
hreys’ (23) ‘~verbal con eriment”, now a c 
series of investigations into behavior in a situat 
st make a large nnmbsr predictions, as to w 

two or more alternative events will t place. 
If We limit ourselves to a situation with two shernative events, 

the general attern of these ex riments is that a signal stimulus is 
repeated a great many times. After each signal the S must predict 
which of two events, E, an to the left or 
to the right is switched on) se events occur in a random 
sequence, but with a fixed p babihty of n and 1- 7t, respectively. 
Usually the prob occurring is fixed, not only for the 
whole series, but so within each block of 20 trials. E, and 2 are 
mutually exclusive, though one of the two always occurs. 

There are two theoretical models, in particular. which predict 
behavior in this t3y e of situation. The one is P. stochastic model, the 
other a game-the0 tic model. Two versions C the stochastic model 
exist: the statistical learning model of Este , 9, 10, 11, 12) ad 

the linear o rator model o ush & osteller (4, 5). 
rediot that, after a great many trials, th.e S learns to mate 

his respones ratios wit the objective probabilitie:3 in which bot 
events occur, i.e. the r ative frequencies of his prdictions of both 
eventa finally correspond with the objective prob:tbihties of these 
events. 

Estea’ set-theoretical model assumes t at there is a populastion of 

stimulus elements. he state of each element of this population is 
such that it tends to be con oned to either A, @rstliction o 
or to A, (prediction of E,). n each trial, the signa to res 
activates a random sample containing the mean, proportion 6~ of the 
population of stimulus elements. 0 is tb.e proportion of the ele 

357 
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s population constituting the effective sam le on any one tri 
At the end of each trial, all elements in the sample are con 
to the response class which WW, in fact, correct on that trial, 
independent of S’s actual! response. The sample is then returned to 

ulation and the process is repe d with a new random s 
next trial. It is assumed t’hat 

s elements are statist~~a~y ~nde~nde~t~ 
pa is the probability of A, a&r n. trials, then p, is the pro 

of elements in the ablation con 
proportion of elements in the po 

after trial m, E, has occurred, the change in the response 
ability is expressed by 

pn+l = pa + O( 1 - p,) = (I - O)p, -t 0 (increase in robabihty of 

however, E, has occurred, then the change in the response proba- 

pa+1 = 23% -Opt& = (1 - t9)pn (Idecrease in probability of A,,). 

The average probability of A, after n + 1 trials is given by 
relation 

“;_,‘“- “5. 

~nt-l=n[(i-e)~n+e3+(~-jc)(~-e)~n=(i-e)p,$~~. 
,S.ii‘ 

on each trial, one of the alte ve responses is reinforced with 
babihty zz, and the other with the probability 1 - 76, then it 

can be shown by mathematical induction that p9, the expected 
robability of A, after n trials, can be expressed by the forn~ula: 

pn=72- (:T-pl)(l -e)+ 

is the equation of a monotonic increasing, negatively accelerate 
on, which, as n + OO, has the value n as asymptote. 

e above equation is that of a 1 arning curve in which t’he para- 
8 denotes the learning rate. f n is large, p,,, the pr’obability 

proaches z, which means that the probability that the S 
fs E, equals the probabili that E, occurs. 

he Z~TMW opratsr mdel of sh & Mosteller (4, 5) results in 
e predictions as the model of Estes. Bush & steller believe 

eir general model can ‘be: applied to any given learning situation 
ch reinforcement or non-reinforcement produces a change in 

probability. This change is expressed by the linear trans- 



reement, respeot- 

ively and that are n 
to the choice o trictions must be 

ee, in this type of experiments, 
100 9/o reinforcement and 100 o/o non-reinforcement of a response lea 

ies of 1 and 0 res eetively, the restrictions 
AZ= 0: in which ,% i he parameter ex 

The parameter c11 indicates t e learning rate and, taking into account 
the experimenta! a~&s regarding the asymptotic value in the case 

al reinforcement, a further restriction obtains, viz. LY~ = 01~ = 6. 
ation is symmetrical, that 

am 812 equal 
e reinforcement of A, 

8 as the reinforcement of 2 on q=Lp. 
the two operators become: 

f we assume that a = 1-0, then these bet 

&ILPn=U -WPn. 

hese formulae for the cha es in prbbabibty of 
E, and E, respectively, therefore identical wi 
analogy : 

pun = n - ,+ (T - po)Ocn. 

