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Synopsis 

The master equation to general order in the coupling responsible for the tlissipativc 
behaviour, derived in earlier papers by one of us (L.V.H.), is applied to the simple 

case of an electron in a system of randomly distributed, static, elastic scatterers. 
Replacing Wlr(k, k’) by a constant, the equation can be solved approximately for 
general strength of the coupling. The solution, describing the approach to equilibrium 

of the electron momentum distribution, has an oscillatory charnctcr. The slightly 
more complicated case of an electron interacting with a vibrating harmonic lattice 
is also considered. It is shown how one can derive from the generalized master equation 

an equation describing the evolution of the electron alone, the phonons only entering 
through their coarse grained distribution in wave vector. Neglecting the phonon 

energies, one finds an equation of the same form as in the cast of static, elastic 
scatterers. 

1. 1ntrod~ction. In three previous papers 1) by one of us (I,.V.H.), to 
be referred to as S, S’ and S”, the approach to equilibrium of a quantum 
many-body system has been studied. In these articles it was proved on 
the basis of a separation H’ = H + 15’ of the Hamiltonian in unperturbed 
and perturbed terms and using certain properties of the perturbation, that 
the system tends to microcanonical equilibrium whenever its wave function 
at an initial time has random phases in the unperturbed representation. 
In S the theory was worked out under the supposition that the perturbation 
is weak. By so doing the well known master (or Pauli) equation was obtained 
in a more rigorous and satisfactory way than in usual derivations. In S’ 
and S” the problem was treated to general order in the perturbation and a 
generalized master equation showing a memory effect was obtained. 

Whereas the lowest order master or Pauli equation, describing the ap- 
proach to equilibrium in the weak coupling limit, has been solved for 
a number of concrete physical situations, this is not the case with the 
generalized master equation derived in S’. It is well known that the Pauli 
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equation describes a monotonic approach to equilibrium: the solution iS 
always a superposition of non oscillating, exponentially decaying terms. 
For finite coupling, however, the time evolution of the probability distri- 
bution of the system toward equilibrium is not even qualitatively kno.wn. 
We therefore made it our main purpose to get some information on this 
time evolution by considering a simple case for which the problem could 
be handled to general order in the interaction. This is done in section 3 of 
the present paper, our working example being an electron in a system of 
randomly distributed, static, elastic scatterers. Our main conclusions will 
be that in the case of finite coupling the probability distribution shows 
damped oscillations in its approach to equilibrium. Preceding this discussion, 
section 2 presents for later reference a brief sketch of the general formalism. 

To illustrate further the contents of the general theory we treat in section 
4 a slightly more complicated system: an electron in a vibrating harmonic 
lattice. Our aim is there only to carry out for general electron-phonon 
coupling a calculation which is very familiar for weak coupling: the trans- 
formation of the master equation, which refers to the complete electron- 
lattice system, into a Boltzmann equation dealing with the electron alone. 
If phonon energies are neglected this generalized Boltzmann equation is 
of the type discussed and approximately solved in section 3. 

2. The master equation to general order. For further reference we here 
recall briefly the derivation of the master equation to general order. For the 
details the reader may consult S’. We suppose that the Hamiltonian H’ 
of the system is a sum of two terms 

H’ = H + IV. (2-l) 

The eigenstates of H are exactly known and will be symbolized by /CL>, 
where CL represents the set of quantum numbers characterizing the state. 
Some of the quantum numbers have to be continuous in the limit of an 
infinite system. In this limit we adopt as normalization 

<cr 1 a’> = S(rY. - a’), (2.2) 

the right hand side denoting a product of delta functions and Kronecker 
symbols for the continuous and discrete quantum numbers respectively. 
In the [CL) representation the perturbation ilV has special properties, ex- 
plained in detail in S’. They consist in the occurence of diagonal singularities 
of the form S(tc - CI’) in matrix elements (a [VAlV . . . AtiVl a’>, where 
the L4j are diagonal in the ]a> representation. The matrix element <a [Vi a’> 
has no such singularity. 

