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Synopsis 
The problem of constructing metastable states in strongly coupled quantum systems 

whose spectra are continuous is treated within the context of the general perturbation 
method developed by Van Hove. The state is constructed in terms of the unperturbed 
states and its metastable character is proved without explicitly introducing the 
perturbed stationary states. An interesting feature of the result is that the construction 
of the state requires the use of a complex number, the real part of which is equal to the 
energy of the state while its imaginary part is juch larger than the line width of the 
state. The general result is applied to the Fermi gas and the Lee model. In the latter 
case it reduces to the result previously obtained by Glaser and Kallen. 

1. Introduction. Many systems in quantum physics are conveniently 
described in terms of metastable states, i.e. in terms of approximately 
stationary states which persist for a relatively long time before decaying 
into more complicated modes of motion. The classic example of such a 
system is that of an atom in interaction with the electromagnetic field, in 
which case the stationary states of the atom become metastable due to 
the effect of the field. The atom has a discrete spectrum in absence of the 
interaction and the methods for treating such a system were developed in 
the early days of quantum mechanics. In recent years, considerable attention 
has been devoted to systems whose spectra are continuous, e.g. interacting 
fields and many-body systems. The question of treating metastable states 
in such systems is a very natural one. Indeed the state of an unstable 
elementary particle or the state of a low-energy nucleon moving inside a 
large nucleus must both be regarded as metastable. The purpose of this 
paper is to treat a general system with a continuous spectrum within the 
context of perturbation theory and show under which conditions and by 
which method one can construct the state vector of a metastable state to 
general order in the interaction. 

As the basis of our work, we shall use the very general perturbation 
method for treating systems with continuous spectra which has been 
developed by Van Hove 1). His method is especially well suited to the 
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investigation of the perturbed states of a system 2)s). In fact, it yields a 
criterion which enables one to determine when it is possible to construct 
perturbed stationary states. When this criterion is not satisfied, i.e. when 
it is not possible to construct a perturbed stationary state corresponding 
to a given unperturbed state, it may be possible to construct a perturbed 
state which is metastable. The conditions under which this is possible have 
been given by H ugenhol t z 4). He also gave an explicit construction for 
a metastable state; however, his construction must be considered as un- 
satisfactory because it leads to a state which can not be normalized. 

To our knowledge, the only satisfactory treatments of metastable states 
not limited to lowest order perturbation theory have been given for the 
simple case of the Lee model. In particular, we wish to mention the work 
of Glaser and Kallen 5) who treated the Lee model for arbitrary coupling, 
because our general result reduces to theirs when applied to the Lee model. 
The method which they use is the most straightforward one possible. They 
make an ansatz for their metastable state and then expand it in terms of the 
true stationary states of the system, which are known for the Lee model. 
In this way they are able to select the best state vector for their state, and 
to calculate its energy, lifetime, and decay spectrum. Unfortunately this 
method can not be used in the general case because the complete set of 
perturbed stationary states is not known (in fact it is usually impossible 
to determine it even by perturbation methods). Thus the main difficulty 
which we had to overcome was to select our state vector and calculate its 
energy and lifetime without using the perturbed stationary states explicitly. 
It turnsout that the extremely condensed mathematical form of Van Hove’s 
approach makes this possible. Of course, it is not possible to calculate the 
decay spectrum without knowing the true stationary states. However, in 
the case that they are known, our method yields the decay spectrum in a 
simple way. An interesting feature of the general result is that the con- 
struction of the metastable state requires a complex number, the real part 
of which is the energy of the state while its imaginary part is much larger 
than the line width of the state. 

We shall only mention very briefly other relevant work on this subject. 
Zum ino 6, and Ho hler 7) have treated the Lee model in the weak coupling 
case by using the analytical continuation method. We shall also use this 
method. Extensive work has been done by various Japanese authorss)a)re)ll), 
some of whom have only treated the Lee model and some of whom have 
treated the general case. 

2. Formulation of the problem. We shall consider a system whose hamil- 
tonian may be written as a sum of two terms 
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H = H,, + HI. (2.1) 
7 
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The eigenstates and eigenvalues of Ho will be assumed known, and HI will 

be treated formally by perturbation theory even though it is not necessarily 

small. The perturbation treatment will be valid to general order. We shall 

use units such that F, = 1. Our program is to make an ansatz for a state 

jy,$ and then use perturbation theory to compute the quantity 

P,(t) = <ye Iexp(--tH)/ ya>, (2.2) 

which is the probability amplitude for finding the system in the state 

/y,~ at the time t, if it was in this state initially. Suppose that after an 

approximate calculation we find that 

P,(t) g exp(--tE,) <yorlyai, (2.3) 
for times of the order of (Im E&r, where E, is a complex energy such that 

IRe E,l >> IIm E,I, (2.4) 
and 

(2.5) 

Then we may say that jya> is a metastable state, and we may identify Re E, 
as the energy of the state and (2 Im Em)-1 as its lifetime. Needless to say, 

(2.3) can only result when the system satisfies certain conditions. These 
will be given in section 4. 

