
Comparing Loop Cutsets and Clique Trees

in Probabilistic Inference

Linda C. van der Gaag & Hans L. Bodlaender�

Department of Computer Science, Utrecht University

P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

e-mail: flinda,hansbg@cs.ruu.nl

Abstract

More and more knowledge-based systems are being developed that employ the frame-
work of Bayesian belief networks for reasoning with uncertainty. Such systems gen-
erally use for probabilistic inference either the algorithm of J. Pearl or the algorithm
of S.L. Lauritzen and D.J. Spiegelhalter. These algorithms build on di�erent graph-
ical structures for their underlying computational architecture. By comparing these
structures we examine the complexity properties of the two algorithms and show
that Lauritzen and Spiegelhalter's algorithm has at most the same computational
complexity as Pearl's algorithm.

1 Introduction

For reasoning with uncertainty in knowledge-based systems, the framework of Bayesian be-
lief networks is rapidly gaining in popularity [Pea88]. The framework provides a powerful
formalism for representing a joint probability distribution on a set of statistical variables
and o�ers algorithms for probabilistic inference. Since its introduction in the late 1980s,
the belief-network framework has demonstrated its potential in various complex problem
domains, ranging from medical diagnosis and prognostic assessment to probabilistic infor-
mation retrieval and computer vision.

The formalism of Bayesian belief networks basically is a graphical formalism: a belief
network comprises an acyclic directed graph representing statistical variables as vertices
and probabilistic interdependences among variables as arcs. The topological properties of
the digraph of a belief network determine to a large extent the computational complexity
of probabilistic inference with the network. In general, the sparser the digraph, the less
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complex inference is. For belief networks without any topological restrictions, probabilistic
inference is known to be NP-hard [Coo90].

Several di�erent algorithms have been designed for probabilistic inference with a Bayesian
belief network, each having a worst-case computational complexity that is exponential in
the number of vertices in a network's digraph. The best known are the algorithm of
J. Pearl [Pea88] and the algorithm of S.L. Lauritzen and D.J. Spiegelhalter [LS88]. These
algorithms build on di�erent computational architectures that are constructed from the
digraph of a belief network. Pearl's algorithm builds on a digraph more or less directly,
after having `cut' all its loops by appropriate vertices. The algorithm of Lauritzen and
Spiegelhalter builds on a tree of cliques that is constructed from the digraph of a network
after triangulation. The di�erent graphical structures underlying these architectures give
rise to di�erent complexity properties for the two algorithms: while Pearl's algorithm has
a computational complexity that is exponential in the number of vertices that are selected
for cutting all loops in a digraph, the complexity of Lauritzen and Spiegelhalter's algorithm
relates exponentially to the numbers of vertices in the separate cliques in the clique tree
constructed for the graph.

In this paper, we examine the algorithm of Pearl and the algorithm of Lauritzen and
Spiegelhalter as to their complexity properties. To this end, we build on an earlier result
relating the two algorithms [SAS94]. By comparing the graphical structures underlying
the algorithms' computational architectures, we show that Lauritzen and Spiegelhalter's
algorithm has at most the same complexity as Pearl's algorithm. More speci�cally, we show
that for belief networks for which Pearl's algorithm has a linear complexity, Lauritzen and
Spiegelhalter's algorithm can also take linear time. We also show that the reverse property
does not hold, that is, there are belief networks for which the algorithm of Lauritzen
and Spiegelhalter has a linear computational complexity and Pearl's algorithm exhibits
exponential behaviour at best. We conclude that in general Lauritzen and Spiegelhalter's
algorithm will outperform Pearl's algorithm.

The paper is organised as follows. In Section 2, we brie
y review the formalism of
Bayesian belief networks. We present the two algorithms for probabilistic inference with
a belief network outlined above in Section 3. In Section 4, we compare the graphical
structures underlying the computational architectures employed by the algorithms. The
paper is rounded o� with our conclusions in Section 5.