We consider now the wave function \C,VO> of the system at time t = 0: 

lvo> = / Ia> dada). 12.3) 
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We suppose 1~0) to be normalized, 

<~o]Q~o) = f lc(a)12 da = 1. (2.4) 

If we choose units such that A = 1, the wave function at time t is given by 

yt = Utglo (2.5) 

Ut = exp[- i(H + AV)t]. (2.6) 

Let us now consider an operator A, diagonal in the Ia> representation, so 
that 

A Ia> = la> A(a) (2.7) 

and assume that A(E) is a smooth function of the continuous quantum 
numbers of la). By considering 

<~lt IA I W> = /A (4 fit(a) da, (2.8) 

we can introduce the (coarse grained) probability density fit(a) of the system 
at time t. Inserting (2.5) and (2.6) into (2.8) and separating the diagonal 
singularity of the matrix element <a / U-tAUtI a’) one finds an expression 
of the form 

<pt IA I ~lt> = <TO I U-4 Utl TO> =/A (a”) da”/P(t I a”4 da k(a) I2 + 

+/A(a”) da”SI(tI a”aa’) da da’ c*(a) c(a’), (2.9) 

where I(tIa”aa’) has no 6( a - a’) singularity. Since A(a) and c(a) are arbi- 
trary, this equation entirely defines P(tIa”a) and I(t] a”aa’) in terms of 
the Hamiltonian and the la) representation. Comparing (2.8) and (2.9) 
one gets 

&(a”) =JP(tIa”a) da [c(a)12 +/I(tIa”aa’) dada’c*(a) c(a’). (2.10) 

For an initial state ]v)o) with “random” phases the second term on the right 
is negligible and we obtain 

&(a’) = JP(t / a’a) da jc(a) 12. (2.11) 

The quantity P(t] ) a’a can be interpreted as the (coarse grained) transition 
probability from a to a’ in the time interval t. In S it has been calculated 
in the weak coupling limit (A + 0, 1st finite) and shown to be the solution 
of the Pauli (= lowest order) master equation, with initial condition 
P(0 I a”a) = 8(a” - a). 

In S’ the quantity P(t]a’a) has been studied to general order in the 
perturbation IV. It was there shown that it is the integral 

P(t I a’a) = Jz’ PE(~ I a’a) dE (2.12) 

of an energy dependent “partial transition probability” PE(tj a’a) which 
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obeys a generalized master equation of non-markovian type: 

dP_r@ I aao) 
---.~-- = S(a - aa) fE(t[ a) + Ws/Idt’ /w&? - t’laa’) * 

dt t 
. da’P,q(t’ 1 a’ag) - 2x12 s s dt’ da’ wE(t - t’ 1 a’aj PE(t’ 1 aao). (2.13) 

0 

We briefly recall how this result is obtained, and how the functions PE, f~ 

and WE are defined. As is well known the evolution operator Ut can be 
expressed with the help of the resolvent operator RI = (H’ - I)-1. Using 
this connection one finds 

P(t 1 a’a) = - (2n)-2Jy dl fY* dZ’ exp[i(Z - I’) t] X11< (a’a). (2.14) 

The contours y, y’ encircle the real axis counterclockwise. The function 
Xly(a’a) is defined by the identity 

(Rp4Rlt)d Ia> = [a>SA(a’) da’Xti*(a’a) (2.15) 

where the suffix d indicates the diagonal part of the matrix element (see S’). 
A straight perturbation expansion of Xa*(a’a) in izlr would be poorly 
convergent for special values of 1, I’. It is therefore useful to rewrite this 
quantity as a series 

XLlf(aag) = Dl(fx) Dy(a) S(a - ag) + A2Dl(a) Dy(a) * 

* W’w(aao) +12JWzz,(aal)Dz(al)Dz~(al)dalWzz,(alao) +. ..loz(ao)Dz(ao), (2.16) 

involving the diagonal part Dl(a) of the resolvent RI and .a new function 
Wzy(a’a). Th is f unction has the character of a transition rate and is defined 
in terms of an irreducible diagonal part (see S’) *) 

{(I’--LVDlV+...) A(V---1VDz*V+ . ..))$a la>= [a>JA(a’) da’W~y(a’a) (2.17) 

for arbitrary diagonal A. Also DJ is conveniently rewritten in terms of another 
function 

Dz = (H - Z - 22Gz)-1. (2.18) 

GZ obeys the equation 

Gz = {VDzV’ - IVDzVDzV + ...}Zd. (2.19) 