Both models thus predict that, after a great num er of tfials, the 
probability of A, (the prediction of E,) equals the Frobability that 
E, occurs. Numerous investigations (12, 16, 20, 21, 23, 24, 25, 27, 
29, 33) eonfirm the predictions .3f these models. 

This “probability matching’9 behavior was eonsidere 



game theatita as being irrational and thus not re 
According to the game-theoretical model formalized by 

orgenstern (28), the S will learn to maximize 
quency of correct predictions. T can -?e achieved by 

choosing the more frequent event. for instance, the 
of B, occurring is 0.75 and that of I!&, is 0.25, t 
correct prediction is 0.75 using this pure strategy, If, on the other 
hand, a mixed strategy is applied and _I& is chosen in 75 y0 of the 
trials and E, in 25 %, the expectation of a correct prediction is only 
0.75(0.75) f 0.25(0.25) = 0.625. 

Simon (32) lh~ks already drawn attention to the fferenee between 
subjective and objective rational behavior. The experimenter who 

ows tha& E, and E, occur in a random sequence but with a constant 
babilit;y migb:t think it irr&,ional if the S does not always choose 

E,. The S, on the contrary, does not know for certain that the 
probabiliti.es of E, and _& rejmain constrtnt and his aim is to obtain 
as bigh a score as possible. 

Flood ( 13) disputed the game-theoretical arguments by pointing 
out that, if the S is aiming at maximizing his &ore and not his 
expectation, he will not always try to apply a pure strategy. FJoo 
second argument was that the Von Neumann-Morgenstern game 
theory is inapplicable in this lsituation unless the organism can assume 
safely that the experimental stimulus is generated by a stationary 
&ochastic process, i.e. th .L and E, occur with a constant probability 
in a random sequence. the S believes that there may be some 
pattern (non-sta,tionarity) over time in the stimulus, then a mixed 
strategy would appear more rational to him than a pure strategy, 
for the latter would give him no way to discover any pattern eii%et. 
The in&ructions of E&es (12) were such thet no attempt was made 
to suggest to his Ss that they were confronted with a stationary 
proeass. 

Simon (32)1 demonstrated that the mo el of E&es agrees with the 
coneeptioiis if it is assumed that the S does not 

his expectation but mmimizes his regret, since he does not 
reward probabilities nor that th’ey are constant. 
eless, there are a laumber of investigations (7, 15, 17, 25, 3 I), 

rt, to some extent, the game-theoretical conceptions. 
investigations in which each correct prediction wa,s 

these cases the S is more motivated to make a correct 
&ion than w n his efforts are unrewarded and evidently, in 
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behavior, is not too 
s in the “rational” 

too Xittle with the 

and lack of system 
ill it be with the vari 

system in the sequence in which 1 and E, occur and that his task 
scover that system, will the S not have m 

the former case ? 
Contrary to Flood’8 expectation, the alte ypothesis d+h 

we should like to postulate is that, if E, occurs with the greatest 
frequency, the proportion of 1 responses is larger when the subject 
is instructed to soarch for a system than when he is instructed that 
there is no system. This hypothesis will be tested in a 75: 25 situatim. 

bee lamps were placed in front of the S on eye-le 
the middle lamp was the signal light. When the signal light swit 
on, the S had to predict whether the lamp to the right or to the left 
would then be switched on. 

Behind a screen, out of sight of the S, there was an apparatus 
(a rotating drum) on which the sequence of the twv events, E, and 
had been programmed. hen the m rotated, at intervals 
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5 seconds the signal lamp was switched on for 1 second; 2 seconds 
later, the lamp either to the right or to the left was switched on 
according to the programme. 

.Procedure. The entire series consisted of 300 triale, En 75 y0 of the 
trials the one lamp (E,) was switched on, and in 25 y, the other (E,). 
For half of the Ss E, was the left-hand lamp, and for the other half 
of the Ss it was the right-hand lamp. The sequence of E, and 
had been draIwn up with the aid of a table of random numbers, with 
thris restriction, that in each block of 20 trial8 the percentages of 
E, and E, remained constant, i.e. 75 y0 and 25 y0 respectively. 