2 Bayesian belief networks

A (Bayesian) belief network is a concise representation of a joint probability distribution
on a set of statistical variables. In a belief network, the independences among the variables
discerned and the numerical quantities involved in a distribution are represented separately
[Pea88]. Independences among variables are represented by an acyclic directed graph. In
this digraph, each vertex vi models a statistical variable that can take one of a �nite set
of values. In our complexity statements, we will assume all variables to be binary; the
results presented, however, are generalised straightforwardly. We take an arc vi ! vj in
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the digraph to represent a direct causal relationship between the variables vi and vj; the
direction of the arc designates vj as the e�ect of the cause vi. More formally, the set of arcs
of a belief network's digraph is assigned a probabilistic meaning: absence of an arc between
two vertices expresses that the corresponding variables are (conditionally) independent.

Associated with the digraph of a belief network is a set of functions representing nu-
merical quantities from the probability distribution that is being represented: with each
vertex is associated a function which basically is a set of (conditional) probabilities de-
scribing the in
uence of the values of the vertex' (immediate) predecessors in the digraph
on the probabilities of the values of the vertex itself. These functions with each other pro-
vide all information necessary for uniquely de�ning a joint probability distribution on the
represented variables that respects the independences portrayed by the network's digraph.

3 Algorithms for probabilistic inference

A Bayesian belief network is generally used for probabilistic inference, that is, for making
probabilistic statements concerning the variables represented in the network. Since a belief
network uniquely de�nes a joint probability distribution, it provides for computing any
probability of interest. Several di�erent algorithms have been designed for this purpose.
The best known among these are the algorithm of J. Pearl [Pea88] and the algorithm of
S.L. Lauritzen and D.J. Spiegelhalter [LS88]. We review these algorithms along with their
complexity properties.

3.1 Pearl's algorithm

Pearl's basic algorithm for probabilistic inference takes the digraph of a belief network for
its computational architecture. The vertices in the graph are viewed as autonomous objects
and the arcs as bi-directional communication channels. Each vertex has a local processor
that is capable of performing simple, pre-de�ned computations and a local memory in
which its associated probabilities are stored. Through the communication channels the
vertices send each other messages providing information about the represented probability
distribution. Each vertex is able to compute the probabilities of its values from the prob-
abilities stored in its memory and the information it receives from its neighbours [Pea88].
When a vertex' true value becomes known, the messages this vertex sends to its neighbours
are updated to re
ect the evidence, forcing its neighbours to compute updated messages
in turn. The impact of evidence thus spreads throughout the graph by message-passing
between neighbours.

Message-passing between neighbouring vertices su�ces for correct probabilistic infer-
ence with a belief network comprising a singly connected digraph, that is, a digraph whose
underlying, undirected graph is acyclic. For such a network, the computational complexity
of Pearl's algorithm can be shown to be O(n � d � 2d), where n is the number of vertices
in the network's digraph and d is the digraph's (maximal) in-degree. Note that the com-
plexity of the algorithm is exponential in the number of vertices if the digraph's in-degree

3



is 
(n). If, however, the in-degree of a belief network's digraph is bounded by a constant,
the algorithm takes linear time.

For belief networks comprising a multiply connected digraph, that is, a digraph having
one or more cycles in its underlying graph, message-passing between neighbouring vertices
no longer su�ces for correct probabilistic inference, as vertices may for example inde�-
nitely send updated messages to their neighbours. For these networks, message-passing is
supplemented with a method called loop-cutset conditioning [Pea88, SC90]. The basic idea
of this method is to cut all cyclic chains, or loops, in the digraph so as to let it behave as
if it were singly connected.

De�nition 3.1 Let G = (V;A) be an acyclic digraph. A set L � V is a loop cutset for G
if for each loop c in G there is a vertex vi 2 L with an outgoing arc on c.

In general, a multiply connected digraph allows several di�erent loop cutsets.

Example 3.2 Consider the digraph G shown in Figure 1. The set of vertices fv1; v7g is
an example loop cutset for G. 2

v1
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Figure 1: An example digraph G.
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Figure 2: An example triangulated
moral graph H for G.

For a belief network comprising a multiply connected digraph, the computational com-
plexity of Pearl's algorithm equals O(n � d � 2d+l) where n is the number of vertices in the
network's digraph, d is the digraph's in-degree, and l is the number of vertices in the loop
cutset that is selected for the digraph. Note that the algorithm's complexity is exponential
in the size of the loop cutset used.

