six Iranian months now have 31 days (not 30 days).
Sadeh (in Arabic Sadag) still falls on the 10™ of Bahman. Its name is derived
from the Persian word sad or sad which means “hundred”, because on this
day 50 days plus 50 nights remain until Nowriz [Cf. Birani 1934, 182;
1954-1956, 260]. The latter two feasts are still remembered and celebrated
on a limited level, but not as formal holidays. (Gzhanbar-ha (in Arabic
Jahanbarat) as well as Mihrgan and Sadeh, are regarded as important
national and religious feasts among the Zoroastrians who also celebrate
other old Iranian feasts.
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Section 2: On Sines and Chords, <in> 6 chapters
Chapter 1: On introduction to the knowledge of the Sine <function>.

The Sine is a rule (i.e., function) referred to in finding the magnitudes of
all arcs. The greatest Sine, i.e. half the diameter of a circle, can be
supposed <to be divided into> any <number of > parts, but the easiest and
most comprehensive <method> for calculation is <supposing it> to
consist of 60 <parts>. The Cosine of an arc is the Sine of its complement
to 90 degrees, as in the case of the Cosine of 36 <degrees> by which is
meant the Sine of 54 <degrees>, and the Cosine of 54 <degrees> by
which is meant the Sine of 36 <degrees>. We shall content ourselves with
<calculating> the Sines of the degrees of a quadrant, because, for any
<arc> exceeding the quadrant, the Sine is the same as <the Sine of> the
degrees of the quadrant <counted> backward from 90 to 1. So, the Sine of
91 <degrees> is equal to that of 89 <degrees>, the Sine of 92 <degrees>
is <equal to> the Sine of 88 <degrees>, and so on until the Sine vanishes
at 180 <degrees>. Then, we begin a second time, according to the first
description up to 360 <degrees>.

The Sagitta of an arc reaches 120 degrees, and this is the diameter of the
circle. In calculations, whenever we say that a certain <number> is
multiplied by another <number>, lowered, or a certain <number> is
divided by another <number>, lowered, we mean that we lower this
<second> number by one <sexagesimal> place; so, if it is in degrees, we
take it as minutes, and if it is in minutes, we take it as seconds, and so on.
After this introduction, <I say that> the exact value of the Sine of 1
degree cannot be found, but its approximate value has been investigated,
so that there is no difference between it and the exact value in
<arithmetical> operations. I have derived it by <detailed> investigation to
be <equal to> 1;2,49,38,31. We shall explain how to calculate it in the
chapter on <its> proof.

The calculation of the Sine of <the arcs> greater than <one> degree is
easy, and it should be preceded by an introduction on how to know the
Cosine of the arcs whose Sines are known. To calculate it, you subtract
the square of the known Sine from the square of the greatest Sine, and
take the square root of the remainder. The result is the Cosine of the arc
with known Sine. By this calculation, the Cosine of 1 degree, which
equals the Sine of 89 <degrees>, is found to be 59;59,27,6,12,39.

If we want <to find> the Sines of other degrees, we multiply the Sine of
the preceding degree by the Cosine of 1 degree, lowered, multiply the
Sine of 1 degree by the Cosine of the preceding degree, lowered, and add
the products to find the desired Sine of the degree. Example: We want
<to find> the Sine of 24 <degrees>. We multiply the Sine of 23
<degrees> by the Cosine of 1 degree lowered. Then we multiply the Sine
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of 1 degree by the Cosine of 23 <degrees> lowered, and add the two
products to find the Sine of the desired degree, i.e. the Sine of 24
<degrees>. The Sine of 24 <degrees> is obtained not <only> through 1
and 23 <degrees>, but through any pair of numbers whose sum is 24, and
the calculation is the same as for | and 23, like 10 and 14, 12 and 12, 18
and 6, and so on.

Chapter 2: On interpolation between two lines of the Sine <table> and
other tables.

In all tables, the ratio of the difference between two <successive> values
of the argument to the difference between the two <corresponding>
entries of the table equals the ratio of <any> part of the difference
between the two values of the argument to the <corresponding> part of
the difference between the two entries of the table. Thus there are four
proportional numbers: the difference A between two <successive> values
of the argument; the difference Bbetween two <corresponding> entries
of the table; <any> part C of the difference between the two <successive>
values of the argument; <the corresponding> part D of the difference
between the two entries of the table. The desired unknown E'is either the
part of the difference between the two entries of the table, or the part of
the difference between the two values of the argument. If the part of the
difference between the two entries of the table is desired, we multiply the
known part ¢ of the difference between the two values of the argument by
the difference b between the two entries of the table, and divide it by the
difference a between the two values of the argument. If the part of the
difference between the two values of the argument is desired, we multiply
the known part dof the difference between the entries of the table by the
difference a between the two values of the argument and divide it by the
difference b between the two entries of the table. Thus the desired
unknown will be obtained. Then, if it should be added to the entry in the
table or value of the argument, we add it; and if it should be subtracted,
we subtract it.

Difference A between arguments Difference B between entries

in two <successive> rows in two <successive rows>

Partial diff. C"betw. arguments Partial diff. D betw. entries

in two <successive> rows in two <successive> rows
<figure>
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Chapter 3: On <finding> the Sine of a <given> arc and the arc of a
<given> Sine from the table.

If we want <to find> the Sine of a given arc, we enter the arc in the row
of the arcs, which is the row of the arguments, and take the Sine
corresponding to it, <and we correct it, if necessary> according to what
has been already said about interpolation. If we want <to find> the arc of
a given Sine, we enter the Sine in the table and take the arc corresponding
to it, <and we correct it, if necessary> according to what has been said on
interpolation.

Chapter 4. On <finding> the Sagitta of a <given> arc and the arc of a
<given> Sagitta from the <special> table and from the Sine table.

For the Sagitta a table has been presented from which the Sagitta of a
<given> arc and the arc of a <given> Sagitta can be taken in the same
way that the Sine of a <given> arc and the arc of a <given> Sine are
taken from the Sine table. If we want <to find> the Sagitta of an arc from
the Sine table, we look at it: If the arc is less than 90 <degrees>, we
subtract it from 90 <degrees>, take the Sine of the remainder, and
subtract it (i.e., the Sine) from 60. If the arc is greater than 90 <degrees>,
we subtract 90 <degrees> from it, take the Sine of the remainder, and add
60 to it (i.e. the Sine). If we want to <find> the arc of a <given> Sagitta,
we look at it: If the Sagitta is less than 60, we subtract it from 60, take the
arc of the remainder from the Sine table, and subtract it (i.c., the arc) from
90 <degrees>. If the Sagitta is greater than 60, we subtract 60 from it,
take the arc of the remainder, and add it (i.e., the arc) to 90 <degrees>.

Chapter 5: On <finding> the Chord of a <given> arc and the arc of a
<given> Chord from the Sine table.

We do not need any of these Chords in this book; we mention them
<just> to complete the <list of> operations. If we want <to find> the
Chord of a <given> arc, we halve the arc, take its Sine, and double it. If
we want <to find> the arc of a <given> Chord, we halve the Chord,
convert it to an arc <by means of the Sine table>, and double it.
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Chapter 6: On correcting the Sine whenever we have some doubt about
any <value> of it.

The calculation of the Sine table, and the checking of its correctness have
<already been> finished; so we do not need to repeat anything about it
and its calculation. However, if we doubt <the exactness of> the Sine of
any degree, we look at it: If half the <number of the> degrees is an
integer, we take its (i.e. this) half, multiply its Sine by its Cosine lowered,
and double the result. This result will be the Sine of the degree about
which there was some doubt. Example: <Let us suppose> we doubt the
correctness of the Sine of 24 <degrees>. We multiply the Sine of 12
<degrees> by the Sine of its complement, 78 <degrees>, lowered, and
double the result. <Thus> the Sine of 24 <degrees> will be obtained.

If there is no integer half for <the number of> these degrees, we take two
arcs the sum of which equals <the number of> these degrees. Then we
multiply the Sine of the smaller arc by the Cosine of the greater arc
lowered, multiply the Sine of the greater arc by the Cosine of the smaller
arc lowered, and add the results. It will be the Sine of the degree about
which there was some doubt. Example: <Let us suppose> we doubted
<the correctness of> the Sine of 25 <degrees>. Of the many pairs of arcs
whose sum equals 25 <degrees>, let us take 10 <degrees> and 15
<degrees>. Then we multiply the Sine of 10 <degrees> by the Sine of 75
<degrees> lowered, multiply the Sine of 15 <degrees> by the Sine of 80
<degrees> lowered, and add the results. Then the Sine of 25 <degrees>
will be obtained. If we find the Sine of 24 <degrees> also according to
this computation and this example, it will be correct, but that <other>
method for even numbers is easier.
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Commentary

1.2.1 Kashyar follows Ptolemy (A/magest1.10) in taking the radius of the
circle to be equal to 60 units. Thus Kiishyar’s Sine and Cosine functions
are 60 times the modern sine and cosine functions, respectively. This has
the consequence that Kiishyar often has to divide the product of two Sines
by 60. Since he is working in the sexagesimal system, the division by 60
is easy. For dividing by 60, he uses a special term “lowered” (inunhattan),
because division by 60 corresponds to change of one sexagesimal
position. See e.g. the commentary to 1.2.6.

Based on the value of the Sine of 1 degree as mentioned by Kushyar, I
have computed the Cosine of 1 degree as 59; 59,27,6,12,38.72. In the
text, the sixth sexagesimal digit is rounded to the nearest integer (39).

The fifth sexagesimal digit is given as 57 (instead of 12) in the
manuscripts C, L, and B (the other manuscripts do not contain this
fragment). A scribe must have misread the abjad numeral qa— (12) as -3
(57).

Kashyar gives the Sine of 1° to five sexagesimal digits, while he
computes the Cosine of 1 degree up to the sixth sexagesimal digit. We
can assume that Kishyar computed Cosl® according to

Cos1° =4J(R* -~ Sin®1°) with R = 60. Then the error in Cos 1° can be shown

to be approximately 1/60 of the error in Sin 1°. So, Kushyar’s method can
be justified. However, L and B give the sixth sexagesimal digit of the
Sine of 1 degree as 0, but a sixth sexagesimal digit is not found in C.

The modern value of the sine of 1 degree is 0.017452406..., which
corresponds to the Sine of 1 degree equal to 1;2,49,43,11,... Thus
Kiishyar's value is correct to 3 sexagesimal digits. His value corresponds
to sinl*= 0.017452046..., which represents the correct value up to the 5th
decimal digit. Starting from this smaller Sine, he actually finds a greater
Cosine. His result, 59;59,27,6,12,39, corresponds to 0.999847701,
whereas the correct values of Cos 1°and cos1® are 59;59,27,6,7.,45.... and
0.999847695..., respectively. The calculation method is presented in
IV.1.11, where Kiishyar describes how to calculate the Chord of 1 degree.
The same method is applicable for deriving the Sine of 1 degree.

At the end of this chapter, he uses the formulae

Sin? (x) + Cos? (x) = 607, and

Sin(x+1)=Sin(x)Cos(1)/60+Sin(1)Cos(x)/60,
to find the Sines of arcs greater than 1 degree.

Kiishyar’s Sine table in I1.8 is quoted in the manuscript of Yahya b.
AbI Mansiir’s Zij al-Ma’mini al-mumtahan [1986, 101] by a scribe who
lived after Kiishyar.
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I.2.2 Here Kishyar discusses two problems: 1) If n<x<n+1, find Sin(x);
2) If Sin(n)<y<Sin(n+1), find x so that Sin(x)=y. For these two purposes,
he uses linear interpolation. Thus he assumes that in very small intervals,
the increase in Sin(x) is proportional to the increase in x. The Arabic term
for argument (independent variable) in the text is the same term for
"number": ‘adad. For the entry (function or dependent variable) he simply
uses the term jadwal (“table”). For the “value” of an argument or entry,
he uses the word satr (“line”). Kiishyar uses the Arabic expression #a di/
bayn al-satrayn (adjustment between two <consecutive> values) for the
process of interpolation.

1.2.3 The word satr literally means “row”, but Kishyar apparently uses
the term safr in the more general sense of “line”. In the Sine tables, arcs
are usually written in a column, as is the case in F, Y, and B (and quoted
in Yahya’s zij mentioned in the commentary of 1.2.1). However, the arcs
may also be given in a row at the top of the table, as in the detailed Sine
tables of L and B (see also the figure in Chapter 1.2.2).

1.2.4 Here the Sagitta of any given arc is defined as Sag(x)=60-Cos(x),
and the arc of any given Sagitta is discussed. Table IL.9 in F is for the
Sagittae. We also find it in Y, L, and B. Al-Biriini [1934, 5] and Habash
Hasib [in his zij, MS Berlin Ahlwardt 5750 (WE. 90), fol. 80v] call this
function as al-jayb al-ma‘kis (“Versed Sine”). Al-Birini [1934, 4] uses
the term sahm (“Sagitta”) as “the line between the middle of a chord and
the middle of the corresponding arc”, and mentions that the Versed Sine
of an arc is equal to the Sagitta of its double.

1.2.5 This chapter is about the Chords of arcs, which are related to Sines
and modern sines by Chord(x)=2Sin(x/2)=120sin(x/2). There is no table
for Chords in the Jamr‘ Zij, whereas the table of Chords is the only plane
trigonometrical table given by Ptolemy (A/magest1.11).

1.2.6 Here Kiishyar provides a method to check the correctness of any
entry in the Sine table, using the formulae
Sin(2x)=2Sin(x)Cos(x)/60,
and
Sin(x+y)=[Sin(x)Cos(y)+Cos(x)Sin(y)}/60.
At the end of A/magest1.10, Ptolemy describes similar ways of checking
the correctness of the value of a suspected Chord with different methods.
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Section 3: On Tangents and Cotangents, <in> 3 chapters
Chapter 1: On calculating the Tangent and Cotangent, their two
Hypotenuses (i.e., Secant and Cosecant) and their two arcs.

The Tangent (lit. “the First Shadow™) is obtained from gnomons parallel
to the horizon plane; it is called the Reversed Shadow. This is the one that
we have included in the table for the elementary calculations. The
Cotangent (lit. “the Second Shadow”) is taken from gnomons
perpendicular to the horizon plane; it is called the Horizontal Shadow.
This is the one which we have included it in the table for knowing <the
length of shadows in> digits and feet at mid-day (see the commentary of
the next chapter). It is <also> provided in the calendars.

The gnomon can be supposed <to be divided by> any <number of> parts,
however, the easiest <method> in the elementary calculations is
<supposing it> to consist of 60 parts. Therefore, we have taken <the
values of> the Tangent based on the gnomon being <divided into> 60
parts, and the Cotangent based on the gnomon being <divided into> 12
digits or 7 feet. If the gnomons have identical divisions, the Tangent of
any arc is <equal to> the Cotangent of the complement of that arc (). If
any number is multiplied by the Tangent of any arc, <lowered>, or
divided by the Tangent of the complement of the arc, <lowered>, the
results> are equal; the product and the quotient are the same (i1).

The Secant (lit. “the Hypotenuse of the Shadow™) is the line connecting
the tip of the gnomon and the end of the shadow. The arc of a Tangent is
the arc of the altitude <angle>, which increases and decreases
<depending> on the shadow of the gnomons.

After this introduction, <I say that> if we want the Tangent of an arc, we
divide the Sine of the arc by the Cosine of the arc, lowered. The result is
the Tangent, based on a gnomon <of> 60 parts (iii). If we want its Secant,
we divide the Tangent by the Sine of the arc, lowered: The result is the
Secant (iv). If we want <to use another method>, we add the square of the
Tangent to the square of the gnomon, and we take its square root (v). If
we want the arc of the Tangent <and we have no Tangent table>, we
divide the Tangent by its Secant, lowered: The result is the Sine of the arc
(vi). If we want the Cotangent of an arc, we divide the Cosine of the arc
by the Sine of the arc, lowered: The result is the Cotangent, based on a
gnomon <of> 60 parts (vii). If we want its Cosecant, we divide the
Cotangent by the Cosine of the arc, lowered: The result is the Cosecant
(viii). If we want <to use another method>, we add the square of the
Cotangent to the square of the gnomon and we take its square root (ix). If

' See the commentary on this chapter, where the corresponding modern formulas are presented
referring to the Roman numbers in this translation.
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we want the arc of the Cotangent, we divide the Cotangent by the
Cosecant, lowered: The result is the Cosine of the arc (x).

Chapter 2: On <finding> the Tangent of a <given> arc and the arc of a
<given> Tangent from the table.

If we want the Tangent of an arc, we take <the entry> opposite to the arc,
from the Tangent tables, as already mentioned in <the chapter on> the
Sine. If we want the arc of a Tangent, we take the arc opposite to the
Tangent <from the tables>.

Section: We render the arc of the Tangent in the table up to 45 degrees,
because, if it exceeds 45 <degrees>, the difference between <the values
in> two <consecutive> lines will be great and the operation will not be
correct, except potentially (i.e., theoretically). If we want to multiply any
number by the Tangent of an arc, <lowered>, the arc being greater than
45 <degrees>, we divide the number by the Tangent of the complement
of the arc <1lowered>. If we want to divide a number by the Tangent of
an arc <,Jlowered>, the arc being greater than 45 <degrees>, we multiply
the number by the Tangent of the complement of the arc <, lowered>.
The number here is either a Sine or the Tangent of an arc less than 45
<degrees>. However, multiplication of the Tangent of an arc by the
Tangent of another arc, both greater than 45 <degrees>, or division of the
Tangent of an arc greater than 45 <degrees> by a number, <can> not <be
carried out by this method>. In this case, <the operation> will be limited
to <using> the Sine and what derives from it, without using the Tangent.

Chapter 3: On converting Tangents to different gnomons.

The ratio of the <number of the> parts <into which> a gnomon <is
divided> to the parts of <another> gnomon is like the ratio of a Tangent
to <another> Tangent. These are four proportional numbers. We take the
<parts of the> gnomon of the known Tangent as the first <number> A,
<the parts of> the gnomon of the unknown Tangent as the second
<number> B, the known Tangent as the third <number> C; and the
unknown Tangent as the fourth <number> D. We multiply the second
<number> by the third, and divide it by the first <number>: the fourth
<number> results. In case of digits and feet, if we multiply the digits by
35 minutes, they turn into feet, based on <taking> the gnomon <divided
into> 7 parts (i.¢., feet). If we divide the feet by 35 minutes, they turn into
digits, based on <taking> the gnomon <divided into> 12 parts (i.e.,
digits).
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Commentary

[.3.1 In modern terminology, the Tangent (Arabic zi// lit. “shadow”) of
an arc his R tg h It was also called the First or Reversed (Arabic
ma ‘kiis) Shadow. The Cotangent of an arc 4 is R cotg A It was also called
the Second or Horizontal (Arabic mustawi) Shadow. For the Tangents,
Kashyar takes R = 60, and for the Cotangents, he takes R =12 or R =7.
For R/cos h and R/sin h, Kashyar uses the terms qutr al-zill al-awwal
(“The Hypotenuse of the First Shadow”) and quir al-zill al-thani (“The
Hypotenuse of the Second Shadow™). I have used the modern terms
Secant and Cosecant for them.

a
a C
b

c b
a = gnomon a = gnomon
b = Tangent (Tg) b = Cotangent (Cotg)
(First Shadow, Reversed Shadow) (Second Shadow, Horizontal Shadow)
¢ = Secant (Sec) ¢ = Cosecant (Cosec)
(Hypotenuse of the First Shadow) (Hypotenuse of the Second Shadow)

Kashyar uses the term mugyas for gnomon. According to al-Birtini
[1976, 1, 64], the term miqgyas (lit. “scale, measure”) is used for gnomon
(shakhs), especially in calculations.

In this chapter, Kiashyar describes the relations corresponding to the
following modern formulas:

(1) Tgh=Cotg (90°- h)

(1) aTgh=a/Tg90°-h)
(i) TghA=Sin A/(Cos h/ R)
(iv) Sec h=Tg h/(Sin A/ R)

(v) Sec h=(Tg* A+ R*)

(viy Sin A=Tgh/(Sec h/R)
(vil) Cotg A= Cos A/ (Sin A/ R)
(viii) Cosec A= Cotg 1/(Cos 4/ R)

(ix) Cosec A= (Cotg®> h+ R*)’
(x) Cos A= Cotg A/(Cosec A/ R)

Kashyar mentions all these rules for = 60. In the mss. C and Y there
are additional notes for calculation of the Cotangents when R is equal to
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12 digits or 7 feet: “If we want the Cotangent of an arc based on
<dividing> the gnomon into 12 digits or 7 feet, we multiply the Cosine of
the arc by the <number of the> parts of the gnomon and divide it by the
Sine of the arc: the Cotangent will be obtained. If we want its Cosecant,
we multiply the Cotangent by the <number of the> parts of the gnomon
and divide it by the Cosine of the arc; or we add the square of the
<number of the parts of the> gnomon to the square of the shadow, and we
take its square root. If we want its arc, we multiply <the number of> the
parts of the gnomon by the Cotangent and divide it by the Cosecant; the
result will be the Cosine of the arc.” These rules correspond to the rules
for R=60.