In order to establish an approximate result like (2.3), it is necessary to 

isolate a small parameter 1 in the problem. In fact, it usually turns out that 

Re E, and Im E, can be expressed in terms of a power series in A. In our 
case it will be convenient to use 3, to reformulate all approximate expressions 

in terms of limiting processes, e.g. (2.4) will be reformulated as 

lim,O E, = &o, (2.6) 

where E,o is a real number. Let LIM be a short notation for a limiting 

process in which A --f 0, ItI -+ co, while the product t(Im E,) remains fixed. 

Since Im E, is a power series in A, holding the product t(Im E,) fixed means 
picking out the largest term in Im E, for small il. We can now rewrite (2.3) 

as 

LIM [exp(it Re E,) P,(t)] = exp(- (f[ jIm E,() <ya( yJ. (2.7) 

and this is actually what we shall prove. The absolute values of t and Im E, 
enter into (2.7) because of (2.5). This formulation immediately implies 

that the state, 

IYJO = lim,, IyJ, (2.8) 

must exist and must be a true stationary state of energy E,o for our system 
in the case A = 0. We shall adopt the convention that labeling a quantity 
with an extra subindex 0 refers to the value of the quantity when I = 0. 
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If the system of interest is weakly coupled, we can identify L as the 
coupling constant. In this case, Iw~>o is simply an unperturbed eigenstate 
and every unperturbed eigenstate that does not go over into a scattering 
state will become metastable. However, for strongly coupled systems such 
as we wish to treat in this paper, il must have some other physical meaning, 
and jy~a can only be a perturbed stationary state. When we treat the case 
of a nucleon interacting with a large nucleus in section 8, we shall find this 
parameter explicitly and explain its physical meaning. 

3. Van Hove’s method. In order to define II+JJ and calculate P,(t), we 

shall use Van Hove’s method. His approach makes extensive use of the 
resolvent operator R(z), which is defined by 

R(z) = (Ho + HI - z)-1, (3.1) 

where z is an arbitrary complex number with the dimensions of energy. 
Using the well-known relationship between exp(-itH) and R(z), we may 
write 

1 

P,(t) = & j dz exp(--itz) pi,(z) (3.4 

where 

RX(z) = <Y, IR(z)I WCJt (3.3) 

and the path of integration in (3.2) is a contour described in a counter- 
clockwise direction around a sufficiently large portion of the real axis. 
Although it does not assume that HI is small, this treatment starts out by 
formally treating HI as a perturbation, whence (3.1) leads immediately 
to the series expansion 

R(Z) = cl;& (--l)n H ‘_ z [HI ’ 
0 H,, - z 

I”, (3.4) 

the simplicity of which is one of the most attractive features of the resolvent 
technique. Perhaps the most important assumption of this approach is that 
(3.4) is convergent for z away from the real axis. The conditions under which 
this is valid are not known at present. 

Now we shall introduce explicitly the representation in which Ho is 
diagonal. We suppose that it has a continuous energy spectrum E, and eigen- 
states 1~) both labeled by a set of quantum numbers TV, some of which are 
continuous. We shall adopt the normalization. 

@Ia> = S(B - a), (3.5) 

where S(@ - ) a is a product of Dirac delta functions for the continuous 
quantum numbers and Kronecker symbols for the discrete ones. This 
notation is adapted to the continuous parameters, .but could easily be 
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completed to take account of the discrete ones. In order to calculate P,(t), 
we shall have to know </3 IR(z)/ cr). Th is is calculated by making use of the 
property that matrix elements such as 

can have a term proportional to S(/3 - a) even if the matrix element 
<p jHl\ a) has no such singularity itself. We wish to emphasize that this 
diagonal singularity $roperty depends strongly on the choice of the unper- 
turbed part of the hamiltonian. Although this property has been general 
knowledge for a long time, it was Van Hove who first showed that it had 
to be taken into account to all orders of the perturbation for systems with 
continuous spectra even for weak coupling. 

When used in conjunction with (3.4), the diagonal singularity property 
allows one to calculate </3 ]R(z)/ cr) by making an infinite number of partial 
summations. The result obtained by Van Hove may be written 

@ F(z) I a> = [(B I a) + qd41 D&4, (3.7) 

where F~,(z) vanishes for b = CC and 

D,(Z) = [Ed - z - G,(Z)]-1. (3.8) 

For the precise definitions of F~,(z) and G,(z), the reader is referred to the 
original papers *). As far as this paper is concerned, we are mainly interested 
in the fact that @ IR(z)] a) is proportional to D,(z), and that D,(z) has the 
form given by (3.8). We shall also need to know the important analytic 
properties of these functions. Since H is a hermitean operator, <p ]R(z)] cc> 
can only have singularities on the real axis. It follows that Fs,(z), G,(Z), 

and D,(z) also have this property. If we let * stand for the hermitean conju- 
gate of an operator and the complex conjugate of a number, it also follows 
that 

[~&)I* = DC&*) 

and the same holds true for G,(z). Again assuming the convergence of (3.4), 
it is possible to show that the only singularities of Fg,(z) and G,(z) are 
finite discontinuities across the real axis from a finite point up to + 00, i.e. 

lim,, G& + i 14) f lim,, G,(x - i Irl) 
when x is a point on the real axis where the function is singular. 