Since the computational complexity of Pearl's algorithm relates exponentially to loop-
cutset size, the best loop cutset to use in practical applications is a loop cutset with a
minimal number of vertices. The problem of �nding for a multiply connected digraph a
smallest loop cutset is known to be NP-hard [SC90]. An e�cient heuristic algorithm exists,
however, that �nds a loop cutset for a multiply connected digraph with at most twice the
minimal number of vertices needed to cut all loops in the graph [BG96].
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3.2 Lauritzen and Spiegelhalter's algorithm

In Lauritzen and Spiegelhalter's algorithm for probabilistic inference, the digraph of a
belief network is not exploited directly as a computational architecture as it is in Pearl's
algorithm. Instead, the digraph is �rst transformed into an undirected triangulated graph,
that is, an undirected graph in which no cycle of length four or more exists without a
shortcut [Gol80].

De�nition 3.3 Let G = (V;A) be an acyclic digraph. A triangulated moral graph for G
is an undirected triangulated graph H = (V;E) such that

� if vi ! vj 2 A, then vi � vj 2 E;

� if vi ! vj; vk ! vj 2 A, then vi � vk 2 E.

In general, an acyclic digraph allows several di�erent triangulated moral graphs.

Example 3.4 Consider once more the digraph G from Figure 1. The undirected graph
H shown in Figure 2 is a triangulated moral graph for G. Note that for any vertex, its
original set of predecessors is included in the same (maximal) clique of H as the vertex
itself. 2

From a belief network's triangulated moral graph, a clique tree, or junction tree, is con-
structed [Jen96]. A clique tree is a tree in which the vertices represent the (maximal)
cliques of the graph it is constructed from; the intersections between the cliques give rise
to the tree's edges.

De�nition 3.5 Let G = (V;A) be an acyclic digraph. Let H be a triangulated moral graph
for G; let C = fCi j i = 1; : : : ; ng be the set of cliques of H and, for each clique Ci 2 C,
let Vi be its vertex set. A clique tree for G is a tree T = (C;E) in which the set of edges E
satis�es the following property: for any two cliques Ci; Cj 2 C and each clique Ck on the
(unique) path from Ci to Cj in T , we have that Vi \ Vj � Vk.

In general, a triangulated moral graph allows various di�erent clique trees. For constructing
a clique tree from a triangulated graph e�cient algorithms are available [Pea88, Jen96];
details of these algorithms are not relevant for the present paper.

Example 3.6 Consider once more the digraph G from Figure 1. Figure 3 shows a clique
tree for G that is constructed from the triangulated moral graph H from Figure 2. 2

Lauritzen and Spiegelhalter's algorithm now takes a clique tree constructed from a belief
network's digraph for its computational architecture: the cliques in the tree are viewed as
autonomous objects and the tree's edges are looked upon as bi-directional communication
channels. Each clique has a local processor that is capable of performing simple, pre-
de�ned probabilistic computations and a local memory in which the marginal distribution
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fv1; v2; v4g

fv1; v3; v4; v5g

fv3; v5; v6g

fv5; v6; v7g

fv5; v7; v8g

Figure 3: An example clique tree for the graph H.

on its vertices is stored. Through the communication channels the cliques send each other
messages providing information about the represented joint probability distribution. Each
clique is able to compute the (updated) marginal distribution on its vertices from the
marginal distribution stored in its local memory and the information it receives from its
neighbours.

The computational complexity of Lauritzen and Spiegelhalter's algorithm equals O(n �
2c) where n is the number of vertices in a belief network's digraph and c is the number of
vertices in the largest clique in the clique tree that is constructed from the digraph. Note
that the algorithm's complexity is exponential in the size of the largest clique. If, however,
in the clique tree used, the clique sizes are bounded by a constant, the algorithm takes
linear time.

Since the computational complexity of Lauritzen and Spiegelhalter's algorithm relates
exponentially to clique size, the best clique tree to use in practical applications is a tree
comprising cliques with the smallest maximal number of vertices (or, more precisely, a
clique tree inducing smallest state space). The problem of �nding for a digraph such a
clique tree is known to be NP-hard [Wen90]; we would like to note that the problem is
closely related to the well-studied problem of determining treewidth of a graph [Bod93].
For �nding a clique tree for an acyclic digraph, various e�cient heuristic algorithms are
available [RTL76, TY84, Kj�91]. These algorithms, however, do not exhibit any optimality
properties.