Because of the occurrence of irreducible diagonal parts the convergence of 
the series involved in (2.17) and (2.19) does not depend critically on the 
particular values of Z and I’. By taking (2.19) for two values of 1 and sub- 
tracting one obtains an important identity between Gl(a) and Wzz#(aa’): 

Gl(a) - Gz*(c.c) = -i/da’Wzzs(a’a), (2.20) 

with 
Wzy(a’a) = z’[Dz(a’) - Dz*(a’1] Wzz~(a’a). (2.21) 

*) The irreducible diagonal part (suffix id) is obtained when all intermediate states are taken 
to be different from each other and from the initial state. 
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Using (2.18), the identity (2.20) implies 

(I - I’) &(a) L+(cc) = D&J - &,(a) + iil”/da’ &I,(a’cc) &(Lz) &,(c(), (2.22) 

a relation which can be converted into an equation for X,,,(CC’CC) : 

(I - I’) X~~,(aag) = [Dz(a) - Ill,(a)] S(a - ao) - 

- G12/@ll,(aa’) da’Xli,(a’aa) + i~2/da’lT’~~,(a’a) Xll,(aao). (2.23) 

We now define the partial transition probability at energy E by 

l’~(t 1 aao) = (29-r s(t) /,, dl exp(2ilt) XE+l,&-l(aao), (2.24) 

E being real and t f 0. s(t) stands for t-l Itl. As proved in S’, (2.23) implies 
that PE(t j aao) verifies the equations (2.12) and (2.13) given above if the 
following definitions are adopted: 

wE(t la’s) = (2n2)-ljY dl exp(2ilt) PEmtl,E-l(a’a), (2.25) 

fE(t 1 a) = (2x2)-%(t) /? dl exp(2iZt) [DE+l(a) - DE-l(a)!. (2.26) 

The generalized master equation (2.13) must be supplemented by the 
initial condition 

P~(Ojaao) = 0 (2.27) 

required by the definition (2.24). 

3. A solution in a simple case. We apply the general theory to a simple 
situation: an electron in a system of randomly distributed, static, elastic 
scattering centers. It is easy to prove that the formal properties of the 
perturbation are valid in this case (see e.g. ref. 2, Appendix). All equations 
of the general .theory apply to this situation if the quantum numbers a are 
taken to be the three components of the wave vector k of the electron (the 
electron spin is neglected). In this special case the master equation to general 
order has the form of a Boltzmann equation. We call it the generalized 
Boltzmann equation for an electron in a system of random elastic scattering 
centers. 

The equation (2.16) for the basic function X~~,(aao) becomes 

X&z&o) = &(k) Dz,(k) 6(k - ko) + AzDz(k) Ill,(k). 

. [Ww(kko) + 12/Wzz,(kkl) Dz(kl) Dzt(kl) dkl Wzzjkdzo) + . . .I . 

.Dz(ko) Dz,(ko). (3.1) 

We now make for Wzz,(k, k’) a very simple ansatz 

W for K, K’ < a 
(3.2) 

with a and W given positive constants (k denotes the length of k, and 
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similarly for k’). This admittedly very crude approximation has the great 
advantage to allow an explicit calculation of X, and consequently of the 
time evolution of the electron, for arbitrary strength of the interaction, 
i.e. to all orders in 12. Indeed, the series in (3.1) can now be summed ex- 
plicitly with the result 

Xzz,(kko) = Dz(k) Dz,(k) d(k - ko) + 

+ PWDz(k) Dz,(k) Dz(ko) lIzI [l - PWJdklDz(kl) Dz,(kl)]-1. (3.3) 

In this and all further equations of this section we restrict all wave vectors 
to the region K < a; this applies in particular to the integration in (3.3) *). 

