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VAUGHT’S THEOREM ON
AXIOMATIZABILITY BY A SCHEME

ALBERT VISSER

Abstract. In this paper we give an improvement of Vaught’s Theorem on
Axiomatizability by a Scheme. We show that any RE theory that directly

interprets the theory of non-surjective unordered pairing, where pairing need

not be functional, is axiomatizable by a scheme.

1. Introduction

Craig’s well known trick shows us that every RE theory in predicate logic (of
finite signature) has a decidable axiomatization. Inspection of the argument shows
that we even get a p-time decidable axiomatization. It is less well known that
there is a substantial class of theories that can be axiomatized by a scheme. This
was shown by Vaught in his [Vau67]. Here is a precise formulation of the result.
Consider the following axioms (in the language with = and ∈):
vsn ` ∀x0, . . . , xn−1 ∃y ∀u (u ∈ y ↔

∨
i<n u = xi).

Note that vs0 provides one or more empty sets, and that, for 0 < k 6 n, we have
vsn ` vsk. The theory VSn is axiomatized by vs0, . . . , vsn, or, more economically,
just by vs0 plus vsn. Vaught’s Set Theory VSω, or simply VS, is the theory axiom-
atized by all the vsn.

We say that U directly interprets V iff there is an interpretation K of V in U ,
that is direct, i.e., that is not relativized and that translates identity to identity.
We call a theory that directly interprets VS a Vaught theory. So, a Vaught theory
contains a formula Axy that satisfies all axioms of VS.

Vaught’s theorem tells us that:
All Vaught theories are axiomatizable by a scheme.

Here are examples of Vaught theories of which it is not immediately evident how
to axiomatize them by a scheme:

• I∆0 + {Ωn | n ∈ ω}.
• EA + {conn(EA) | n ∈ ω},

where EA is Elementary Arithmetic, aka Elementary Function Arithmetic
or EFA, aka I∆0 + Exp, and where ‘conn(EA)’ stands for consistency only
involving proofs of complexity below n.

• EA + {conn(EA) | n ∈ ω},
where con0(EA) := >, conn+1(EA) := con(EA + conn(EA)).

• PRA (in a variant with finite signature).
We do not consider schemes with substitutions from restricted classes. Thus, I∆0

and S2 = I∆0+Ω1 are also examples of theories that are not evidently axiomatizable
by a scheme.
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It is not difficult to see that VS interprets Tarski, Mostowski and Robinson’s
theory R. Hence, VS and therewith every consistent Vaught theory is essentially
undecidable.

Note that VS2 is the theory of, not necessarily functional, non-surjective, un-
ordered pairing. We call a theory that directly interprets VS2: a pair theory. The
main theorem of this paper is that:

All pair theories are axiomatizable by a scheme.
There are decidable pair theories. This is an immediate consequence of the results
on ordered pairing by Richard Tenney ([Ten]), reported in [FR79], p162. A beautiful
special case is the decidability of the true theory of the Cantor Pairing Function C
with Successor, Th(N,C,S), which is proved in [CR01]. Ferrante and Rackoff show
that pair theories for functional ordered pairing are non-elementary.1 See [FR79].
The existence of decidable pair theories shows that our main theorem is a true
improvement on Vaught’s result. Ferrante and Rackoff’s result shows that to be a
pair theory is still a substantial restriction on theories.

Vaught provides several examples of RE theories that are not axiomatizable by
a scheme. E.g., let X be an RE, non-recursive set. Let E!n be the statement, in the
language of identity, that there are precisely n elements. Let U be the theory in the
language of identity, axiomatized by the ¬E!n, for n ∈ X. If U were axiomatizable
by a scheme, then the class of finite models (say, as coded in the natural numbers
in some standard way) would be decidable, since it is decidable whether a finite
model satisfies a given scheme. Quod non.

At the end of our paper, we briefly discuss the possibility of compressing schemes
to single sentences in the presence of comprehension principles.

Vaught’s Paper. The present paper is in many respects a re-presentation or re-
make of Section 3 of Vaught’s beautiful seven page paper [Vau67]. Vaught writes
the following in the beginning of Section 3 about the improvement his Theorem 2,
that states that any RE Vaught theory is axiomatizable by a scheme, makes over
his Theorem 1. Vaught’s theory S is our theory VS. Vaught’s theory T1 is a theory
of sequences and numbers.

Theorem 2 improves on Theorem 1 in two ways. For one thing, S appears to be
somewhat weaker than T1 (as well as more elegant). More significant, however,
is the fact that Theorem 2 states that T is outright axiomatizable by a schema,

rather than by a schema plus the axioms of S.

Nevertheless, there do not appear to be any very interesting theories whose

schematic axiomatizability is obtainable from Theorem 2 but not from Theo-

rem 1. Consequently, we shall give a brief sketch of the proof.

It seems to me that the observation that Vaught’s theorem extends to all theories
that directly interpret a weak theory of pairing does extend the scope of the theorem
sufficiently substantially to justify a more extended presentation.

Our proof follows Vaught’s rather closely. Thus, it can be viewed for a large
part as a careful exposition of Vaught’s work. Here is the main difference. Vaught
uses a very clever way of schematically axiomatizing expansions of VS with new
predicates to insure that we need only one scheme without an infinity of auxiliary
axioms. We, on the other hand, employ the fact that the theory of pairing locally

1I think that their result must also work in the non-extensional case, but did not try to prove
this. Their result trivially transfers to functional unordered pairing.
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directly interprets the theory VS. Thus, we work with a varying interpretation of
larger and larger parts of VS, where Vaught employs a fixed interpretation.