In his treatise on Shadows, al-Birini frequently refers to the contents
of this chapter of Kushyar’s Jami‘ Zjj. For example, he says [1976, 93]:
“What Kishyar proposes for dividing the Cosine of the altitude by the
Sine of the altitude, lowered, is exactly what he (al-Nayrizi) does .... And
Abu al-Wafa’ proceeded like him, except that he did not lower it, for he
had assumed the gnomon to be one”.

1.3.2 Kishyar provides the values of 60 tg 4 in table I1.10 for each degree
of A from 1 to 45, with the differences between any two consecutive
entries. In table II.11, entitled “Cotangents or Horizontal Shadows for
knowing the mid-day Shadows”, he gives the values of 12 cotg 4 and
7cotg A for each degree of A from 1 to 90 degrees.

I don’t know why in the “Section” appended to this chapter, Kiishyar
requires that “the number here is a Sine or the Tangent of an arc less than
45 degrees”.

Al-Biriini [1976,104] says that Kushyar gave the values of the Tangent
for the arcs up to one eighth of a revolution (i.e., 360°), because the
tabular differences of the Tangent values for the arguments beyond 45
degrees are so great that the Tangent calculated (by interpolation) can
hardly be correct.

1.3.3 Al-Biriini says [1976, 82] that Kishyar, in his Jams ‘ Zjj, converts a
sexagesimal Tangent into other units, through multiplication by the
number of the parts into which the gnomon is divided, and division by 60.
This is what we read at the beginning of this chapter in a general form.

Kishyar’s rules for converting digits and feet into each other are valid
because 7/12=35/60=0; 35.
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Section 4: On <finding> the true longitudes of the planets, and their
situations, <in> 12 chapters

Chapter 1: On mentioning the epoch values and preliminaries for
<finding> the mean longitudes of the planets.

We scrutinized the ancient <astronomical> observations as well as the
new ones made in al-Ma’miin’s time and later, we examined and checked
them through the conjunctions and the meridional altitudes <of the
celestial bodies>, and studied each of them exhaustively, after having
abandoned our passion, and avoided <personal> inclination to one side,
and having abandoned racial and national partisanship, for <many> years.
We found that the observations <made> by Muhammad b. Jabir al-
Harrani, better known as al-Battani, were the most correct of all, with the
least defect and inconsistency, and the closest to our time. <We also
found that> its author <had developed the> most precise <point of> view,
and <had> examined most thoroughly the observations which he had
made. In many things that can be found by observation, he relied on
Ptolemy’s observations. This is <an evidence that> he (i.e., al-Battan)
<is> most inclined to veracity and fondest of truth. For these reasons, his
observations are the most reliable ones, although observations are not
(i.e., never) free from inconsistencies. He made observations in <various>
localities in Syria, relying however on his observations in Raqqa. He
composed a zjj in which he provided the true longitudes of the planets for
the Syrian and Arabian eras. Using these two eras together with the
Persian era is difficult, because they have leap <years> and fractions <for
the number of days of the year>, and <there is> difference in <the
number of> the days of the months. We have converted the epoch values
of the mean longitudes to the Persian era. <By doing this,> we made
easier the operation of finding the true longitudes, and we corrected the
defect which we found in the composition and presentation of some
equations <in the tables>. The description <of our procedure> will be
provided in the Book on proofs. If any difference is found between the
true longitude of a planet based on this zij and based on the zj of al-
Battani, it is due to the improvement in its equation. This mostly
<occurs> in <the case of> Mars, and the difference reaches <a few>
degrees. As to the other planets, it is negligible, and in <the case of> the
sun and the moon, it does not occur. We subtracted from the epoch values
of the mean longitudes <found> for Raqqa the motion <of the respective
celestial body> in 1 hour and 7 minutes, so that they (i.e., the tabular
mean longitudes) can be based on a <geographical> longitude 90
<degrees> from the Canary Islands, and are <thereby> clearer in their
layout, and easier in accessibility. The mean longitudes <corresponding
to> the <geographical> longitude difference are always additive <if the
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other locality is> between the West (i.e., the Atlantic coast) and the
longitude of 90 <degrees>. The Canary Islands are situated off the
Atlantic coast. Ptolemy says that they were inhabited in ancient times.
<The distance> between them and the coast is 10 degrees of the
revolution of the sphere, i.e., two thirds of an hour.

Chapter 2: On deriving the mean longitudes from the tables.

If we want this, we take the Yazdigird (i.e., Persian) years including the
year, month and day <for> which we want <to find the mean longitude>.
Then we enter with <the number of> the years in the table of the multiple
years, and take the mean longitude which corresponds to the closest
number which is less than it and write it down on the board. We then take
<the mean longitude> corresponding to the remainder of the years in the
table of the single years. Then we take what corresponds to the month and
the day. We add all that: <the result> will be the mean longitude for the
noon of this day at the <geographical> longitude of 90 <degrees>. Then
we adjust it by the equation of longitude, as we shall mention later. If
there are entire hours left after noon, we take the corresponding <value>
in the table of hours. If there are fractions with the hours, and the
fractions are in minutes, we take the corresponding <value> in the table
of hours, lowered once. If the fractions are in seconds, we take the
corresponding <value>, lowered twice, and so on.

Chapter 3: On converting the mean longitudes from <localities having>
one <geographical> longitude to another.

We have already said that these mean longitudes have been calculated for
the localities whose <geographical> longitude is 90 <degrees east> of the
Canary Islands in the Atlantic. We should convert it (i.e., the mean
longitude) to the <geographical> longitude of the locality where we are,
so that the true longitude <of the planet> comes out correctly. If we want
<to do> this, we take the difference between the <geographical>
longitude of our locality and the <geographical> longitude of 90
<degrees>. We take one hour for each 15 degrees of difference, and 4
minutes of an hour for each degree. The result is the hour difference
between the two <geographical> longitudes. If the <geographical>
longitude of our locality is less than 90 <degrees>, we add the hour
difference between the two <geographical> longitudes to the given time.
If the <geographical> longitude of our locality is greater than 90
<degrees>, we subtract the hour difference between the two
<geographical> longitudes from the given time. The sum or the
remainder is the time adjusted for the <geographical> longitude
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difference. On this basis, we derive the mean longitudes for our locality.
We find the <geographical> longitudes of the localities, by taking them
from the table compiled for them, or by deriving them by calculation, as
we shall mention in Chapter 19 of Section 6.

Chapter 4: On the positions of the apogees and the nodes, and <on> their
motions.

The positions of the apogees for the beginning of the Yazdigird era are:
the sun: Gemini 18; 31°; Saturn: Sagittarius 0:45°; Jupiter: Virgo 10:45°;
Mars: Leo 3:15°; Venus: Gemini 18;31°; Mercury: Libra 17;44°. Their
motion is one entire cycle in 24,000 solar years, that is 54 seconds in each
year. If we want to adjust <the apogee values>, we take the Yazdigird
years elapsed after the (i.e., any) known adjusted apogee, and subtract
from it one tenth of it. What remains is the motion of the apogee in
minutes. If we wish so, we <may> obtain their motions from the tables
composed for them and we add them to their previously adjusted
positions.

As for nodes, we do not need anything about them in this book, save their
positions at the beginning of the Yazdigird era <i.e.,> Saturn: Cancer
10:45°; Jupiter: Cancer 0;45°; Mars: Taurus 3;15"; Venus: Pisces 18;31°;
Mercury: Capricorn 17;44°. Their motions follow those of the apogees.
For deriving their positions: we subtract 50 degrees from the apogee of
Saturn, then we subtract 90 degrees from the remainder; we add 20
degrees to the apogee of Jupiter and subtract 90 degrees from the sum; we
subtract 90 degrees from the apogees of Mars and Venus and 90 degrees
from the <point> opposite to the apogee of Mercury. The result is the
position of the nodes for this <given> time.

Chapter 5: On the equation of time.

There is a special adjustment for the time for which the true longitudes of
the two luminaries are found, which is known as the “equation of time”. If
we want this, we subtract 10 signs and 16 degrees from the mean longitude
of the sun at the <given> time. The remainder is <called> “the result of the
mean longitude”. We <also> subtract 10 signs, 22 degrees and 4 minutes
from the right ascension of the true longitude of the sun. The remainder is
<called> “the result of the right ascension”. Then we take the excess of the
result of the mean longitude over the result of the right ascension, and
multiply it by 4. Then we take the degrees as minutes and the minutes as
seconds. <The result> is the equation of time in minutes of an hour. We
subtract 1t from the time adjusted for the difference between the two
<geographical> longitudes. <The result> becomes the time adjusted for the
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equation of time. Another method: We add 6 degrees and 4 minutes to the
mean longitude of the sun, and take the difference between it and the right
ascension of its true longitude; we multiply <the result> by 4 and make it
“lowered”, i.e., we lower the place of degrees into minutes, minutes into
seconds, and seconds into thirds. The result will be the equation of time in
minutes of an hour and parts of the minutes of an hour. We always subtract
it from the time adjusted for the difference between the two <geographical>
longitudes. The result will be the time adjusted for the equation of time.
<Based> on this calculation, we have compiled a table in which we have
written the mean longitudes of the sun and, opposite to them, the equation
of time in minutes and seconds of an hour, so that we do not need to find
the true longitude of the sun twice. <The table is> based on <taking> the
apogee in Gemini 24°. The motion of the apogee does not affect this
equation sensibly, except in long time intervals. There is no need at all to
apply this equation for finding the true longitudes of the five planets.

Chapter 6: On the true longitude of the sun.

We write the mean longitude of the sun in two positions and we subtract
the adjusted apogee for the <given> time from one of the <numbers put in
the two> positions. The result is the adjusted mean anomaly. We take the
equation opposite to it <from the table>, and we interpolate it. Then we
always add it (i.e., the equation) to the mean longitude, and the result is
the true longitude <of the sun>.

Chapter 7: On the true longitude of the moon and its node<s>.

We write the mean longitude, the mean anomaly, and the double
elongation. Then we take the first equation corresponding to the double
elongation, and always add it to the mean anomaly. The result is the true
anomaly (i.c., the adjusted position of the moon on the epicycle). Then
we take the second equation corresponding to it, and keep it in mind.
Then we take the difference <in epicyclic equation> at the lesser distance
<of the epicycle center> corresponding to the double elongation and the
sixtieths corresponding to the true anomaly. We multiply them one by
another, and divide the product by 60. The result is the adjusted
difference <in epicyclic equation>. If the true anomaly appears in the
upper <part> of the table for the sixtieths, we add the adjusted difference
to the second equation; and if the true anomaly appears in the lower
<part> of the table for the sixtieths, we subtract the adjusted difference
from the second equation. Then we always add this sum or remainder of
the <second> equation to the mean longitude. The result is the true
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longitude <of the moon>. For all planets <and the moon>, the true
anomaly is the same as the adjusted mean anomaly.

<For finding the true longitude of> the <ascending> node, we subtract
its “mean longitude” from a <complete> rotation (i.e., 360"), and what
remains is the true longitude of the ascending node. The descending node
is always in opposition to the position of the ascending node.

Chapter 8: On the true longitude of the five planets.

We write the mean longitude and the mean anomaly, and <then> we
subtract from the mean longitude the adjusted apogee for the <given>
time. The remainder is the mean centrum. We take the first equation
corresponding to it, and we always add it to the mean centrum and
subtract it from the mean anomaly. The result of adding it to the mean
centrum is the adjusted centrum. The remainder from the mean anomaly
is the true anomaly (i.c., the adjusted position of the planet on the
epicycle), and we take the second equation corresponding to it, and bear it
in mind. Then we take the difference <in epicyclic equation> at greater or
lesser distance <of the epicycle center from the earth> -whichever we
<may> find- corresponding to the adjusted centrum, and the sixticths
corresponding to the true anomaly. We multiply them one by another, and
divide <the product> by 60. The result is the adjusted difference. If the
true anomaly appears in the upper <part> of the table for the sixtieths, we
add the adjusted difference to the second equation. If the true anomaly
appears in the lower <part> of the table for the sixtieths, we subtract the
adjusted difference from the second equation. We always add this sum or
remainder of the <second> equation to the adjusted centrum. We add to
this sum the apogee; the result is the <desired> true longitude <of the
planet>.

Section. This is not the true adjusted centrum, because it is according
to the displacement of the equations in this zjj. If we want <to obtain> the
true <adjusted centrum> in order to use it for the latitudes and the
determination of the stations for the retrogradations and direct motions,
we add to it 7 degrees for Saturn, 12 degrees for Jupiter, 47 degrees for
Mars, 48 degrees for Venus, and 26 degrees for Mercury.

Chapter 9: On the latitude of the moon.

We subtract the true longitude of the node from the true longitude of the
moon, or we add the “mean longitude” of the node to the true longitude
of the moon. The remainder or the sum is the ‘argument of the latitude’.
Then we take the latitude corresponding to it. If the argument is less than
3 <zodiacal> signs, then the latitude is northerly, ascending, and
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increasing. If it is greater than 3 and less than 6 <zodiacal signs>, then the
latitude is northerly, decreasing, and descending. If it is greater than 6 and
less than 9 <zodiacal signs>, then the latitude is southerly, descending,
and increasing. If it is greater than 9 <zodiacal signs> up to an entire
rotation, then the latitude is southerly, ascending, and decreasing.
Its calculation: We subtract the true longitude of the node from the true
longitude of the moon. The remainder is the argument of the latitude. We
multiply its Sine by the Shadow of the maximum latitude, lowered. The
result is the Shadow of the latitude. The maximum latitude is 5 degrees.
Another method: We multiply the Sine of argument of the latitude by
the Sine of the maximum latitude, lowered. The result is the Sine of the
latitude of the argument. Then we multiply the Cosine of the argument by
the Sine of the maximum latitude, lowered. The result is the Sine of the
latitude of the complement of the argument. We find its arc, and obtain its
Cosine, and divide by it the Sine of the latitude of the argument, lowered.
The result is the Sine of the latitude. All people in the art <of astronomy>
shorten this calculation, multiplying the Sine of the argument of the
latitude by the Sine of the maximum latitude, lowered. They believe that
the result is the Sine of the latitude. However, this is, not the Sine of the
latitude of the moon, but the Sine of an arc close to the latitude <of the
moon>,

Chapter 10: On the latitudes of the five planets.

The superior planets: We take the true adjusted centrum mentioned at the
end of Chapter 8 of this section. For Saturn, we add 50 degrees to it; for
Jupiter, we subtract 20 degrees from it; For Mars, we leave it as it is.
Then we enter with it in the two rows of numbers (i.e., arguments), and
take the corresponding <number of the> ‘proportional minutes for the
latitude’, and write it down. If the centrum appears in the upper half of
the two rows of numbers, we take the northern latitude of the planet
corresponding to the true anomaly. If the centrum appears in the lower
half, we take the southern latitude of the planet corresponding to the true
anomaly. We multiply the resulting quantity by the ‘proportional minutes
for the latitude’. The result is the latitude of the planet in the direction
which was found.

Venus and Mercury: We take the inclination and slant corresponding to
the true anomaly, and we write down each of them separately. If for
Mercury, specifically, the adjusted centrum appears in the upper half of
the two rows of numbers, we subtract from its slant one-tenth of it. If it
- appears in the lower half, we add to its slant one-tenth of it. The result is
the slant to be used, different from the initial one, and we keep it in mind.
Then we add to the true adjusted centrum of Venus 3 <zodiacal> signs,
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and to that of Mercury 9 <zodiacal> signs. We use this for taking the
proportional minutes for the latitude. We multiply it (i.e., the number of
the proportional minutes for the latitude) by the inclination. The result is
the first latitude <component>, which is the inclination of the epicycle. If
the augmented centrum and the true anomaly both appear in the same half
of the two rows of numbers, the first latitude <component> is southerly.
If their positions are <in> different <halves>, the first latitude
<component> is northerly. Then we take the true adjusted centrum for
Venus as it is, and for Mercury <the true adjusted centrum> plus 6
<zodiacal> signs. We take the <number of the> proportional minutes for
the latitude corresponding to it, and write it in two positions. We multiply
<the quantity in> one <of these> positions by the slant. The result is the
second latitude <component>, which is <called> the ‘deflected latitude’.
If this centrum from which we took the proportional minutes falls in the
upper half and the true anomaly is less than 6 <zodiacal> signs, then the
second latitude <component> is northerly, <but> if the true anomaly is
greater than that, then it (i.e., the second latitude component) is southerly.
If the centrum falls in the lower half, and the true anomaly is less than 6
<zodiacal> signs, then the second latitude <component> is southerly,
<but> if the true anomaly is greater than that, the second latitude
<component> is northerly. Then we take the proportional minutes written
in the other position. We multiply them by 10 minutes for Venus, and by
45 minutes for Mercury. The result is the third latitude <component>,
which is the inclination of the eccentric orb. For Venus, itis always
northerly, and for Mercury, always southerly. Among these three latitude
components, we add those in the same direction. When they have
different <signs>, we subtract the smaller from the greater one, and we
find the direction of the result (i.e., the direction of the greater one). That
is the latitude of the planet in the direction which resulted.

Ascension and descension: We calculate the latitude for 10 days later.
If it is northerly at the first <given date> and increases in the second
<date>, it is ascending; if it decreases at the second <date>, it is
descending. If it is southerly at the first <given date> and increases at the
second <date>, it is descending; if it decreases at the second <date>, it 1s
ascending. If it is northerly at the first <given date>, and southerly at the
second <date>, it is ‘descending in the north’. If it is southerly at the first
<given date>, and northerly at the second <date>, it is “ascending in the
south’. The maximum latitude is <as follows>: for Saturn 3;2° northern,
3;5° southern; for Jupiter 2;5° northern, 2;8° southern; for Mars 4;21°
northern, 7:50° southern; for Venus 6;22° in both directions; for Mercury
4:5° in both directions.
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Chapter 11: On the retrogradation of the planets, their direct motion, and
first and last visibility.

We take the first equation corresponding to the centrum, and keep it in
mind. We add the mean <motion of the planet in> longitude for one day
to the centrum, and take its <first> equation again. We subtract the
smaller equation from the greater one. If the equation is additive, we add
the difference to the mean <motion in> longitude for the day; ifitis
subtractive, we subtract <the difference from the mean motion in
longitude for the day>. The remainder or the sum is the adjusted mean
<motion in> longitude for the day. Then we take the second equation
corresponding to the true anomaly, and bear it in mind. We add the mean
<motion in> anomaly relating to one day to the true anomaly and take its
<second> equation again. We subtract the smaller equation from the
greater one. The remainder is the difference of the equation of the day. If
the difference is less than the adjusted mean <motion in> longitude for
the day, the planet is <in> direct <motion>. If it is greater, then the planet
is retrograde. If it is equal to it (i.e. the adjusted mean motion in longitude
for the day), the planet is stationary <before> retrogradation or direct
motion.

Another method: We enter with the adjusted centrum in the table for
the first station <column of the> table, and take the corresponding entry.
We subtract the first station from a complete rotation (i.e., 360°). The
remainder is the second station. Then we look at the true anomaly: 1f' it is
less than the first station and greater than the second station, then the
planet is <in> direct <motion>. If it is greater than the first station and
less than the second station, then the planet is retrograde. If it is equal to
the first station, then it is stationary <before> retrogradation. If it is equal
to the second station, it is stationary <before> direct motion. If <the
difference> between them is a few degrees, we divide it by the daily
<motion in the> anomaly of the planet. The result is the period of time
until the planet retrogrades or since its retrogradation, or until it moves
directly, or since it has moved directly. The daily <motions in> anomaly
of the planets <are as follows>: For Saturn 0; 57°; for Jupiter 0;54°; for
Mars 0; 28°; for Venus 0; 37°; for Mercury 3; 6°. We have written the
retrogradation, direct motion, first and last visibility in their approximate
positions in the table for the second equation. We take any of these
situations  (i.e., being in direct motion, stationary, or retrograde)
corresponding to the true anomaly <from the table for the second
equation>. If <the difference> between the true anomaly and one of these
situations is a few degrees, we divide it by the daily <motion in> anomaly
of the planet as we have mentioned before. The result is the period of
time until it retrogrades, or since its retrogradation, or until it moves
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directly, or since it has moved directly, or until its apparition, or since its
apparition, or until its last visibility, or since its last visibility. If the
planet is seen rising before sunrise, it is ‘eastward’, and if it is seen
setting after sunset, it is ‘westward’. The limit of orientality (being
eastward) and occidentality (being westward) for the superior planets 1s
60 degrees, for Venus 47 degrees, and for Mercury 26 degrees. This is
their (i.c., the inferior planets’) maximum elongation. The combustion of
the superior planets <occurs> approximately in the middle of the days of
their direct motion. Their opposition to the sun <occurs> approximately
in the middle of the days of their retrogradation. The combustion of
Venus and Mercury is approximately in the middie of the days of direct
motion and the middle of the days of retrogradation.

Chapter 12: On the ascension and descension of the planets in their
spheres.

