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Humphreys’ (23) “verbal conditioning experiment”’, now a classic,
set off a long series of investigations into behavior in a situation in
which a S must make a large number of predictions as to which of
two or more alternative events will take place.

If we limit ourselves to a situation with two alternative events,
the general pattern of these experiments is that a signal stimulus is
repeated a great many times. After each signal the S must predict
which of two events, £, and E,, (e.g. whether a lamp to the left or
to the right is switched on) will occur. These events occur in a random
sequence, but with a fixed probability of = and 1—=n, respectivcly.
Usually the probability = of E, occurring is fixed, not only for the
whole series, but also within each block of 20 trials. £, and ¥, are
mutually exclusive, though one of the two always occurs.

There are two theoretical models, in particular. which predict
behavior in this type of situation. The one is a stochsastic model, the
other a game-theoretic model. Two versions of the stochastic model
exist: the statistical learning model of Estes (8, 9, 10, 11, 12) and
the linear operator model of Bush & Mosteller (4, 5). Both these
models predict that, after a great many trials, the S learns to match
his response ratios with the objective probabilities in which both
events occur, i.e. the relative frequencies of his predictions of both
events finally correspond with the objective probabilities of these
events.

Estes’ set-theoretical model assumes that there is a population of
stimulus elements. The state cf each element of this population is
such that it tends to be conditioned to either A, (prediction of Z,)
or to A, (prediction of E,). On each trial, the signal to respond
activates a random sample containing the mean, proportion 6 of the
population of stimulus elements. 6 is the proportion of the elements
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in this population constituting the effective sample on any one trial.
At the end of each trial, all elements in the sample are conditioned
to the response class which was, in faet, correct on that trial,
independent of S’s actual response. The sample is then returned to
the population and the process is repeated with a new random sample
on the next trial. It is assumed that all samples from the population
of stimulus elements are statistically independent.

If p, is the probability of 4, after » trials, then p, is the proportion
of elements in the population conditioned to 4,, and 1-p, is the
proportion of elements in the population conditioned to A,.

If, after trial n, E, has occurred, the change in the response
probability is expressed by

Pa+1=Pn+60(1 —pa)=(1—0)pn-+0 (increase in probability of 4,).

If, however, E, has occurred, then the change in the response proba-
bility is
Pn+1=Pn—0py=(1—0)ps (decrease in probability of 4,).

The average probability of 4, after n+1 trials is given by the
relation

Py =a{(1=0)pn+6]+(1— n)u—e)p,.-u 0)pn+0n. ®

If, on each trial, one of the a]tern&tlve responses is reinforced with
the probability 7, and the other with the probability 1—x, then it
can be shown by mathematical induction that p,, the expected
probability of 4, after n trials, can be expressed by the formula:

Pa=a— (7 —p))(1—0).

This is the equation of a monotonic increasing, negatively accelerated
function, which, as n — oo, has the value = as asymptote.

The above equation is that of a learning curve in which the para-
meter 0 denotes the learning rate. If n is large, pa, the probability
of A,, approaches z, which means that the probability that the S
predicts E, equals the probability that E, occurs.

The linear operator model of Bush & Mosteller (4, 5) results in
the same predictions as the model of Estes. Bush & Mosteller believe
that their general model can be applied to any given learning situation
in which reinforcement or non-reinforcement produces a change in
response probability. This change is expressed by the linear trans-
formation:

QPa=apn+ (1 — )i
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In a two-choice situation the two operators are:

Qv =04y Pu+ (1 — 03)44
QzZ”n = tgPp + (1 — ) 4s,

expressing the effect of reinforcement and non-reinforcement, respect-
ively.

In the situation described above, in which a choice must be made
between two alternative, mutually exclusive events that occur with
a probability of & and 1 —x respectively and that are non-contingent
to the choice of the S, certain restrictions must be applied to the
parameters of these equations. Since, in this type of experiments,
100 9, reinforcement and 100 %, non-reinforcement of a response lead
to asymptotic probebilities of 1 and 0 respectively, the restrictions
obtaining are: 4, =1 and 4,=0, in which 4 is the parameter expressing
the limit of the operator.

The parameter « indicates the learning rate and, taking into account
the experimenta! r2sults regarding the asymptotic value in the case
of partial reinforcement, a further restriction obtains, viz. &, = oy = «.
restrictions imply that the situation is symmetrical, that
, , ent and non-reinforcement have an equal but opposite
@ t on behavior and that the reinforcement of A4, has the same
sof @n p as the reinforcement of 4, on g=1—p.