2. Preliminaries

In this paper, we consider RE theories of finite signature. These theories will
one-sorted in most of the paper. The exception is Section 7, where we study the-
ories with a second sort of classes. We will assume that our theories are officially
relational, However, we will often pretend there are function symbols present. As
is well known, the function symbols can be eliminated by an efficient translation.

Interpretations in this paper will be multi-dimensional relative interpretations
with parameters. An interpretation K of U in V is based on a translation τ of
the language of U to the language of V , such that, for all U -sentences A, we have
U ` A implies V ` Aτ . See e.g. [Vis06] or [Vis09b] or [Vis08] for careful definitions.
An interpretation is direct iff it is unrelativized and does translate identity into
identity. Note that direct interpretations are automatically one-dimensional. A
theory V locally interprets a theory U iff V interprets every finite subtheory of U .
We remind the reader of the notations:

• V � U for: V interprets U .
• U � V for: U is interpretable in V .

Further determinations of the kind of interpretability intended will be added as
subscript. E.g., V �dir U will mean: V directly interprets U .

A scheme S for a theory U is obtained as follows. We extend the signature, say
ΣU of U with a finite number of predicate symbols to a new signature Σ+

U . We
assume that the new symbols are marked in Σ+

U . A scheme is a sentence in the
extended language. Let’s say that an s-translation is a translation of the language
given by Σ+

U into the language of U that is constant on the non-marked or old
vocabulary; the predicate symbols of the new vocabulary are replaced by formulas
of the old vocabulary. We do not have domain restriction in s-translations. The
scheme S is valid in U if, for all s-translations τ , U ` Sτ . Our formulations allow
two readings: do we allow parameters or not in the translations τ . I will assume
that the default reading of scheme is scheme with parameters. This means that the
s-translations in the definition of validity range over translations with parameters.
These parameters are unrestricted, i.e., they range over the full domain of U , if we
do not allow parameters, we will speak about a closed scheme.

3. Theories of Number(s)

We formulate theories that can be a both theories of a number and of all numbers.
The theory TN0 is intended to be possibly the theory of a number. It is given as
follows. We have, apart from equality, the following symbols in the signature: a
constant 0, two binary relation symbols S and 6, and two ternary relations A and
M. The theory is axiomatized as follows.
tn1 ` (Sxy ∧ Suv)→ ((x = u ∧ y = v) ∨ (x 6= u ∧ y 6= v)),
tn2 ` ¬Sx0,
tn3 ` x = 0 ∨ ∃y Syx
tn4 ` (Axyu ∧ Axyv)→ u = v,
tn5 ` Ax0x,
tn6 ` ∃u (Syu ∧ Axuv)↔ ∃z (Szv ∧ Axyz),
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tn7 ` (Mxyu ∧Mxyv)→ u = v,
tn8 ` Mx00 ∧M0x0,
tn9 ` x 6= 0→ (∃u (Syu ∧Mxuv)↔ ∃z (Azxv ∧Mxyz)),

tn10 ` x 6 y ↔ ∃z Azxy.

The assumption of Axiom tn9 is essential. To see that, suppose we drop it. Since
we have A000 and M0y0, it would follow that, for some u, Syu. This frustrates our
intention to formulate a theory that can also be the theory of a number. Note that
if we would both drop the assumption of Axiom tn9 and the second conjunct of tn8,
we still would be able to prove the undesirable: ∃x1, . . . , xn (S0x1∧ . . .∧Sxn−1xn),
for every n > 0.

We will use partial function notation. Partial terms will be eliminated via the
algorithm (·)?. We adopt the small scope convention and we employ weak evaluation
for multiplication with 0. We first translate formulas of the form t = x, where x
does not occur in t.

• (y = x)? := (y = x),
• (0 = x)? := (0 = x),
• (St = x)? := ∃x0 ((t = x0)? ∧ Sx0x),
• (t0 + t1 = x)? := ∃x0 ∃z ((t0 = x0)? ∧ (t1 = x1)? ∧ Ax0x1x),
• (t0 × t1 = x)? = (∃x0 ((t0 = x0)? ∧ x0 = 0 ∧ x = 0) ∨

(∃x1 ((t1 = x1)? ∧ x1 = 0 ∧ x = 0) ∨
∃x0 ∃x1 ((t0 = x0)? ∧ (t1 = x1)? ∧Mx0x1x)).

We now define the full translation for all formulas not of the form t = x, where x
is not in t, as follows:

• (t0 = t1)? := (∃x0 ∃x1 ((t0 = x0)? ∧ (t1 = x1)? ∧ x0 = x1)),
• (t0 6 t1)? := (∃x0 ∃x1 ((t0 = x0)? ∧ (t1 = x1)? ∧ x0 6 x1)),
• (·)? commutes with the propositional connectives and quantifiers.