The singularities of D,(z) are a little more complicated. Clearly it has 
a finite discontinuity on the same portion of the real axis as G,(z), which 

*) See reference l), section 3 or reference 4), section 4. The analytic properties of these functions 
are also derived here. A comprehensive summary “f his own work has been given by Van Hove in 

reference 12, sections 2 and 4. 



METASTABLE STATES IN STRONGLY COUPLED SYSTEMS 1129 

we call the cut of D,(z). In addition this function can become infinite 

whenever the equation 

% - Z - G,(z) = 0 (3.9) 

has a solution on the real axis. It can be shown that (3.9) can have no 

solution for non-real z. We shall suppose that a real root of (3.9) exists 

when il = 0, and we shall call it E,a. Further we shall suppose that the cut 

of D,(z) begins at a point aa > 0, where a0 is independent of il. If E,a < aa, 

it is clear that Daa(z) has a pole at E,a. However, if E,a 2 aa, then D&z) 

can not have a pole in the strict sense of the word because the discontinuity 
of G,a(z), although zero at .z = _&a, does not vanish in the neighbourhood 

of E,o. Nevertheless, we shall still call Eoro a pole of D&z), if it is possible 

to write 

(3.10) 

in the neighbourhood of E,o, where ama is less singular that (E,o - z)-l. 
It is easy to show that N,a must be a real number. Clearly (3.10) is equivalent 

to 

E,o - z Dao-i = -~ 
Nao 

+ &o(z) (3.11) 

where B&z) goes to zero faster than (Em0 - z) in the neighbourhood of 

E ao. 
Because R(z) = (H - z)-1, it is obvious that <is \R(z)I a> must have a 

pole on the real axis for the system to have a stationary state. Due to the 
form of (3.7) and the fact that Fga(z) has at most a finite discontinuity, we 

can state the following: 

Criterion I: It is only possible to construct a perturbed stationary state 
corresponding to the unperturbed state la> when D,(z) has a pole on the real 

axis. 
From our above assumptions this condition is fulfilled for A = 0. The 

corresponding perturbed stationary state will now be constructed. Let 
iA> be a arbitrary state in the Hilbert space defined by the complete set 

of unperturbed states, and define Iyol>a by 

<A I ~Jo = Naot lim,,z [oa~-l(z)<A IR(z) j Cool, (3.12) 

where the limit is taken through complex values of Z. We prove that Jw~>o 
is a stationary state of the system for A = 0 with the energy E,o. Since 
<A IR(z)I a>0 is proportional to D&z) by (3.7), it is clear that the limit in 
(3.12) exists, and does not vanish. For simplicity we will assume that’ E,o 
does not lie on the cut of FF~o(z) so that this limit does not depend on the 
way in which the real axis is approached (otherwise the state obtained obeys 
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the ingoing or outgoing wave condition depending on the side from which 
the real axis is approached *). The proof follows from the operator identity 

HR(z) == 1 + zR(z), 

whence 

(A lHIvJa = Na& lim z-t,q o [D,o-i(z) <A IHR(z)/ do1 
= &o <A I,cy>os (3.13) 

It is easy to show that ]y,>o is normalized and reduces to la> in the limit 
of vanishing interaction. 

It is now clear why Van Hove’s method is so well suited to the investiga- 
tion of the states of the system. As soon as the matrix elements of R(z) are 
known in the unperturbed representation, it is straightforward to write 
explicit expressions for those stationary states which may be constructed 
by means of perturbation theory. 

4. Criterion for metastable states. We are now in a position to state the 
conditions under which it is possible to construct a metastable perturbed 
state. We have already found a perturbed stationary state for il = 0, when 
Dao(z) has a pole on the real axis. We shall now assume that D,(z) has no 
pole for small il # 0, but that it becomes very large on the real axis and 
reaches its maximum near &a in a point of the real axis where Im D,(z) f 0. 
In this case we can expect to find a metastable state for small A # 0. We 
shall also assume that near E,o, D,(z) can be closely approximated by a 
function which can be analytically continued across the cut on the real axis, 
and when D,(z) becomes large on the cut, that this behaviour manifests 
itself as a pole in the analytical continuation. When we treat the Lee model 
in section 7, we shall show explicitly how this pole in the analytical con- 
tinuation arises. 