4 Comparing loop cutsets and clique trees

In the previous section, we have illustrated that the two best-known algorithms for proba-
bilistic inference with a belief network build on di�erent graphical structures: the algorithm
of J. Pearl builds on a loop cutset for a network's digraph whereas the algorithm of S.L.
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Lauritzen and D.J. Spiegelhalter builds on a clique tree for the graph. In this section,
we compare the two algorithms as to their computational complexity by comparing loop
cutsets and clique trees. We show that the algorithm of Lauritzen and Spiegelhalter has
at most the same complexity as Pearl's algorithm.

4.1 Relating clique trees to loop cutsets

We begin our analysis of the two algorithms for probabilistic inference with a belief network
by relating clique trees to loop cutsets. Given a loop cutset for a network's digraph, we
show that a clique tree for this graph exists in which the cliques di�er in size from the loop
cutset by at most a linear term.

Proposition 4.1 Let G = (V;A) be an acyclic digraph and let L be a loop cutset for G.
Then, there exists a clique tree T = (C;E) for G such that for each clique Ci 2 C with
vertex set Vi, we have that

jVij � 1 + in-degree(G) + jLj
where in-degree(G) denotes the (maximal) in-degree of G.

Proof. The property stated in the proposition is proved by demonstrating the construc-
tion of a clique tree having the desired property from an acyclic digraph and associated
loop cutset; the presented construction is derived to a large extent from the clique-tree
construction for global conditioning [SAS94].

We consider the digraph G and its loop cutset L. From G, we construct the digraph
G0 = (V;A0) by deleting the outgoing arcs of all vertices from L. From L being a loop
cutset for G, we have that the digraph G0 is singly connected. From G0, we now construct
the undirected graph H 0 = (V;E 0) by �rst replacing all directed arcs from A0 by undirected
edges and by subsequently adding an edge between any two, yet unconnected, vertices vi; vk
for which vi ! vj; vk ! vj 2 A0 for some vertex vj. From G0 being singly connected, we
have that the graphH 0 is triangulated. It further is readily veri�ed thatH 0 is a triangulated
moral graph for G0. We now construct from H 0 the graph H = (V;E) by adding to each
clique all vertices from the set L. From H 0 being triangulated and from the construction
of H, it follows that H is triangulated as well. In fact, H is a triangulated moral graph for
G. From the graph H, we construct a clique tree for G.

From the construction of the graph H 0, we have that its maximal clique size equals
1 + in-degree(G0). From the construction of the graph H from H 0, we conclude that H's
maximal clique size equals 1+in-degree(G0)+jLj. From the observation that in-degree(G0) �
in-degree(G), we �nd the property stated in the proposition. 2

Note that for an acyclic digraph G the term in-degree(G) in the expression stated in the
previous proposition may be linear in the number of vertices in G.

Example 4.2 Consider once more the construction of a clique tree for an acyclic digraph
as outlined in the proof of the previous proposition. We illustrate (part of) the construction
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Figure 4: The graph G0 for the example
digraph G.

v1

v2

v4

v3

v5

v6

v7

v8

Figure 5: The triangulated moral graph
H 0 for the graph G0.

for the digraph G from Figure 1 and its loop cutset L = fv1; v7g. From G, the digraph G0

shown in Figure 4 is constructed. From G0, we construct the undirected graph H 0 shown
in Figure 5. After adding to each clique from H 0 all vertices from the set L, the clique tree
T shown in Figure 6 may be yielded. 2

fv1; v3; v4; v5; v7g

fv1; v2; v4; v7g fv1; v5; v7; v8g fv1; v3; v6; v7g

fv1; v6; v7g

Figure 6: The clique tree T resulting from the graph H 0.