We use t ' u for: either t and u are both defined and their values are equal, or
both are undefined. The expression t ↓ will mean: t is defined. The expression t ↑
will mean: t is undefined. We will use + for A and × or · for M. In these notations
we have the following consequences of our axioms:

tnf1 ` t = u→ t ↓ ∧ u ↓
tnf2 ` 0 ↓
tnf3 ` St ↓ → t ↓
tnf4 ` Sx = Su→ x = u
tnf5 ` Sx 6= 0,
tnf6 ` x = 0 ∨ ∃y Sy = x
tnf7 ` t+ u ↓ → (t ↓ ∧ u ↓)
tnf8 ` x+ 0 = x,
tnf9 ` x+ Sy ' S(x+ y),

tnf10 ` t× u ↓→ (t = 0 ∨ u = 0 ∨ (t ↓ ∧ u ↓))
tnf11 ` x× 0 = 0 ∧ 0× x = 0
tnf12 ` x× Sy ' (x× y) + x
tnf13 ` x 6 y ↔ ∃z z + x = y

It is easy to see that these principles follow indeed from the axioms. Note that to
prove tnf12, we need to split into the cases whether x is or is not 0 and whether y
is or is not 0. The antecedent of tn9 disappears in tnf12, since our conventions do
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not demand the successor to be defined in that case. Note that, conversely, we can
derive our original axioms from the new ones except tn8 and part of tn9.

The disappearance of the assumption of tn9 is the main point of the use of the
‘weak convention’. It allows us to compute with undefined terms in the usual way,
giving us e.g. Lemma 3.1(4).

We write n for Sn0. The theory TNn is TN0 + n↓. The theory TNω is the union
of the TNn.

Consider any natural number n. We define 0, S, A, M, 6 on {0, · · · , n} in the
obvious way, e.g., Axyz :↔ x + y = z and x, y, z 6 n. We call this model Nn. We
have Nn |= TNn. Of course, we also have N |= TNω.

Here is a lemma collecting some basic facts about the TNn.

Lemma 3.1. (1) The relation ' is TN0-provably an equivalence relation be-
tween terms.

(2) Suppose t and t′ are substitutable for x in Ax, then:
TN0 ` t ' t′ → (At↔ At′).

(3) Suppose t~m = n. Then, TN0 ` t~m ' n.
(4) Suppose t~m = t′ ~m. Then, TN0 ` tm ' t′ ~m.
(5) Suppose t~m 6 t′ ~m. Then, TN0 ` t′ ~m ↓ → tm 6 t′ ~m.
(6) If t~m 6= t′ ~m, then TN0 ` t~m 6= t′ ~m.
(7) If t′ ~m < t~m, then TN0 ` ¬ t~m 6 t′ ~m.
(8) Suppose t~m = t′ ~m 6 n. Then, TNn ` t~m = t′ ~m.
(9) Suppose t~m 6 t′ ~m 6 n. Then TNn ` t~m 6 t′ ~m.

(10) TN0 `
∨
m<n x = m ∨ n 6 x.

(11) TN0 ` (n ↑ ∨ x 6 n)↔
∨
m6n x = m.

(12) TNn ` x 6 n ∨ n 6 x.
(13) TN0 ` (x 6 n ∧ n 6 x)→ x = n.
(14) TN0 ` (n 6 x ∧ x 6 y)→ n 6 y.
(15) TN0 ` (x 6 n ∧ n 6 y)→ x 6 y.
(16) TN0 ` (x 6 y ∧ y 6 n)→ x 6 n.

Proof. We prove (10) by induction on n. The case that n = 0 is easy. Suppose
n = k + 1 and we have TN0 `

∨
m<k x = m ∨ k 6 x. Reason in TN0. If we have∨

m<k x = m, then we also have
∨
m<n x = m and we are done. Suppose we have

k 6 x. So, for some u, u+k = x. In case u = 0, we find 0 +k = x and hence, by an
easy argument, k = x and, thus,

∨
m<n x = m. In case u = Sv, we find Sv+ k = x.

By an easy argument this gives v + n = x, so n 6 x. 2

Lemma 3.2. Suppose A~x is a ∆0-formula. There is a term tA~x, which majorizes
every x in ~x, such that, for every n and for every ~m with tA ~m 6 n, we have:

(1) If A~m, then TNn ` A~m,
(2) If ¬A~m, then TNn ` ¬A~m.

Proof. The proof is by induction, simultaneous in both cases, on the complexity of
A. Suppose A is t~x = t′~x. Then, we can take tA~x := t~x + t′~x. The cases of the
Boolean connectives are obvious.

Suppose A~x is ∀y6t~xB~xy. We take tA~x := t~x + tB(~x, t~x). Suppose tA ~m 6 n.
Let t~m = k. Since, t~m 6 n, we find, by Lemma 3.1(8), TNn ` t~m = k. By
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Lemma 3.1(11), we find:

TNn ` A~m↔
∧
p6k

B(~m, p).

Since, tB(~m, p) 6 tB(~m, k) 6 tA(~m) 6 n, the desired result is immediate from the
Induction Hypothesis. The case of the bounded existential quantifier is similar. 2

Suppose S~x is a Σ0
1-formula. Say, S~x = ∃~y S0~x~y, where S0~x~y is ∆0. We define Sz~x,

by ∃~y6z (tS0~x~y 6 z ∧ S0~x~y). Here tS0 is the term provided by Lemma 3.2.

Lemma 3.3. Let S~x be a Σ0-formula.
(1) We have: S ~m iff, for some n, Sn ~m.
(2) Suppose Sn ~m. Then, TNn ` Sn ~m.
(3) Suppose ¬Sn ~m. Then, TN0 ` ¬Sn ~m.

Proof. We treat (2). Suppose Sn ~m. So, for some ~k, we have tS0 ~m
~k 6 n and S0 ~m~k.

By Lemma 3.1(9), TNn ` tS0(~m,~k) 6 n. By Lemma 3.2, we have TNn ` S0(~m,~k).
Hence, TNn ` Sn ~m.