We shall denote the analytical continuation of D,(z) (in the approximate 
sense just defined) by D,*(z), where the -f- (-) sign means that the con 
tinuation has been made from above (below) the cut on the real axis. 
Further we shall call the new sheets of the Riemann surface the z*-sheets. 
By our assumptions we shall have a pole in each of these sheets, and shall 
further suppose that these poles occur at the points z = E,h where 

E,* = Re E, + i [Im E,j, (4.1) 

and E, will be identified with the complex energy already considered in 
section 2. We may now write 

*j See rcfercnce 2 
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where B,*(z) is the rest of the Laurent expansion of D,*(z) about Em*. 
Since D,*(z) goes over into D&z) in the limit A -+ 0, we have 

limA+O N,* = N,o, (4.3) 

lim,,, E,+ = Eao. (4.4 

We shall now distinguish two cases: 

1. E,o = ao 2. Eao > ao, 

where aa is the point at which the cut of D,(z) begins for all 1. In case 1, 

E,o is a branch point for all I, whereas in case 2, Eao only becomes a branch 
point in the cut in the limit A + 0. In case 1 we must therefore have the 
additional requirement 

Re E, > &o, (4.5) 

so that D,(z) will become large on the cut. Clearly (4.5) is not necessary 
in case 2. We shall also discuss the circles of convergence of (4.2), which we 
shall call g,* and which both have the same radius Y,. In case 1, the branch 
point E,. is the nearest singularity to the poles at E,+. Hence the circles 

&?a* are given by the equations 

jz - E,*I = jEao - Em*1 = ra. (4.6) 

The situation is pictured in figure 1. By (4.4) 

lim a+0 yar - - 0. (4.7) 

In case 2, there is no such obvious limit to ra. However, we shall assume 
that (4.7) holds and we shall distinguish two subcases: 

2a. ror = lE,o - E,*l, lim,,, ra = 0, 
2b. r(y > IE,o - E,*l, lim A+0 ra = 0. 

In principle it is possible for rcr to be non-vanishing in the limit il -+ 0, 
but it does not restrict the generality to assume rar --f 0. In all cases, it is 
clear that the part of g a+ above the real axis and the part of g,- below the 
real axis both lie in the original z-plane. 

We also wish to discuss the requirement given by (2.4), which, with 
our identification of E,, becomes 

IRe E,+/ > Jim E,*]. (4.8) 

The physical basis of this condition follows from the uncertainty principle 
and the requirement that the uncertainty in the energy be much smaller 
than the energy itself. Since it is always possible to make a transformation 
which shifts the zero of energy, (4.8) can only be meaningful when Re E,* 
is measured relative to a natural zero for the energy of the problem. In case 
1 it is clear that the natural zero for the energy is aa. In fact, when we treat 
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the Fermi gas in section 8, a0 will turn out to be the ground state energy. 

Thus (4.8) implies that in this case we must make the new assumption 

IRe E, - E,o~ > IIm &,I, (4.9) 

which, in terms of a limiting process, becomes 

limA+O Im E,/(Re E, - E,o) = 0. (4.10) 

1 Z-plane 

Fig. 1. The circles g,i for case 1. In case 2 these circles need not pass through E,IJ 

-cut of 
Da(Z) 

Z-plane 

Fig. 2. The contour for evaluating P,(t). The lines are along 
parts of the real axis. 

the upper and lower 

I Z-plane 

Fig. 3. The contour for P,(t) after it has been deformed 

We shall see that (4.9) is automatically satisfied for the Fermi gas. In case 
2 there is more ambiguity in the choice of a natural zero for the energy. 
In case 2a we shal! take it to be E,o and require that both (4.9) and (4.10) 
hold. In case 2b we shall take it to be a~, whence (4.8) follows from the fact 
that 

limA+o E, = E,o > ao. 

We may now summarize our assumptions in the following: 
Criterion II: It is possible to construct a metastable perturbed state 

corresponding to the state /a) when D,(z) becomes very large near a point 
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on its cut and can be approximated near this point by a function with 
analytical continuations across the cut having poles near the real axis. 

That these conditions are sufficient for the construction of a metastable 
state will be demonstrated in the next three sections. 

5. Ansatz for the metastable state. We shall now formulate the ansatz to 
be made for our metastable state ly,). To do this we introduce a complex 
number {,, which is a function of il such that 

Re 5, = Re E, (5.1) 

IIm Lx1 > IIm EmI (5.2) 

IIm Ll < rare (5.3) 

Note that 5, is by no means uniquely defined by these conditions. Further 
we introduce the complex numbers 

C,* = Re [, T i IIm C,l. (5.4) 

It follows from (5.1) and (5.3) that 5, f lie within those portions of the 
circles g,F which lie in the original z-plane (the upper (lower) signs are to be 
taken together). In terms of limiting processes these conditions become 

lim,+o Im E,/Im 5, = 0 (5.5) 

lim,, Im S.JY~ = 0. (5.6) 