, the two operators become:

Qﬂ)n‘:txpn‘f- l—«
QP = opn.
If we assume that a«=1—0, then these become:

@1pn=(1-0)pn+0
Qopn = (1-0)pa.

These formulae for the changes in probability of 4;, when preceded
by E, and E, respectively, are therefore identical with those of Estes.
By analogy:

Pu =7 — {T— Po)®.

Both models thus predict that, after a great number of trials, the
probability of A, (the prediction of E,) equals the probability that
E, occurs. Numerous investigations (12, 16, 20, 21, 23, 24, 25, 27,
29, 33) confirm the predictions ~f these models.

This “probability matching” behavior was considered by many
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game theorists as being irrational and thus not readily acceptable.
According to the game-theoretical model formalized by Von Neumann
& Morgenstern (28), the S will learn to maximize the expected
frequency of correct predictions. This can ~e achieved by always
choosing the more frequent event. If, for instance, the probability
of K, occurring is 0.75 and that of E, is 0.25, the probability of a
correct prediction is 0.75 using this pure strategy, If, on the other
hand, a mixed strategy is applied and E, is chosen in 75 9%, of the
trials and E, in 25 9, the expectation of a correct prediction is only
0.75(0.75) + 0.25(0.25) = 0.625.

Simon (32) has already drawn attention to the difference between
subjective and objective rational behavior. The experimenter who
knows that E; and E, oceur in a random sequence but with a constant
probability might think it irrational if the S does not always choose
E,. The S, on the contrary, does not know for certain that the
probabilities of £, and F, remain constant and his aim is to obtain
as bhigh a score as possible.

Flood (13) disputed the game-theoretical arguments by pointing
out that, if the S is aiming at maximizing his score and not his
expectation, he will nct always try to apply a pure strategy. Flood's
second argument was that the Von Neumann-Morgenstern game
theory is inapplicable in this situation unless the organism can assume
safely that the experimental stimulus is generated by a stationary
stochastic process, i.e. that E, and E, occur with a constant probability
in a random sequence. If the S believes that there may be some
pattern (non-stationarity) over time in the stimulus, then a mixed
strategy would appear more rational to him than a pure strategy,
for the latter would give him no way to discover any pattern effect.
The instructions of Estes (12} were such that no attempt was made
to suggest to his Ss that they were confronted with a stationary
process.

Simon (32) demonstrated that the model of Estes agrees with the
game-theoretical conceptiofis if it is assumed that the S does not
maximize his expectation but minimizes his regret, since he does not
know the reward probabilities nor that they are constant.

Nevertheless, there are a number of investigations (7, 15, 17, 25, 31),
which support, to some extent, the game-theoretical conceptions.
Here it concerns investigations in which each correct prediction was
rewarded. In these cases the S is more motivated to make a correct
prediction than when his efforts are unrewarded and evidently, in
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these circumstances, he learns to choose E,, albeit not for 100 9, yet
with a relative frequency that is higher than that predicted by the
stochastic models which is equal to =

Let us return to Flood. Flood thus predicts thav the S will behave
according - Hstes’ model if he expects a system in the sequence of
E, and E,; if, on the other hand, he knows that the sequence of
E, and E, is random, he will choose the more frequent event in 100 %,
of the trials.

One is inclined to wonder whether Flood’s argumentation, notwith-
standing his grasp of the subjective elements in the ‘“‘rational”
behavior, is not too mathematical and accords too little with the
psychological way of thinking.

If the S is instructed along certain lines, the manner in which he
observes the situation is also organized to some extent. In this way
he is given a frame of reference for his perceptions. If the S is
instructed that the sequence in which £, and E, occur is random,
this implies that the S knows he is confronted with a situation in
which variability and lack of system prevail. How will he respond to
this situation? Will it be with the variability according to the situation
evoked by the instruction?

If, on the other hand, the S is instructed that there is a certain
system in the sequence in which E, and E, occur and that his task
is to discover that system, will the S not have more motivation
than a subject working under the former instruction? Will the utility
of a correct prediction not be greater for him in this case than in
the former case?

Contrary to Flood’s expectation, the alternative hypothesis which
we should like to postulate is that, if E; occurs with the greatest
frequency, the proportion of A4, responses is larger when the subject
is instructed to search for a system than when he is instructed that
there is no system. This hypothesis will be tested in a 75:25 situation.