The ascension and descension are meant to be <ascension and
descension> in the <relevant> zones in the spheres of the apogee (1.e., the
eccentric orb) and of the epicycle. On the sphere of apogee <is> the
center of the epicycle, and on the epicycle <is> the body of the planet.
The zones in the sphere of the apogee corresponding to <the positions of>
the center are written in the table of the first equation. The zones in the
epicycle corresponding to the true anomaly <are written down> in the
table of the second equation. If the center and the true anomaly are found
between the maximum and mean distances in the order of the <zodiacal>
signs, then the center of the epicycle or the body of the planet on the
epicycle is descending from maximum to mean distance. <If they are>
between the mean and minimum distances, <they are> descending from
mean to minimum distance. <If they are> between the minimum and the
second mean distance, <they are> ascending from minimum to mean
distance. <If they are> between the mean and the maximum distance,
<they are> ascending from the mean to the maximum distance. As to the
ascension of the planet and its descension, i.¢., the ascension of the planet
itself in the sphere of the apogee and its descension in it, they are clear if
the position of the apogee is known.
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Commentary

The term ahwal (“situations™) in the title of this section refers to the
apparent motion of the planets that may be direct, stationary, or
retrograde (see Chapter 11).

1.4.1 According to Kushyar, the geographical longitudes of Jurjan and
Ragga with respect to the Canary Islands are 90;0° and 73;15°,
respectively (table I11.54). By dividing their longitude difference, 16;45°
by 15 degrees/hour, one obtains 1 hour and 7 minutes, in accordance with
the time interval which Kishyar uses to convert the positions of the
celestial bodies from the local time at Raqqa into that at Jurjan.

Al-Battani mentioned in his Zij a/-Sabr [1899-1907, III, 7] that he
found Ptolemy’s A/magest most reliable and followed it in his work.

1.4.2 In table 11.13, the mean longitude of the sun is given to the nearest
second for the years 1, 21, 41, ..., 581 of the Yazdigird era, and its motion
is given for 1, 2, 3,..., 20 Persian years, 40, 60, 80, 100, 200, 300, 400,
500 Persian years, the 12 Persian months from Farwardin-mah to
Esfandarmadh-mah, 1, 2, 3,..., 30 days, and for 1, 2, 3,..., 60 hours. In
table I1.17 the same functions are given for the moon with the same
precision. The same functions, to the nearest minutes are also given for
the five planets: Saturn in I1.22; Jupiter in IL25; Mars in 1L28; Venus in
I1.31; and Mercury in 1I.34. For minutes and seconds of an hour, the
relevant entries for the hours are lowered once or twice.

1.4.3 The planetary mecan longitudes in this zjj are given for the
geographical longitude 90°. In his table 11.54 for the geographical
coordinates of the localities, only Jurjan has this geographical longitude,
and in 1.1.2, he mentions Jurjan as a locality in which he lived. So, the
tables must have been composed for Jurjan. Kiishyar says that for the
localities west or east of the geographical longitude 90°, we add or
subtract 1 hour for each 15 degrees, and 4 minutes for each degree of
longitude difference. Thus the tables for the mean longitudes of the
celestial bodies can also be used in other localities. For each celestial
body, in tables 1I.13, I1.17, 11.18, 1119, I1.21, 11.22, 1123, 11.25, 11.26,
11.28, 11.29, 11.31, 11.32, 11.34 and 11.35, he provides in a final column the
positive or negative corrections for the geographical longitudes 71, 72,
73,..., 100°.

[.4.4 In the margin of table I1.12 (preliminaries for mean longitudes),

Kiishyar gives these positions of the apogees for the beginning of the
Yazdigird era. There he says that they are taken from the zjj of al-Battani.
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Kishyar gives their motion, which is the same as the precession of the
equinoxes, as one complete rotation per 24,000 years, or 54 seconds per
year. The modern values are 25,770 years and 50.29 seconds respectively.
Hipparchus, who described this motion first, evaluated it as “not less than
1° per 100 years”, and Ptolemy as 1° per 100 years [Ptolemy 1984, 328].
The Mumtahan astronomers and al-Battani had already improved the
Ptolemaic value to 1° per 66 years [van Dalen 2006, ]. Kushyar computes
this motion by subtracting one-tenth of the elapsed years in the Yazdigird
era, and he takes the result as the motion of the apogee in minutes of arc.
This computation is valid, because 0;0,54° = 0;1°.(1- 0.1). The motions
may also be taken directly from table I1.14.

1.4.5 Here Kishyar provides two equivalent methods for finding the
equation of time. In modern notation they are as follows:
E,(1,) = 04[(%, —10°16°) — (a(A) — 10°22;4°)], and
E,(1,)=0;4[(A, +6;4° — a(1)].
Here E, (2,)is the equation of time, 1, the displaced mean longitude
(see below) of the sun, Athe true longitude of the sun, and a(A4)the right

ascension of the sun, for the given time. In both methods, Kiishyar
applies “lowering” or “division by 60”, however, he describes it in two
different ways. In table II.15, Kiishyar gives the values of equation of
time for each six degrees of mean longitude of the sun, with a column of
increments for each degree that may be used for interpolations. This is the
original form of the table, which is found in mss. F and Y; in mss. B and
L, the entries are given for each degree of the argument. This chapter (in
a rather abridged form) and the table are appended to the manuscript of
Yahya b. Abl Manstr’s A/-zij al-Ma’mini al-mumtahan [1986, 121-22],
where Kishyar’s table is similar to the version found in B and L. Of
course, since Kiishyar lived after Yahya, this chapter had been added by
someone who prepared the manuscript based on Yahya’s work, some
time after Kiishyar composed his Jami ‘ ZJj.

Prof. E. S. Kennedy recomputed Kiishyar’s table for equation of time
by computer [1988, 4]. In Y and L, there is an extra phrase to the effect
that the 16° implied in the first method was originally 18°, and that
Kushyar subtracted 2° from it. Kushyar used “displaced” mean solar
longitudes, which were 2° less than mean longitudes, to avoid negative
values for the solar equation [Van Dalen 1993, 138-139; 1996, 236-238].
As Dr. Benno van Dalen remarked [1993, 140], the 10° 16° in the formula
is close to the value of the displaced mean solar position for which the
equation of time assumes its minimum value, and the 10°22°4° is
approximately equal to the right ascension of the former solar position
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added to the displaced solar equation 3;38,21" to result the true solar
position in the given time. See also the commentary on IV.4.1.

As Kashyar says at the end of this chapter, since the argument of the
table is mean longitude, there is no need to find the true longitude twice.
If we have a table for the equation of time as a function of the true
longitude, we in principle need to carry out an iteration, since the true
longitude for the time adjusted for the equation of time is a little different
from the true longitude for the original time. Then we would have to
carry out the whole calculation again for the newly found time. See also
the commentary to IV.4.1.

14.6 In table 11.16 in four pages, the values of the solar cquation are
precise to the nearest second for each degree of anomaly. This table also
includes columns of tabular differences to be used in interpolation.

14.7 In the relevant theory in the Almagest, the first equation is for
converting mean anomaly into true anomaly. The second equation is the
epicyclic equation at apogee. The difference in epicyclic equation
accounts for the increment of maximum epicyclic equation (for any
elongation). The sixtieths determine the portion of this increment to be
applied for arbitrary true anomaly. Kushyar’s method of finding the true
longitude of the moon is ultimately based on A/magest V.9 [1984, 237-
39]. However, in the A/magest the increment in epicyclic equation is
found as a function of the true anomaly and the sixtieths are found as a
function of the double elongation, whereas we find the inverse in
Kishyar’s zjj. This is due to an interesting innovation of Kiishyar who
applies a different interpolation process for adjustment of the second
equation. As demonstrated by Glen Van Brummelen [1998] for the
planets, Kiishyar’s attempt was conscious. His method is simpler and less
accurate, but shows that Kiishyar “was no mere copyist”.

Since the revolution of the nodes is opposite to the order of the
zodiacal signs, “the mean longitudes” (or merely “the longitudes”,
because the motion is uniform) given in table [1.21 are subtracted from an
entire cycle. Among different methods of tabulating the longitude of the
nodes (with positive or negative motions), Kiishyar chose to tabulate the
supplement of the longitude. So, “the mean [longitude]” here actually
means “the supplement of the longitude”.

1.4.8 This method is also found in Almagest XI.1 [1984, 554]. But in
Kiishyar’s z7j, the first equation is always added to the mean centrum and
subtracted from the mean anomaly, whereas in the A/magest, this is only
for arguments from 180 to 360 degrees. For arguments less than 180
degrees, the equation is subtracted from the mean centrum and added to
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the mean anomaly. A similar difference is encountered in the calculation
of the second equation. This is due to the displacement method used by
Kiashyar in order to avoid negative values for the equation [Van
Brummelen 1998, 268-270]. The first equation is the equation of
centrum. The second equation is the equation of anomaly for the mean
distance [Pedersen 1974, 279-294]. Here again, contrary to Ptolemy’s
procedure, Kiishyar uses the adjusted centrum and the true anomaly as
arguments for obtaining the difference relating to greater or lesser
distance (depending on the planet’s position being between the mean
distance and the apogee or the perigee), and the sixtieths, respectively.
The reason is the same as in the case of the moon, i.e., application of a
different interpolation process by Kiishyar [Van Brummelen 1998].

The tabular values of the mean centrum in the table for the first
equation are not really the mean centrum, because Kushyar shifts the
mean centrum in order to compensate the above-mentioned displacement
of the first and the second equation. For example, in the case of Mars,
since he adds 12° to all tabular values of the first equation and 47° to all
values of the second equation, he subtracts 59° from each tabular value of
the mean centrum (to which the two equations are to be added). By
adding the first equation, the result is

(mean centrum - 59°) + (first equation + 12°) =

(mean centrum + first equation) - (59° - 12°) = adjusted centrum - 47°
This is why Kashyar adds certain amounts to the resulting centrum of
each planet in order to obtain its real value. Of course, in the process of
finding the true longitude of the planet, e.g., Mars, the remaining 47" is
implicitly added later, in the calculation of the second equation [Van
Brummelen 1998, 270].

1.4.9 The two methods for finding the argument of latitude are equivalent
(see 1.4.7). Note that the “mean longitude” of a node means a complete
rotation minus its true longitude. Kiishyar provides a compact table for it
in I1.37. There is a similar table for the latitude of the moon in al-
Battani’s zij [1899-1907, 11, 78-83, column 7]. Kiishyar’s first method for
calculating the latitude of the moon 1s:

1gf =sinagp,
where g is the latitude of the moon, «,is the argument of latitude, and
B, is the maximum latitude of the moon. He also provides another
method, i.c.,
sin ' =sina,sin §,, , sin 8" =cosaysinf,, , sin B=sinf' /cos "
where the auxiliary parameters g and g” are called ‘the Sine of the
latitude of the argument’ and ‘the Sine of the latitude of the complement
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of the argument’, respectively. The second method can be derived from
the first in the following way (not mentioned by Kiishyar):

sin’ B=(1+cotg® f)" =(1+1/sin’ aytg’ B,)" =sit’ ayig’ B, (+sin’ aytg’ B,)=
sin’ oy, sin® B, /(cod B, +sint’ aysin’ B,)=sin’ o, sin” B,/ ll-sin’ B,(1—sin’ ;)]
=sin’ a, sin’ B, /(1-sin’ B, cos® a,) =sin* B’/ cos’ B’

Kiishyar mentions the fact that some astronomers take 4 as the latitude
of the moon, whereas it is not equal to the latitude of the moon, but an
approximation to it (cf. IV.4.8). Maybe Kushyar is criticizing al-Battant
who did this [1899, IlI, 113]. Al-Battani provides a method equivalent to
the modern formula sin #=sina, sin 8, , which is the correct approach and

produces Kiishyar’s g . It seems that Kiishyar misunderstood the
geometrical concept of “argument of latitude” as meant by al-Battani (see
the commentary to IV.4.8). In Kushyar’s method the final result is
divided by cos #”. So he overestimates sin g by a factor whose maximum
value is 1/cos 5°= 1.00382. Thus the maximal error in the calculation of
Sin g is 0.382 percent and the maximum absolute error in Kushyar’s

computation for g is about 1 minute and 9 seconds. Table 11.37 gives the

latitude of the moon, in degrees and minutes, for each degree of the
argument of latitude.

1.4.10 The methods for finding the latitudes of the superior and inferior
planets are taken from Almagest XII1.6 [1984, 635-36]. As remarked by
Toomer in a footnote to his translation of the Almagest [1984, 635], the
amounts to be applied to the true adjusted centrum of the superior planets
represent the (rounded) distance between the apogee and the northpoint of
the inclined orb. The tabular entries of daga’iq hisas al-‘arz are
interpolation coefficients used for calculating the latitudes of all planets.
They should not be confused with the quantity Aissat al- ‘arz (argument of
latitude) used for the moon.

In the case of Mercury, the addition and subtraction of one tenth of the
tabular value of the slant, relates to the fact that the maximum slant is
taken as 2;30° in the table. However, Ptolemy found that the maximum
slant actually differs from 2;30° by 13° in the negative direction at the
apogee and by 16’ in the positive direction at the perigee. He takes a
middle value 15° or 1/4° for both these differences. Since 15’ is one-tenth
of 2;30°, he adds or subtracts one-tenth of each tabular value of the slant
of Mercury [Ptolemy 1984, 630].

An explanation of the procedure for finding the third latitude
component of the inferior planets is given by O. Neugebauer [1975, |,
224]. See also the commentary to IV.4.9.
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1.4.11 The first method is a direct approach in which Kushyar compares
the motion in longitude and the epicyclic equation; so, in fact he
computes the difference in true longitude. The second method is found in
al-Battani’s zij, chap. 46 [1899-1907, III, 173]. Ptolemy discusses it in
detail in Almagest X11 7 & 8 [1984, 583-88]. Kiishyar gives the position
of the first stations of each planet in degrees and minutes for each six
degree of the argument in the same table for its latitude (tables 11.38 to
11.42). The different situations of each planet (direct motion, stagnation,
retrogradation, occultation, and emergence west or east of the sun)
depending on the value of the true anomaly are mentioned in the table for
its second equation (tables 11.24, 11.27, 11.30, 11.33, 11.36).

Kushyar’s definition of maximum orientality or occidentality for the
superior planets (being 60° distant from the sun) is conventional, because
they can have arbitrary distances from the sun. In this case, al-Birtni
assumes the maximum orientality (or occidentality) to be 30°. Then he
calls the planet in the interval from 30° to 90° from the sun to be ‘weakly
oriental’ (or ‘weakly occidental’). Al-Birini also mentions that the lower
limits of orientality (and occidentality) are conventional and the planets
can be invisible after passing this limit [1934, 296-296a].

1.4.12 In this chapter, Kashyar defines the meaning of the ascension and
descension of the planets in their spheres, possibly because these may be
interpreted in different ways [al-Birini 1934, 110-111]. Kushyar’s
discussion of these terms is related to the variation of the distance of the
planet from the earth between its maximum and minimum value.
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Section 5: On the operations relating to the ascendants of the day and the
night, <in> 22 chapters
Chapter 1: On the first declination.

We multiply the Sine of the degrees <of a point on the ecliptic> whose
declination we want <to find> by the total declination, lowered: The result
is the Sine of the first declination. Through successive observations, we
found the total declination 23; 35°. Based on this calculation, a table for it
(i.e., the first declination) has been compiled <in this zj>.

Chapter 2: On the right ascensions of the <zodiacal> signs.

We divide the Cosine of the degrees <of a point on the ecliptic> of which
we want <to find> the right ascension, by the Cosine of the <first>
declination of the degrees, lowered: The result is the Cosine of the right
ascension. We find the corresponding arc <from the Sine table> and
subtract it from 90°.

Another method: We divide the Tangent of the degrees <of a point on
the ecliptic> by the Tangent of the total declination: The result is the Sine
of the right ascension of those degrees.

Another method: If <the values of> the second declination are known
<by means of the relevant table>, then we find the arc corresponding to
the first declination of those degrees in the table for the second
declination. The result is the right ascension for those degrees. A table has
been compiled for it.

Chapter 3: On the second declination.

We divide the Sine of the <first> declination of those degrees <of a point
on the ecliptic> by the Cosine of the <first> declination of the complement
of the degrees, lowered: The result is the Sine of the second declination.
Another method: We multiply the Sine of those degrees by the Tangent
of the total declination, lowered. The result is the Tangent of the second
declination, and its maximum <value> is <equal to> the maximum
<value> of the first declination.
Another method: If <the values> of the right ascension are known
<through the relevant table>, then we find the arc corresponding to the
degrees in <the table for> the right ascensions: The result is the inverse of
the right ascension. We take its first declination: <The result> is the
second declination for those degrees. A table has been compiled for it.
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Chapter 4: On the distance of the stars from the celestial equator.

If the latitude of the star and the second declination of its degree <on the
ecliptic> are in the same direction, we add them; if they are in different
<directions>, we subtract the lesser from the greater, and <on this basis>
we know the direction of the remainder. Then we multiply its Sine by the
Cosine of the total declination and divide it by the Cosine of the second
declination obtained for the degree of the star (i.e., for its ecliptical
longitude): The result is the Sine of the distance of the star from the
celestial equator. Its direction is the <same> direction that we have found.
This distance of the star is similar to the first declination of the sun.

Chapter 5: On the latitude of <any> locality.

We obtain the maximum <value> of the altitude of the sun on any day by
one of the altitude <measurement> instruments. We know the <first>
declination of the degree of the sun (i.e., of its ecliptical longitude). If the
<first> declination is northern, we subtract it from the maximum <value>
of the altitude. If it is southern, we add it to the maximum <value> of the
altitude: The result is the complement of the latitude of the locality. Should
<the result> become more than 90°, we subtract it from 180°. The
remainder is the complement of the latitude of the locality.

Chapter 6: On the ortive amplitude of the sun and the star<s>.

We divide the Sine of the <first> declination of the degree of the sun (i.¢.,
its ecliptical longitude), or the Sine of the distance of the star from the
celestial equator, by the Cosine of the latitude of the locality, lowered: The
result is the Sine of the ortive amplitude.

Another method: If half the day arc of the degree <on the ecliptic> or of
the star is known, then we multiply the Cosine of the <first> declination of
the degree <on the ecliptic> or the Cosine of the distance of the star from
the celestial equator by the Sine of half the day arc of the degree <on the
ecliptic> or of the star, lowered: The result is the Cosine of the ortive
amplitude. We find the corresponding arc <from the Sine table> and we
subtract it from 90°. Half the day arc is <discussed> in Chapter 10 of this
section.

Chapter 7: On the equation of daylight of the sun and the star<s>.

We divide the Cosine of the ortive amplitude of the sun or the star by the
Cosine of the <first> declination of the sun or the Cosine of the distance
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of the star from the celestial equator, lowered: The result is the Cosine of
the equation of daylight.

Another method: We multiply the Sine of the <first> declination of the
sun, or the Sine of the distance of the star from the celestial equator, by
the Sine of the latitude of the locality, and divide it by the Cosine of the
<first> declination or the distance. The result is <called> the ‘base’. Then
we divide the base by the Cosine of the latitude of the locality, lowered:
The result is the Sine of the equation of daylight.

Another method: We multiply the Tangent of the <first> declination of
the sun, or the Tangent of the distance of the star from the celestial
equator, by the Tangent of the latitude of the locality, lowered: The result
is the Sine of the equation of daylight. A table for the Tangent of the
<first> declination has been compiled <in this z7/>.

Another method; For the degrees of the ecliptic if the equation of
daylight for the first of Cancer or of Capricorn, i.e., the maximal equation
of daylight is known: We multiply the Sine of the maximal equation of
daylight by the Sine of the right ascension of the degree <of the ecliptic>,
lowered: The result is the Sine of the equation of daylight of the degree
<of the ecliptic>. A table for the equation of daylight for the latitude of
36" has been compiled <in this zj5>.

Chapter 8: On the ascensions for a locality (i.¢., oblique ascensions).

<For> the northern degrees <of the ecliptic>, i.e., from the first of Aries
until the end of Virgo, we subtract the equation of daylight <of the
degree> from their right ascensions. <For> the southern degrees <on the
ecliptic>, i.c., from the first of Libra until the end of Pisces, we add the
equation of daylight <of the degree> to their right ascensions: The result is
the oblique ascension of that degree for that locality. A table for the
oblique ascensions of <the zodiacal signs for> the latitude of 36° has been
compiled <in this zj>.

Chapter 9: On the maximum altitude of the sun and the star<s>.

If the declination of the sun or the distance of the star from the celestial
equator is northern, we add it to the complement of the latitude of the
locality. If the declination or the distance is southern, we subtract it from
the complement of the latitude of the locality. The sum or the remainder is
the maximum altitude of the sun or the star. If the sum is over 90°, we
subtract it from 180°. The remainder is the maximum altitude in the
northern direction.
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Chapter 10: On half the day arc of the sun and <any> star.

If the declination of the sun or the distance of the star from the celestial
equator is northern, we add its equation of daylight to 90° 1If the
declination or the distance is southern, we subtract its equation of daylight
from 90°. The sum or the remainder is half the day arc of the sun or the
star.

Another method: We subtract the oblique ascension of the degree <of
the ecliptic> from the oblique ascension of its opposite <degree>. The
remainder is the day arc. If we subtract the day arc of the sun or the star
from 360°, the remainder is the night arc.

Chapter 11: On the <equinoctial> day hours of the sun and the star<s>
and the degrees of their <seasonal> hours.