We also have 
lim h,, 5, = E,o, (5.7) 

which follows from (5.1), (5.3), and (4.7). 
We shall take as our ansatz 

<A IYJ = N,*D,-l(L) <A jE(Qj a>, (5.8) 

Where N, is the normalization constant. Since [, is a complex number, no 
limit is needed in (5.8) as all of the functions involved are analitic away 
from the real axis (this is in contrast to (3.12)). By (5.7) and (3.12), we see 
that ly,) reduces to IYJo in the limit il + 0. To choose N, we first compute 
<ya 1 ya>. Using the partial fraction decomposition 

E(L*) E(L) = (Cm* - CCP [EL*) - WL)l 

and (3.7), we find easily that 

(Yal Y&J = NJ<,* - L)-l[~,-l(P,) - ~,-yL*)l <a I a). (5.9) 

Since C, is a complex number, the coefficient of <LX [ a) is real and finite and 
we may choose 

N, = (L* - L) Lo,-l(L) - ~Ly-l(sL+*)l-l> (5.10) 
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whence !yar> is normalized, i.e. 

<YE / Ya) = <m j cc>. (5.11) 
It is easy to show that 

lim,,,, N, = N&q. (5.12) 

6. Properties of cp,(z). As the last step before calculating P,(t), we shall 
discuss the function p”,(z) defined by (3.3), taking for jyar) the ansatz (5.8). 
To compute it we use another partial fraction decomposition 

(r,* - i,) R(z) - (5, - 2) R(L) - (2 - C,) R(L*) 
R([,*)R(z) K(t‘,) = ~---~- 

(i’,* - Ta)(Ca* - z)(T, - .z) 

together with (5.8), (3.7), (5.10) and (5.1 l), whence 

~ 
(Y 

(z) = (52 - L) DC&) - (Lx* - 4 D,(L) - (2 - L) D,(S,*) (y 

(Lx* - 4 (Lx - 4 rD,(L*) - D,(r,)l 
, y 

a a 

), 
(6.1) 

This rather complicated form for y,(z) turns out to have simple properties. 
Its numerator vanishes for z = ;, and z = [,*. Thus v,(z) has no singularities 
at these points, and therefore has the same singularities as D,(z). Thus 
with our ansatz for the state lya), we need only know the properties of D,(z) 

to compute P,(t). 
We shall now discuss the analytical continuations of p,(z), which we 

shall call qol*. By (6.1), these continuations can be constructed once D,*(z) 
are known, and the latter continuations were extensively discussed in section 
4. We shall first choose i, = [a+ so that D,(C,) = Da-([,+). With this 
choice, c,* = [,- and D,(S,) = D,+(I&-). Thus using (6.1) we can write 

v,k(z) = (Cm--L+)D,*(z) - (ia---zP,-(Cm+) - kL+)Da+(5ol-) <y / y > 
(Lx- - z)(C,+ - z)[D,+(T,-) - Da-([,+)I OL cy ’ 

(6,2) 

By (4.2), q,*(z) has poles at z = E, * in the z*-sheets. It also has poles at 
z = [,* in the z*-sheets, since the numerator of (6.1) does not vanish at 
these points. Thus the continuations of p?,(z) do not have the same singulari- 
ties as the continuations of D,(z). Note that had we chosen 5, = 5,-, we 
would also have found the extra poles at z = 5,*. Therefore we can say that 
qol* has extra poles in the z&-sheets at the points <,f, independently of the 
sign of Im C,. Finally we note that the part of v&*(z) not proportional to 
D,*(z) is the same in all sheets of the Riemann surface. 

We can now use (4.2) to calculate pa+ within the circles g,f, After some 
tedious algebra, we find 

[(50LF - <a*.) Qx*(Z) - 
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where 

+ Nor*(LF - r,*t) 
jEcx+ - L*‘2 [Da’(p) - D,r((ai)]. (6.4 

7. Calculation of P,(t). We have finally reached the point where we can 
use (3.2) to calculate P,(t). Since the cut of D,(z) begins at ao, we shall 
evaluate P,(t) around the contour given in figure 2. We shall have to make 
the calculation separately for positive and negative times. For t > 0, our 
program will be to deform the upper part of the contour into the z+-sheet 
in the neighbourhood of E,o, remaining inside g,+, whereas for t < 0, we 

deform the lower part of the contour into the z--sheet inside g,-. We shall 
only do the calculation explicitly for t > 0 as the calculation for t < 0 

follows from the symmetry of the analytical continuations about the real 
axis. We must again distinguish between the two cases defined in section 4 
because the pole at E,+ and the pole at ca+ both go to E,o in the limit 
il + 0. In case 1 when Em0 is a branch point, the contour can not necessarily 
be deformed inside g, +. It turns out that in this case the deformation is 
possible because of (4.9) and this is proved in the appendix. There’is no 
difficulty in deforming the contour in case 2. After the deformation has been 
shown to be possible, the calculation is identical for all cases and we shall 
give it explicitly only for case 2. 