Experiment I. As soon aa the signal light flashed on, the S had to 
pr~ess down a transmitting key placed to the left of him if he predicted 
th& the left-hand la>mp wcukl be switched on; or a transmitting key 
to the right if he expected the right-ha& lamp to go on. According 
to this procedure, the choilze8 of the more frequent event (A, 
responses) in each block of %:O trials were automatically registered. 

Experiment II. As it appeared that too much information was lost 
m.th automatic registration, a second experiment was designed in 
which the S had to say “left” or “right” as soon as the signal light 
Bashed on. The experimenter recorded the answer. Jn this experiment, 
moreover, there was the restriction that the event RI would not occur 
more then 5 times consecutively. 

The experimental series of 300 choice8 was preceded by a short 
test-run of 10 choices, in which E, and E, botJ1 occurred for 50 s{), 
to enable S to get acquainted with the method. ‘I h.en. if the 8 required 
no, further information, the whole series of 300 triaJs ww carried out 
without interruption. 

IasiYuctiona. After the Sb had been informed about the working 
method and their task, half of them received instruction A, and the 
other half instruction B. 

~mtrmtion A. The lamps will be switched on acco&klg to a fixed 
sys~rn, and you must try to discover what that system is. Perhaps 
you meby often guess wrongly in the beginning, but, once you have 
discovered the system you can always guess the right answer. In 
my case you should try to guess correctly as often as possible. 

~n.&w.ctim B. The lamp8 will be switched on in a completely 
random sequence, in which there is no system. Nevertheless, you must 



try 4~ guess correctly, as often as possible, which light till be 
switched on. 

Subjp%%9. The subjects were students. 0th in experiment 

in experiment 20 Ss participated with instruction A and 20 8s 
with instruction B. Cn order to cancel positional effects, E, was the 
switching on of the left-hand light for half of the Ss and of t 
right-hand light for the other ha1 9th in group A and in group 
The subjects of exp. I and exp. were run by the students Miss 
L. M. A. Wever and Miss A. Tai-A-Pin respectively. 

BESUL'I'S 

Table 1 gives the results of exp. I. f, like Estes, we take the mean 
percentage A, responses over the last 40 choices as the asymptotic 
value, then we find that for group A (instruction with system) this 
is 81.5 y0 and for group B (instruction without system) 78.25 %. 

In both cases the asymptotic value of 75 yO predicted by the models 
of E&s and Bush $ Mosteller is exceeded. In the case of instruction X 

TABLE 1 

Obecrvtd and predicted proportions of the A1 responses per 2O-trial block 

m&s 
exp. I 

I._ ______ ._ _ .__ .- 

of in&r. A I - ins&r. B 

exp. II 
----- -- .- 

in&r. H in&r. rl I - 
L 
f 

2. triah /______- ..-_. 

j empir. 
- .-... --.‘_---_, 

theor. 1 empir. 

- .693 

,793 
.685 

_. ,708 

T- 
- 

L 
~- 

smpir. 

.568 

.633 

.788 

.760 

.718 

.795 

.705 

.785 

. 713 

._ 

t 

.L 

_- 

i 

I 
l 

/- 

theor. 

.527 

.684 

.73O 

.744 

.748 
,749 

.75O 
,750 
-750 
.750 
.750 
.750 
.750 
.750 
.750 

t,heor. 

,640 
.750 
.750 
.750 
.750 
.750 
.75Q 
.750 
.750 

smpir. 

.465 

.585 

.703 

.673 

.665 

.770 

.738 

.750 

.718 

.695 

.795 

.725 

.783 

.750 

.795 
__- 

theor. 

.465 

.591 

.661 

.700 

.722 

.734 

.741 

.745 

.747 

.74S 
,749 
.750 
.750 
. 750 
.780 

-- 

1 

1 .485 

2 j .780 
3 1 .730 

4 ,790 
.730 

.738 

.688 

.795 

.775 

.768 

.795 

.800 

.798 

.828 

.805 

5 

6 
7 

8 

9 

10 
11 
12 

13 
14 
15 

s^ 

,;;o 

.765 

.753 

.775 

.7818 

.7813 

.7913 

.768 

.79@ 
- 

- 

- 
0.059 
0.376 

.728 / .750 

.808 / .750 

.768 i .750 

.750 .750 

.79O .750 

.850 
/ 

.750 
--- 

0.11.4 

0.500 

I 
I - 

0.029 

0.376 
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the difference with regard to this value is significjant at the 0.001 level 
(t = 4.36) li in the case of instructlion B the difference is not significant 
(t= 1.88). 