We multiply the equation of daylight of the sun or the star by 8 minutes.
Then, if the declination of the degree of the sun <on the ecliptic> or the
distance of the star from the celestial equator is northern, we add it (i.e.,
the product) to 12 <hours>. If the declination or the distance is southern,
we subtract it from 12 <hours>. The sum or the remainder is the <number
of the equinoctial> hours of the daylight of the sun or the star.

We multiply the equation of daylight by 10 minutes. Then, if the
declination or the distance is northern, we add it to 15 <degrees>. If the
declination or the distance is southern, we subtract it from 15 <degrees>.
The sum or the remainder is <the number of> degrees in one <seasonal>
hour of the sun or the star.

Another method: We divide the day arc of the sun or the star by 15
<degrees>: The result is the <number of the> equinoctial hours of the day.
We also divide it by 12 <hours>: The result is the <number of the>
degrees in one seasonal hour of the day. If we subtract the <number of the
equinoctial> hours of the day from 24, the remainder is <the number of>
the hours of the night. If we subtract <the number of> the degrees in one
<seasonal> hour of the day from 30, the remainder is <the number of> the
degrees in one <seasonal> hour of the night.

If we add to <the number of> the equinoctial hours of the day one-
fourth of it, the sum is <the number of>> the degrees in one seasonal hour
of the day. If we subtract from <the number of> degrees in one seasonal
hour of the day one-fifth of it, the remainder is <the number of> the
equinoctial hours of the day.
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Chapter 12: On the <ecliptical> degree of the transit of a star through the
meridian.

If the star has no (i.e., zero) latitude, the <ecliptical> degree of its transit is
the same as its longitude. If it has <a non-zero> latitude, we multiply the
Cosine of the latitude of the star by the Sine of the distance to the solstice
nearest to it, either before it or after it, and we divide it by the Cosine of
the distance of the star from the celestial equator: The result is the Sine of
the adjusted distance from the solstice. We find the corresponding arc, and
add it to the beginning of the <zodiacal sign of the> solstice if the star lies
after it in the sequence of the <zodiacal> signs, and we subtract it from it
(i.e., from the beginning of the zodiacal sign of the solstice) if the distance
<of the star> from it is in the order opposite <to that of the zodiacal
signs>: The result is the right ascension of the degree of transit <counted>
from the beginning of Aries. We find the <ecliptical> arc corresponding to
the right ascension: The result is that <ecliptical> degree which passes the
meridian <simultaneously> with the star.

Chapter 13: On the <ecliptical> degree relating to the rising and setting of
a star.

If the distance of the star from the celestial equator is northern, we
subtract its equation of daylight from the right ascension of the degree of
its transit. If the distance is southern, we add its equation of daylight to the
right ascension of the degree of its transit: The result is the oblique
ascension of the <ecliptical> degree that rises <simultaneously> with the
star. We add the day arc of the star to the <right> ascension of the
<ecliptical> degree of rising <simultaneously with the star>. We find the
arc corresponding to the sum in <the table for> the oblique ascension.
Then we take its opposite, and this is the <ecliptical> degree setting
<simultaneously> with the star.

Chapter 14: On <finding> the arc of revolution of the celestial equator
since the rising of the sun or the star<s> from the altitude of the <sun or
the star at a given> time.

We multiply the Sine of the altitude of the <given> time by the Sagitta of
half the day arc and divide it by the Sine of the maximum altitude: The
result is <called> the “arrangement Sine” of the arc of revolution. We
subtract it from the Sagitta of half the day arc. The remainder is the
Sagitta of the excess of the arc of revolution. We find the corresponding
arc which is the excess of the arc of revolution. If the altitude of the
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<given> time is eastern, we subtract the excess of the arc of revolution
from half the day arc. If the altitude is western, we add the excess of the
arc of revolution to half the day arc: The result is the arc of revolution of
the celestial equator.

Chapter 15: On <finding> the <elapsed> hours from the arc of revolution.

We divide the arc of revolution of the celestial equator by 15: The result is
<the number of> the equinoctial hours <elapsed> since the rising of the
sun or the star. We divide the arc of revolution by <the number of>
degrees in the <seasonal> hours corresponding to the degree of the sun or
the star: The result is <the number of> the seasonal hours since the rising
of the sun or the star.

Chapter 16: On <finding> the ascendant from the arc of revolution during
the day and at night.

We add the arc of revolution from the rising of the sun or the star to the
oblique ascension of the sun or the oblique ascension of the <ecliptical>
degree which rises <simultaneously> with the star: The sum is the oblique
ascension of the ascendant. We find the corresponding arc in the table for
the oblique ascensions, and thus the ascendant will be obtained.

Chapter 17: On <finding> the arc of revolution from the ascendant.

We subtract the oblique ascension of the sun or the oblique ascension of
the degree which rises <simultaneously> with the star from the oblique
ascension of the ascendant: The remainder is the arc of revolution of the
celestial equator since the rising of the sun or the star.

Chapter 18: On <finding> the altitude of the <sun at a given> time from
the arc of revolution.

We obtain the difference between the arc of revolution and half the day
arc: The result is the excess of revolution. We subtract its Sagitta from the
Sagitta of half the day arc: The result is the Sine of the altitude of the sun
or the star at the <given> time corresponding to the given arc of
revolution. We find the corresponding arc: It is the altitude.
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Chapter 19: On <finding> the arc of revolution since sunset from the
ascendant.

We subtract the oblique ascension of the degree opposite to the sun from
the oblique ascension of the ascendant at the time of measurement: The
remainder is the arc of revolution of the celestial equator since sunset.

Chapter 20: On <finding> the ascendant from the arc of revolution since
sunset.

We add the arc of revolution of the celestial equator since sunset to the
oblique ascension of the degree opposite to the sun: The sum is the oblique
ascension of the ascendant. We find its <corresponding> arc in the table
for the oblique ascensions: It is the ascendant.

Chapter 21: On a base <value> applying to most operations concerning
day and night.

We multiply the Cosine of the declination of the degree of the sun by the
Cosine of the latitude of the locality, lowered twice: The result is the base
<value>.

<Finding> the arrangement Sine from the altitude of the <given>
time: We divide the Sine of the altitude of the <sun at the given> time by
the base value: The result is the arrangement Sine (i).

<Finding> the altitude from the arrangement Sine: We multiply the
base value by the arrangement Sine of the arc of revolution: The result is
the Sine of the altitude (ii).

<Finding> the Sagitta of half the day arc which is called the “day
Sine”: We divide the Sine of the maximum altitude by the base value: The
result is the day Sine (iii).

<Finding> the meridian altitude from the day Sine: We multiply the
base value by the day Sine: The result is the Sine of the meridian altitude
(iv).

<Finding> the excess of the arc of revolution: We divide the
difference between the Sine of the altitude of the <sun at the given> time
and the Sine of the meridian altitude by the base value: The result is the
Sagitta of the excess of the arc of revolution (v).

<Finding> the aititude of the <sun at the given> time from the
Sagitta of the excess of the arc of revolution: We multiply the Sagitta of
the excess of the arc of revolution by the base value. We subtract the
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remainder from the Sine of the meridian altitude: The remainder is the
Sine of the altitude <of the sun> (vi).

<Finding> the equation of daylight. Half of the day arc is known
from its Sagitta. The difference between half the day arc and 90° is the
equation of daylight.

<Finding> the arc of revolution of the celestial equator: The excess
of the arc of revolution is known from its Sagitta. Half of the day arc is
<also> known from its Sagitta. If the altitude is eastern, we subtract the
excess from half the day arc. If the altitude is western, we add the excess
to half the day arc. The sum or the remainder is the arc of revolution of the
celestial equator.

Chapter 22: On the equalization of houses.

We obtain the <number of the> degrees in the <seasonal> hours of the
ascendant, double it, and keep it. We subtract this double from 60: The
remainder is twice the <number of the> degrees in the <seasonal> hours
of the degree opposite to the ascendant (i.e., the descendant). We keep it.
Then we subtract 90° from the right ascension of the ascendant: The
remainder is the right ascension of the tenth <house>. Then we write the
right ascension of the ascendant in two positions. We subtract from one of
the positions twice the <number of the> degrees in the <seasonal> hours
of the ascendant. We add to the other <position> the <number of the>
degrees in the <seasonal> hours of the degree opposite <to the ascendant>.
The remainder is the right ascension of the twelfth <house> and the sum is
the right ascension of the second <house>. We subtract the subtrahend
from the remainder <again> and add the addend to the sum <again>: The
result of the subtraction is the right ascension of the eleventh <house>,
and that of the addition is the right ascension of the third <house>. We
find the arcs corresponding to each of these right ascensions. The results
are the <ecliptical> degrees of <the cusps of> the houses. Then, the fourth
<house> is <diametrically> opposite to the tenth <house>; the fifth
<house> is opposite to the eleventh <house>; the sixth <house> is
opposite to the twelfth <house>; the seventh <house> is opposite to the
ascendant; the eighth <house> is opposite to the second <house>; and the
- ninth <house> is opposite to the third <house>. If we want to check the
operation to know if we have worked correctly or wrongly, we subtract
from the right ascension of the eleventh <house> twice the <number of
the> degrees in the <seasonal> hours of the ascendant, that we had
subtracted, and we add to the right ascension of the third <house> twice
the <number of the> degrees in the <seasonal> hours of the opposite <of
the ascendant>. If the remainder is equal to the right ascension of the tenth

57




<house> and the sum is equal to its opposite, then we have worked
correctly. If not, we have worked wrongly, and we repeat the operation.

Another method: We write the right ascension of the tenth <house> in
two positions. We add to one position twice the <number of the> degrees
in the <seasonal> hours of the ascendant. We subtract from the other
<position> twice the <number of the> degrees in the hours of the opposite
<of the ascendant>, The sum <is> the right ascension of the eleventh
<house> and the remainder <is> the right ascension of the ninth <house>.
We add the addend to the sum <again> and we subtract the subtrahend
from the remainder <again>: The sum is the right ascension of the twelfth
<house>, and the remainder is the right ascension of the eighth <house>.
The arcs of these right ascensions are the <ecliptical> degrees of <the
cusps of> the houses, and their opposites are <found> as mentioned
before.
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Commentary

I.5.1 In modern notation: Sind, = SinASine /R, where §&,is the absolute
value of the first declination, A the true longitude, € the total declination,
and R the radius of the trigonometric circle (usually taken equal to 60 in
medieval Islamic trigonometry). Ptolemy [1984, 69-70] explains this
method by solving the problem for special cases. Al-Battani gives the
same formula as Kashyar but in terms of the Chord function [1899-1907,
III, 18]. A proof of the validity of the formula for the first declination is
given in IV.5.1. A table for the first declination is given in I1.43.

1.5.2 For a discussion of the right ascension see [Pedersen 1974, 99-101].
Kishyar’s methods for finding the right ascensions are equivalent to
CosA,(A) = CosA/(Cosd, / R), and Sind,(A)=Tgd, /(Tge/R), where A,is the
right ascension and the other symbols are as in [.5.1. The third method, in
which we use the table for the second declination, is based on the
symmetrical relation between the first and the second declinations. I will
now explain Kiishyar’s rather confusing description of the third method.
Apparently, he provides the method for finding the right ascension by
means of a table for the second declination, if the value of the first
declination is known.

ecliptic
B

A_~e d,
- C

In the figure, AB is the true longitude of the ecliptical degree, AC the
corresponding right ascension, &,the first declination, and & the total
declination or the angle between the ecliptic and the celestial equator.
Now, if we take AC as an arc on the ecliptic and 4B as the celestial
equator, then &, will be the second declination of AC. So, if we find the
argument of the tabular entry equal to &,(which Kuashyar implicitly
assumes to be known), in the table for the second declination, the
argument will be equal to the required right ascension.

Ptolemy solves the problem for the special cases A=30° and A=60°,
using a method equivalent to the second formula [1984, 71- 73]. Al-
Battani gives the second formula but instead of Sines and Tangents he
uses the Chord function [1899-1907, III, 20]. Kishyar gives a table for
the right ascensions in II. 45 and proofs of the formulas in IV.5.2.
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1.5.3 The formulas are equivalent to Sins, = Sind, /[Cos5,(90° - A1)/ R]| and
Tgs, = SinATge /R, where &, 1s the second declination, and 6,(90°-A) is the
first declination of the complement of the true longitude (other symbols
are as defined formerly). The third method in which we use the table for
the rising times on the equator, is based on the symmetry between the
first and the second declinations. Kishyar’s description in the third
method is again confusing (cf. the third method in 1.5.2). Apparently, he
supposes that we have the table for the right ascensions and we can find
the first declination (by computation or from the corresponding table).

In the figure, AB is the arc on the ecliptic, and &,1is the corresponding

second declination. So, BD is perpendicular to AB. Now, if we take AD
as an arc on the ecliptic, and AR as the celestial equator, then §, may be

regarded as the first declination of AD. Kushyar calls AD aks al-matali‘
(“the inverse of the right ascension”, meaning: the ecliptical longitude
where the right ascension is AD). Proofs of the three methods are given
in IV.5.3. A table for the second declination is given in 11.43.

[.5.4 In modern notation: Sin(d)=Sin(B +5,)Cos(g)/ Cos(5,), where d is
the distance from the celestial equator, and £ the ecliptical latitude of the
star (other symbols as defined above). In al-Battani’s zij, d is found
through a method equivalent to the first formula given below in 1.5.6.
Kishyar gives a proof of his formula in IV.5.4.

1.5.5 In modern notation: ¢ =90°-(4__ +5,), where ¢ is the geographical
latitude of the locality, and #__ is the maximum altitude of the sun on the
day of measurement, and &,is the declination of the sun on that day. A
proof of this formula is given in IV.5.5. If 4__ is measured in the south,

the + sign is for a southern declination and the — sign is for northern
declination. If #_ is measured in the north, the + sign is for a northern

declination and the — sign is for a southern declination. The above
formula can be written as 90°-¢@=4_ tJ, . Now if h__ + 6, exceeds 90°

(In the northern hemisphere, this happens when northern &, exceeds o),
then 90°-¢ =180°- (4, +d,). This is possible in those localities where
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¢<e. For example in Mecca, where ¢=21.4", this happens near the
summer solstice, when §,> 21.4".

1.5.6 The ortive amplitude () is the arc on horizon between the East point
and the rising point of the sun or the star [Kennedy & Sharkas 1962]. In
modern notations, the first method is Siné = Sind, /(Cos¢/ R) for the sun, and
Sin@ = Sind /(Cos¢ / R) for the stars, where d is the distance of the star from
the celestial equator. The second method may be expressed in modern

notation as Cos@ = Cos&lSing—/ R for the sun and Cos@ = Costin—?/ R for the

stars, where D is the day arc (see Chapter 10 of this section). Proofs of the
validity of these formulas are given in IV.5.6. In the Al/magest, the second
method is used for finding the maximum ortive amplitude at Rhodes where
¢=36° [1984, 76-77]. In al-Battani’s z7j, both methods for finding the ortive
amplitudes are described [1989-1907, III, 29-30].

1.5.7 The equation of daylight (AD) is defined as AD = |D/2 - 90°|. For
the sun, the four methods are equivalent to the following formulas:

CosAD = Cos8 /(Cosd, / R) ,

SinAD = Sind Sing /(CosS,Cos@/ R)=Tg5,Tgp/ R = SinMSinA,(1)/R.

In the first three formulas, we may substitute d for &5, to obtain the
formulas for the stars (see the last sentence in 1.5.4). In the last formula,
M is the maximum value of AD. Proofs of the formulas are given in
IV.5.7, where he also provides the proof for another method that is not
mentioned here. A table of the function AD for the latitude 36° and a
table of the function M for latitudes of 16°, 17°, 18°, ...,45° are given in
11.48 and 11.47 in F, respectively. However, the table in 11.47 is left blank
in F and it is also missing in the other manuscripts. In Y, L, and B, the
table I1.48 is given for the latitude of 35;30°. At the end of Y, there is a
table for AD calculated for the latitude of 30;5°. In the Almagest we find
an application of a method equivalent to Kiaishyar’s second method, for
the latitude of 36° relating to Rhodes [1984, 78-79], without referring to
the ‘base’. Al-Battani also uses the second method for finding the
equation of the daylight arc [1989-1907, III, 48-49] in order to find the
daylight arc itself (see 1.5.10).

1.5.8 For a discussion of the oblique ascensions see [Pedersen 1974, 99-
101]. A proof of the validity of Kiishyar’s method for finding the oblique
ascensions is found in IV.5.8. A table of the oblique ascensions for the
latitude of 36° (possibly a rounded value for 36;50°, the latitude of
Jurjan) is given in I11.46 in F. The corresponding tables in Y, L, and B are
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given for the latitude of 35;30°. At the end of Y, corresponding tables for
latitudes of 38° (possibly for Daylam in Gilan) and 32; 23° (Isfahan) are
given. In P, the relevant tables for latitudes of 38° and 36; 30° are given
among the seven tables added in the sequel of Book I.

1.5.9 The method described in this chapter is equivalent to the modern
formula #_, =(90°-¢)+65, where the positive sign is used for northern

declinations, and the negative sign for southern declinations of the sun.
For the planets and stars, we substitute the distance from the celestial
equator for &,. A proof of the validity of this method is given in IV.5.9.

1.5.10 The method for finding half the day arc is equivalent to the
formula D/2=90°+AD. The positive and negative cases are for the
northern and the southern declination of the sun or the distance of the
planet from the celestial equator, respectively. A proof of this method is
given in IV.5.10.

In the second method, if the oblique ascension of a certain ecliptical
degree A is A(A), then we have A(A+180°) = A(A)+180°+ 2AD (this
relation can be deduced from the rule for finding the oblique ascension
given in 1.5.8 above and the symmetries of the oblique ascension
described in [Ptolemy 1984, 90-92]). So the difference is 180°+2AD,
which is the day arc. The plus sign is used for the first and fourth
quadrants, and the minus sign is used for the second and third quadrants.

I.5.11 Since each degree of rotation of the celestial equator corresponds
to 4 minutes of time, the length of a day is
4(180°+ 2AD) minutes = 12 hours + 8AD minutes
The number of degrees in a seasonal hour is
D/12 =(180°+ 2AD)/12 = 15°+ (10/60) AD

Dividing 2AD by 15 or 12 is equivalent to multiplying 2AD by 4
minutes (i.e., 4/60) or multiplying AD by 10 minutes (i.e., 10/60).

So the alternative methods are equivalent to those formulated above.
The number of degrees in a seasonal hour of the night is

(360°- D)/12=30"- D/12, 1.e.,
30° minus the number of degrees in a seasonal hour of the day.

It is obvious that 2(1+l)=2 and 2(1 —l)=2. There is no section
15 4" 12 12 5 15

corresponding to [.5.11 in Book IV.

1.5.12 The Sine of the ‘adjusted distance’ (d,) of the star from the
solstice (arc TE in the figure of IV.5.11), or the difference between the
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right ascensions of the ecliptical degree relating to the star, and the
nearest solstice is found by a method equivalent to the formula
Sind, = CosfiSind, / Cosd, where f is the latitude of the star, d,is its

distance to the nearest solstice, and d is the distance of the star from the
celestial equator. By adding or subtracting this auxiliary magnitude d, to

or from the longitude of the relevant solstice, we find the right ascension
of the star, and hence, by the table of right ascensions, its ecliptical
degree of transit. A proof of the validity of this method is given in
IV.5.11. Kashyar’s method is different from and simpler than the method
given by Ptolemy [1984, 411-12] and followed by al-Battani [1899-1907,
111, 48].

1.5.13 Proofs of these methods are given in IV.5.12. Kiishyar’s methods
are simpler than those provided by al-Battant [1899-1907, 11, 49-50] for
this subject.

1.5.14 The arc of revolution is the distance covered by a point on the
celestial equator due to the apparent revolution of the celestial sphere (1°
per 4 minutes of time) between two moments of time. Usually these two
moments are sunrise or sunset and the time of observation. In this
chapter, Kiishyar wants to compute the arc of revolution from the altitude
which he has found by observation (for a definition of the Sagitta
function see 1.2.4 and its commentary). In modern notation, first we
obtain the so called ‘arrangement sine’ of the arc of revolution; then we
obtain the excess of the arc of revolution, and then the arc of revolution,
as follows:

Let As(a,) = Sinh,(R — Cos %) / Sinh,,_,
then R —Cose(a,)=R - Cos—lzZ -As(a,),
and a, =—§—i-e(a,).

As(a,) is called the ‘arrangement Sine’ of the arc of revolution, A, is the
altitude of the sun or the star at the given time, 4, is the maximum
altitude, and e(a,) is the excess of the arc of revolution.

A proof of the validity of this calculation is given in IV.5.13. Al-
Battant gives a similar method for this calculation [1899-1907, III, 45],
but he does not use the term ‘arrangement Sine’. Al-Kashi used the term
in the Book V of his Khdgani zij [Kennedy 1985, 45; 1998, 38]. In the
introduction of Book V, he defines the ‘arrangement Sine’ as “the
perpendicular from one end of an arc to a chord that passes through the
other end of the arc”. He adds that “if a perpendicular is drawn on the
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base of a circular segment and reaches the circumference and divides the
arc into two [unequal] arcs, the perpendicular is regarded as the
‘arrangement Sine’ of either of the two arcs.”