MEerHOD

Apparatrs. Three lamps were placed in front of the S on eye-level;
the middle lamp was the signal light. When the signal light switched
on, the S had to predict whether the lamp to the right or to the left
would then be switched on.

Behind a screen, out of sight of the S, there was an apparatus
(a rotating drum) on which the sequence of the two events, E,and E,,
had been programmed. When the drum rotated, at intervals of
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5 seconds the signal lamp was switched on for 1 second; 2 seconds
later, the lamp either to the right or to the left was switched on
according to the programme.

Procedure. The entire series consisted of 300 triais. In 75 9 of the
trials the one lamp (&,) was switched on, and in 25 9, the other (Z,).
For half of the Ss E, was the left-hand lamp, and for the other half
of the Ss it was the right-hand lamp. The sequence of E, and E,
had been drawn up with the aid of a table of random numbers, with
this restriction, that in each block of 20 trials the percentages of
E, and E, remained constant, i.e. 75 9, and 25 9, respectively.

Experiment I. As soon as the signal light flashed on, the S had to
press down a transmitting key placed to the left of him if he predicted
that the left-hand lamp would be switched on; or a transmitting key
to the right if he expected the right-hand lamp to go on. According
to this procedure, the choices of the more frequent event (4,
responses) in each block of 20 trials were automatically registered.

Experiment I1. As it appeared that too much information was lost
with automatic registration, a second experiment was designed in
which the S had to say ‘“left” or ‘‘right” as soon as the signal light
flashed on. The experimenter recorded the answer. In this experiment,
moreover, there was the restriction that the event /&, would not occur
more then 5 times consecutively.

The experimental series of 300 choices was preceded by a short
test-run. of 10 choices, in which E, and E, both occurred for 50 9;,
to enable S to get acquainted with the method. Then. if the S required
n¢ further information, the whole series of 300 trials was carried out
withou? interruption.

Instructions. After the Ss had been informed about the working
method and their task, half of them received instruction A, and the
other half instruction B.

Instruction A. The lamps will be switched on accoidiag to a fixed
system. and you must try to discover what that system is. Perhaps
vyou may often guess wrongly in the beginning, but, once you have
discovered the system you can always guess the right answer. In
any case you should try to guess correctly as often as possible.

Instruction B. The lamps will be switched on in a completely
random sequence, in which there is no system. Nevertheless, you must
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try to guess correctly, as often as possible, which light will be
switched on.

Subjects. The subjects were students. Both in experiment I and
in experiment LI, 20 Ss participated with instruction A and 20 Ss
with instruction B. In order to cancel positional effects, B, was the
switching on of the left-hand light for half of the Ss and of the
right-hand light for the other half, both in group A and in group B.
The subjects of exp. I and exp. II were run by the students Miss
L. M. A. Wever and Miss A. Tai-A-Pin respectively.

REesuLts

Table 1 gives the results of exp. 1. If, like Estes, we take the mean
percentage A4, responses over the last 40 choices as the asymptotic
value, then we find that for group A (instruction with system) this
is 81.5 % =nd for group B (instruction without system) 78.25 9.
In both cases the asymptotic value of 75 9, predicted by the models
of Estes and Bush & Mosteller is exceeded. In the case of instruction A

TABLE 1
Observed and predicted proportions of the A; responses per 20-trial block
Blocks exp. 1 exp. 11
of instr. A insir. B instr. A ‘ instr. B
20 trials [T T : : . -
empir. | theor. | empir. | theor. | empir. | theor. | empir. | theor.
1 . 485 438 | .527 | .568 | .640 | .465 | .465
2 | 80 | - 680 | .684 | .633 | 750 | .585 | .501
3 | .73 693 | .730 | .788 | .750 | .703 | .661
4 | 190 | 793 | 744 | 750 | 750 | 673 | (700
5 | 730 685 | .748 | .718 | .750 | .665 , .722
6 | .138 708 | 749 | 795 | .750 | 770 | .734
7 .688 718 | 750 | 705 | 750 | 738 | .74
8 795 » 765 | 750 | 7185 | .750 | 750 | .745
9 75 53 | .750 | 713 1 7150 | L7181 (747
10 768 | 75 | 150 1 128 1 750 | .695 | 748
11 195 | 788 | 750 | .808 | .750 | .795 | .749
12 800 | 7183 150 | 768 | .750 | .725 750
13 .798 793 | 750 | 750 | (750 | .783 | .750
14 .828 - 768 | 750 | 790 | 750 | .750 | .750
15 805 - 798 | 750 | .850 | .750 | .795 | .750
) — 0.059 0.114 ! 0.029
. !
20 — 0376 | 0500 | 0.376
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the difference with regard to this value is significant at the 0.001 level
(=4.38). in the case of instruction B the difference is not significant
(=1.88).