We treat (3). Suppose ¬Sn ~m. Let U := TN0 + Sn ~m. Note that U extends TNn.
By Lemma 3.2, we find, for ~k such that tS0 ~m

~k 6 n, that U ` ¬S0(~m,~k). Also, by
Lemma 3.1(7), if n < tS0 ~m

~k 6 n, then U ` ¬ tS0(~m,~k) 6 n. By Lemma 3.1(11),
we find U `

∨
~k<n(tS0(~m,~k) 6 n ∧ S0(~m,~k)). Combining, we find U ` ⊥. So, we

may conclude that TN0 ` ¬Sn ~m. 2

Lemma 3.4. Suppose S(~x, y) is a Σ0
1-formula representing a function. Then there

is a Σ0
1-formula S◦(~x, y), such that, for all ~m, if S(~m, n), then, for some k,

TNk ` S◦(~m, n) ∧ ∀y (S◦(~m, y)→ n = y).

Proof. Suppose S(~x, y), is ∃~z S0~xy~z, where S0 is in ∆0. Let:
• S◦0 (~x, y, z) :↔ y 6 z ∧ ∃~u6z S0~xy~u ∧ ∀~v, w6z (S0~xw~v → w = y).
• S◦(~x, y) :↔ ∃z S0~xyz.

Suppose S ~mn. By the functionality of S, we can clearly find a q such that S◦0 ~mnq.
Let k > tS◦0 ~mnq. By Lemma 3.2, we have TNk ` S◦0 (~m, n, q).

We reason in TNk. Suppose S◦0 (~m, y, z). By Lemma 3.1(12), either z 6 q or q 6 z.

Suppose z 6 q. Since S◦0 (~m, n, q), for every ~v, w6q, if S0(~m,w,~v), then w = n. On
the other hand, by S◦0 (~m, y, z), we have y 6 z and, for some ~u 6 z, S0(~m, y, ~u). By
Lemma 3.1(16), we find ~u, y 6 q. So, it follows that y = n.

Suppose q 6 z. Since S◦0 (~m, y, z), for every ~v, w6z, if S0(~m,w,~v), then w = y. On
the other hand, by S◦0 (~m, n, q), we have n 6 q and, for some ~u6q, S0(~m, n, ~u). By
Lemma 3.1(15), we find ~u, n 6 z. So, n = y. 2

Lemma 3.5 (Gödel Fixed Point Lemma). Suppose that K is an interpretation of
TN0 in U . Let Ax~y be a formula in the language of U . Suppose that:

U ` Ax~y → δK(x) and U ` x0 =K x1 → (Ax0~y ↔ Ax1~y).

Then, there is a formula B~v and an n, such that

U + (n ↓)K ` B~z ↔ ∃x ((x = pB~vq)K ∧Ax~z ).
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Proof. Suppose sub is a Σ0
1-representation of the Gödel substitution function or the

language of U , such that sub(n, pCx~yq, p∃x:δK ((x = n)K ∧ Cx~yq), where x is a
designated variable. Let:

• A∗y~v :↔ ∃x:δK ((sub◦(y, y, x))K ∧Ax~v),
• m := pA∗u~vq,
• B~v :↔ ∃y:δK ((m = x)K ∧A∗y~v).
• k := pB~vq.

By Lemma 3.4, we can find n such that:

TNn ` sub◦(m,m, k) ∧ ∀y (sub◦(m,m, y)→ k = y).

Thus, we have, in U + (n ↓)K :

B~z ↔ ∃y:δK ((m = y)K ∧ ∃x:δK((sub◦(y, y, x))K ∧Ax~z))
↔ ∃x, y:δK ((m = y ∧ sub◦(y, y, x))K ∧Ax~z)
↔ ∃x:δK ((k = x)K ∧Ax~z) 2

4. Sets

We define a theory of sets TS0 as follows. Our signature consists of two unary
symbols N, Z, five binary symbols S, 6, E, ∈, η, and two ternary symbols A and M.
The intended interpretation of η is the relation between a set and its cardinality.
However, our axioms do not go far in constraining η to be so.

We let a, b, c, . . . range over N. This means that if e.g. ‘a’ occurs freely in a
formula, then we assume that N(a) is present in the context. The formula ∃aA
means ∃a (Na ∧A), and similarly for the universal quantifier. We use x, y, z, w, . . .
to range over all objects.

ts1 Axioms stating that Z, E, S, 6, A, M are relations on N. E.g.,
` Axyz → (Nx ∧ Ny ∧ Nz).
An axiom stating that η is a relation on N in the second component, i.e.,
` x η y → Ny,

ts2 Axioms stating that E is an equivalence relation of N which is a congruence
w.r.t. Z, S, 6, A, M. An axiom stating that E is a congruence w.r.t η in the
second component, i.e., ` (x η a ∧ a E b)→ x η b,

ts3 ` ∃aZa,
ts4 ` (Za ∧ Zb)→ a E b,
ts5 ` (Sab ∧ Scd)→ ((a E c ∧ b E d) ∨ (¬ a E c ∧ ¬ b E d)),
ts6 ` ¬ (Sab ∧ Zb),
ts7 ` Za ∨ ∃bSba
ts8 ` (Aabc ∧ Aabd)→ c E d,
ts9 ` Zb→ Aaba,

ts10 ` ∃d (Sbd ∧ Aade)↔ ∃c (Sce ∧ Aabc),
ts11 ` (Mabc ∧Mabd)→ c E d,
ts12 ` Zb→ (Mabb ∧Mbab),
ts13 ` ¬Za→ (∃d (Sbd ∧Made)↔ ∃c (Acae ∧Mabc)),
ts14 ` a 6 b↔ ∃c Acab.
ts15 ` Za→ ∃x (x η a ∧ ∀y y 6∈ x),
ts16 ` (x η a ∧ Sab)→ ∀u∃y (y η b ∧ ∀v (v ∈ y ↔ (v ∈ x ∨ v = u))).
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Note that our first 14 axioms are just translations of the TN0 axioms. So, modulo
translation, our new theory is the extension of TN0 with two axioms. Let us define:

• empty(x) :↔ ∀y y 6∈ x,
• adju(x, y) :↔ ∀v (v ∈ y ↔ (v ∈ x ∨ v = u)),

With these definitions, our new axioms read:
• ` Za→ ∃x (x η a ∧ empty(x)),
• ` (x η a ∧ Sab)→ ∀u∃y (y η b ∧ adju(x, y)).

Par abus de langage, we suppress the standard interpretation of TN0 in TS0. We
define TSn := TS0 + n↓

Theorem 4.1. The theory TSn is directly interpretable in VS2 via a one dimen-
sional interpretation without parameters. If follows that TSω is locally directly in-
terpretable in VS2.

Proof. We fix some k be such that 2k > n. We define:
• x ∈0 y :↔ x = y, x ∈j+1 y :↔ ∃z (x ∈ z ∧ z ∈j y).
• set(y) :↔ ∀u0, . . . , un (

∧
j6n ui ∈k y →

∨
i<j6n ui = uj).

• For j 6 n,
j(x) :↔ set(x) ∧ ∃u0, . . . uj−1 (

∧
i<j ui ∈ x ∧∧
s<i<j us 6= ui ∧ ∀v∈y

∨
i<j v = ui).

Let k be such that 2k > n. We define a direct translation τ as follows.
• Nτ (x) :↔ x = x,
• Zτx :↔ 0(x),
• Sτxy :↔

∨
j<n(j(x) ∧ (j + 1)y),

• x 6τ y :↔
∨
i6j6n(i(x) ∧ j(y)),

• x Eτ y :↔
∨
i6n(i(x) ∧ i(y)),

• x ∈τ y :↔ x ∈k y ∧ set(y),
• x ητ y :↔ x ∈τ y,
• Aτxyz :↔

∨
s+i=j & j6n(s(x) ∧ i(y) ∧ j(z)),

• Mτxyz :↔
∨
s×i=j & s,i,j6n(s(x) ∧ i(y) ∧ j(z)),

Note that in VS2 we can prove that there are infinitely many objects, by considering
iterated singletons on empty sets. So we can show in VS2 that n (as interpreted by
τ) exists. E.g., in case n = 7, we produce singletons a0, . . . , a6, where ai ∈ ai+1.
We may show that these are pairwise distinct. Next we find b0, . . . , b3, where b0,
b1, b2 are unordered pairs, b3 is a singleton and a0, a1 ∈ b0, a2, a3 ∈ b1, a4, a5 ∈ b2
and a6 ∈ b3. Note that the bi are pairwise distinct. Next we find unordered pairs
c0 and c1 such that b0, b1 ∈ c0 and b2, b3 ∈ c1. Note that c0 6= c1, Finally, we find
an unordered pair d with c0, c1 ∈ d. The object d will be a set with 7 elements
under τ . Using these ideas we may easily show that τ yields an interpretation of
TSn in VS2. 2

Remark 4.2. The interpretation constructed in the preceding proof is highly inef-
ficient in terms of the size of the interpreting formulas as a function of n. Employing
the usual definitions of set theory we can interpret TSn in far more efficient ways.
Also, we can do much better in defining ∈k. Such efficiency could be necessary if
we want to verify our theorem in S1

2. Also, it would be quite interesting to try to
adapt our methods to reprove the lower bound result of Ferrante and Rackoff (see
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[FR79]). This would also ask for more efficient interpretations. However, for our
present purposes such efficiency is not needed.

5. Satisfaction

Consider any theory U . We extend the language of U with the vocabulary of
TS0 plus a new binary predicate sat. We define the formula SAT that says roughly
that ‘below c’ the predicate sat behaves as a satisfaction predicate with the first
argument in the role of assignment and the second argument in the role of formula.
To keep things readable we assume that the language of U has a unary predicate
P , a binary predicate Q and that the only propositional connectives are the 0-ary
connectives > and ⊥, negation and conjunction and that the only quantifier is
universal quantification.

We may find Σ0
1-formulas defining some useful predicates:

• var(b): ‘b codes a variable’.
• fv(b, a): ‘a codes a formula and b codes a free variable occurring in a.’
• [[P ]] (b, a): ‘b codes a variable ‘v’ and a codes ‘Pv’.’ Similarly for [[Q]] (b, a).
• [[>]] (a): ‘a codes ‘>”. Similarly for ⊥.
• [[¬]] (b, a): ‘b codes a formula A and a codes ¬A.’
• The other cases are as expected.