Contrary to Flood’s expectation, the percentage A, responses with 
instructilon A-where a non-stationary process is suggested to the 
S -is grea;ter than in the case of instruction B -- in which the stationary 
character has been emphasized. 

E&es’ model does not make any provision 9’or the asymptotic value 
R being exceeded, and, for this reason alone, this model might be 
considerled to be inadequate. Nevertheless, we ~&all examine whether 
the learning curves obtained from the results may be considered a3 
functions of the fcjrm 

j&=n--(n-jJ)) (l--0)? 

In this formula ijO and 19 are unknown quantities. If H, is the mean 
percentitge R1 o?er the 7n,tb block of 20 trials, then: 

B m=n-(%-P,) (l-B)~@-l) 

If we substitute the observed va,lues p1 and zp,,, in this formula, 
the parameter 8 can be estimated b!y means of a method of successive 
approx.imation. In the case of instruction A, the equation cannot be 
solved for any value of 0 with 0 < 6 Q 1. The model of E&es and the 
ecaal ar-model of Bush & Moste?_lsr cannot be applied to the learning 
curve of group A. 

In the Grst t wo blocks of 20 trials there occurred a few long runs 
of E, vhich influenced the results.; and led to high percentages of ~1, 
responses in the second 5Lck. This gave rise to difficulties in estimating 
the parameter 8 in the case of group B. Estimation of 0 from :formula ( 1) 

givee the v a ue 1 8 = 0.187. This value is obviously too large. If it is 
used to estimate PO, a no&Give value is found. Alternatively, 0 may 
be estimated from the formula: 

if @a can be estimated. Since we have no information at our disposal, 
ia this experiment, about the individual choices, we cannot estimate 
@a from the experimental diaita. The most obvious value j& = 0.50 is 
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e. As an estimation of f10 we ave used the same value as in 
d in this way we find 0=0.059. 

In exp. the d.ifEerence between the mean percentage A, responses 
over the 40 triak, namely 82 y,, and asymptotic v e of 
76 %, is signifhant at the 0. 2). In exp. I the 
difference between the observ ic value 77.25 y0 and t,he 

eoretit al value of 76 y0 is not significant (t = 1.16). The results of 

ween the asymptotic values of 
t the 0.05 level. 

A an estimatiou of 0 from formula (1) did not give a 
, j&, was estimated from the first 5 trials and 

nssumed to be 0.60; thereafter 8 was calculated from formula (2). 
It is evident that the calculated theoretical curve does not cover the 
observed results (see Table I ). 

In exp. IIB 0 was estimated from formula (1) and thereafter jY&, from 

gfJ=a--+on-F) e 
1- (1 -f,p’ 

in which p is the mean number A, responses over the first 20 trials. 
The theoretical curve corresponds comparatively well1 with the results. 

From the above it may be concluded that the behavior of the 
groups A and I3 is not identical. We may express the difference more 
precisely by applying Grant’s ( 19) extension of Alexander’s ( I) test 
for trend. 

If p(&) is a function of the number of @inforced trials, we can 
&?xpress this function in the form: 

y=a,+a,x$-ag2+a3x3+ . . . . 

This formula may also be written in the form 

y =A, + A,&,(x) + A&&) + 443QsW + 0 e-9 

in which Q(x) is the orthlogonal polynomial of the ith degree. The 
terms Aa can be &ted independently and thus independent tests are 
available for the existence of significant differences between various 
groups as regards the linear, quadratic, cubic, etc. components of the 
*trend. 

In Table 2 the results of the trend analysis for exp. II are summarized 
over the mean percentages d, responses for each block of 60 trials. 
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TABLE 2 

Trend analysis of the freqlrencies of the A1 response per 60-trial block for 
groups II A and II B 

Soureel 

-4. Over-alI trend ,. . . 
1. lineax. . . . . . 