We shall now deform the upper part of the contour in the neighbourhood 
of E, into the zf-sheet as is shown in figure 3. The semicircular part is 
chosen just within the circles g,+ and g,-. For simplicity we shall also 
deform the lower part of the contour in the neighbourhood of E,o so that 
it lies in the original z-plane along the same semicircular path. The point 
of this deformation is that in the limit 1 + 0, the poles at E,+ and Ta+ will 
give a large contribution to the upper part of the contour; thus this con- 
tribution is evaluated by deforming the contour through the poles. We shall 
now write 

P,(t) = A,(i) + B,(t) + Cc&), (7.1) 

where A,(t) is the contribution from the two poles, B,(t) comes from the 
sum of the contributions from the two semicircular parts, and C,(t) is the 
contribution from the rest. With (6.3), A,(t) can be integrated explicitly 
to give 

A,(t) = Qa+ [eeltEe+ {I - 

+ (Nrx+ - NoL-) (Em+ - L-) + IE,- - [,+I2 . 
N,+(L- - L,f) N,+(c,- - 5,+) 

* vL+(L+) - Qx-L+)l }] <Y, I Max>. (7.2) 
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Since the parts of the contour contributing to B,(t) and C,(t) are the same 
in the two sheets but have opposite directions, only the part of v,(z) that 
is proportional to D,(Z) can contribute (see (6.1) and (6.2)). Thus by also 
using (6.4) 

B,(t) = Qa+ 
i lE,- - &-t/2 s & e-itZ D,+(4 - D,-(z) 

2nN,+ (Cm- - z)([,+ - 2) (YalYG, (7.3) 

where the integral is taken in a clockwise direction on the semicircular 
path, and 

C,(t) = Qa+ 
i jE,- - 1_o,+12 

2xN,+ s M 

.- a,, 
dx e-itz Da(~--iO)--D,(~+~O) 

1% - <&+I2 
- <YrZ I Y&P (7.4) 

where the integral is restricted so that the region of the x-axis is within the 
semicircular path is omitted. In (7.4) we have not included the contri- 
bution from the small circle centered on the branch point because it vanishes 
identically since we assume that D,(Z) is less singular than (aa - x)-l in the 
neighbourhood of ao. We also assume that the integral in (7.4) is convergent 
for large x. 

It is now straightforward to establish (2.7) for t > 0 by using the limiting 
process which we have denoted by LIM in section 2. With (5.5), (4.3), and 
the property that Dno(z) is less singular than (E,. - z)-1 for z near E,o, we 
find 

lim,,, Qol* = 1 (7.5) 
and 

LIM [exp(it Ke &.JA$)] = exp(- t IIm &I) <yaly$. (7.6) 

Along the semicircular path in the original z-plane, D,(Z) = D,-(Z). Thus 
it is straightforward to make the estimate 

P&l I M(Im 5&J, (7.7) 

where M is finite in the limit. We can also write 

iC&)j < lM(Im cJ2 (7.8) 

since the integral in (7.4) is finite. Thus by using (5.6) and (5.7) we have 

LIM [exp(it Re E,) {B,(t) + C,(t)}] = 0. (7.9) 

It is obvious that these results will also hold for t < 0 when the calculation 
is made by deforming into the z--sheet. This completes the proof of (2.7) 
under the conditions stated in section 4 and the ansatz (5.8). 

In making this proof we have been very careful to point out that it is 
only necessary to make the analytical continuation in a very small neighbour- 
hood around E,o. This is a very important point because the function D,(z) 
is determined completely by the discontinuity on its cut. Thus it would be 
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possible to change this discontinuity slightly in such a way that the function 
itself is essentially unchanged, but that it is impossible to make an analytical 
continuation. Conversely since we need the analytical continuation only 
in a small region, it will be always possible to approximate D,(z) in this 
region by a function whose analytical continuation exists. Thus the analytical 
continuation method is no more of a restriction than any other method 
which approximates D,(Z) in the region near E,o. 

In defining the limiting process LIM, we have only considered times of the 
order of IIm E&i, or, more precisely, times just large enough so that only 
the largest term in the series expansion of Im E, in terms of il is relevant 
in the limit. However, from the proof, it is immediately clear that our result 
holds for all times up to the order of IIm Eaj-l, i.e. for ItI 5 IIm E&i. This 
rather remarkable fact can only be understood when it is emphasized that 
our result refers only to the limiting behaviour of the quantity P,(t) for 
small 1, and that it is not necessary that the limiting value be approached 
uniformly in t. In fact it is easy to see that C,(t) vanishes much more slowly 
than B,(t). Thus if one were to construct a metastable state for a particular 
system by this method, the correction terms which would be present could 
(and probably would) be relatively more important for small times than 
for times of the order of jIm E&l. For times much larger than IIm E&l, it 
will be necessary to retain many terms of the expansion of Im E, in powers 
of 1, in which case the decay will not necessarily be exponential. 