We need some further definitions:
• x ⊆ y :↔ ∀z (z ∈ x→ z ∈ y),
• pair(x, y, z) :↔ ∃u, v ∀w ((w ∈ z ↔ (w = u ∨ w = v)) ∧

(w ∈ u↔ w = x) ∧ (w ∈ v ↔ (w = x ∨ w = y)))
• rel(x) :↔ ∀y∈x∃u, v pair(u, v, y)
• fun(x) :↔ ∀y, z∈x ∀u, v, w ((pair(u, v, y) ∧ pair(u,w, z))→ y = z).2

• x(y) = z :↔ fun(x) ∧ ∃u∈x pair(y, z, u)
• dom(y, x) :↔ ∃z x(y) = z
• funn(x) :↔ fun(x) ∧ ∀y (dom(y, x)→ N(y)) ∧

∀a, b, u, v ((a E b ∧ x(a) = u ∧ x(b) = v)→ (a = b ∧ u = v))
• x ? a = y :↔ funn(x) ∧ ∃b (a E b ∧ x(b) = y)
• ass(c, x, a) :↔ funn(x) ∧ ∀b (dom(b, x)↔ varc(b))
• x[a]y :↔ funn(x) ∧ funn(y) ∧ ∀b (¬ a E b→ x ? b ' y ? b) ∧ y ? a ↓)

The definition of the ‘this is a satisfaction predicate below c’-predicate SAT is given
in Figure 5.

Theorem 5.1. Suppose we have an interpretation K : U�dirTS0. We will suppress
‘K’ notationally. Let A be A(v0, . . . vk−1). Suppose we have formn(A). We assume
that n > 2. We have:

U + n 6 b+ SAT(b, B) + ass(b, x, pAq) ` A(x ? pv0q, . . . , x ? pviq)↔ B(x, pAq).

Proof. We proceed by induction on A. We treat the case that A = ∀v C, where C
is C(v, v0, . . . , vk−1).

We have formn(pAq) and, hence, formn(pCq), [[∀]] n(pvq, pCq, pAq) and fvn(pxq).
Let V be the theory U+n 6 b+SAT(b, B)+ass(b, x, pAq). In V , we have formb(pAq),

2We have ‘y = z’ rather than ‘v = w’ in the consequent, because our pairing is non-functional.
To have lots of copies of the same pair in the representation of a function seems a bit wasteful.
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SAT(c, sat) :↔ ∀x∀a6c [ (formc(a) ∧ ass(c, x, a))→
{ sat(x, a)↔ 〈∃b<c ( [[P ]] c(b, a) ∧ P (x(b)) ∨

∃b0, b1<c ( [[Q]] c(b0, b1, a) ∧Q(x(b0), x(b1))) ∨
[[>]] c(a) ∨ [[⊥]] c(a) ∨
∃b<c ( [[¬]] c(b, a) ∧ ¬ sat(x, b)) ∨
∃b0, b1<c∃x0, x1 (x0 ⊆ x ∧ x1 ⊆ x ∧ ass(c, x0, b0) ∧

ass(c, x1, b1) ∧ ( [[∧]] c(b0, b1, a) ∧
sat(x0, b0) ∧ sat(x1, b1)) ∨

∃b0, b1<a ( [[∀]] c(b0, b1, a) ∧
∀w (x[b0]w → sat(w, b1)))〉}]

Figure 1. Definition of “sat is a satisfaction predicate below c”.

formb(pCq), [[∀]] b(pvq, pCq, pAq) and fvb(pvq). The induction hypothesis gives us:

(†) V ` ass(b, w, pCq)→ (B(b, w, pCq)↔ C(w ? pvq, w ? pv0q, . . . , w ? pvk−1q)).

We work in V . Suppose B(b, x, pAq). It follows that ∀w x[pvq]w B(b, w, pCq).
Consider any z. Since n > 2, we have that 2 exists. So we have unordered pairing.
Hence, we can construct an ordered pair p such that pair(pvqz, p). Since the number
of free variables in C is smaller than pAq and pAq exists, we can, using repeated
adjunction, find a y such that on pviq, for i < k, we have y ? pviq = x ? pviq,
and y ? pvq = z. It is easy to see that ass(b, y, pCq) and x[pvq]y. By (†), we find
C(y ? pvq, y ? pv0q, . . . , y ? pvk−1q). We may conclude that

C(z, x ? pv0q, . . . , x ? pvk−1q).

Since z was arbitrary, it follows that ∀z C(z, x ? pv0q, . . . , x ? pvk−1q), in other
words, A(x ? pv0q, . . . , x ? pvk−1q).

Conversely, suppose A(x ? pv0q, . . . , x ? pvk−1q). This means:

∀z C(z, x ? pv0q, . . . , x ? pvk−1q).

Consider a y with x[pvq]y. We find: C(y ? pvq, y ? pv0q, . . . , y ? pvk−1q). Hence, by
(†), B(b, y, pCq). Thus, we find that, for all y with x[pvq]y, we have B(b, y, pCq).
It follows that B(b, x, pAq). 2

Theorem 5.2. Let K be any direct interpretation of TS0 in U , possibly with free
parameters z0, . . . , zp−1. Fix any U -formula A(b, x, a, ~z). Then, for some n, we
have: U + SAT(b, A) `

∨
i6n b = i.

Proof. By Lemma 3.5, for some n, and for some formula B~v with Gödel number
m:

U + n ↓ ` B~y ↔ ∃a, s (ass(b, s, a) ∧m = a ∧
∧
i<p

s ? pziq = zi ∧ ¬A(s, a, ~z)).

We take n so big that also V + n ↓ ` formn(m).
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Reason in U . Suppose SAT(b, A(x, a, ~z)). Suppose n 6 b. Then we have, by
Theorem 5.1,

B~z ↔ ∃a, s ((m = a)M ∧
∧
i<p

s(pziq) = zi ∧ ¬A(s, a, ~z))

↔ ¬B~z.