9 quadratic . . . . d. 

3. cubic . . . . . . 

4. quark . . . . . 

B. Between group meanf3 

C. Between group trends 
1. linear. . . . . . 

2. quadratic . . . . 

3. cubic . . . . . . 

4. qua&c . . . . . 

D. Between indiv. means 

E. Beta-een indiv. trends / ( 152) 
I. linear. . . . . . ) 38 
2. quadratic . . . . / 38 
3. &Gc . . . . . . ; 38 
4. quartic . . . . . i 38 

F. TotA . . . . . . . j 190 

i2167.13) 
1780.84 
171.61 
191.82 
22.86 

237.62 

(130.03) 
64.00 
38.06 
0.56 

27.40 

1679.96 

(541 .“J’$) 
1780.84 

171.61 
191.82 
22.86 

237.62 

(32.51) 
64.00 
38.06 
0.56 

27.40 

(2235.24) ! (14.70) 
802.66 j 2!.32 
353.47 
530.62 

i 9.30 
, 13.96 

548.49 14.43 

6449.98 1 - 

Error 
term 

E 
E. 1 
E. 2 
E. 3 
E. 4 

E 
E. 1 
E. 2 
E. 3 
E. 4 

(36.86) 
84.32 
18. 
13. 

1.61 

0.001 

Since the groups respec+kely, did not 
ffer essenti’ally from eai: other, the results of both experiments 
bve bun combined, an analysis for trend has b 

and the consequent results have been summarized 
ar-;lett’s test the variances were not horn 

wever, the numbers of Ss in both groups are equal and the distribu- 
tion is normal, tile effect of heterogeneity of variances is vory slight 

us a trend analysis was made. marginal cases, how - 

the computed B-ratio ap roaches the critical ratio cf 

midence, the results should be interpreted with some 

(see Tables 2 and 3) it appears that, when the learning 
are conkdered in conjunction, they possess a significant 
ic and cubic c 



TABLE 3 

Trmd analysie of the frequencies of the Al response per 60-trial block for 
groups A and B of exp. I and II considered together 

Source 

A. Over-all trend . . . 

1. linear. . . . . . 

2. quadratic . . . . 

3. cubic . . . . . . 

4. qunrtic . . . . . 

B. Betwren group meam 

C. Between group trtlnds 
1. linear. . . . , . 

2. quadratic: . . . . 

3. cubic . . . . . e 

4. quartic . . . . . 

D. Between indiv. means 

E. Between indiv. trends 
1. linear. . . . . . 

2. quadratic . . . . 

2. cubic . . . . . . 

4. quartic . . . , . 
- __~_ _.... - -_--. 

F. Total . . . . . . . 

i 

df i ss MS 

(4: ‘(4535.54) (1E33.88) 
1 I 3T67.12 ! 3767.12 

; 1 ;;;-;; : ;;;q 

1 I GY.7ii ; &A 

1 

(4) 
1 
1 
1 
1 

78 

(312) 
78 
78 
78 
78 

_._. __. 

399 

334.8’3 

(l84.54) 
92.48 
84.70 
0.32 
7.04 

3609.47 

(4161.53) 
1468.60 
901.80 
825.58 
965.56 

12825.96 

92.48 
84.70 
0.32 
7.04 

46.28 

(13.34) 
18.83 
11.56 
10.58 
12.38 

_ _-_.- 
- 

Error 
term 

E ; (85.01) 

E. 1 j 300.08 

E. 2 / 37.84 
E. 3 ; 24.77 
E. 4 ( 5.55 

D 

E 
E. 1 
E. 2 
E. 3 
E. 4 

7.24 

(3.45) 
4.91 
7.33 
- 
- 

3..47 

- -.. 