Contrary to Flood’s expectation, the percentage A, responses with
instruction A —where a non-stationary process is suggested to the
S —is greater than in the case of instruction B --in which the stationary
character has been emphasized.

Estes’ model does not make any provision for the asymptotic value
n being exceeded, and, for this reason alone, this model might be
considered to be inadequate. Nevertheless, we shall examine whether
the learning curves obtained from the results may be considered as
functions of the form

Pn =7 — (= Pp) (1-0)".

In this formula 3, and 6 are unknown quantities. If P, is the mean
percentage A; over the mt* block of 20 trials, then:

Pun=n—(n— 151) (1 —6)%m-1
and

E _ — — (1 — @20k

S Pp = kn—(n— Py %-_—:-:-:—g%g-o- (1)
If we substitute the observed values P, and 3P, in this formula,
the parameter 6 can be estimated by means of a method of successive
approximation. In the case of instruction A, the equation cannot be
solved for any value of 0 with 0<6<1. The model of Estes and the
eczal a-model of Bush & Mosteller cannot be applied to the learning
curve of group A.

In the first two blocks of 20 trials there occurred a few long runs
of E; which influenced the result:: and led to high percentages of A,
responses in the second bluck. This gave rise to difficulties in estimating
the parameter 0 in the case of group B. Estimation of 6 from formula (1)
gives the value 6=0.187. This value is obviously too large. If it is
ased to estimate P,, a negative value is found. Alternatively, 6 may
be estimated from the formula:

_ . _ — (1 — §)300 .
Pn = 300 x — (7 — Po) L——(_B_—O_)— (2)

if 5, can be estimated. Since we have no information at our disposal,
in this experiment, about the individual choices, we cannot estimate
fi, from the experimental data. The most obvious value §,=0.50 is
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too large. As an estimation of §, we have used the same value as in
exp. IIB, and in this way we find 6=0.059.

In exp. ITA the difference between the mean percentage 4, responses
over the last 40 trials, namely 82 9, and the asymptctic value of
75 %, is significant at the 0.001 level (f=4.42). In exp. IIB the
difference between the observed asymptotic value 77.25 9, and the
theoreti.al value of 75 %, is not significant (¢=1.16). The results of
exp. 1I are given in Table 1.

The difference between the asymptotic values of group A and
group B is significant at the 0.05 level.

In exp. ITA an estimation of 9 from formula (1) did not give a
value 0 <0< 1. Therefore, f, was estimated from the first 5 trials and
assumed to be 0.50; thereafter 6 was calculated from formula (2).
It is evident that the calculated theoretical curve does not cover the
observed results (see Table 1).

In exp. IIB 0 was estimated from formula (1) and thereafter p, from

- ; 7 6
po=7!—(20:lt—T)-l-:-_m,

in which 7 is the mean number A4, responses over the first 20 trials.
The theoretical curve corresponds comparatively well with the results.

From the above it may be concluded that the behavier of the
groups A and B is not identical. We may express the difference more
precisely by applying Grant’s (19) extension of Alexander’s (1) test
for trend.

If p(A,) is a function of the number of reinforced trials, we car
express this function in the form:

Y =ay+a,x+ax®+agxd+....
This formula may also be written in the form
y=Ag+ A,0;(x) + A,Qs(x) + As@s(2) + ...,

in which Qq(x) is the orthogonal polynomial of the ¢t* degree. The
terms A¢ can be tosted independently and thus independent tests are
available for the existence of significant differences between various
groups as regards the linear, quadratic, cubic, ete. components of the
trend.