In the chapter entitled “A compendium of astronomy” in Book III,
Kishyar defines the ‘arrangement Sine’ in a similar way. In his definition
ACDB is the day arc and CH , the ‘arrangement Sine’ of the ‘arc of
revolution AC, is parallel to the Sagitta of half the day arc (DM).
Example:

Suppose the altitude of the sun is 53° eastern, the maximum altitude is
72,58°, and half the day arc is 104;24°.

Using the above formulas, we have:

As(a, )=Sin53°(60-Cos104;24°)=62.5807,

60-Cos e(a, )=60-Cos104;24°-62.5807=12.3407, so Cos e(a,)= 47.6593,
e(a,)=37.24°. Now the arc of revolution can be found by the last formula

above, taking the minus sign (because the sun is in the eastern half of the
sky): a,= D/2-37;24°=67,0".
The example is taken from al-Nasawi’s al-Lami ‘ T amthilat al-Zij al-jami
(see the commentary on 1.1.5), fol. 61v. Al-Nasaw1 finds «,equal to
67;1°. The difference with the above result is only 1 minute that can be
due to the rounding errors.
With the data of the example, the geographical latitude of the locality of
observation can be found equal to 35;57.5°. This accords with the
historical information that al-Nasaw1 worked in or around Rayy (with
geographical latitude 35;40° N).
Having the arc of revolution, we can easily find the time of the day, as
the equinoctial hours passed since sunrise (see 1.5.15):

67;0/15= 4 hours + 28 minutes.
We can also find the local time:

12- 37;24°/15=9;30.4 AM

1.5.15 Since a complete revolution of the equator occurs in 24 hours, by

dividing the arc of revolution into 15=360:24, we obtain the number of
the hours elapsed since the rising of the sun or the star. The method for
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finding the number of the seasonal hours elapsed since sunrise is
obvious.

1.5.16 A proof of this method 1s given in IV.5.14. This method is also
given by al-Battant [1899-1907-, I1I, 45].

[.5.17 A proof of this method is also given in [V.5.14.

[.5.18 This is the inverse of the method given in 1.5.14. Al-Battani
provides a similar method [1899-1907, 111, 46].

1.5.19 This method is valid because the ecliptic is a great circle, and a
semicircle of it 1s always above the horizon. Then, the setting of any
point on the ecliptic is simultaneous with the rising of the diametrically
opposite point on the ecliptic.

1.5.20 This is simply the inverse of the method mentioned in 1.5.19,

1.5.21 In modern notation, the “base” B (not the same B mentioned in
1.5.7) as well as the first six rules in the chapter are as follows:
B=CosS,Cosp/R*
1) As(a,)=Sinh, /B
11) Sinh, = BAs(a,)

iii) R - Cos% - Sink,_ /B

iv) Sink_ = B(R - Cos -’-23)
V) R—Cose(a,)=(Sinh,,, —Sinh}/ B

vi) Sinh, = Sinh_, ~ B[R - Cose(a, )|

The validity of formula i is proved in IV.5.15. The formulas ii, iii, iv,
v, and vi can be derived from i, by applying the definition of the base and
by the formulas given in 1.5.14.

1.5.22 ‘Equalization of the Houses’ is a method of division the ecliptic
into 12 parts, different from the zodiacal signs, for astrological purposes.
The beginnings of the first, fourth, seventh and tenth house were usually
regarded to be the ascendant, the lower midheaven, the descendant, and
the upper midheaven, respectively. These points are called the ‘cardines’
(Arabic: autad). Then the arcs between these four points were divided
into three parts for finding the beginnings of the other houses. There
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were different methods for this division. Kishyar’s method was called
“the well- known method” by al-Birlint [1954-1956, III, 1357-59; 1985,
276] and “the Standard Method” in modern literature [North 1986, 4;
Kennedy 1996, 538, 548]. It was actually the most popular one among
the medieval Islamic authors. The origin of this method is pre-Islamic
[North 1986, 6], however, some modern authors ascribe it to Alchabitius
(Latinized form of al-Qabisi), the court astrologer of the Buyid Sayf al-
Dawla [Kennedy 1996, 539-40].

In this method the cardines are projected onto the celestial equator along
great circle arcs through the equatorial poles. Then the four resulting
segments are trisected. The trisection points are projected back onto the
ecliptic along great circle arcs through the equatorial poles to obtain the
corresponding cusps (i.e., the beginnings of the houses). Kiishyar first
finds Ae,, the equatorial arc corresponding to 2 diurnal unequal hours

(for the sun at the ascendant). He also finds Aa, =60 -Ac,, the

equatorial arc corresponding to 2 nocturnal unequal hours. By
subtracting Ac,from the right ascension of the ascendant and adding

Aa,to this right ascension, he finds the right ascensions of the cusps of

the twelfth and the second houses. By repeating this process, he finds the
right ascensions of the cusps of the eleventh and the third houses. Now
he finds the ecliptical degrees corresponding to these right ascensions.
He also finds the cusps of the other houses, which are opposite to the
former houses correspondingly. In the second method, he starts from the
tenth house and follows a process similar to the first one and differing in
the order of the houses to be found.

Al-Battani mentions the same method, and he follows the order given in
Kishyar’s second method [al-Battani 1899-1907, III, 110-11].
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Section 6: On eclipses and what pertains to them, <in> 20 chapters
Chapter 1: On the motion of the two luminaries in <one> day and <one>
hour.

The daily motion is the difference between the true longitude of <any> one
of the two luminaries for any day and the true longitude for the next or the
previous day. It is called ‘daily rate’. The hourly motion is the result of
dividing the daily motion by twenty-four. It is called ‘hourly rate’. Or
<using another method,> we find the true longitude of <any> one of the two
luminaries for the given time; then <we find it> for six hours later or earlier.
We take the difference between the two true longitudes and multiply it by
10 minutes (i.e., 10/60). A table is compiled for it (i.e., for the hourly rate)
<in this zij>, If the hourly rate of the sun is subtracted from the hourly rate
of the moon, the remainder is the adjusted rate. It is called ‘the lunar gain’.

Chapter 2: On the magnitude of the <apparent> diameter of the two
luminaries and the diameter of the shadow <of the earth>.

<For finding> the diameter of the sun, we multiply its daily motion by 33

minutes (i.e. 33/60), or we multiply its hourly motion by 13 %: The result is

its diameter according to its distance from the earth. As for the diameter of
the moon, we multiply its daily motion by 2 minutes and 26 seconds (i.e.,
2/60+26/60x60=146/3600), or we multiply its hourly motion by 58 minutes
and 25 seconds (i.e., 58/60+25/60x60=3505/3600): The result is its
diameter according to its distance from the earth. For the diameter of the

shadow <of the earth>, we multiply the diameter of the moon by 2%: The

result is the diameter of the shadow according to the distance of the moon
from the earth, the sun being at its maximum distance <from the earth>. If
we want extreme precision, we take the excess of the hourly motion of the
sun over 2 minutes and 23 seconds, multiply <the result> by 10, and
subtract <this product> from the diameter of the shadow which was found:
The result is the adjusted diameter of the shadow according to the distance
of the sun also from the carth. A table is compiled for these diameters, with
the hourly motions of the two luminaries <in this zi7>.

Chapter 3: On the <ecliptical> degree of a conjunction and opposition,
their hours and ascendants.

We find the true longitudes of the two luminaries for noon of the day
nearest to the conjunction or the opposition, and we take the distance
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between the two true longitudes from those true longitudes in the case of
conjunction. But in the case of opposition, <we take the distance> after we
have added 6 <zodiacal> signs to the position of the moon. We note which
of the two <luminaries> precedes the other <in the ecliptic>. Then we
multiply the distance by 5 minutes and we call the result ‘the part of the
distance’, and we keep it; <then> we add it to the distance: The result is
the distance plus ‘the part of the distance’. Then we look: if the sun
precedes <the moon>, we add the distance plus its part to the <true
longitude of the> moon and we add the ‘part of the distance’ to the <true
longitude of the> sun. If the moon precedes <the sun>, we subtract the
distance plus its part from the <true longitude of the> moon, and we
subtract ‘the part of the distance’ from the <true longitude of the> sun.
<The sun and the moon> will be in conjunction or opposition in the same
second <of a degree>. The hours: Then we find the hourly motions of the
two luminaries. We subtract the hourly motion of the sun from the hourly
motion of the moon. The remainder is <called> ‘the lunar gain’. We divide
the distance by ‘the lunar gain’. The result is the <number of> hours
corresponding to the distance. If the sun precedes <the moon>, we add the
hours corresponding to the distance to the hours of the noon. If the sum is
less than the hours of the entire day, then it is the <number of the> hours
of the day elapsed <before conjunction>. If it is greater than the <number
of the> hours of the day, we subtract the <number of the> hours of the day
from it. The remainder is the <number of the> hours of the next night
elapsed <before conjunction>. If the moon precedes <the sun>, and the
<number of the> hours corresponding to the distance is less than the hours
of the noon, we subtract the <number of the> hours corresponding to the
distance from the hours of the noon. The remainder is the <number of the>
hours of the day elapsed <before the conjunction>. If it is greater than <the
number of> the hours of the noon, we subtract the <number of the> hours
corresponding to the distance from the sum of the hours of the noon and
the hours of the night. The remainder is the <number of the> hours of the
previous night elapsed <before the conjunction>. Then we find the true
longitudes of the two luminaries for the resulting hours (i.e., for the
resulting time). If they coincide with the <ecliptical> degree that had been
computed before, the <number of the> the hours is correct. If their
positions are different, we take the difference between them, and we
operate with them in the same way that we operated with the true
longitude<s> at noon and the distance between the two luminaries. The
result of this second time is the <ecliptical> degree of the conjunction and
opposition and the time <of conjunction and opposition> with <more>
precision. We find the ascendant for the resulting time. It is the ascendant
of the conjunction and the opposition.
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Chapter 4: On the absolute and adjusted magnitudes of a lunar eclipse in
digits.

We consider the latitude of the moon at the <time of> opposition: If it is
more than 63 minutes northern or southern, the moon will not be
eclipsed, if it is less than this <limit>, it can be eclipsed. Then we find
the diameter of the moon and the diameter of the shadow, we add them,
and we halve the result. It is <called> half the <sum of the> diameters
(i.e., the sum of the two radii). If the latitude of the moon is greater than
the <sum of the> two radii or equal to it, the moon will not be eclipsed. If
the latitude is less <than that, the moon> will be eclipsed. The excess of
the <sum of the> two radii over the latitude is the <magnitude> of the
eclipse in minutes. If it is greater than the diameter of the moon, <then
the moon> will be totally eclipsed and will remain in it (i.e., in the
eclipsed situation) for some time. If it is equal to the diameter of the
moon, <then the moon> will be totally eclipsed, but it will not remain in
the <total> eclipse. If it is less than the diameter of the moon, <then the
moon> will be partially eclipsed. We multiply the <magnitude> of the
eclipse in minutes by 12 and divide it by the diameter of the moon. The
result is the absolute <magnitude> of the eclipse in digits, in which we
take the diameter <of the moon equal to> 12 digits. For <finding> its
adjusted <value>, we subtract the <magnitude> of the eclipse in minutes
from the diameter of the moon, and <also> from the diameter of the
shadow, and we add the remainders. Then we multiply the remainder of
the diameter of the moon by the <magnitude> of the eclipse in minutes,
and divide it by the sum of the two remainders. The result is the Sagitta
of the shadow. We subtract it from the <magnitude> of the eclipse in
minutes. The remainder is the Sagitta of the moon. Then we subtract the
Sagitta of the moon from the diameter of the moon, multiply the
remainder by the Sagitta of the moon, and take the square root of the
result. The <final> result is the absolute Sine. We keep it. Then we
multiply the absolute Sine by 60 and divide it by the radius of the moon.
The result is the adjusted Sine. We find the corresponding arc. If the
Sagitta of the moon is less than its radius, then this arc is <called> ‘the
arc of the moon<’s disk>’. If the Sagitta is greater than the radius <of the
moon>, we subtract the arc from 180 <degrees>. The remainder is ‘the
arc of the moon<’s disk>’. Then we multiply the diameter of the moon by
22 and divide it by 7. The result is the circumference of the moon’s disk.
Then we multiply half of it by the radius of the moon. The result is the
area of the moon’s disk. Then we multiply the circumference of the disk
by the arc <of the moon’s disk>, and divide <the product> by 360
<degrees>. The result is half the ‘arc of the sector’. We multiply it by the
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radius of the moon. The result is the <area of the> sector of the moon.
Then we obtain the difference between the Sagitta and the radius, and
multiply <the remainder> by the absolute Sine. The result is <the area of
> the triangular <portion> of the moon. If the Sagitta is less than the
radius <of the moon>, we subtract the <area of the> triangular <portion>
from the <area of the> sector. If the Sagitta is greater <than the radius>,
we add it <to the area of the sector>. The sum or the remainder is <the
area of> ‘the segment of the moon’. Then we repeat the operation for the
shadow <instead of the moon> from the absolute Sine on. However, the
Sagitta of the shadow does not reach the value of its radius. When we
find the segment of the shadow, we add it to the segment of the moon.
The result is the adjusted <magnitude> of the eclipse in minutes. We
multiply it by 12 and we divide the result by the area of the moon’s disk.
The result is the adjusted <magnitude> of the eclipse in digits, based on
taking the area of the <moon’s> disk <equal to> 12 digits. <The
procedure given in> this chapter is also sufficient for finding the adjusted
magnitude of solar eclipses in digits, if we let the disk of the sun take the
place of the disk of the moon in this <procedure>, and let the moon’s
disk take the place of the disk of the shadow. We follow the conditions
that we laid down in the case of the moon, its Sagitta, its arc, and its
triangular <portion>. A table for finding the approximate adjusted
magnitudes of the two (i.e., solar and lunar) eclipses is compiled <in this
zipP.

Chapter 5: On the absolute and adjusted times of a lunar eclipse.

The time of the opposition is that of the middle of the lunar eclipse. The
other times are <as follows:> the beginning of the lunar eclipse, the
beginning of the duration <of totality>, the beginning of the emersion
<of the eclipse>, and the end of the emersion. If there is no duration <of
totality>, <then the times are:> the beginning of the lunar eclipse, and the
end of the emersion. We subtract the square of the latitude of the moon at
the middle of the lunar eclipse from the square of the <sum of the> two
radii and obtain its square root. <The result> is the <magnitude> of
immersion from the beginning of the lunar eclipse to its middle in
minutes, whether or not it has a duration <of totality>. We divide it by
the lunar gain. The result is the <number of the> hours of the immersion
from the beginning to the middle <of the lunar eclipse>. We subtract it
from the time of the middle of the lunar eclipse, and we <separately> add
it <to the time of the middle>. The remainder is the time of the beginning
<of the lunar eclipse>, and the sum is the time of the end of emersion. If
<the moon> has a duration <of totality>, we subtract the radius of the
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moon from the radius of the shadow. Then we subtract from the square of
the remainder the square of the latitude <of the moon> at the middle of
the lunar eclipse, and obtain the square root of the <last> remainder. It is
the <magnitude> of the immersion from the beginning of the duration
<of totality> to its middle in minutes. We divide it by the lunar gain. The
result is the <number of the> hours of the immersion from the beginning
of the duration <of totality> to its middle. We subtract it from the time of
the middle <of the lunar eclipse>, and we <separately> add it <to the
time of the middle>. The remainder is the time of the beginning of the
duration <of totality>, and the sum is the time of the beginning of
emersion. For finding its adjusted value, we subtract the square of the
latitude of the moon at the beginning of the lunar eclipse from the square
of <the sum of> the two radii. We add what remains from the square of
<the sum of> the two radii to the square of the difference between the
latitude of the moon at the beginning of the lunar eclipse and its latitude
at the middle of the lunar eclipse. We obtain the square root of the result.
It is the adjusted <magnitude> of immersion from the beginning to the
end <of the eclipse> in minutes. We divide it by the lunar gain. The
result is the adjusted <duration of> the immersion in hours. We subtract
it from the time of the middle of the lunar eclipse. The remainder is the
adjusted time of the beginning <of the eclipse>. Then we also subtract
the square of the latitude of the moon at the end of the emersion from the
square of <the sum of> the two radii. We add the remainder to the square
of the difference between the latitude of the moon at the end of the
emersion and its latitude at the middle of the lunar eclipse. We obtain the
square root of the result. It is the second adjusted <magnitude> of the
immersion in minutes; it is <the duration> from the middle <of the lunar
eclipse> to the end of emersion. We divide it by the lunar gain. The result
is the second adjusted <duration of> the immersion in hours. We add it to
the <time of the> middle of the lunar eclipse. The result is the adjusted
time of the end of the emersion. Finding the adjusted <values> of the
other times <involved in a lunar eclipse> is of no use.

Chapter 6: On drawing the figure of a lunar eclipse.

We draw a straight line <segment> of arbitrary length. We divide it by
the number of the minutes of <the sum of> the two radii. Then we draw a
circle the radius of which is equal to this line <segment>. It is the circle
of <the sum of> the two radii. We take from the line <segment a part of
it> equal to the radius of the shadow and we draw a circle with this
segment as its radius and centered on the center of the first circle. It is the
circle of the shadow. We draw the two diameters of the two circles,
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which intersect at the center at right angles. We write on their directions
the four <geographical> orientations: east opposite to west, and north
opposite to south. Then we take from the line <segment a part of it>
equal to the latitude of the moon in the middle of the lunar eclipse. We
put one leg of the compasses at the center of the two circles, and the
other where it falls on the south-north line depending on the direction of
the latitude, and we make a mark there. It is the center of the moon at the
middle of the lunar eclipse. Then we take from the line <segment a part
of it> equal to the radius of the moon and we draw a circle with this
segment as its radius and centered on the center of the moon. It is the
circle of the moon in the middle of the lunar eclipse. The portion of it
inside the circle of the shadow is the eclipsed part of the moon.

Chapter 7: On <finding> the distance of the moon from the earth.

First we consider the double elongation <of the moon>. If it is <equal
to> zero, then the distance of the center of the epicycle from the center of
the earth is <put equal to> 60 parts. If the double <elongation> is exactly
6 <zodiacal> signs, then the distance of the center <of the epicycle from

the center of the earth is> 39§parts. If the double <elongation> is exactly

3 or 9 signs, we subtract the square of 10% parts from the square of 49%

parts, and obtain the square root of the remainder. The distance of the
center <of the epicycle from the center of the earth> is <found to be>

approximately 48+%+% parts. If the double <elongation> is between

these <values>, we multiply both its Sine and Cosine by IO%minutes

(i.e., 31/3x60), and we subtract the square of the product of the Sine <of
the double elongation by 10§minutes> from the square of 49% parts.

Then we obtain the square root of the remainder. <Now,> if the double
<elongation> is less than 3 signs or greater than 9 <signs™>, we add to the
square root the product of the Cosine of the double <elongation by

IO%minutes > If the double <elongation> is greater than 3 signs and less

than 9 signs, we subtract from the square root the product of the Cosine

of the double <elongation by 10—;-minutes>. The <final> result is the

distance of the center of the epicycle from the center of the earth. The
body of the moon: Then we obtain from the equation tables the
difference <in epicyclic equation> at lesser distance <of the moon from
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the earth> corresponding to the double <elongation>, and the sixtieths
corresponding to the true anomaly. We multiply them by each other. We
add <the result> to 5 parts and 1 minute (i.e., 5+1/60 parts). We obtain
the Sine of the result. The <last> result is the adjusted radius of the
epicycle. Then if the true anomaly is <equal to> zero, we add the
adjusted radius of the epicycle to the distance of the center of the
epicycle. <The result> is the distance of the moon from the center of the
earth. If the true anomaly is exactly 6 signs, we subtract the radius of the
epicycle from the distance of the center of the epicycle. The remainder is
the distance of the moon from the center of the earth. If the true anomaly
is exactly 3 or 9 signs, we add the square of the adjusted radius of the
epicycle to the square of the distance of the center <of the epicycle>. We
obtain its square root, and <the result> is the distance of the moon <from
the center of the earth>. If the true anomaly is between these <values>,
we multiply both the Sine and the Cosine of the true anomaly by the
adjusted radius of the epicycle, lowered. Then, if the true anomaly is less
than 3 signs or greater than 9, we add the product of the Cosine <by the
adjusted radius of the epicycle, lowered> to the distance of the center <of
the epicycle from the center of the earth>. If the true anomaly is greater
than 3 signs and less than 9, we subtract the product of the Cosine <by
the adjusted radius of the epicycle, lowered> from the distance of the
center <of the epicycle from the center of the earth>. We add to the
square of the sum or the remainder the square of the product of the Sine
<by the adjusted radius of the epicycle, lowered>. We obtain the square
root <of the final result>. It is the distance of the moon from the center of
the earth. A table is compiled <in this zj> for the distance of the moon
<from the earth> sufficient for what we need in <calculating> solar
eclipses and the <lunar> crescent visibility. The distance of the moon is
found in the table where the double elongation <is shown> in the <first
row along the> width and the true anomaly, in the <first column along
the> length <of the table>. This is sufficient for the calculation.
Calculating the distance of the sun <from the earth> is not very necessary
for us. Its calculation is like that of the moon, except that we use its (i.e.,
the sun’s) mean anomaly instead of the true anomaly <used in the case of
the moon>: <We use> 2 degrees and 1 minute instead of the adjusted
radius of the epicycle, and <we use> 60 instead of the distance of the

epicycle. Then we multiply what we find for the distance by 18%. <The
result> is the distance <of the sun> from the center of the earth. Its
maximum distance is approximately 1,255 parts; its mean distance is

approximately 1,208 parts; its minimum distance is approximately 1,161
parts.
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Chapter 8: On the altitude of the pole of the ecliptic, which is called ‘the
latitude of the clime of visibility’.