We re-examine the complexity properties of the two algorithms for probabilistic inference
in view of the property stated in Proposition 4.1. For an acyclic digraph with an in-degree
that is bounded by a constant, we have that a clique tree can be found in which the largest
clique is of the same order of magnitude as a given loop cutset for the graph. For a belief
network comprising a digraph with bounded in-degree, Pearl's algorithm takes O(n � 2l)
time, where n once more denotes the number of vertices in the network's digraph and l

is the number of vertices in the loop cutset used. From the property mentioned above we
have that for this network a clique tree exists using which Lauritzen and Spiegelhalter's
algorithm takes O(n � 2l) time as well. For a belief network with bounded in-degree,
therefore, Lauritzen and Spiegelhalter's algorithm has at most the same computational
complexity as Pearl's algorithm. More speci�cally, if the latter algorithm takes linear time
for a belief network, then the former can show linear behaviour for the network as well.
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We would like to note that, for a belief network comprising an acyclic digraph with an in-
degree of 
(n), where n is the number of vertices in the graph, both Pearl's algorithm and
the algorithm of Lauritzen and Spiegelhalter will show exponential behaviour, regardless
of the loop cutset and clique tree used, respectively. In practical applications, however,
very rarely a belief network with a digraph of in-degree 
(n) is found.

The conclusion with regard to the algorithms' computational complexity mentioned
above, may seem to contradict earlier results reported in the literature [SC91, Nea90].
These results pertain to the digraph G shown in Figure 7. Upon constructing a triangulated
moral graph for G, a clique tree may be yielded that comprises a clique with as many
as 
(

p
n) vertices, dependent on the heuristic algorithm used for this purpose [SC91,

Nea90]. Building on this particular clique tree for its computational architecture, the
algorithm of Lauritzen and Spiegelhalter takes exponential time. Now, an example loop
cutset for G is the set L = fv1g, having size one. Since, in addition, the in-degree of the
digraph equals two, Pearl's algorithm will behave linearly for G. The apparent di�erence in
complexity of the two algorithms can be attributed to the clique tree used with Lauritzen
and Spiegelhalter's algorithm being an unfortunate one: the heuristic algorithm used for
constructing the clique tree has yielded a tree that is far from optimal. From Proposition
4.1 we have that for the digraph G a clique tree exists that comprises cliques with at most
four vertices.

v1

v2 v3

vn

: : :

Figure 7: An acyclic digraph with large parallel loops.

4.2 Relating Loop Cutsets to Clique Trees

In the previous section, we have argued that, if for a belief network Pearl's algorithm for
probabilistic inference has a linear computational complexity, then Lauritzen and Spiegel-
halter's algorithm can show linear behaviour for this network as well. The reverse property
does not hold. There exist belief networks for which Lauritzen and Spiegelhalter's algo-
rithm has a linear computational complexity and Pearl's algorithm takes exponential time
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at best. That is, there exist belief networks comprising a digraph for which a clique tree
can be constructed in which the maximal clique size is bounded by a constant, yet for
which no loop cutset of constant size exists. We give an example of such a digraph, taken
from [SC91].

Example 4.3 Consider the digraph G shown in Figure 8. For this digraph, a clique tree
exists in which all cliques include three vertices. The smallest loop cutset for the digraph,
however, comprises n�1

3
vertices. 2

v1

v2

v3

v4

v5

v6

v7 : : : vn

Figure 8: An acyclic digraph with small loops in series.

5 Conclusions

We have examined the computational complexity of the two best-known algorithms for
probabilistic inference with a Bayesian belief network. By comparing the graphical struc-
tures underlying the computational architectures employed by these algorithms, we have
shown that Lauritzen and Spiegelhalter's algorithm has at most the same complexity as
Pearl's algorithm. More speci�cally, if Pearl's algorithm has a linear complexity for a belief
network, then Lauritzen and Spiegelhalter's algorithm can behave linearly for this network
as well. If, however, Lauritzen and Spiegelhalter's algorithm has a linear complexity for
a network, then Pearl's algorithm may show exponential behaviour at best. In general,
therefore, Lauritzen and Spiegelhalter's algorithm will outperform Pearl's algorithm.

For probabilistic inference with a belief network using Lauritzen and Spiegelhalter's
algorithm, a clique tree is constructed from the network's digraph. Unfortunately, no
polynomial-time algorithms are known for constructing a clique tree with smallest clique
size. For practical applications, therefore, generally a heuristic algorithm is used. Several
such heuristic algorithms are available, neither of which exhibit any optimality properties.
Our main proposition, relating clique trees to loop cutsets, provides for yet another heuristic
algorithm for constructing a clique tree for a belief network's digraph. Although this
algorithm also does not exhibit any optimality properties, it guarantees for a digraph with
bounded in-degree that, if the digraph has a small loop cutset, then a clique tree with
small clique size is found.
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