We may conclude, by Lemma 3.1(10), that U + SAT(b, A) `
∨
i<n b = i. 2

6. Proof of The Main Result

Consider any theory U . Let α be a Σ0
1-formula defining the set of Gödelnumbers

of the axioms of U . We assume that αn(m) implies formn(m). We define our scheme
as follows:

• Sα :=
∧

TS0 → ∀a, b ((αb(a) ∧ SAT(b, sat))→ ∃s (empty(s) ∧ sat(b, s, a))).

We find that U satisfies the scheme.

Theorem 6.1. Suppose the axiom set of U is given by the Σ0
1-formula α. Then,

U validates Sα.

Proof. Consider any direct interpretation K (possibly with free parameters ~z) for
the language of TS0. In the following we will suppress K. Let A := A(b, s, a, ~z) be
any formula. Let V := U + TS0 + αb(a) + SAT(b, A). By Theorem 5.2, we find,
for some n, V `

∨
j<n b = j. It follows that V `

∨
i<n a = i. Fix i, j < n. If

we have not αj(i). Then, by Lemma 3.3, we find V ` ¬αj(i). So, it follows that
V ` ¬ (a = i ∧ b = j) and a fortiori, V + a = i+ b = j ` ∃s (empty(s) ∧ A(b, s, a))).
If we have αi(j). Then we find, by Lemma 3.3, V ` αj(i). Suppose i is the
Gödelnumber of C. Since, U ` C, we find, by Theorem 5.1, V + a = i + b = j `
∃s (empty(s) ∧A(b, s, a))). So, we obtain V ` ∃s (empty(s) ∧A(b, s, a))). 2

Theorem 6.2. Consider a theory U whose axiom set is given by the Σ0
1-formula α.

We suppose that we have a direct interpretation M , of VS2 in U . We write [Sα],
for the set of instances of Sα in the signature of U . Then, VSM2 + [Sα] proves the
same theorems as U .

Proof. The fact that U proves all principles of V := VSM2 + [Sα] is immediate by
Theorem 6.1. We prove the converse.

Consider an axiom A of U and suppose αn(pAq). Theorem 4.1 provides a direct
interpretation K of TSn in VS2. So, L := K ◦ M is a direct interpretation of
TSn in U . We define a satisfaction predicate B(x, c), for all formulas C, such that
formn(C), just by making it the disjunction of all formulas:

• (c = pCq) ∧ ass(n, x, pCq) ∧ C(x ? pv0q, . . . , x ? pvk−1q),
where C = C(v0, . . . , vk−1) and formn(pCq).3

We find in V that, under interpretation L, we have SAT(n, pBq). Let s be any
empty set. By Sα, instantiated via L for the signature of VSn and by substituting
B for sat, we find: V ` B(n, s, pAq). Hence, V ` A. 2

3Of course, this is a very inefficient way, in terms of size, to make such a predicate. One can
clearly do much better.
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We note that the result works both for the case that we consider closed schemes or
schemes with parameters.

Inspection of the methods used shows that the result is verifiable in EA. It follows
that EA ` con(α)↔ con(VSM2 + [Sα]).

7. Comprehension Principles

Schemes can be condensed into single sentences in the presence of suitable com-
prehension principles. We briefly consider what happens in two cases: First Order
Comprehension or FOC and Predicative Comprehension or PC.

7.1. First Order Comprehension. Let us start with a pair theory U which is
axiomatized by a scheme S0. We first show that S0 can be replaced by a unary
scheme S, i.e., a scheme in which only unary schematic predicates occur. We note
that in VS2 we can define Wiener-Kuratowski pairing. Let pair(x, y, z) be:

∃u, v ( ∀w (w ∈ z ↔ (w = u ∨ w = v)) ∧
∀w′ (w′ ∈ u↔ w′ = x) ∧ ∀w′′ (w′′ ∈ v ↔ (w′′ = x ∨ w′′ = y)) ).

Using pair we can define n-tuple for standard n. Also we can define the associated
projection functions. We can verify the desired properties in VS2. We assign to
every schematic predicate P a unary schematic predicate XP . Consider an occur-
rence of a schematic predicate P (x0, . . . , xn−1) in S0. We replace this occurrence
by ∃s (n-tuple(s) ∧ (s)0 = x0 ∧ . . . ∧ (s)n−1 = xn−1 ∧ s ∈ XP ). Similarly, for all
other occurrences of schematic predicates in S0.4 Suppose in the original scheme we
would substitute A~x for P~x. Clearly, we will obtain the same effect by substituting
(n-tuple(s) ∧ ∃x0, . . . , xn−1 ((s)0 = x0 ∧ . . . ∧ (s)n−1 = xn−1 ∧A~x)) for XP .

We suppose that U is axiomatized by a unary scheme S. We extend U with a new
sort of classes c, identity on classes and a binary relation ∈ of type oc. Here o is
the sort of the original objects of U . We use the variables X,Y, Z, . . . to range over
classes. The theory S foc in the extended signature is defined as follows.
S foc1. ` ∀~y ∃X ∀x (x ∈ X ↔ Ax~y),

where A is a formula from the original language of U .
S foc2. ` ∀X,Y (X = Y ↔ ∀z (z ∈ X ↔ z ∈ Y )).
S foc3. ` ∀ ~X S? ~X,

where S? is the result of replacing all occurrences of schematic predicates in
S by class variables in the obvious way, e.g. Xx by x ∈ X.

The next theorem gives us the obvious connection between U and S foc.