We divide the Sine of the altitude of <the sun at a given> time by the
Sine of the arc between the tenth <house> (i.e., mid-heaven) of <the
given> time and its ascendant on the ecliptic, lowered. The result is the
Cosine of the altitude of the pole. We find the <corresponding™> arc <in
the table of Sines> and subtract it from 90 <degrees>. The remainder is
the altitude of the pole.

Chapter 9: On the altitude of any desired degree of the ecliptic.

We multiply the Sine of the arc between the <given> degree and the
ascendant or the descendant by the Sine of the altitude of the tenth
<house>. We divide <the product> by the Sine of the arc between the
tenth <house> and the ascendant or descendant. The result is the Sine of
the altitude of the <given> degree and <also> of the altitude of any
planet of zero latitude.

Chapter 10: On the <equatorial> distance between the meridian and the
<right> ascension of a known point of the ecliptic.

If the known point is between the tenth <house> and the ascendant, we
subtract the right ascension of the tenth <house> from the right ascension
of the <known> point. The remainder is the distance of <the ascension
of> the point from the meridian. If the known point is between the
seventh and tenth <house>, we subtract the right ascension of the
<known> point from the right ascension of the tenth <house>. The
remainder is the distance of the <ascension of the known> point from the
meridian. If the remainder is greater than 90 <degrees>, we subtract it
from 180 <degrees>. The remainder is the <desired> distance.

Chapter 11: On the parallax of the two luminaries in the altitude circle.

We obtain both the Sine of the altitude of the <ecliptical> degree of the
moon and the Sine of the complement (i.e., the Cosine) of the altitude,
lowered. We subtract the result of <lowering> the Sine of the altitude
from the distance of the moon from the earth (as in Chapter 1.5.7, the
maximal distance is 60). We add to the square of the remainder the
square of the result of <lowering> the Cosine of the altitude. We obtain
the square root of the <final> result. Then we divide the result of
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<lowering> the Cosine of the altitude by this square root, lowered. The
result is the Sine of the parallax of the moon in the altitude circle. If the
moon is on the horizon, we add to the square of the distance of the moon
from the earth the square of the radius of the earth, which is <taken as>
one part. We obtain the square root <of the sum>. Then we divide the
radius of the earth by this square root, lowered. The result is the Sine of
the parallax <of the moon>. If we subtract the parallax from the
calculated altitude of the <ecliptical> degree of the moon, the remainder
is the apparent altitude <of the moon, seen> from the surface of the earth.

Section: The parallax of the sun is calculated in a similar way, by
using its mean distance from the earth. However, its parallax at different
distances does not differ in a <noticeable> magnitude. Its maximum
parallax is about 3 minutes. We need this to subtract it from the parallax
of the moon. The remainder is the adjusted parallax of the moon in the
altitude circle. This <is used> for <reaching> extra precision in
<calculating> solar eclipses. A table is compiled <in this zj> for
obtaining it from the complement of the altitude of the sun.

Chapter 12: On the six angles which are needed in <the calculation of>
solar eclipses.

The first angle: It is <in the case> when the position of the moon is the
first <degree> of Aries or Libra, and <also> the <ecliptical> degree of
the ascendant of a <given> time. It (i.e., the angle) is equal to the
complement of the altitude of the beginning of Cancer or of Capricorn,
whichever is on the meridian circle <above the horizon>. It is <called>
‘the latitude angle,” and its complement <is called> ‘the longitude angle.’
The second angle: It is <in the case> when the position of the moon is
the first <degree> of Aries or Libra, and <also> the <ecliptical> degree
of the tenth <house> of the <given> time. It (i.e., the angle) is equal to
the complement of maximum declination <of the sun>. It is <called> ‘the
latitude angle,” and its complement <is called> ‘the longitude angle.’
The third angle: It is <in the case> when the position of the moon is
other than the first <degree> of Aries or Libra, and <also> the
<ecliptical> degree of the ascendant of the <given> time. It (i.e., the
angle) is equal to the altitude of the pole of the ecliptic at the <given>
time. It is <called> ‘the latitude angle,” and its complement is <called>
‘the longitude angle.” The fourth angle: It is <in the case> when the
position of the moon is the first <degree> of Cancer or Capricorn, and
<also> the <ecliptical> degree of the tenth <house> of the <given> time.
It (i.e., the angle) is a right angle. In this case, there is no longitude angle.
The fifth angle: It is <in the case> when the position of the moon is
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other than the equinoxes or solstices, and <also> the <ecliptical> degree
of the tenth <house> of the <given> time. Then we consider the
declination of the <ecliptical> degree of the tenth <house> and the
<geographical> latitude of the locality. If the declination is northern, we
subtract the smaller <one of these two quantities> from the greater <one>
(if 0<@<§,<g, then the tenth house is northern with respect to the zenith).
If the declination is southern, we add it to the <geographical> latitude of
the locality. The sum or the remainder is <equal to> the distance of the
ecliptic from the zenith <along the meridian>. Then we divide the Sine of
the altitude of the pole of the ecliptic by the Sine of the distance of the
ecliptic from the zenith <along the meridian>, lowered. The result is the
Sine of the latitude angle. We find the <corresponding> arc: it is the
latitude angle; its complement is the longitude angle. Another method:
We divide the Sine of the <right> ascension of the distance of the
equinoctial point above the horizon from the meridian <,which is found>
according to what <is described> in the relevant chapter (i.c., 1.5.2), by
the Sine of <the arc> between the tenth <house> and the equinoctial
point of the ecliptic, lowered. The result is the Sine of the latitude angle.
We find the <corresponding> arc: it is the latitude angle; its complement
is the longitude angle. The sixth angle: It is <in the case> when the
position of the moon is in an arbitrary <ecliptical> degree, between the
ascendant and the descendant. Then we divide the Sine of the altitude of
the pole of the ecliptic by the Cosine of the altitude of the <ecliptical>
degree of the moon, lowered. The result is the Sine of the latitude angle.
We find the <corresponding> arc: it is the latitude angle; its complement
is the longitude angle.

Chapter 13: On <finding> the longitudinal and latitudinal parallax of the
moon from these angles.

We multiply both the Sine of the latitude angle and the Sine of the
longitude angle by the parallax in the altitude circle, lowered. The result
from the latitude angle is the latitudinal parallax. The result from the
longitude angle is the longitudinal parallax. If the distance of the moon
from the zenith, when it reaches the meridian, is towards the south and
the latitude of the moon is southern, or the distance is towards the north
and the latitude of the moon is northern, we add the latitudinal parallax to
the latitude. If they differ <in direction>, we subtract the smaller from the
greater one. The result is the apparent latitude. Its direction is that of the
sum of the latitude and the parallax, or the direction of the greater of the
two. The place of the moon in most northern localities is southern with
respect to the zenith.
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Chapter 14: On <measuring> the absolute and adjusted magnitudes of a
solar eclipse in digits.

If the latitude of the moon at the <time of> conjunction is southern, and
more than 35 minutes, or northern and more than 95 minutes, the sun will
not be eclipsed. If the latitude is less than that, it can be eclipsed. If it can
be eclipsed, we find the time of the conjunction, its ascendant, the
longitudinal parallax of the moon, and its apparent latitude <at the time>.
Then we divide the longitudinal parallax by the lunar gain. The result is
the <longitude> difference in hours. If the distance of the <ecliptical>
degree of the <new> conjunction from the ascendant is less than 90
degrees, we subtract the <longitude> difference in hours from the time of
the conjunction, and the longitude difference in minutes from the
<ecliptical> degree of conjunction, and from the argument of the latitude,
in order to learn the latitude from it. If the distance of the <ecliptical>
degree of the <new> conjunction from the ascendant is greater than 90
<degrees>, we add the <longitude> difference in hours to the time of the
conjunction, and the <longitude> difference in minutes to the
<ecliptical> degree of the conjunction, and to the argument of the
latitude. The sum or the remainder of the time of the conjunction is the
time of apparent conjunction. The sum or the remainder of the
<ecliptical> degree of the conjunction is the <ecliptical> degree of the
apparent conjunction. We compute the ascendant for the time of the
apparent conjunction. We obtain from this ascendant and from the
<ecliptical> degree of the apparent conjunction, the apparent latitude of
the moon and its longitudinal parallax. Then we divide <this> parallax by
the lunar gain. The result is the second <longitude> difference in hours.
If the distance of the first <ecliptical> degree from the ascendant of the
apparent conjunction is less than 90 <degrees>, we subfract the
<longitude> difference in hours from the first time of the conjunction,
and the <longitude> difference in minutes <of arc> from the first
<ecliptical> degree of the conjunction. If the distance of the first
<ecliptical> degree of the conjunction from the ascendant of the apparent
conjunction is greater than 90 degrees, we add the <longitude>
difference in hours to the first time of the conjunction, and the
<longitude> difference in minutes <of arc> to the first <ecliptical>
degree of the conjunction. The sum or the remainder in hours is the time
of the adjusted apparent conjunction and the time of the middle of the
solar eclipse. The sum or the remainder in <ecliptical> degrees of the
conjunction is the position of the moon in the middle of the solar eclipse
(i.e., no further iteration is necessary). That is because if we derive this
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time of the conjunction from the ascendant and from the position of the
moon in which the longitudinal parallax <is considered>, it (i.e., the
observed time of the middle of the conjunction) will be equal to the
second result or so close that <the difference> cannot be observed. When
the time of the middle of the solar eclipse and its ascendant are found, we
add the radii of the sun and the moon, which we call ‘the <sum of the>
two radii’. If the apparent latitude <of the moon> is equal to or greater
than the <sum of the> two radii, the sun will not be eclipsed. If it is less
<than the sum of the two radii>, the sun will be eclipsed. The excess of
the <sum of the> two radii over the apparent latitude is the <magnitude
of the> solar eclipse in minutes. We multiply the <magnitude of the>
eclipse in minutes by 12 and divide it by the diameter of the sun. The
result is the <magnitude of the> solar eclipse in digits. It 1s the eclipsed
part of its diameter, based on <taking> the diameter <to be equal to> 12
digits. If the conjunction happens to be before sunrise, then the sun rises
<in an> eclipsed <situation>. We <then> use the lower mid-heaven
instead of the upper mid-heaven and we change the ascendant to the
descendant in all the operations relating to the solar eclipse. Also, when
we finish finding the <longitude> difference in hours and the
<longitude> difference in minutes <of arc>, we always subtract the
<longitude> difference in hours from the time of the conjunction and the
<longitude> difference in minutes <of arc> from the <ecliptical> degree
of the conjunction. Finding the adjusted magnitude of a solar eclipse is
like finding the adjusted magnitude of a lunar eclipse, both in calculation
and <in using> tables; the disk of the moon in this case plays the role of
the disk of the shadow in that case, and the disk of the sun in this case
plays the role of the disk of the moon in that case.

Chapter 15: On the absolute and adjusted times of a solar eclipse.

We subtract the square of the apparent latitude <of the moon> in the
middle of the solar eclipse from the square of <the sum of> the two radii,
and we obtain the square root of the remainder. The result is the <arc of>
immersion in minutes. Then we divide it by the lunar gain. The result 1s
the <duration of> immersion in hours. We subtract it from and <also>
add it to the time of the middle of the solar eclipse. The remainder is the
time of the beginning of the solar eclipse, and the sum is the time of the
end of the emersion. Finding the adjusted magnitude of these two times
is like finding the adjusted magnitudes of the times relating to the lunar
eclipse, where we substitute the apparent latitude <of the moon> here for
the absolute latitude <of the moon> there. The solar eclipse has no (i.e.,
zero) duration <of totality>.
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Chapter 16: On drawing the figure of a solar eclipse.

We draw a straight line <segment> of arbitrary length. We divide it by
the number of the minutes of <the sum of> the two radii. We draw a
circle with a radius equal to that <line segment>, so that its radius will be
equal to this line segment. It is <called> ‘the circle of <the sum of> the
two radii’. We draw two of its diameters which intersect in the center at
right angles. We write around it the four directions: east opposite to west,
and north opposite to south. Then we take <a part> from the line
<segment> equal to the radius of the sun, and we draw a circle with a
radius equal to that <part> and centered at the center of the circle of <the
sum of> the two radii. It is <called> the circle of the sun. Then we take
<a part> from the line <segment> equal to the apparent latitude. We put
one arm of the compasses on the center of the two circles, and the other
<arm> where it occurs on the north or south line, depending on the
direction of its apparent latitude. We make a mark there to stand for the
center of the moon in the middle of the solar eclipse. Then we take <a
part> from the line <segment> equal to the radius of the moon. We take
the mark as the center and draw the circle of the moon around it. The
portion of the circle of the sun which falls in the circle of the moon is the
amount of its (i.e., the sun’s) eclipsed part.

Chapter 17: On <finding> the altitude of the moon taking account of its
latitude.

Ptolemy and the experts in the art <of astronomy> who followed him, all
calculated the magnitude of the parallax of the moon in the altitude circle
and the measures of the six angles, which we have <already> mentioned,
assuming the moon to have no latitude at all. They found the longitudinal
and latitudinal parallax <of the moon> by substituting straight lines for
the arcs of small circles. There is no noticeable disadvantage in what they
did to <find> the latitude, except that precision has superiority to
approximation, and exactness is more accepted <by people> than
approximation. It was possible for us <to find> a method with proof
which is not much different from the first <method> in difficulty and
length, by which the altitude of the moon, its apparent latitude, and its
longitudinal parallax is determined taking account of its latitude. It is <as
follows:> We multiply the Cosine of the latitude by the Cosine of the
distance of its <ecliptical> degree from the ascendant or descendant of
the <given> time, whichever being less than 90 <degrees>, lowered. The
result is a Sine. We find the <corresponding> arc, and subtract <the arc>
from 90 <degrees>. The remainder is <called> ‘the first arc’. Then we
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divide the Sine of the latitude by the Sine of ‘the first arc’, lowered. The
result is <called> ‘the Sine of the second arc’. We find the
<corresponding> arc. If the latitude is northern, we add this arc to the
complement of the altitude of the pole of the ecliptic. If the latitude is
southern, we subtract it (i.e., the arc) from it. The sum or the remainder is
<called> ‘the result from the complement of the altitude of the pole’.
Then we multiply the Sine of ‘the first arc’ by the Sine of ‘the result from
the complement of the altitude of the pole’, lowered. The result is the
Sine of the altitude <of the moon or the planet or star> taking account of
the latitude of the moon or the other planet or star which has a <non-
zero> latitude. The parallax in the altitude circle is obtained from this
altitude.

Chapter 18: On <finding> the longitudinal and latitudinal parallax of the
moon by a method <the validity of> which can be proved.

We have said in chapter 11 of this section that the altitude obtained by
calculation is the true altitude that we would find if we observed from the
center of the altitude circle. <If> the parallax is subtracted from it, <the
remainder> is the apparent altitude <as observed> from the surface of the
earth. Following what we have mentioned, <we add that the subject of>
this chapter may occur in 5 cases. First: <The case in> which the altitude
of the tenth <house> of the <given> time is 90 degrees, and the moon has
no <non-zero> latitude. <Then> the parallax in the altitude circle is <the
same> longitudinal parallax alone. It (i.e., the moon) has no latitudinal
parallax. Second: <The case in> which the distance of the <ecliptical>
degree of the moon from the ascendant of the <given> time is 90 degrees,
the moon either having or not having a <non-zero> latitude. Then the
parallax in the altitude circle affects the apparent latitude alone. It has no
longitudinal parallax. Third: <The case in> which the altitude of the
tenth <house> of the <given> time is 90 degrees, and the moon has a
<non-zero> latitude. <For finding> the apparent latitude, we multiply the
Sine of the latitude of the moon by the Cosine of the apparent altitude,
and we divide <the product> by the Cosine of the true altitude. The result
is the Sine of the apparent latitude. Its direction is the same as that of the
latitude of the moon. As for the longitudinal parallax, we divide the Sine
of the apparent altitude by the Cosine of the apparent latitude, lowered.
The result is <considered> a Sine. We find the <corresponding> arc, and
subtract it (i.e., the arc) from the distance of the <ecliptical> degree of
the moon from the ascendant or descendant (whichever is closer). The
remainder is the longitudinal parallax. Fourth: <The case in> which the
altitude of the tenth <house> of the <given> time is less than 90
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<degree>, and the moon has no <non-zero> latitude. <For finding> the
apparent latitude, we multiply the Sine of the parallax in the altitude
circle by the Sine of the altitude of the pole of the ecliptic, and divide
<the product> by the Cosine of the true altitude. The result is the Sine of
the apparent southern latitude. <For finding> the longitudinal parallax
we divide the Cosine of the parallax in the altitude circle by the Cosine
of the apparent latitude, lowered. The result is the Cosine of the
longitudinal parallax. Fifth: <The case in> which the altitude of the tenth
<house> is less than 90 <degrees>, and the moon has a <non-zero>
latitude. <For finding> the apparent latitude, we multiply the Cosine of
the latitude of the moon by the Cosine of the arc between its <ecliptical>
degree and the ascendant or descendant of the <given> time, whichever
is less than 90 <degrees>, lowered. The result is <called> ‘the Sine of the
first arc’. We multiply it by the Cosine of the apparent altitude. We
divide <the product> by the Cosine of the true altitude. The result is
<called> ‘the Sine of the second arc’. We find the <corresponding> arc.
Then we divide the Cosine of the apparent altitude by ‘the Sine of the
second arc’, lowered. The result is <called> ‘the Sine of the third arc’.
We find the <corresponding> arc. We obtain the difference between it
and the complement of the altitude of the pole of the ecliptic. The result
is <called> ‘the fourth arc’. We multiply the Sine of ‘the fourth arc’ by
the Cosine of ‘the second arc’, lowered. The result is the Sine of the
apparent latitude. If ‘the third arc’ is greater than the complement of the
altitude of the pole of the ecliptic, the direction of the latitude is northern.
If ‘the third arc’ is less <than that>, the direction of the latitude is
southern. <For finding> the latitudinal parallax, we divide the Sine of the
second arc by the Cosine of the apparent latitude, lowered. The result is
<called> ‘the Sine of the first arc’. We find the <corresponding> arc and
keep it. Then we subtract <the distance> between the <ecliptical> degree
of the moon and the ascendant or descendant, whichever is less than 90
<degrees>, from 90 <degrees>. We subtract the remainder from ‘the first
arc’ which we kept. The <final> remainder is the longitudinal parallax.

Chapter 19: On extracting the longitudes of the localities.

We calculate a solar eclipse for the <geographical> longitude 90
<degrees>, and we find the time of its beginning or the time of the end of
its emersion. Then we observe one of these two times in our locality, as
accurately as possible. We obtain the altitude <of the sun> for this time.
We find the <local> time from it. If the observed time is greater than the
calculated <one>, then our locality is eastern with respect to <the
meridian of> longitude 90 <degrees>. If the observed time is less <than
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that>, then our locality is western with respect to <the meridian of>
longitude 90 <degrees>. The difference between the calculated and the
observed times is the <difference in> hours between the two longitudes.
We multiply it by 15. The result is the longitude <difference> between
the two localities. If our locality is eastern, we add it to the latitude 90
<degrees>. If it is western, we subtract it from the latitude 90 <degrees>.
The sum or the remainder is the longitude of our locality. In a lunar
eclipse, the altitude of the moon is not faultless because of its parallax,
and it is difficult to obtain the precise altitude of the fixed stars, and we
cannot rely on their true position. So, we may obtain the altitude of a
planet whose true position we know. Then this planet will be <useful>
like the sun in what we require. Another method is <as follows>. We
find the true longitude of the sun for noon of the <given> day, relating to
the <geographical> longitude 90 <degrees>. Then we observe its altitude
at noon of that day <in our locality> with one of the reliable, precise
devices for <measuring> the altitude. If the sun is in <one of> the
northern <zodiacal> signs, we subtract the complement of the latitude of
our locality from the altitude which was found. If the sun is in <one of>
the southern signs, we subtract the altitude which was found from the
complement of the altitude of the locality. The remainder is the
declination of the sun. We find its <argument> arc in the table of
declinations relating to the quadrant in which the sun <occurs>. The
result is the position of the sun in our locality. We obtain the difference
between it and the first true longitude. We enter it (i.e., the difference) in
<the table for> the mean motion of the sun in <any number of> hours,
and we obtain the corresponding <number of> hours. The result is the
<difference> between the two longitudes in hours. We multiply it by 15.
The result is the <difference> between the two <geographical>
longitudes in degrees. If the position of the sun in our locality is
<relating to a> smaller <zodiacal longitude> compared with its first
position, our locality is eastern with respect to <the meridian of>
longitude 90. Then we add <the difference> between the two
<geographical> longitudes to 90 <degrees>. If its position in our locality
is <relating to a> greater <zodiacal longitude>, then our locality is
western with respect to <the meridian of> longitude 90 <degrees>. Then
we subtract <the difference> between the two <geographical> longitudes
from 90 <degrees>. The sum or the remainder is the <geographical>
longitude of our locality. Whenever the sun is closer to the equinoctial
points, <the result> is more correct because the declination is more
distinct and its increments are greater here. Another method, used by the
ancients by approximation, and from which are derived the
<geographical> longitudes of most localities in the books and tables, is

82



<as follows>. We consider the <distance> between our locality and a
locality of known <geographical> longitude and latitude in parasangs,
and the <number of the> days <to travel> the road <between them>.
Then we take one degree for each two days of <travelling> the road or
for each 20 parasangs. We multiply <the number of the parts> by itself,
bisect the result, and keep it. If the latitudes of the two localities are
equal, we obtain the approximate square root of the bisected result. The
<final> result is the longitude <difference> between the two localities. If
the latitudes of the two localities are different, we subtract the less from
the greater. We multiply the remainder by itself and subtract it from the
bisected result. We obtain the square root of the remainder. The result is
the longitude <difference> between the two localities. This is something
obtained by approximation, not based on proof. A table is compiled <in
this zi7> for the longitudes and latitudes of some localities. We have
registered the famous localities in it, so that they (i.e., their coordinates)
may be known approximately.