The form of the function Dz(k) under our ansatz (3.2) can be studied by 
applying (2.18)) (2.20) and (2.21). The first of these equations gives 

Dz(k) = [F~ - I - PGz(k)]-1 (3.4) 

where Ed is the energy of a tree electron of wave vector k. An implicit 
equation for Gz(k) is then obtained from (2.20) and (2.21) which under our 
ansatz give 

Gz(k) - Gzt(k) = W/dk’ lDz(k’) - Dz,(k’)]. (3.5) 

For I’ -+ co both Gz~(k) and Dz,(k) approach zero and this relation becomes 

Gz(k) = W/Dz(k’) dk’ = WJ[E,/ - E - PGz(kqj-1 ,dk’ 

where (3.4) has been used; clearly Gz(k) is independept of#k a& we may put 

Gz(k) = gz **). (3.61 
gz is a solution of 

gz = 4nW/; (+, - 1 - Pgz)-lk’2 dk’. (3*7) 

With,the above equations (3.3) simplifies greatly. Notice that 

Dz(kl) Dz’(kl) = (I + Pgz - I’ - Sgzt)-1 [Dz(kl) - Dz!(kl)]. , (3.8) 

The,integral iti (3.3) therefore reduces to the one in (3.5), and (3.3) becomes 

Xzz@ko) = Dz(k) Dz,(k) 6(k - ko) + 12WDz(k) oz,(k) Dz(ko) DzJ.(ko) . 

* [ 1 - i12(gz - gzt) (I + Pgz - I’ - Pgy)-11-l. (3.9) 

A new application of (3.8) gives the very simple result 

Xzz,(kko) = 

DzW - Dz+) 
_ --. -.- [6(k - ko) + NV[Dz(ko) - Dz,(ko)] (I - I’)-l]. (3.10). 

1 - 1’ + A2(gz - gz,) 

Applying the transformation (2.24) we obtain the partial transition PPO- 

*) Xz~(kkko) vanisiys for k ,< a, ko 1 a and k > a, ko. < a. For k > a, kpi> n it has the unper- 

turbed value (&& A ‘i)-I. (&k -‘I)-’ 6(k - ko), where ck is the free electron energy. 

**) As mentioned above our equatkms hold for k, k’ < a; Gl(k) vanishes for k > a. 
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bability P.&Ikko) to general order. For t > 0 this formula becomes 

P& 1 kko) = (2n2)-1 I7 dl exp(2iZt) 
&+z(k) - &-z(k) . 

-- 
21 + qgE+z - g‘+zl 

. [@ - ko) + A2W[&+z(ko) - Disz(ko)l (T1l. (3.11) 

The asymptotic value of this expression at t = + co is immediately 

obtained as the residue of the pole at 1 = 0. It is 

iw &-to(k) - h+ro(k) 
pE(CXJ j kko) = - 

27t 
[h-io(ko) - &+to(ko)l. (3.12) 

&+-LO - gE+zo 

Using (3.5) and the definition 

&(k) == (2ni)-1[&+to(k) - DE-to(k)], 

this expression can be written 

P,(wIkko) = [l&(k’) dk’l-l &(k) &(ko), (3.13) 

in agreement with the corresponding result of the general theory (eqs. (7.6) 
and (7.7) of S’). As shown in S’ this result corresponds to the establishment 

of microcanonical equilibrium (see S’, pp. 475 and 476). 
To study the behaviour of P&t 1 kko) for finite times one needs an ex- 

plicit expression of gr, which would require solving the transcendental 
equation (3.7). We here avoid this difticult task and replace it by an (in- 
complete) investigation ot the general behaviour of gl in the complex Z-plane. 
Therefore we examine the function f(2) of the complex variable 2 defined 

bY 

(3.14) 

(we put Ed = k2, corresponding to a mass 8 of the electron). This function 
has a square root branch point at 2 = 0 and a logarithmic branch point 
at 2 = ~2. If we put in (3.14) 2 = Z + 12gl, then (3.7) implies f(2) = gl. 
This gives us the relation between Z and 2 

z = 2 - P{(Z), (3.15) 

from which we can find Z as a function Z(Z) of 1. Knowing Z(Z), we shail 
have 

gz = f@(Z))* (3.16) 

From these relations it is possible to study the behaviour of gl as a function 
of 1. The singularities of gl will be situated in points I’ such that Z(Z) becomes 
singular at I = I’, or such that f(2) behaves singularly at 2 = Z(Z’). The 
latter points correspond to Z = 0 and Z = a2. The corresponding I’ values 
are -4zi12Wa and 00. One can show that gl is regular in I’ = -4d2Wa. 
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The singularities of Z(Z) must be obtained by solving the equation 

dl 
1 - 47#w 

s 
a k2 dk -= 

dZ 
---- = 0. 

o (k2-2)2 
(3.17) 