Theorem 7.1. Suppose U is a pair theory, axiomatized by a unary scheme S.
Clearly, S foc is a conservative extension of U . Moroever U locally o-directly inter-
prets S foc.

Proof. We work in U . Suppose we want to have comprehension for the formulas
Aix~yi, for i = 0, . . . , k − 1, where the length of ~yi is ni. We define:

• i(v) :↔ ∃v0, . . . , vi−1 ( ∀w w 6∈ v0 ∧ ∀w (w ∈ v1 ↔ w = v0) ∧ . . .
∀w (w ∈ v ↔ w = vi−1) ).

• classi(v) :↔ (ni + 1)-tuple(v) ∧ i((v)0).

4If a schematic predicate in S0 is 0-ary, we introduce a dummy variable.
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• class(v) :↔
∨
i<k classi(v).

• x ∈ v :↔ class(v) ∧
∨
i<k( i((v)0) ∧Ai(x, (v)1, . . . , (v)ni) ).

• v =c w :↔ class(v) ∧ class(w) ∧ ∀x (x ∈ v ↔ x ∈ w).
We take class as the domain for the sort of classes, ∈ in the obvious role and =c

as identity of classes. It is easy to check that this interpretation has the desired
properties. 2

An interpretation is o-direct if it interprets the sort o as the sort o and if it is
unrelativized for o and sends o-identity to itself. We have an interesting connection
between VSfoc

2 and VS.

Theorem 7.2. We have VSfoc
2 �o-dir VS.

Proof. We work in VSfoc
2 . We first define Wiener-Kuratowski pairing. We work

with ordered pairs. To give the heuristic, let’s ignore for a moment the fact that
our ordered pairing is not necessarily functional. The basic idea is to code e.g. the
set consisting of a, b, c as 〈〈〈0, a〉, b〉, c〉, where 0 is a non-pair. Now forget about
functionality again. We define:

• dc(Y ) :↔ ∀u, v, p ((pair(u, v, p) ∧ p ∈ Y )→ u ∈ Y ),
(We will also write Y :dc for dc(Y ).)
• x ∈? y :↔ ∀Y :dc (y ∈ Y → ∃w, q (pair(w, x, q) ∧ q ∈ Y )).

Consider any non-pair z. We clearly have {z}:dc. If we would have x ∈ z, then, for
some pair q, we would have that q is in the class {z}, quod non. So z is an empty
?-set. This gives us VS0.

We have the following insight (†): Consider any x and y. Pick any z with pair(y, x, z).
Clearly, x ∈? z. Moreover, we find y ⊆? z. For, suppose u ∈? y, dc(Y ) and z ∈ Y .
We find y ∈ Y , and, hence, for some w and q, pair(w, u, q) and q ∈ Y . So u ∈ z.
We now show VSn be induction on n. Let x0, . . . , xn−1 be given. We construct a
sequence of ?-sets z0, . . . , zn as follows. Let z0 be any non-pair. We take zi+1 to
be an object such that pair(zi, xi−1, zi+1). We note, by (†), that xj ∈? zi, for all
j < i.

Let Yi be the class {z0, . . . , zi}. We easily verify Yi is downwards closed. Clearly
for any u not among x0, . . .xi−1, we find that no v such that pair(w, u, v), for some
w, is in Yi. On the other hand zi is in Yi. It follows that u 6∈? zi. Ergo, for all u,
u ∈? zi iff u = x0 or . . . or u = xi−1. 2

Theorem 7.2 suggests the following questions.

Open Question 7.3. Suppose U is a pair theory axiomatized by a scheme S. Do
we have, for any W with W � U �loc W , that S foc �W?5

Open Question 7.4. Do we have VS � VSloc
2 ?

7.2. Predicative Comprehension. In our paper [Vis09a], we elaborate the equa-
tion “consistency = predicative comprehension”. In that context, Vaught’s result
provides on way of articulating what predicative comprehension for infinitely ax-
iomatized RE pair theories means.

Consider a pair theory U that is axiomatized by a scheme S. As before we may
assume that S only contains unary predicate variables. We extend the language

5We know that this holds when U is a sequential theory.
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of U with class variables. The theory Spc in the extended signature is defined as
follows.
Spc1. ` ∀~y ∃X ∀x (x ∈ X ↔ Ax~y~Y ), where A is a formula that contains no bound

class variables and that does not contain X.
Spc2. ` ∀X,Y (X = Y ↔ ∀z (z ∈ X ↔ z ∈ Y )).
Spc3. ` ∀ ~X S? ~X, where S? is the result of replacing all occurrences of schematic

predicates in S by class variables.
Clearly, Spc is a conservative extension of U . One can show that Spc is finitely
axiomatizable. In case that U is sequential one can show that (Q+con([S])) ≡ Spc.
The details of this are explained in [Vis09b] and [Vis09a]. So, we note that, by the
Second Incompleteness Theorem, Spc is really stronger than U .

We may apply Vaught’s result, verifiably in EA, to any consistent sequential
theory RE theory U , say axiomatized using α. This gives us:

EA ` (Q + con(α)) ≡ Sαpc.

However it is easy to see that, for any true Π0
1-sentence P , we can find an ax-

iomatization β of U such that (Q + con(β)) � (Q + P ). Thus, Sβpc can be made
arbitrarily strong, when β ranges over schemes for U . This illustrates that a scheme
is ‘intensional’ from the point of view of consistency strength.

We end with a question.

Open Question 7.5. Do we have (Q+ con([S])) ≡ Spc, for pair theories U axiom-
atized by S?
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