In Table 2 the results of the trend analysis for exp. II are summarized
over the mean percentages A, responses for each block of 60 trials.
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TABLE 2

Trend analysis of the freqnencies of the A4; response per 60-trial block for
groups II A and II B

| \ Error Y
Source % df SS MS term F F
A. Over-all trend . . . (4) [(2167.13)| (541.98)| E (86.86) | 0.001
1. linear. . . . . . 1 |1780.84 | 1780.84 | E. 1 | 84.32 | 0.001
2. quadratic . . . . 1| 17161 | 17161 | E.2 | 1845 | 0.001
3. eubic. . . . . . 1| 191.82| 191.82 | E.3 | 13.74 | 0.001
4. quartic . . . . . 1 22.86 22.86 | E. 4 1.64 —
B. Between group means 1 237.62 | 23762 | D 5.37 0.03
C. Between group tronds (4) | (130.03)| (32.51) E (2.21) —
1. linear. . . 1 64.00 | 64.00 | E. 1 3.03 . —
. quadratic . . L 38.06 | 38.06 | E. 2 4.09 | 0.05
3. cubic. . . | 0.56 0.56 E.3 0.04  —
4. quartic . i 27.40 2740 | E. 4 121 | —
D. Between indiv. means 38 | 1679.96 | 44.21 ! E 3.01 ! 0.001
E. Between indiv. trends | (152) |(2235.24), (14.70) i
I. linear. . . . . . | 38| 80266  21.12 i
2. quadratic . . | 38| 35347  9.30 ,
3. cubic. . 38| 53062 13.96 ;
4. quartic . | 38 548.49 ©  14.43 |
F. Totel . . . . ... 199 6449.98 | —

Since the groups IA and IIA, IB and IIB respectively, did not
differ essentially from each other, the results of both experiments
have been combined, an analysis for trend has been applied to them
and the consequent results have been summarized in Table 3. According
to Barslett’s test the variances were not homogeneous in this case. As,
however, the narabers of Ss in both groups are equal and the distribu-
tion is normal, i:.e effect of heterogeneity of variances is very slight
(2, 22), and thus a trend analysis was made. In marginal cases, how-
ever, where the computed F-ratio approaches the critical ratio of
the peint of confidence, the results should be interpreted with some
reserve,

From line A (see Tables 2 and 3) it appears that, when the learning
curves A and B are considered in conjunction, they possess a significant
linear, quadratic and cubic component.
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From line B it appesrs that the mean percentages A, responses
over the 300 trials for the groups A and B differ significantly.

From line C it appears, as regards exp. IT only (Table 2), that the
groups A and B differ in the quadratic component of the trend. A
combination of the results of exp. I and exp. II gives a significant
difference in over-all trend and in the linear and quadratic components.

The linear component indicates the slope of the curve and represents
the learning rate. The most important difference in trend between the
groups A and B, resulting in a difference in asymptotic value, is
however, formed by the quadratic component.

’

TABLE 3

Trend analysis of the frequencies of the A; response per 60-trial block for
groups A and B of exp. I and II considered together

Source dj SS ms |ETorl B p
term
A. Over-all trend . . . (4) '(4535.54)(1133.88)! E | (85.01) | 0.001
1. linear. . 1 | 3767.12 1 3767.12 | E. 1 | 200.08 | 0.001
2. quadratic . 1 ! 437.50 . 43750 | E.2 | 37.84 | 0.001
3. cubic . ! i ! 262.21 i 262.21 | E.3 2477 0.001
4. quartic . i 1 6871 6871 KE.4. 555 1 0.025
B. Between group means 1 334.89 | 334.89 | D 7.24 | 0.01
C. Between group trends (4) | (184.64) (40.13)| E | (3.45) | 0.01
1. linear. . | 92.48 | 9248 | E. 1 4.91 0.05
2. quadratic . ‘ 1 84.70 84.70 | K. 2 7.33 0.01
3. cubic . 1 0.32 032 E. 3 —_— —
4. quartic . 1 7.04 7.04 | E. 4 — —
D. Between indiv. means 78 | 3609.47 46.28 | E 3.47 | 0.001
E. Between indiv. trends | (312) {(4161.53)| (13.34)
i. linear. . . . . . 78 | 1468.60 18.83
2. quadratic . . . . 78 901.80 11.56
2. cubic. . . . . . 78 825.58 10.58
4. quartic . . . . . 78 965.56 12.38
F. Total . . . . ... | 300 [128625.06| — |

In the introduction it was assumed that the variability in the case
of instruction B would be greater than in the case of instruction A.
This can manifest itself in various ways. The inter-individual varia-
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bility, of wuich the variance is & measure, could be greater in the
case of instruction . If this were so, and if it were a result of a
difference in set evoked by the instruction, then we should expect this
difference mainly in the beginning of the conditioning process. For
the first 100 trials the variance in exp. I, with instruction B is
significantly larger at the 0.05 level of confidence than with instruction
A. In exp. IIB the variance over the first 100 trials is, indeed, larger
than in exp. ITA, but the difference is not significant. If the results
are combined, the difference is significant at the 0.01 level. There is
no difference in variance between the two groups over the last
100 trials.