Chapter 20: On <determining> the visibility of the <lunar> crescent and
the planets from <certain> arcs defined for them.

As for the <lunar> crescent visibility, none of the ancients spoke about it,
because they knew (i.e., defined) the beginnings of the lunar months
from the conjunctions. Each one of the modems, when they needed the
<anticipation of the lunar> crescent visibility for Islamic religious
observances, worked out a chapter and a calculation <method> in this
<matter> according to his own belief. For most inhabited <regions>,
there is nothing general in it (i.e., their speculation about lunar crescent
visibility) that can be relied upon. Their calculation thereof is not based
on any valid rule and principle, and is not immune to the mistakes
relating to the <degree of> clearness of the atmosphere and sharpness of
the eyes <of the observer>. <Our method for> it is <as follows:> We
obtain the distance between the two luminaries taking account of the
latitude <of the moon>, This is <described> in chapter 5 of section 8 <of
Book I of this zj>. <We also obtain> the distance between the sun and
the degree <on the ecliptic> which sets at the same time as the moon,
<measured> in terms of descension degrees. The limit of the first arc is
10 degrees and of the second arc 8 degrees. Then we find the altitude of
the moon at sunset or sunrise taking account of its latitude. We subtract
from the result the parallax <of the moon> in the altitude circle. The
remainder is <called> the ‘visibility arc’. Its limit is 6 degrees. If the
three arcs are <equal to> the above mentioned limits or greater than
them, then the <lunar> crescent is visible. If they are less <than the

33



limits, then the lunar crescent> is not visible. If two of them witness to
the visibility, then the judgment should be <based> on them. The
difficult visibility will be related to the <third> deficient arc. If <the
deficient arc> is the visibility arc, then <difficulty in visibility> 1is
because of <small> altitude. If <the deficient arc> is the distance
between the two luminaries, then it (i.e., the difficult visibility) is
because of light insufficiency. If <the deficient arc> is the distance
between them in terms of descension, then it (i.e., the difficult visibility)
is because of the too small time it (i.e., the moon) remains above the
horizon <after sunset>, and of the speed of its setting. Another method:
We multiply the Sine of <the arc> between the <ecliptical> degree of the
sun and the degree on the ecliptic which sets at the same time as the
moon, by the Cosine of the pole of the ecliptic, lowered. The result is the
Sine of the visibility arc under the earth (i.e., below the horizon). If <the
sum of> the arc of visibility and the distance between the two luminaries
taking account of the latitude <of the moon is> 18 <degrees> or more
than that, then the <lunar> crescent will be seen. If it is less <than 18
degrees, then the lunar crescent> will not be seen.

The calculation of the visibility of the planets is similar to this. But in
<the calculation of> their visibility we do not need <to consider their>
parallax, and the distance between them and the sun. Their altitude is
known (i.e., found) taking account of their latitudes. If that (i.e., the
altitude) is <at least> equal to ‘the visibility arc’, <then the planet> is
visible. If it is less, <then the planet> is not visible. The visibility arcs
<for the planets> according to what was found in ancient <times is as
follows:> For Saturn, 11°; for Jupiter, 10°; for Mars, 11; 30°; for Venus
5° and Mercury, 10°.
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Commentary

1.6.1 The second method is equivalent to the first one, because
multiplication by 10 minutes is equivalent to division by 6. The Arabic
term buht for the daily motion of a planet is derived from the Sanskrit
bhukti [al-Biruni, 1910, I1, 346; id., 1934, 105-106}]. Table 11.49 gives the
hourly rate of the two luminaries as a function of their mean anomaly.

1.6.2 Multiplication of the daily motion by 0;33° is equivalent to
multiplication of the hourly motion by 13%, because 24 (0; 33°) = 13 %

The two methods are equivalent for the moon too, because
24(0; 2, 26°) = 0; 58, 25°. According to Kushyar, the parameters 0; 33°
and 0; 2, 26° are the constant ratios of the apparent diameter of the sun
and the moon to their daily motion. Kishyar’s assumption of a constant
ratio between diameter and daily motion is not accurate. According to
Kepler’s model, the ratio of (diameter)* to daily motion is constant.
Kishyar’s assumption of a constant ratio between the apparent diameter
of the moon and the diameter of the earth’s shadow is approximately true.
The rules given in this chapter are found in al-Khwarizmi’s z7 and may
be traced beck to the Indian zj Khandakhadyaka [al-Khwarizm1 1962,
57-59]. Table 11.49 gives the diameter of the sun, the moon, and the
shadow as functions of their mean anomaly.

1.6.3 Multiplication by 5 minutes is equivalent to division by 12. Here,
for a first approximation of the ecliptical degree where the conjunction or
opposition occurs, the hourly motion of the moon is taken 12 times that of
the sun. Then if the distance of the sun and the moon on the ecliptic is d,
we first suppose that they will be in conjunction after the sun has covered
d/12 degrees and the moon has covered d+ d/12 degrees. This method is
described by Ptolemy [1984, 281-82], and by al-Battan1 [1899-1907, III,
142]. However, they divide d+ d/12 by the hourly motion of the moon,
whereas Kushyar divides d by the ‘lunar gain’. The requirement that the
sun and the moon should be in the same second is an exaggerated
accuracy. By the expression “hours of the noon”, Kiishyar means the
number of the equinoctial hours elapsed since sunrise, at noon.

Worked example: On the day of conjunction, the sun is in Aries 24;59°
and the moon is in Aries 26;39°. The distance between the two luminaries
is:  26;39° —24;59° = 1;40°.

The ‘part of the distance’ is: 1;40°%0;5=0;8,20°. The distance plus ‘the
part of the distance’ is: 1;40°+0;8,20°=1;48,20°. Now we can find the
ecliptical degree of the conjunction both by subtracting the ‘part of the

85



distance’ from the longitude of the sun and by subtracting the distance
plus ‘the part of the distance’ from the longitude of the moon:

24;59° - 0;8,20° = 24;50,40°,

26;39° - 1;48,20° = 24;50,40°.
Then the ecliptical degree of the conjunction is Aries 24;50,40°.
Since in 30 days, the sun describes 30°, and the moon describes 30°+360°
approximately, the lunar gain is about 12°/day or 30"/hour. We divide the
distance by the lunar gain: 1;40°: 30'=3; 20. So the conjunction occurs 3
hours and 20 minutes before the noon, approximately. This example is
based on al-Nasawi’s example for this chapter (fol. 69 v). Al-Nasawl
takes the lunar gain equal to 0;28,2°, so he finds the time of the
conjunction 3 hours and 34 minutes before the noon (see the commentary
on 1.1.5). As can be seen in this example, the is no need to repeat the
process of finding the time of the conjunction (as Kiishyar says at the end
of this chapter).

1.6.4 Kushyar expresses the magnitude of a lunar eclipse in two different
ways. The ‘absolute’ magnitude of the eclipse is the length of the part of
the line segment between the center of the moon and the center of the
shadow which is inside both circles. The ‘absolute’ magnitude is
expressed in (linear) digits, where 12 digits correspond to the diameter of
the lunar disk. The ‘adjusted’ magnitude of the eclipse is the area of the
common part of the two circles. The ‘adjusted’ magnitude is expressed in
(area) digits, where 12 digits correspond to the area of the full moon
[Kennedy 1956, 143]. The difference between ‘the arc of the moon<’s
disk>’ and ‘the arc of the sector’ is only in the units of measurement.
However, for finding ‘half the arc of the sector’, we should multiply
“half” the circumference of the moon’s disk (and not the whole
circumference, as Kiishyar says) by the arc of the moon’s disk, and divide
the product by 360 degrees. Kiishyar proves his method in IV.6.1. Similar
linear and area digits may be defined for a solar eclipse. Ptolemy used a
similar method of finding the area digits for a special case [1984, 302-
305]. Al-Battani also used a similar method [1899-1907, III, 149-50].
Table 11.52 of Kishyar’s zij gives the adjusted digits as a function of
absolute digits, from 1 to 12, for solar and lunar eclipses. It is a
reproduction of the relevant table given by Ptolemy [1984, 308]. The
same table is provided by al-Battani [1899-1907, II, 890].

1.6.5 In IV.6.2, Kishyar proves the validity of the calculation of the
immersion time from the beginning of the partial eclipse and from the
beginning of the total eclipse to the middle of the eclipse. In this chapter,
‘adjusted value’ means ‘more precise value’ for these times, in which the
variation of the latitude of the moon is also considered. A proof of this
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more precise method is given in IV.6.3. The first method is provided by
Ptolemy [1984, 300-301]. Both methods are presented by al-Battani
[1899-1907, 111, 147-48].

1.6.6 A sample of such a drawing is provided in IV.6.4. A similar
drawing is provided by al-Battani [1899-1907, III, 154].

1.6.7 Kishyar first finds the distance of the center of the moon’s epicycle
from the earth, where the maximal distance is assumed to be 60 “parts”.
Kishyar’s model for lunar motion is the same as that of Ptolemy; see
[Pedersen 1974, 159-202] and [Ptolemy 1984, 173-254]. For the cases in
which the double elongation of the moon is 0°, 6 zodiacal signs, and 3 or
9 zodiacal signs, the figure below justifies Kiishyar’s calculation. The
parameter 39% is a rounding of the Ptolemaic one 39;22 parts [Ptolemy
1984, 251]. The parameter 5;1° is the maximum value of the epicyclic

tion.
equation 7

If the double elongation is between }hese values, in the figure drawn in
IV.6.5, ZD is ‘the product of the Sine’ and ZE is ‘the product of the
Cosine’. Then it can be deduced from the figure that,

(BD? — ZD*)* = BZ , EB=BZ+ ZE.
Again, if the true anomaly of the moon is 0°, 6 zodiacal signs, and 3 or 9
zodiacal signs, the figure below justifies Kiishyar’s calculation of the
distance of the body of the moon from the earth.

o

If the true anomaly is between these values, then in the figure of IV.6.5,
IH s ‘the product of the Sine’ and /B is ‘the product of the Cosine’.
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The computation of an “adjusted radius of the epicycle” in 1.6.7 seems to
be superfluous; instead of this one can simply take the radius of the
epicycle, as in the proof in IV.6.5. We may also use table I1.50 instead of
calculation. A simplified version of this method may be used for the sun;
however, it is rarely necessary, according to Kiushyar. As Kushyar
mentions in Chapter 11 of this section, ‘part’ means the unit of
measurement, which is equal to the radius of the earth. The coefficient

18—2— is the ratio of the mean distance of the sun from the earth to the

maximum distance of the moon from the earth. Kishyar mentions this
value, as well as the maximum, mean, and minimum distance of the sun
from the earth, in the chapter ‘On the distances and sizes of the celestial
bodies’, in Book III of this zij. Ptolemy [1984, 250-51] and al-Battani
[1899-1907, III, 81-82] provide similar methods but for concrete
numerical values. Kiishyar tacitly assumes that the distance of the apogee
of the center of the lunar epicycle to the earth is 60 earth radii (Ptolemy’s
value is 59 earth radii).

1.6.8 A proof for this method is given in IV.6.6. The “latitude of the
clime of visibility” or “the latitude of visible climate” ( arz iglim al-
ru ya) was a standard term in Islamic spherical astronomy and probably
taken over from the Hindus. It is the shortest distance from the zenith to
the ecliptic, or the complement of the angle between the ecliptic and the

horizon [Kennedy 1983, 168, 290].
1.6.9 A proof for this method is given in IV.6.7.

1.6.10 The case when the “remainder” in the last sentence is greater than
90° cannot occur. Kiishyar omits the cases where the point is between the
ascendant and the fourth house, or between the fourth house and the
descendant. Then the distance is between the right ascension of the point
and the lower half of the meridian. There is no proof for this method in
IV.6. The term ‘ascension’ in the title must refer to right ascension,
because the latitude of the locality is not involved in this method. This
chapter is not found in L. It is not mentioned in the table of contents at
the beginning of B; however, the chapter belongs to the missing part of B.
It is not mentioned in the table of contents of P, but the chapter itself is
found in P. The term ‘ascension’ is missing in the title of the chapter in P.

1.6.11 A proof for this method is given in IV.6.8. Similar methods are

provided by Ptolemy [1984, 256-64] and al-Battani [1899-1907, III, 118].
The values for the solar parallax are given in table II.51.
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1.6.12 This chapter provides the computation of the smaller angle
between the ecliptic and the arc of the great circle passing through the
zenith and the ecliptical position (perpendicular projection) of the moon
(see the figure below). This angle is called the ‘latitude angle’ and its
complement is called the ‘longitude’ angle. Kushyar discusses six cases.
He first treats the five special cases where the moon is situated on one of
the equinoxes or solstices, and is in rising or setting position or at its
culmination point, respectively. His sixth case is the general case. In ‘the
other method’ provided in the fifth case, he first finds the complement of
the right ascension of the equinoctial point (KM in the figure of IV.6.9)
using the method provided in 1.5.2. L and Y give only ‘the other method’
for the fifth case, but P gives both methods. Ptolemy [1984, 123-29]
provides a special table for this angle, which is entitled “Table of zenith
distances and ecliptic angles”. Al-Battani [1899-1907, 111, 115] discusses
different cases of this angle. See also [Pedersen 1974, 118-121,
Neugebauer 1975, 48-50].
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1.6.13 A geometrical proof of this method is given in 1V.6.10. Al-Battant
presents a calculation method for this subject [1899-1907, III, 115],
which is also given by Ptolemy [1984, 266]. This method presupposes
that the relevant spherical triangles are considered as plane triangles.
Kishyar’s rule for addition or subtraction of the latitudinal parallax is
valid when the moon reaches the meridian. But when the moon is close to
the horizon, especially near the equinoxes, so that a southern latitude may
lead to an increase in the altitude, the rule is not valid.

1.6.14 In the description of the conditions in which the sun may be
eclipsed, Kishyar assumes that the case in which the distance of the
moon from the zenith is northern (mentioned in Chapter 1.6.13) will not
occur. For finding the precise time of the middle of a solar eclipse, the
time of conjunction is adjusted in two stages for the longitudinal parallax
of the moon. The procedure for finding the magnitude of a solar eclipse in
linear digits and area digits is like the procedure for lunar eclipses.
Similar methods are provided by Ptolemy [1984, 310-13] and al-Battani
[1899-1907, 111, 157-58, 164-65].

1.6.15 This method is similar to the method for lunar eclipses. See
al-Battan1 [ 1899-1907, I, 162].
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1.6.16 An example of such a drawing is found in IV.6.11. Al-Battant
[1899-1907, III, 171] presents a similar drawing.

1.6.17 In IV.6.12, Kushyar proves his precise method of finding the
altitude of the moon. In the figure for Chapter IV.6.12, IK is the latitude
of the moon, IB is ‘the first arc’, HZ is ‘the second arc’, and ZA4 is ‘the
result from the complement of the altitude of the pole <of the ecliptic>’.
There is “another method” in this chapter which is not correct and
authentic, so it has been omitted here. See the commentary to IV.6.12.
The maximum difference in the parallax of the moon due to considering
the latitude of the moon is equal to 5 minutes which is not negligible.

1.6.18 This is the continuation of the preceding chapter and contains
Kishyar’s method for finding the precise values of the latitudinal and
longitudinal parallax of the moon. This method that ‘can be proved’ is
more precise than the method in 1.6.13 which is approximate. By ‘true
altitude’ he means the altitude of the moon if it is observed from the
center of the earth. The first two cases are self-evident. In the third and
fourth cases, F and C also give alternative methods for finding the
longitudinal parallax, but the alternative methods are not correct and
authentic. Y, B, and P give only the first method for finding this quantity,
while L only gives the alternative method. So we have only quoted the
first method here. F, C, V, Y, and even L provide the proof for the first
method in the third and fourth cases. F, C and L give the proofs for the
third, fourth, and fifth cases in IV.6.13.

1.6.19 Kaushyar presents three methods for finding the longitude
difference between a given locality and another locality whose longitude
and latitude are known. None of them is acceptable. The first method
does not take into account the non-simultaneity of the solar eclipse phases
as seen from different localities. Of course, finding the altitude of a planet
at some moment (e.g., the beginning of emersion in lunar eclipses) in two
localities is a practical way to calculate the geographical longitude
difference. The second method does not consider that the change in the
declination of the sun during a few hours is negligible. However, it is in
principle correct, though not practical. As I will show below, the third
method could be acceptable if we divided the distance in parasangs by 10
instead of 20, at the beginning. The length of an arc of one degree of a
great circle on the earth is:
(40°000°000:6000)/360 =~ 18 parasangs

For two localities with the same geographical latitude, we take the arc on
the parallel circle for this latitude. Kishyar’s method in this case is
equivalent to division by 102 . The length of an arc of one degree on the
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parallel circle is 18cosg parasangs, where ¢ is the geographical latitude of
the two localities. Then 1042 =18cosp, and @=38°13". This is
approximately for the geographical latitude for Kiishyar’s position. For
the case in which the geographical latitudes are different, Kiishyar simply
applies the Pythagorean rule for the sides of a right triangle whose
hypotenuse is the arc between the two localities and whose other sides are
the arcs along the latitude parallel circle and the terrestrial meridian.

d Ay
AN
1.6.20 In this chapter, two methods for determining lunar crescent
visibility are presented. The first method is based on the minimal values
of three parameters: the distance between the two luminaries (10°), the
distance between the sun and the ecliptical degree which sets
simultaneously with the moon (8°), and the altitude of the moon at sunset
in terms of its latitude (visibility arc) (6°). Kiishyar’s second method is
based on two parameters: the visibility arc below the horizon, and the
distance between the two luminaries. The second method requires that the
sum of these two parameters should not be less than 18° Kushyar
presents here a rule for finding the visibility arc in the second method. A
proof for this rule is given in IV.6.14. There Kishyar says that the
minimum values of the visibility arc have been found “from 6; 30° to 7°”.
B gives only the first method, and L mentions only the second method.
Ptolemy dose not discuss lunar crescent visibility. The minimal values of
the visibility arc for the planets in Kiishyar’s zj are the same as those
given by Ptolemy [1984, 639-40]. Al-Battani [1899-1907, III, 133]
provides a method similar to Kashyar’s first method, but based on the
first two parameters only. Al-Battani does not use the visibility arc. He
gives a greater minimal value for the two parameters: 13; 40° instead of
10° for the first parameter and 10; 50° instead of 8° for the second one. In
his Zij-i Sanjari (no. 27 in Kennedy’s Survey), Abu al-Fath ‘Abd al-
Rahman al-Khazini who lived about a century after Kuishyar, follows
Kishyar’s methods for lunar crescent visibility. But al-Khazini provides
the minimal values of the parameters as intervals rather than single
values, considering the position of the moon in its orbit around the earth:
10°-12° (instead of 10°) for the first arc; 8°-12° (instead of 8°) for the
second arc; and 6°-8° (instead of 6°) for the third arc. For the visibility arc

below horizon, he mentions the interval 8°-10° instead of Kushyar’s
6;30°-7° (MS 682, ex-Sepahsalar library, Tehran, fol. 18r).
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Section 7: On the operations relating to astrology, <in> 6 chapters

Chapter 1: On <finding> the distance between the <ecliptical> degree of
a planet and the cardines in <terms of> hours.

If the planet is above the earth, we obtain its distance from the <cusp of
the> tenth <house>, <whether it is situated> before or after <the tenth
house>, <measured> on the <basis of the> right ascensions. If it is under
the earth, we obtain its distance from the fourth <house>, <whether it is
situated> before or after <the fourth house>, <measured> on the <basis of
the> right ascensions. Then, if the planet is above the earth, we divide the
distance by the <number of the> degrees in each hour for the <ecliptical>
degree of the planet. If the planet is under the earth, we divide the
distance by the <number of the> degrees in each hour for the <degree>
opposite the <ecliptical> degree of the planet. The result is the distance of
the planet from the tenth <house> or the fourth <house> cardine,
<whether it is situated> before or after <the cardine>, in seasonal hours.
If these <number of> hours are subtracted from 6, the remainder is the
distance from the ascendant or the descendant.