The final result which we have obtained shows that (2.7) holds inde- 
pendently of the sign of Im [,. Thus the question arises as to what extent 
the metastable state itself depends on the sign of Im [,. By continuity, 
the answer depends on whether the limiting state /y,~o is a scattering state 
or not. If it is a scattering state, IyoL> will obey the incoming or outgoing 
wave condition depending on whether Im 5, is negative or positive. If Iy& 
is a stationary state without scattering character, e.g. the ground state, 
then lya) will depend on the sign of Im [, only through terms very small 
for small Im 5,. 

8. The Lee model. We shall now apply our results to the Lee model to 
show that in this case our state reduces to the state defined by Glaser 
and Kallen, and that our method yields a simple calculation of the decay 
spectrum. We shall not formulate the problem in detail as this has been done 
by Glaser and Kallen. We shall use their notation. The calculation of the 
matrix elements of R(z) is straightforward and yields 

<l,, 0, 0 /R(z)/ 1 v, 0, O> = D,(z) = [m, - z - G&)1-1 (8.1) 

<O, liv, li p+)I lv, O,O> = +g= 
fk4 

VW MN + w - 2 
w4 63.2) 
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<o, IN, 1; ljqz)l 0, IN, 1;) = 
mN + 0) - z 

+ 

+ go” _____ 
2v 2/O@‘) O(h) (t’&” + C-l@‘) - z)(mN + m(h) - z) ’ (8.3) 

where in the limit of infinite volume 

(8.4 

We now assume that the cut-off function f( w is sufficiently well behaved ) 
so that it is possible to make analytical continuations of GV(z), which we shall 
call Gf(z). This can be achieved if necessary by approximating f(w) in a 
proper neighbourhood by a more regular function. We seek a solution of 
the equation 

m, - z - G,*(z) = 0 (8.5) 

near the real axis. Following Glaser and Kallen, we suppose that there 
is a number M > mN $ p such that 

m v - M - Re G,*(M) = 0, (8.6) 

and that the quantity 

Im G,*(M) = & gf2(M - mN) d(M - mN)’ - 1’9 (8.7) 

is small. Thus we can expand (8.5) about z = M, i.e. 

I cl m, - M - (z - M) - G,*(M) - (z - M) 1 dz G,*(z) I = O., (8.8) 
2-M 

so that DV*(z) has poles at 

E.&=hL?_ig f2(k?-m~)2/(M-m~)2-,u2 $ G,*(z) -‘. (8.9) 

It is easy to show that 

( $ G.*(z)} &?=‘u 

are real numbers.With these assumptions, the Lee model becomes a particu- 
lar example of case 2 as defined in section 4. 

Using (5.8) we can immediately write down the metastable state arising 
from the pole at E,+. It is 

jyv> = NV*&-l(r,) [Ilv, 0,0X1,, 0,O IR(&J)I l,, 0,O) + 

+ CL 10, IN, lk-><o, IN, li iR(S‘v)llv, 0, @I = 

f(w) 
(mN + 0 - <?I) do 

10, IN> lk-) > 
1 

(8.10) 
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where according to (5.1) and (5.2) tv is a complex number verifying. 

Re cv = Re Ev+ and IIm [vi > 1Im E,+i. (8.11) 

Here as in the general case the sign of Im TV is immaterial. By (5.3) we 
must also have 

[Im L < yv. (8.12) 

It is easy to see that (8.10) is the same state that was obtained by Glaser 
and KSllCn. They also found the condition given by (8.11) but did not 
find (8.12). From (8.10) we see that Im cv is roughly the width of the 
unperturbed IO, 1 N, 1,) states needed to expand Iyv). As will be presently 
shown Im Ev+ is the width of the decay spectrum fir the decay of Iyv> into 
the perturbed IO, 1 N, 1%) states. Therefore the conditions given by (8.11) 
and (8.12) are physically quite reasonable. 

To calculate the decay spectrum we need the perturbed stationary 
states. According to Van Hove 2), the states which obey the outgoing 
wave condition are given by 

(A 1YJic+> = lh!-+mN+w(k)+i0 [(WV + w(k) - z)<A ]@)I 0, IN, lk)l. (8.13) 

We need to compute 

<yvjfi+> = Nv*&-l(L*) limZ+mN+w(kj+iO [(MN + ~(6) - 2) X 

x <lVl 0, 0 IR(L*) &)I 0, lN, Ii>] = 

gof(4Pwl-* 
- - Nvt&* - (m&T + w) 

~v+(~N + 0) 
G+(L*) ' 

(8.14) 

which follows from (8.2) and the partial fraction decomposition that preceeds 
(5.9). In the limit of infinite volume the decay spectrum becomes 

j<yv, yil+>l2 = (Cv* - LJ) Im Gv+b + w) I Dv+(w + WV)I~ do 

+ucv*) - G(L)] IL* - (miv + w)12 
(8.15) 

with the use of (5.10) and (8.7). Wjth (8.8) and (8.9) we find easily that 
when (mw + w) is close to M, 

I~YvIYz+)12 = 
IIm E,+I dw 

n]rnN + co - E,+jx ’ 
(8.16) 

which is the expected shape of the decay spectrum, and shows that jIm E;i-1 
is its width. 