A measure for the intra-individual variability can be found in the
number of runs per S (a run may be defined as a series of successive 4,
or A, responses). If the Mann—Whitney test is applied, the number
of runs for the first 100 trials in exp. IIB is found to be significantly
greater at the 0.05 level of confidence than in exp. IIA. The mean
numbers of runs for the last 100 trials are the same for both groups.
Under both conditions the intra-individual varigbility decreases
regularly. If a non-paramatric test for trend is appliec, the gradual
decrease for group A is significant at the 0.01 level, for group B at
the 0.001 level.

Both the inter- and the intra-individual variability for the first
100 trials are greater in the case of instruction B than in that of
instruction A. There is no difference in variability for the last 100
trials. There is a significant difference at the 0.02 level hetween the
average lengths of run of A, and A, responses according to the
Manr-Whitney test. The average length of run of A, responses is
larger and of A, responses smaller for group A than for group B.

TABLE 4

Conditional frequencies of 41 and Aa responses per 60-trial block for exp. 11

AﬂEl - AllEz AzIEl AalEa
A B A B A B A B
535 478 248 215 345 402 52 85
635 602 263 241 265 298 37 59
601 615 280 267 299 285 20 33
630 598 201 287 270 302 9 13
671 658 285 273 229 242 15 27

e (A;1E1) = 875 e (A1|Eq2) = 225 e (As|Ey) = 225 e (A2|H2) = 75
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Table 4 includes the frequencies of 4, and A4, responses under the
conditions K, and E,, summarized over blocks of 60 trials. Also
included in this table are the asymptotic frequencies expected
according to the models of Estes and Bush & Mosteller. The table
shows that, after E;, group A behaves according to the expectations
of the stochastic model. The frequency of A,}E, for group B is slightly
less than the expectation. After E,, the behavior of both groups is
contrary to the expectation; this applies especially to group A. The
frequencies of 4,|E, are considerably less than the predictions of the
model. Both after £, and E,, over 10 blocks of 30 trials, the difference
in behavior between the two groups A and B is significant at the
0.01 level when tested with the Wilcoxon test for paired replicates.

Hence, as reinforcer, £, has not the positive recency effect that
accords with the stcchastic models (i.e. the response probability is
predicted to change each trial in the direction of the most recently
occurring event} but predominantly a negative recency effect. After
E,, group A shows significantly more negative recency than group B,
which behaves raore in conformity with the prediction of the model.
This may be expressed in other terms. The average uncertainty of tke
predictions without knowledge of the preceding events E is, for
group A, 0.76 bit and for group B, 0.80 bit (see Table 5). calculated
over the last 120 trials. Knowledge of preceding events influences the
uncertainty, defined as

Hi(j) = — 3 2 pli)palj) loge pulj),
i
in which H,(j) is the uncertainty in bits per response, provided serics
of 7 events precede the response; p;(j) is the probability that response

j follows sequence 7; p(z) is the probability that sequence ¢ will occur
(14, 26).

TABLE 5

The mean uncertainties of the response resulting when the previous events

ar? known
Mean uncertainties Group A Group B
H@ . . ... ... ... 0.76 0.80
Hyy). . . . . . . . . . . .. 0.76 0.76
Hz.z(y) ............ 0.71 0.69
Hezzly) . . o « o . . o o .. . 0.67 0.65

Hz.x,x,z(y) ........... 0.863 0.63



370 H. C. VAN DER MEER

Knowledge of event E preceding A does not decrease the uncertainty
for group A - H,(y) remains 0.76 — but it does so for group B. Decrease
in the uncertainty of 0.04 bit is statistically significant at the 0.01
level. Knowledge of the two preceding events results in a greater
decrease in uncertainty for group B than for group A. Knowledge of
the four preceding events E gives for both groups the same value
for the 5th order approximation of the uncertainty, viz. 0.63 bit.
For group A the total decrease in uncertainty is 0.13 bit, for group B
0.17 bit.

Discussion

It is evident from what has been discussed above that the mode
of Estes and the equal x-model of Bush & Mosteller do not provide
an adequate prediction of the behavior of group A. Both models are
based on the principle of positive recency, i.e. each occurrence of K,
increases the probability that the next answer will be 4, and each
occurrence of E, decreases the probability of 4; and increases the
probability of 4,. A strong negative recency eﬁ'ect appears, however,
after E, i’ %pjbh groups, but especially in group A. Literature on the
subject h%a% drawn attention to the existence of negative recency
(3, 18, 20,23, 24). It was believed, however, that the average results
over bloc:;;r f 20 trials corresponded with the predictions of the
stochastic models, even though the behavior of the Ss cid not agree
with the principle of positive recency in a number of predictions.