Chapter 2: On <finding> the projection of the ray by means of equal (i.e.,
ecliptical) degrees.

Projections of the rays <measured> in equal degrees are the arcs of the
ecliptic whose magnitudes are 60°, 90°, 120°, and 180°. If the planet has
<non-zero> latitude, these arcs are obtained from a circle passing through
the planet. Then they are transferred to the circle of the ecliptic. This is
<found as follows:> We divide the Cosine of 60°, i.e. the Sine of 30°, by
the Cosine of the latitude of the planet, lowered. Then we find the arc
<corresponding to the quotient>. The result is the Sine of the difference
between 90° and the arc of the sextile <ray> or <that of> the trine <ray>.
We subtract it from 90°; the arc of the sextile <ray> remains. We add it
(i.e., the difference) to 90°; the sum is the arc of the trine <ray>. As for
<the arc of> the quartile <ray>, it is always 90°, and the <arc of>
opposition is always 180°.

Chapter 3: On <finding> the projection of the ray by means of ascension
(i.e., equatorial) degrees.

This is <similar> to the calculation of the equalization of the houses,
except that it is found for ascensions of the horizon of the planet (i.e., the
great circle through the planet and the North and South points of the
horizon), in the same way that the equalization of the houses is
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<calculated> for the ascensions of the horizon of the locality. The
astrologers unanimously accept this <method of> equalization. If that is
correct, it is suitable to correctly compute the projections of the rays by
this calculation <method>. For this <purpose>, we need to know the
<number of> degrees in each hour for the <ecliptical> degree of the
planet, based on its position <with respect to the horizon>. To do this, we
check the <ecliptical> degree of the planet. If it is <the same as> the
degree of the <cusp of the> tenth <house> or that of the <cusp of the>
fourth <house>, then the <number of the> degrees in each hour for them
is 15. If it (i.e., the ecliptical degree of the planet) is <the same as> the
degree of the ascendant or descendant, then the <number of the> degrees
in each hour for them is <equal to the number of the> degrees in each
hour for the ascendant or the descendant (see 1.5.11). If it is between the
two cardines, we take the difference between <the number of> the
degrees in each hour of its (i.e., the planet’s) <ecliptical> degree and 15,
multiply it by the distance of the <ecliptical> degree from the cardine of
the <cusp of the> tenth <house> or the <cusp of the> fourth <house> (as
described in 1.7.1), and divide it by 6. The result is the equation. If the
<ecliptical> degree is between the <cusp of the> tenth <house> and the
ascendant, or in the quadrant opposite to this one, and if 15 is the greater
value, we subtract the equation from it; otherwise, we add the equation to
it (i.e., to 15). If the <ecliptical> degree is between the ascendant and the
<cusp of the> fourth <house> or in the quadrant opposite to this one, and
if the <number of> degrees in each hour for the <ecliptical> degree is the
greater value, we subtract the equation from it; otherwise, we add the
equation to it. The result is the <number of> degrees in each hour for the
<ecliptical> degree of the planet based on its position. Then we obtain the
right ascension of the <ecliptical> degree of the planet, and we subtract
from it the <number of> degrees in each hour for it, multiplied by 4. We
find the arc corresponding to the remainder in the <table for the> right
ascensions. The result is the position of the left sextile. The right trine is
opposite to it. We also subtract from the right ascension of the
<ecliptical> degree of the planet the <number of> degrees in each hour
for it, multiplied by 6. We find the arc corresponding to the remainder in
the <table for the> right ascensions. The result is the position of the left
quartile. The right quartile is opposite to it. Then, we subtract the
<number of the> degrees in each hour for the <ecliptical> degree from
30. We multiply the remainder by 4 and add it to the right ascension of
the planet. We find the arc corresponding to the result in <the table for>
these ascensions. The <final> result is the position of the right sextile.
The left trine is opposite to it. This expression, i.e. the projection of the
ray, has no correct meaning other than one of <the meanings given in>
these two chapters.

93



Chapter 4: On <finding> the prorogations (i.e., astrological progressions).

The prorogations are of four types. One of them is 13 <ecliptical> signs
in a solar year. It is <called> the minor prorogation, because it has the
highest speed. The second <type> is one <ecliptical> sign in a solar year.
It is <called> the medium prorogation. The third <type> is one
ascensional degree in a solar year. It is <called> the major prorogation,
because it has the lowest speed. The fourth <type> is the prorogation of
the transfer indicators, like the mean motion of the sun. It is <called> the
transfer prorogation. We have compiled two tables for the minor and
medium prorogations, from which the degrees in the table may be
obtained for any given <number of> months and days; or the <number
of> months and days <may be obtained> for any given <number of>
degrees.

The transfer prorogation is known from the table for the mean longitudes
of the sun. For the major prorogation, we need <to carry out some>
operation. Its calculation is <as follows:> We check if the <ecliptical>
degree to be moved by prorogation is the degree of the <cusp of the>
tenth or fourth <house>; or, if the <ecliptical> degree of the planet is in
them, we subtract the right ascension of the <cusp of the> tenth or fourth
<house> from the <right> ascension of the <ecliptical> degree in which
the prorogation ends. <We take> one year for each degree, and 6 days for
each minute of the remainder. During such <number of> years and days,
the <ecliptical> degree moved by prorogation will reach the <degree> in
which the prorogation ends. If the <ecliptical> degree moved by
prorogation is the <ecliptical> degree of the ascendant, or if the
<ecliptical> degree of the planet is in it, we subtract the oblique ascension
of the ascendant from the <oblique> ascension of the <ecliptical> degree
in which the prorogation ends. <We take> one year for each degree, and 6
days for each minute of the remainder. If the <ecliptical> degree <moved
by prorogation> is the <ecliptical> degree of the descendant, or if the
<ecliptical> degree of the planet is in it, we subtract the oblique ascension
of the ascendant from the <oblique> ascension of the opposite of the
<ecliptical> degree in which the prorogation ends. <We take> one year
for each degree, and 6 days for each minute of the remainder.

If the <ecliptical> degree moved by prorogation is between two cardines,
we obtain the right ascension and the oblique ascension of that
<ecliptical> degree. We multiply the difference between the two
ascensions by the distance of the <ecliptical> degree of the planet from
the cardine rising prior <to it> in hours (as described in 1.7.1). We divide
<the product> by 6. The result is the equation. If the <ecliptical> degree
is between the <cusp of the> tenth <house> and the <cusp of the> fourth
<house>, or in the quadrant opposite to this, and the right ascension has
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the greater value, we subtract the equation from it; otherwise, we add the
equation to it. If the <ecliptical> degree is between the ascendant and the
<cusp of the> fourth <house>, or in the quadrant opposite to this, and the
oblique ascension has the greater value, we subtract the equation from it;
otherwise, we add the equation to it. The result is the ascension of the
<ecliptical> degree, based on its position.

Then we find the ascension of the <ecliptical> degree in which the
prorogation ends, through a similar operation. However, we use in it the
distance of the first <ecliptical> degree moved by prorogation (instead of
the ecliptical degree of the planet) from the cardine which was used
formerly, in hours. We use the ascension <here> as we used it in that
<operation>. Then we subtract the ascension of the <ecliptical> degree
moved by prorogation from the ascension of the <ecliptical> degree in
which the prorogation ends. <We take> one year for each degree, and 6
days for each minute of the remainder.

If the <period of> time is known, and we want to know where the
terminal point reaches from a given <ecliptical> degree during this
<period of> time, <we carry out> its calculation <as follows>. If the
given <ecliptical> degree is the <ecliptical> degree of the <cusp of the>
tenth or fourth <house>, or if the <ecliptical> degree of the planet is in
them, we add to its right ascension one degree for each year, and one
minute for each 6 days, <considered> from a known time. We find the arc
corresponding to the result in <the table for> right ascension. It will be
the terminal point from that <ecliptical> degree. If the given <ecliptical>
degree is the <ecliptical> degree of the ascendant or the descendant, or if
the <ecliptical> degree of the planet is in them, we add to the <oblique>
ascension of the ascendant one degree for each year and one minute for
each 6 days, <counted> from a known time. We find the arc
corresponding to the result in <the table for> oblique ascension. It will be
the terminal point from the <ecliptical> degree of the ascendant. The
opposite of this terminal point is the terminal point from the <ecliptical>
degree of the descendant. If the given <ecliptical> degree is between two
cardines, we add to the right ascension and the oblique ascension of the
<ecliptical> degree one degree for each year, and one minute for each 6
days, <counted> from a known time. We find the arc corresponding to
each one in <the table for> its ascension. Then we obtain the difference
between the two arcs. We multiply it by the distance of the <ecliptical>
degree from the cardine rising prior <to it> in hours, and divide it by 6.
The result is the equation. If the <ecliptical> degree is between the <cusp
of the> tenth and fourth <house>, or in the opposite <quadrant>, and the
arc of the right ascension has the greater value, we subtract the equation
from it; otherwise, we add the equation to it. If the <ecliptical> degree is
between the ascendant and the <cusp of the> fourth <house> or in the
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<opposite> quadrant, and the arc of the oblique ascension has the greater
value, we subtract the equation from it; otherwise, we add the equation to
it. The result is the terminal point from that degree. An example for this
<operation:> The ascendant <is in> 4° of Pisces; the <cusp of the> tenth
<house> <is in> 15° of Sagittarius; Venus <is> in 24° of Capricorn; and
Mars <is> in 20° of Aquarius. We move Venus to the <ecliptical> degree
of Mars by prorogation. It (i.e., Venus) reaches it in 23 years and 150
days. We want to know where the terminal point from Venus reaches at
the completion of this <period of> time. It is <found> 20; 23° of
Aquarius.

Chapter 5: On <finding> the transfers of the years and their ascendants.

In this chapter we need <to know> the mean longitude of the sun for the
transfer and the time of the true longitude. It is the time for which we
should find the true longitude of the planets for the transfer. <We also
need> the time of the transfer and its ascendant. It should be known that
when we subtract the <number of the> base year of the beginning, from
the <number of the> year in which the transfer occurs, in the Yazdigird
era, the remainder is the <number of the> entire years which followed
this beginning. The transfer is the entering into the next year upon the
sun’s return to its original position. An example of this <follows:> The
beginning occurred in the year 332. We want <to know> the transfer of
the year in the year <3>89. We subtract 32 from 89. The remainder is 57.
It is <the number of> the entire years which followed the beginning. The
transfer is entering into the 58th year upon the sun’s return to its original
position. <Finding the> transfer mean longitude: We write down the true
longitude of the sun for the base <year> somewhere on the dustboard to
be known <during the operation>. Then we write it down in three
positions, and subtract the adjusted apogee for the time of the transfer
from the first position. The remainder is the <true> anomaly. We obtain
the equation for it, and subtract it from the anomaly and from the second
and third positions. Then we obtain the equation for this anomaly and add
it to the second position. We check if it exceeds the true longitude of the
epoch <year>. <If so,> we subtract the excess from the anomaly and from
the third position. If it is less than the true longitude of the epoch <year>,
we add the deficit to the anomaly and to the third position. We make the
second <position> like the third <one>. Then we obtain again the
equation for this anomaly and add it to the second position. We check if it
exceeds the true longitude of the epoch <year>; <if it does,> we subtract
the excess from the anomaly and from the third position. If it is less than
the true longitude of the epoch <year>, we add the deficit to the anomaly
and to the third position. We make the second <position> like the third
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<position>. Then we obtain again the equation for this anomaly and add it
to the second position. We check if it exceeds the true longitude of the
epoch <year>; <if it does,> we subtract the excess from the anomaly and
from the third position. If it is less than the true longitude of the epoch
<year>, we add the deficit to the anomaly and to the third position. What
results for the anomaly in this iteration, is the anomaly of the transfer.
What results in the third position is the transfer mean longitude.
<Finding> the time of the true longitude <is as follows>: For <finding>
the time of the true longitude, we find, from the <relevant> table, the
mean longitude of the sun for the beginning of the year in which the
transfer occurs. Then <we find the mean longitudes> for the months and
the days of the year, and the hours and their fractions, so that it will be
equal to the mean longitude corresponding to the transfer. What results
from the months, days and hours is the arc of revolution after midday in
hours. <Finding the> time of the true longitude from the arc of revolution
in hours <is as follows: If the <geographical> longitude of the locality is
less than 90°, we obtain the difference between the longitude difference in
hours and the equation of time in hours. If the longitude difference <in
hours> is the greater value, we add it (i.e., the final difference) to the arc
of revolution in hours. If the equation of time is the greater value, we
subtract it from the arc of revolution in hours. The sum or the remainder
is the time of the true longitude from the day or the night. Then we know
its distance from the midday. If the <geographical> longitude of the
locality is greater than 90°, we add the longitude difference in hours and
the equation of time in hours, and subtract the sum from the arc of
revolution in hours. The remainder is the time of the true longitude from
the day or the night. Then we know its distance from the midday. Section
on the transfer time: For <finding> the transfer time, if the
<geographical> longitude of the locality is less than 90°, we subtract the
<geographical> longitude difference in hours from the time of the true
longitude. If the <geographical> longitude of the locality is greater than
90°, we add the <geographical> longitude difference in hours to the time
of the true longitude. We add to the sum or the remainder the equation of
time in hours. The result is the <time of> the transfer in hours after the
midday. If it is less than the half-day hours, we add it to the time of the
midday in hours. The result is the <number of the> hours elapsed <from
the beginning of> the present day. If it is more than half-day hours, we
subtract the half-day hours from it. The remainder is the <number of the>
hours elapsed <from the beginning of> the next night. If it is greater than
the sum of the half-day hours and the <number of the> hours of the next
night, we subtract the <number of the> half-day hours and <the number
of> the hours of the next night. The remainder is the <number of the>
hours elapsed <from the beginning of> the next day. The ascendant:
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When this (i.e., the transfer time) is found, we multiply it by 15. <The
product> is the arc of revolution of the equator from the rising of the sun
or from its setting until the time of the transfer. If it is <in> the day, we
add it to the <oblique> ascension of the <ecliptical> degree of the sun. If
it is <in> the night, we add it to the oblique ascension of the opposite of
the <ecliptical> degree of the sun. We find the arc corresponding to the
sum in the table for ascensions. The result is the ascendant. This
operation <may be used> for finding the transfer of the sun into any
ecliptical degree. The return of the sun to its <original> position <occurs>
after <describing> a single cycle. The excess of the arc over a cycle of the
equator is 86; 36°.

Chapter 6: On converting the ascendant of the world year from one
locality to another.

We obtain the <geographical> longitude difference of the two localities
in degrees. It is <equal to> the arc of revolution. If the second locality has
a greater <geographical> longitude, we add the arc of revolution to the
<right> ascension of the ascendant relating to the first locality. If the
second <locality> has a smaller <geographical> longitude, we subtract
the arc of revolution from the <right> ascension of the ascendant relating
to the first locality. We find the arc corresponding to the sum or the
remainder in the <table for> the <oblique> ascensions of the second
locality. The result is the ascendant in the second locality.
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Commentary

I.7.1 This is a method for finding the time interval that a point of the
ecliptic needs for moving, by the daily motion of the universe, from its
present position to one of the cardinal positions (in the horizon or
meridian planes), or vice versa. The unit of measurement is the “seasonal
hour”; that is one sixth of the time which the point needs to move from
the last cardinal position before its present position to the first cardinal
position after its present position. Kiishyar uses this computation in 1.7.3
and 1.7.4.

1.7.2 Ancient astrologers believed that each planet P casts seven visual
rays to other points of the ecliptic whose positions are defined by the
vertices of a regular hexagon, a square and an equilateral triangle with P
as their common vertex. For a discussion of this theory see [Kennedy &
Krikorian-Preisler 1972, 3-7; Hogendijk 1989, 170-72]. Kiishyar did not
discuss this subject in his /ntroduction to Astrology. According to the
Jami‘ Zij, when the planet has a non-zero latitude, it casts its rays to the
points on the ecliptic whose distances from the planet are 60°, 90°, etc.
The ecliptical longitude of these points can be found by the method
provided in this chapter, based on the Cosine theorem for spherical right
triangles. For the sextile rays, we determine an arc P(r) by:
Cos Ar) = RCos 60°/ Cos B,

where f is the latitude of the planet, and R = 60. If the ecliptical longitude
of the planet is A, it casts its two sextile rays to points with longitude
A+ Ar). A proof of this method is presented in IV.7.1. Al-Battani provides
another method for finding the projections of the rays [1899, III, 196-
197], but his method is lengthy and complicated, as Kashyar remarks in
IV.7.1. Al-BirlnI provides two methods for finding the projection of the
rays, taking the planet’s latitude into account. His first method is similar
to the method given by Kishyar in this chapter [Kennedy & Krikorian-
Preisler 1972, 6].

1.7.3 This alternative method can be shown to have the following
geometrical rationale: first the position of the planet is projected onto the
equator along arcs of great circles from the north point to the south point
of the horizon. Kishyar approximates this geometric determination by a
computation which produces a very imperfect result, but which was
nevertheless standard in his time. The method is described in terms of
“hours” determined by the position of the planet in the ecliptic (compare
1.7.1). When the planet is in its culmination point or the point opposite to
it, each hour corresponds to 15 degrees of the celestial equator (i.e., the
seasonal hour for geographical latitude 0°). When the planet is rising or
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setting, each hour is equal to the seasonal hour corresponding to the
ecliptical degree of the planet (for the latitude of the locality; day hour [at
rising] and night hour [at setting]). For other positions of the planet, the
number of degrees on the celestial equator corresponding to each unequal
hour may be found by linear interpolation. The results may be used for
finding the whole series of the projections of the rays [Hogendijk 1989,
178-80].

I1.7.4 The concept of ‘prorogation’ (or progression, in Arabic 7asyir) was
connected with an astrological method for anticipating important events
in the life of a person, based on the positions of the celestial bodies at the
moment of his or her birth [Yano and Viladrich 1991, 1-3]. Kushyar
discussed this subject in Chapter 20 and 21 of the third Book of his
Introduction to Astrology [1997, 216-35]. M. Yano and M. Viladrich
have discussed the content of Chapter 21 [Yano & Viladrich 1991]. Table
I1.53 of Kiishyar’s zij provides the minor and medium prorogations. The
ms. F quotes a fragment “from another manuscript” under the misleading
title “another method” after referring to the tables for minor and medium
prorogations. But this is actually an explanation and example for the
application of these tables, which does not sound authentic. The transfer
prorogation is not mentioned in manuscript L. For the major prorogation,
we should find the adjusted ascensions of the given point on the ecliptic.
When the given point on the ecliptic to be moved by prorogation is in the
tenth or fourth house, the adjusted ascensions are the same as the right
ascensions. When the point is rising or setting, oblique ascensions are
used for this purpose. If the given point is situated between the cardines, a
combination of the right and oblique ascensions is applied, using linear
interpolation. This is called the ascension of the ecliptical degree based
on its position. The same process is carried out for the ‘terminal point’.
The required period of time is found by counting one year for each degree
and 10 days for each minute of the difference between the initial and final
adjusted ascensions. Inversely, for finding the terminal point relating to
the major prorogation for a given period of time, a similar method is
used. I checked the calculation of the example given for this case, using
the right ascensions in table I1.45 and the oblique ascensions for the
latitude of 36° provided in table I1.46: The result was in accordance with
the terminal point given in the text with negligible deviation.

1.7.5 In this chapter Kishyar wants to find the moment in a given year £
at which the true longitude of the sun has a given value c(equal to its true
longitude at a definite moment a number of years ago). This problem is
solved by an iterative procedure. Kiishyar first finds the position A(?) of
the apogee in year ¢ He uses x,= ¢ - A(?) as a first approximation of the
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mean centrum at £ and computes the equation g (x,). Then x,=c+ g(x,)

is a second approximation of the mean longitude, and so on. This method
was also used by other Islamic period astronomers; see [Kennedy 1969,
249-50]. Al-Battani deals with this matter in two places in his zij [1899-
1907, 111,192-93, 223], but his approach is different from Kiashyar’s. The
mean longitude is then used for finding the hours relating to the arc of
revolution after midday for the transfer. Then the number of the hours
past midday is corrected for the geographical longitude difference and
equation of time for finding the number of the hours relating to the true
longitude in a locality with geographical longitude 90°. Then again the
longitude difference and the equation of time are applied for finding the
transfer times in different localities. The number of the hours past sunrise
or sunset is used for finding the ascendant of the transfer time, using the
ascension tables. The excess of revolution after a solar cycle is mentioned
to be equal to 86; 36°. This magnitude divided by 360° gives the excess of
a solar year over an integer number (365) of days, equal to 0.2405 of a
day. The modern value for this magnitude is 0.2422 of a day.

1.7.6 The ascendant of the world year found for a locality can be used for
finding the same ascendant for another locality with a different
geographical longitude, using the oblique ascension tables, as described
in this chapter. For a description of different systems of world years see
[Kennedy 1962] and [Kennedy and van der Waerden 1963]. By the
ascendant of the world year, Kiishyar apparently means the ascendant of
the position of the prorogation ( 7asyir) indicator on the celestial equator
(see 1.7.4 above) which makes a complete revolution on the celestial
equator during one world year.
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