0.001 
0.001 
0.001 

0.001 

0.025 

0.011 

0.01 

0.05 

0.01 
- 
- 

0.001 

_ ..___ 

n the introduction it was assumed that the variability in the case 
of instruction B would be greater than in the cam o 
This can manifest itself in various ways. The inter-i 
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bihty, of ~w~tich! the variance is a measmq could be ater in the 
cak3e of in&ruction EL. this were so, and it were a result of a 

ence in set evoked by the instruction, then we should ex 
nce mainly in the beginning of the 

the! first 100 triak3 the variance in exp. 

at the 0.05 level of 
variance over the 

d, the difference is 
no difference in variance between the two groups over 
100 trials. 

asure for the intra-individual variability can be found in the 
may be def.ined a~ a series of successive A, 

at is applied, the number 
of runs for the Grst 100 trials in exp. I is found to be si 

taker at the 0.05 level of confidence than in exp. 
numbers of runs for the last 100 trials are the same for both groups. 

ntder both conditions the intra-individual variability decreases 
regularly. IX a non-paramatric test for trend is applie& the g;z 

crease for group A is significant at the 0.01 level, fi~r group 
r?.OOf level. 

BoTLh the inter- ztnd the intra-individual variability for the first 
100 trials are greater in the case of instruction than in that of 
instrll n A. There is no rence in variability for the la& 100 
trials * ei:e is a si,gnifican.t Fence at the 0.02 level between the 
avemge lengths of run of A, and A,! responses according to the 
XaInr+Whitney test. The average length of run of A, responses is 
kxgey: and of A, responses smaller for group A than for group 