Estes & Straughan (12) also observed that the facts did not entirely
agree with the theoretical predictions. The parameter 0 can be
estimated in two ways: from the experimental data, as we have done
above, and from the formula:

0= p'(A1 ‘El) - f)(A1|E2)a

in which §(4,|E,) is the average probability per response that E, is
followed by A4,. Theoretically, both estimations should lead to the
same value, but in practice they reveal great discrepancy. With the
latter method, Estes found considerably greater positive values for 4.
We, on the other hand, find negative values for both groups; for
group A, 6= —0.227, and for group B, 0= —0.199, which indicates a
strong negative recency effect.

In group A the asymptotic values of p(4,|E,) approaches 0. If p,
is the probability of 4, following E, and p, the probability of 4,
following E,, then the asyrptotic value is p,w+ py(l —z). For the
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model of Estes this is 0.75(0.75) + 0.75(0.25)=0.75. If, based on the
results of exp. II, we assume an average positive recency effect
after B, ccrresponding to the expectations of the Estes’ model, and
a negative recency effect after E,, then we find that the asymptotic
value is

Poo=0.75(0.75) + 1(0.25) = 0.8125.

The asymptotic value 0.82 estimated from the last 40 choices for
group ITA agrees reasonably well with this. The asymptotic value of
group IIB differs significantly from this at the 0.05 level of con-
fidence (t= 2.3).

This result might be considered an artifact occasioned by the
restrictions obtaining in the composition of the sequence of E, and
E,, viz. a» maximum homogeneous length of run of 5. Exp. I may be
used as a check; the maximum length of run was 11 in that case.

The uncertainties of the E-series in exp. I and II are mentioned in
Table 6.

TaBLE 6

The mean uncertainties of the event series

Mean uncertainties .- ) Exp. 1 Exp. I
Hz) . . . . .. . ... . 0.81 D08l
Hyx). . . .. .. ... ... 0.80 0.77
Hz,x{x) ............ Q.78 0.70
Hzzazl®) . o o o o o o o L. 0.76 0.68

In exp. IA we find a corresponding asymptotic value, viz. 0.816.
If the results of exp. I and II are combined, the asymptotic value
of group A does not differ from 0.8125 (¢=0.37); for group B the
difference is significant at the 0.01 level (¢=2.73).
If the above mentioned formula for the determination of the
asymptotic value in the case of instruction A, in its general form
expressed as:

Poo=n2+1(1—2),

could be applied on a broader scale — which would have to be checked
by further experiments—then the situation in which 7#=0.75 is
probably one of the most ideal situations in which a difference in
instruction can be found. Should the diffcrence between = and 1—=
be greater, then the deviation of the predicted asymptotic vaiue with



372 H. C. VAN DER MEER

regard to = is smaller, e.g. the prediction is 0.91 for x=90.90, and the
prediction is 0.84 for z=10.80. In the case that the difference between
n and 1—n is smaller, e.g. #=0.60, it is not likely that a mixed
strategy will be used in which p(4,|E,) — 0.

The nature of the differences between group A and group B has
been analysed in detail above. The way in which the instruction
brought about these differences has not yet been demonstrated,
however.

One might expect that instruction B would lead to a greater
variability than instruction A. A significant difference in variability
does, incdeed, exist in the first 100 trials. This difference disappears
later, and in the last 100 trials there is no difference in variability
whatscever. This might be explained by the influence of the conditioning
process and by the fact that, in the long run group B tends to develop
certain hypothesis about the expected events, in spite of the instruction
(see Table 5). For that matter, the variability factor is not the main
one leading to differences in the asymptotic values for groups A and B.
A difference in intra-individual variability could lead to a difference
in learning rate. The analysis for trend (Tables 2 and 3) has shown
that there is no, or only a very slight difference. The main difference
between group A and group B is formed by the quadratic component
of the learning curves, which results in different asymptotic values.
The reason for this must be sought in differences in strategy deter-
mined by the instruction.