This equation has two roots on the real Z-axis: one for some value of 2 < 0, 
with corresponding value of 1’ = 11, 0 > 11 > -4d2Wa, and one for a 
Z > a2 with corresponding value of 1’ = Z2, 12 > a2. In the vicinity of II 
and 12, Z(Z) behaves like (I - It)*, i = 1,2. Because f(Z) is analytic and 
df(Z)/dZ not vanishing in these points, the corresponding singularities of 
gl are fully characterized by those of Z(Z). It may further be proved that 
(3.17) has no roots for complex values of 2. Consequently gl is analytic in 
the Z-plane cut from II to 22 (see fig. 1) and has the latter points as square 
root branch points. The analytic continuation of gl across the cut could 
be studied in detail. We shall not do so here and limit ourselves to the 
continuation obtained when 2 describes the whole complex plane. Clearly 
this continuation of gl has no new singularities. 

Fig. 1. Cut in the Z-plane for gl and original contour for P~(tlkko). 

We now return to P&~&-J), given by (3.11). Using (3.8) this expression 
may be written as 

PE(~ 1 k&o) = (2z2)-11y dZ exp(2iZt) D~+l(k) DE-l(k) . 

* [6(k - ko) + (21)-l A2W[h+z(ko) - Dsz(ko)]]. (3.18) 

The contour y is composed of y+ and y- (see fig. 1). If we suppose t positive 
(as in (3.1 l)), y+ does not contribute; so we are left with y-. To evaluate this 
contour integration we continue gl through the cut II, 12 into the upper half 
plane. Ill(k) and Dl(ko) are there found to have each a pole at points 
& and &, which we shall determine presently. The value of P&j kko) 
will then be calculated as if these poles were the only singularities of the 
Dl functions. We thereby neglect the contribution of,all further singularities, 
especially of the branch points 11, 12. These further contributions, being of 
a completely different analytical form, do not modify the qualitative con- 
clusions we shall reach concerning the time evolution of P(t 1 kko). 
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The pole ek of Dl(k) may be found by requiring that 

k” - p, - A2gpk = 0 

WC now replace gPk by (3.7) for 1 = pk. We get 

(3.19) 

p, = k2 - 4n12W 
i’ 

‘I -- 
k’2 dk’ (1 

k’2 - 9, - 12~~~ 
= h2 - 4nil”W 

k’” dk’ 

o I 
p-, (3.20) 

o k’” - k2 

where the integration over Is’ must be taken along the contour shown in 

k’ 

0 k 0 

Fig. 2. Contour ior the k’-integration in (3.20). 

fig. 2 because 1 has been continued from lower to upper haif of the I-plane. 
(3.20) can also be written 

(3.21) 

where P denotes the principal value of the integral. From (3.21) we deduce 

p, = 122 - 4nWA” 
a -+ k 

a + 2n12Wk In ~~~ -- 
a - 12 

By the same method we can also find the residue 
residue is given by 

N,-l- 

Now 
k’2 dk 

- 1 - &I . 

+ 2,Siil”Wk. (3.22) 

N, of Dl(k) in p,. The 

(3.23) 

(3.24) 

Differentiating with respect to I gives us 

dgz (I 

~~- -- = 4nW s 1~‘s dk’ _. ___..___- 
dl 0 (k’2 - I - A2gJ2 

We calculate this expression in the pole p, by the same method used to 
find 9,. The result is easily obtained: 

~______~ (3.25) 

___- 

and we find Nk by (3.23). We see that for a and k --f 00, N, --f 1; for small 
k, N,-1 --f 0 (note that an electron with k = 0 has no dissipative properties). 

In our calculation of P&t / kko) we approximate Nh by 1. This is con- 
sistent with .our approximation of considering p, as the only singularity 



GENERALIZED TRANSPORT EQUATION FOR AN ELECTRON 427 

of Dl(k) in our evaluation of (3.18) by deformation of y-. We thus write 
approximately for Dl(k) 

D$z) = (fi, - I)-1. (3.26) 

It is convenient to abbreviate fik as 

p, = Ek + +,, Yk > o (3.27) 

where the real quantity fk is the perturbed electron energy. (3.26) then gives 

DE+@) = (Ed + iy, - E - I)-1, DE-@) = @k - iy, - E + I)-1, 

Using these expressions and similar ones for ka we obtain the following 
approximate result for (3.18) 

PE(~ 1 kko) - PE(CC 1 kko) = - i exp [2it(gk - E + iyk)] [2(~~ - E)]-1 * 

. (6(k - k,,) + i12W [2(~~ - E + irk)]-1 . 