TABLE 4 

~~~jt~o~~~ frequencies of AI and Aa responses per 60-trial block for exp. II 

AlIE1 _ .&jEz A$% AajEo 
--- _-- .e- 

‘4 B A n A B A B - 

535 478 248 215 345 402 52 85 
635 602 263 241 265 298 37 59 
608 615 280 267 299 285 20 33 
630 598 291 287 270 302 9 13 
671 658 285 273 229 242 15 27 

-- 

e (AI = 225 E (AZ(&) = 225 E (&l&j = 75 
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A, responses under the 
ocks of 60 trials. Also 

totic fr~que~~~ies expected 

0stelSer. The table 

avior of both groups is 
cially to group A. The 

level when t,est,ed wieh the 
ence, as reinforcer, E, has not the positive recency effect that 

predicted to cha.nge each trial in the direction of the most recently 
occurring event) but predominantly a negative recency effect. After 
E,. group A she-vs significantly more negative recency than group B? 
which behaves r-lore in conformity with the prediction of the model. 
Th% may be expressed in other terms he average uncertainty of the 
predictions witlmut knowledge of preceding events E is, for 
group A, 0.76 bit and for group B, 0.80 bit (see Table 5) calculate 
over the last 126 trials. Knowledge of prece ng events in 
uncertainty, defined as 

in which IIt is the uncertainty in bits per response, provided seri(:s 
of i events precede the response; pi(j) is the probability that responrle 
j follows sequence i; p(i) is the! probability that sequence i willi oe(.ur 
(14, 26). 

TABLE 5 

The mom uncertainties of the rosponso resulting when the previous events 
&I’S know11 

Mean uncertainties Group A Group B 

H(y) .............. 0.76 0.80 

H,(y) 0.76 0.76 ............. 

Hz,,(y) 0.69 .......... - . 0.71 
22x,&y) ........... 0.67 0.65 

H z.z,s.z( y) * 0.63 0.63 ........... 
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Knowledge of event E preceding A does not decrease the uncertainty 
for group A .- H,(y) remains 0.76 - but it does so for grou ecrease 
in the uncertainty of 0.04 bit ik3 statisticdly significant at the 0.01 
level. Kkowkdge of the two p’:e ding eve&3 a greater 

crease in uneertainty for group than for group owledge of 
four preceding events E gives for both g ps the same value 

for the 5th order approximation of the unc nty, viz. 0.63 bit. 
For group A the <total decrease in uncertainty is 0.13 bit, for group I3 
0.17 bit. 

It is evident from what has been discussed above that the mode 
of Estes and the equal oL-model of Bush & osteller do not provide 
an adequate prediction of the behavior of group A. 
based on the principle of positive recency, i.e. each occurrence of E, 
increases the probability that the next answer will be A, and each 
occurrence of E, decreases the probability of A, and increases the 

2. A strong negative recency effect appears, however, 
groupsz but especially in group A. Literature on the 

a&n attention to the existence of negative reeency 
(3: 18, 24). It was believed, however. that the average results 

20 trials corresponded with the predictions of the 
els; even though the behavior of the Ss chid not agree 
ple of positive recency in a number of predictions. 

Estes & Straughan (12) aJso observed that the facts did not entirely 
agree with the theoretical predictions. The parameter 0 can be 
estimated in two ways: from the experimental data, as we have done 
above, and from the formula : 

in which ~;(LI,~II,) is the average probability per response that E, is 
followed by A,. Theoretically, both estimations should lead to the 
same value, but in practice they reveal great discrepancy. With the 
latter method, Estes found considerably greater positive values for 0. 
We, on the other hand, find negative values for both groups; for 

8= -0.227, and for group , 8 = - 0.199, which indicates a 
ative recency effect. 

A the asymptotic values of &&[I&) approaches 0. If ]jl 
ability of A, following E, and p2 the probability of A, 

then the asymptotic value is p,z++&I. -n). For the 



stes this is 0.75(0.75)+ .75((6.25)=0.75. If, based 0~ the 

II, we 2Ibssu recenq effect 
oding to the expectations of th tes’ model, and 

a negative recency effect after E,, t the :tsymptotic 

value is 

P360 = WXi(O.75) + l(O.25) = O.ii125. 

The asymptotic va!ue 0.82 estimated m the last 40 choices for 

8 reasonably well with this. The asympto~;ic value of 
ers significantly from t is at the 0.05 level of con- 

fidence (t= 2.3). 
This result might be eonsidere an artifact occasioned by the 

restrictions obtaining in the camp ition of the seqn 
E,, viz. a maximum homogeneous length of run of 5. 
used as a check; the maximum length of run was 11 in that case. 
The uncertainties of the E-series in exp. and II are mentioned in 
Table 6. 

TABLE 0 

'6710 mean unce&&ties of the event series 

Mom uncertaintief4 -/’ Exp. I Exp. II 

N(x) .............. 0.81 0.81 
N&) .............. 0.80 0.77 

N,,,(z) ............ 0.78 0.70 

w r.+,&) ........... 0.76 0.68 

A we find a corresponding asymptotic value, viz. O.SlB. 
sults of exp. I and II are combined, the asymptotic value 

of group A does not differ from 0.8 125 (k = 0.37) ; for group B the 
difference is significant at the 0.01 level (t= 2.73). 

f the above mentioned formula for the determination of the 
asymptotic value in the case of instruction A, in its general form 
expressed as : 

p,=7r2+ 1(1 -z), 

could be applied on a broader scale-which would have to be checked 
by further experiments - then the situation in which n = 0.75 is 

probably one of the most ideal situations in which a difference in 
instruction can be found. Should the d.iEcrence between JZ and 1- JE 
be greater, then the deviation of the predicted asymptotic value witih 
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~egwd t-o z is smaller, e.g. the prediction is 0.91 i,Yo:‘or z - 8. 
prediction is 0.84 for x = 0.80. In the case 
32 and 31 - 38 is smaller, e. 
strategy will be used in 

The nature of the differences be and group B haps 
been analysed in det ove. The w h the instruction 