A possible difference in motivation is yet another factor which
figures in the instructions given to the groups A and B. Group A is
told that there is a system which can be found and once found, it
can be used to make correct predictions; group B is informed that the
sequence is an entirely random one, without any system. A S in
group A may be worried about a faulty prediction, since it shows he
has not yet found the system. A § in group B cannot be blumed for
a faulty prediction because the sequence is a random one. To use a
term borrowed from the decision-making theory (6), one might assume
that the utility of a correct prediction is greater for group A than for
group B. In publications on this subject (7, 15, 17, 25, 31) it has been
pointed out that the stochastic models are inadequate and that the
asymptotic values are greater than those predicted by these models

if eaech correct prediction is rewarded and the utility of a correct
prediction thus increases.
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Siegel (30) has evclved three models based on the decision-making
theory. Model I of these may be applied to our data.
Let
n = the probability of £,
p = the proportion of 4, responses,
a = the marginal utility of a correct prediction,
b = the marginal utility of varying one’s responses.

The expectation, E,, that a prediction will be correct, is
Er=pa+(1—-p)(l —a)= (1l —zn)+ p(2z—1).
Then the expected utility of a correct prediction, U, is
Ur=al;=a[(l —=)+p(2n—1)].
If U,-the utility of varying one’s responses=f(p), then
Uy=bp(l—p).

The total expected utility of a given strategy is then

Up)=Ur+ Up=a[(l —n)+ p(2n —-1)]+bp(1--p).

The strategy p which maximizes expected utility is at

dUep)
e
dU(p) . L ke —
dp = (1(27( 1) 7] -bp == 0.
_a(2n—1)
=——p— + 0.5.

If x=a/b, then
p=oa(r—0.5)+0.5.

Only when a=1 and thus a=b, p=n. This means, that the
stochastic learning models only lead to a correct prediction of the
asymptotic values if the marginal utility of a correct prediction
equals the marginal utility of varying one’s responses. The Estes
model makes no provision for predictions in cases there is an inequality
between these two.

From the above mentioned formula it follows that we can estimate
« from

=3

!
@
[%)]

R
f
2
i
&
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If we estimate & from the last 40 choices, the difference between
group A and group B is significant at the 0.01 level, when tested
with the Mann—-Whitney U-test.

It has already been shown that the variability —the mean number
of runs in the last 100 trials—was equal for both groups; the same
applics for the last 40 trials. From this it may be concluded that the
utility of varying one’s responses is equal for both groups. The utility
of a correct prediction is, therefore, significantly greater for group A
than for group B.

The final conclusion is, thus, that the utility of & correct prediction
is greater for group A than for group B since there is more motivation
for a correct prediction with instruction A than with instruction B.
This, in turn, leads to a higher asymptotic value of A4, responses in
the case of instruction A..

SUMMARY

Flood (13) assumed that the more frequent event would be chosen in 100 ¢,
of the trials—in accordance with the game-theoretical conceptions that one
learns to meximize the expectation of a correct prediction—if the S is convinced
that a sequence of alternative svents is generated by a stationary process.
If, on the other hand, the S believes that the process is non-stationary, he
would apply a mixed strategy in which the more frequent event would be
chosen in a proportion equal to the objective probability with which the
event occurs.

Our counter-argument was that a difference in instructions as described
above would influence behavior with regard to at least two factors, viz. a
difference in variability in the prediztions, and a difference in motivation. Thus
the alternative hypothesis put forwards was, that the instruction suggesting
a non-stationary process (instruction A) would lead to a higher asymptotic
value of the predictions of the more frequent event than the instruction that
the process was stationary (instruction B). This hypothesis was tested in a
non-contingent two-choice situation, in which n = 0.75.

The following has appeared from this investigation:

1. Contrary to Flood’s expectation, instruction A led to a higher ssymptotic
value of A, responses than instruction B, mainly as a result of a larger
negative recency effect after Ep with instruction .

2. The stochastic learning model of Estee and the equal a-model of Bush &
Mosteller are inadequate in the case of instruction A.

3. The hypothesis was offered that the asymptotic value of A responses in
the case of instruction A can be determined from the formula

Po, = 72 + (1 — 7),
since p(4q|E:) — 0.
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4. There was a significant difference in intra-individual variability between
the groups A and B for the first 100 trials. For the last 100 trials there was
no difference in variability whatsoever.

5. The variability factor does not appear to be the cause of differing asym-
ptotic values.

6. The differences in asymptotic values are mainly determined by a difference
in motivation, which makes the utility of a correct prediction greater in
the case of instruction A than in that of B.
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