9. The Fermi gas. We shall now treat the Fermi gas as a model of a large 
system of nucleons principally to show how the parameter il has to be chosen. 
We shall not discuss this problem in detail as this has been done in a very 
clear fashion by Hugenholtz *). We shall use his notation, and look at the 

*) See reference 4, sections 2 and 14, and also references 13 and 14. 
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situation corresponding to the unperturbed state Ik;> with one nucleon 
of momentum k in addition to the Fermi sea. From (3.8) we have 

&(z) = [co + Ek - Z - Gk(Z)]-', (9.1) 

where EO is the unperturbed energy of the Fermi sea and &k is the unperturbed 
energy of the extra particle. For real x, it is possible to write 

lim,,, G/c@ f i Iql) = Kk(X) f iJk(x). (9.2) 

Hugenholtz has shown that jk(X) is nonvanishing only for x > Eo + EF, 
and that for lk(=kF and O<X-EO-EEF<EF 

_/k(X) 0~ (x - Eo - EF)~, (9.3) 

where kF is the Fermi momentum, Eo the perturbed energy of the Fermi sea, 
and EF the perturbed Fermi energy. He has also shown that Dk(z) has a 
pole at z = Eo + EF when jkj = kF, i.e. 

&o + Ek, - Eo - EF - Kkp(Eo + EF) = 0. (9.4) 

Thus this situation is a particular example of case 1 as defined in section 4. 
Again we assume that it is possible to define Gk*(z) and look for a solution 

of the equation 
&I) + &k - Z - Gk*(Z) = 0 (9.5) 

near the real axis. Letting z = x T iy, we expand (9.4) about z = x and 
obtain 

&o + &k - X 5 iy - Gk*(X) & iy 1 &&c*(z) 1 = = 0 
z x 

by neglecting higher powers of y. The imaginary part of (9.6) yields 

y = [l + {; Gk*(Z)]zz--'Jk(d, 

(9.6) 

(9.7) 

which according to (9.3) will be small when x - Eo - EF < EF. To solve 
the real part of (9.6), we choose a point on the Fermi surface which has the 
same angular coordinates as k. Then we can write 

K&d = %tX) + h - %) [&K&)]k=L + 
‘F 

Using (9.4), the real part of (9.6) becomes 

(&k--&k,) -(x--o - EF) - 

To first approximation 

x - Eo 

(Q-%) [&Kdx)]k_+ .. 
I 

- EF CC (Ek - Ek,) S ak, 

. . . (9.8) 

= 0. (9.10) 

(9.1 I) 
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and 3Lk is clearly the small parameter in the problem. From (9.7) and (9.3) 
we see that 

y cc lks. 

Thus DK+(z) will have a pole in the .z+-sheet at Ek+, where 

(9.12) 

Re Ekf - EF - Eo cc & and Im Ek+ cc &‘, 

when & is small. 

(9.13) 

According to our general results, it is therefore possible to construct ‘a 
metastable state corresponding to the unperturbed state Ik;) when & is 
small, i.e. when k is close to the Fermi surface. Using the diagram methods 
developed by Hugenholtz and (5.8), it is possible to write out an expression 
for this state in terms of diagrams. We will not do this explicitly. Finally 
we wish to note that the requirement given by (4.9) is automatically satisfied 
in this case. 
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APPENDIX 

To show that we can deform the contour near Eao in case 1, we introduce 
the new complex variable x’ by the transformation *) 

2 = &o + H,(l + z’), (1) 
where 

H, = Re E, - E,o > 0, (2) 

the inequality following from (4.5). By (4.9) we have 

lim,,, Im E,/H, = 0. (3) 

*) We are indebted to Professor Van Kampen for suggesting this transformation. 
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In terms of the new variable, the branch point occurs at x’ = - 1, and the 
poles in the zf-sheet at E,+ and ccy+ occur respectively at X; = --i Im E,/Ha 

and & = --i Im (‘,/Ha. By (3) and (5.6), both poles are close to the origin 
for amall 1 # 0. Since the branch point is at i = - 1, it is therefore possible 
to deform the contour into the x+-sheet for small L # 0. After the transforma- 
tion (1) has been made, one finds the quantity H,A in the exponential in the 
integrand of P,(t) where previously one had zt. Because of (3) and (4.4), 
IH,tl + co in the limiting process when ltl --f co, and IH,tl + 0 in the 
limiting process when /tj remains finite. Thus it is clear that the proofs 
given in section 7 go through in case 1 just as for case 2. 

Keceivcd 30-6-60 
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