brought about these rences has not yet been emonstrated, 
however. 

One might expecd that instruction woulliq lead to a greater 
variability than instruction A. A sigcifi t difference in variability 
does, indeed, exist in the first 100 tria 
later, and in the la& 100 trials there is no 
whatsoever. This might be explained by the influen’ce of the conditioning 
process and by the fact that, in the long run group B tends to develop 
certain hypothesis about the expected events, in spite of the instruction 
(see Table 5). For that matter, the variability f&ctor is not the main 
one leading to Werenoes in the asymptotic values for groups A and B. 
A difference in intra-individual variability could lead to a difference 
in learning rate. The analysis for trend (Tables 2 and 3) has shown 
that there is no, or only a very sli rice,.. The main tlifierence 
between group A and group B is formed by the quadratic component 
of the learning curves, which results in different asympt0tj.c values. 
The reason for this must be sought in differences in strategy deter- 

ed by the instruction. 
A possible difference in motivation is yet another factor which 

es in the instructions given to the groups A and . Group A is 
that there is a system which can be four and once found, it 

can be used to make correct predictions; group 
uence is an entire random one, without 

may be wor about a faul pred.iction, since it E,hows he 
yet found the system. A S in B cannot be blrhmed for 

a faulty prediction because the se uence is a random one. ‘To use a 
d from the decision-making theory (6), one might assume 

ction is greater for group A than for 
a subject (7, 16, 17, 25, 31) it has been 

d out that the stocha&ic models are inadequate and that the 
tic values are greater than those predicted by these models 

prediction is rewarded and the utility of a correct 
relation thus increases. 
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ased on the dccislon-ma 

tha,t a prediction will be correct, is 

T5en the ~xp~~te~~ utility of a co rediction, U,, is 

U,=aE,=a[( -sc)$p(2n- rn)]. 

he utility of varying one’s responses = f (p), 

KY==bp(l -p). 

tot,al expected utility of a given strategy is then 

u(p)==U,+u,F=a[(l-3C)+~)(2n-1)]+np(l--p). 

The strategy r, which maximizes expected utility is at 

dU(p) _._ 0 

dP 
dlJ(p) 

dP 
= a(2jz- 1) * h -. rhp = 0. 

P E “‘2;; l) + 0.5. 

If jr=+, then 

p = a(n - 0.5) + 0.5. 

Only when LX= 1 and thus a = b, p=n. This means, that the 
stocbastio learning models only lead to a correct predictio 

asymptotic vduues if the arginal utility of a corre2t p 

equals the marginal utility of varying one’s responses. T 
model makes 110 provision for predictions in cases there is an i 
between these two. 

From the above mentioned formula it follows that we can estimate 
f.x from 



If ‘we estimate oc from the last 40 choices, the dserence 
group A and group B is significant at the 0.01 level, when teated 
with the Mann-Whitney U-test. 

It has already been shown th.at the variability-the mean number 
of runs in the last 100 trials - was equal for both groups ; the same 
applies for the la& 40 trials. From this it may be conclude 
utility of varying one’s responses io equal for both groups. The utility 
of a correct prediction is, therefore, significantly greater for group A 
thax for group B. 

The final conclusion is, thus, that the utility of a correct prediction 
is greater for group A than for group B since there is more motivation 
fk a correct prediction with instruction A than with instruction B. 
Third, in turn, leads to a higher asymptotic value of A, responses in 
the ease of instruction A.. 

Flood (13) assumed that the more frequent event would be chosen in 100 y,,, 
of the trials-in accordance with the game-theoretical conceptions that one 
learns to maximize the expectation of a correct prediction-if the S is convinced 
that a sequence of alternative events is generated by a stationary process. 
If, on the other hand, the S believes that the process is non-stationary, he 
would apply a mixed strategy in which the more frequent event would be 
chosen in a proportion equal to thle objective probability with which the 
event occurs. 

Our cou2t.er-argument was that a difference in inlrFtructions as described 
a’bove would influence behavior witlh regard to at lo.ost two fact,ors, viz. a 
difference &I variability {in the predictions, and a difference in motivation. Thus 
the alternative hypoth.esis put forwarda wa, that the instruction suggesting 
a non-stationary process (instruction A) would lead to a higher asymptotic 
value of the predictions of the more frequent event than the instruction that 
the process was stationary (instruction B). This hypothesis wae tested in a 
non-contingent two-choice eituation, in which IZ = 0,76. 

The following has appeared from this investigation: 

1. Contrary to Flood’s expectation, instruction. A led to a higher asymptotic 
value of 14~ responses than instruction B, mainly as a result of a larger 
negative recency effegt after .Z& with instruction 1’1. 

2. The etochastic learning model of Estee and the equal cs-model of Bush & 
MosteUer are inadequate in the cue of instruction A. 

3. The hypothesis was offered that the asymptotic value of AI responses in 
the case of instruction A can be determined from the formula 

PO0 = n2 + 111 -n), 
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4. Them was a significant difference in intra-individual variability between 

ps A and B for the fist 100 trials. For the last 100 trials there was 
rence in variability whatsoever. 

5. e variability factor does not appear to be the cause of differing asym- 
ptoti’c values. 

6. The diff’erences in asymptotic values are mainly determined by a difference 
in motivation, which makes the utility of a correct prediction greater in 
the case of instruction A than in that of B. 
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