. [ (& - ck - +, + &,-l - (& + & - 2E + +k - &&1]} + 

+ ~exp[2it(E-~~+iy,)][2(&-E)]-~ . 

. {6(k - k,,) + PW[2(E - fk + iyk)]-l . 

. [(gkko + ~~ - 2E - iy, + iy,,)-1 - (sk,, - cck + iy, - irk,)-11) - 

iil2w 
- 2n; exp [2it(fko - E + iyko)] * 

* [@k - Ekko - +ko + +k) (ck + Ekko - 212 + +k,, - +k) @k,, - E + +k,)]-’ - 

. A2W 
- z F exp [2it(E - .c~,, + iyko)] * 

. [(gk + &-2E- +k,, + +k) f&-& + &,--iyk) (E-&, + +k,)]-‘. (3.28) 

For t = 0, P~(tl kko) should be zero. This can be verified on (3.28) if 
PE(OC 1 kko) is calculated from (3.18) with Ill(k) replaced by (3.26). We now 
calculate the transition probability P(t 1 kko) itself by integrating over E 

according to (2.12). This is done by contour integration for the second part 
of (3.28) (the one not involving d(k - ko)). While the total function is seen 
to be regular in E = & it is convenient to integrate each term around this 
point. The following result is obtained 

P(t 1 kko) - P(ooi kko) = exp(- 2y,t) d(k - ko) - 

- i12w exp[it(Ek - &)I exp[- (yk + yko)d ’ 

. [Fk - .Fkko - iyk + iYko]-l[Ek - Ekko + +k + iyk,]-1 + 

+ 12W exp[it(gk,, - gk)] exp[- (Yk + yko)t] ’ 

’ [Ek - Sk0 + +k - +ko]-‘[Ek,, - Ek + +k + +ko]-’ + 

+ exp(-+,t) g [(~kk,-~k‘k-i~k+i~k~)-l-(~ko-~k+i~k-i~ko)-l]. (3.29) 
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Writing this out in its explicit real form, ace gets: 

P(t 1 kko) - P(m 1 kko) = exp( - 2y,t) d(k - ko) - 

-2~2~~~P~-(~,+~,~)~l~~(Ek-~~ko)2+(Yk-Yko)~l~(~~-~~ko)~+(Yk+Yko)~l~--1 . 

. ([(~*-E,,)2+(Yk2-~ka2)1 cos[(Ek-~~ko)tl+2y,,(~~---E,,)sin[(E,--~.) tl} + 
12W 

+- Yk exp(- 2~~4 bk - yko) UE, - ckkoJ2 + bk - ~~J~l--l. 

The value of P(co 1 kk ) 0 m our approximation turns out to be 

Yk L('k - Ek,,) 2 + (yk + ?k,)21 . 

(3.30) 

(3.3 1) 

It is interesting to compare (3.30) with the corresponding expression obtained 
in the limit of weak coupling. For t of order 1-2 it is 

P(t 1 kko) - P(co / kko) = 

= exp(- 2y,t) d(k - ko) - 
7CA2W 

___ =p(- 2&) d(&k - &ko), (3.32) 
Yk 

which is the solution of the Pauli master equation in the simple situation 
treated here. The main difference between eqs. (3.30) and (3.32) is the 
occurrence of oscillating terms in the former. While the simplicity of (3.30) 
(in particular the absence of terms decreasing as a power of t) is of course 
due to the approximations (3.2) and (3.26), we expect that the occurrence 
of damped oscillations in P(t j kk ) 0 will be a general feature of the transition 
probability when calculated to higher order in the interaction. From the 
behaviour of the simple case treated here this feature appears to be the most 
prominent observable consequence of the non-markovian property we have 
seen to hold for the time evolution of the coarse grained probability (i.e. of 
the memory effect contained in the generalized master equation (2.13)). 

In an actual system this effect would manifest itself for example when 
an external electric field which has been acting long enough to give a 
stationary current is suddenly turned oft : the current while dying out would 
then perform some damped oscillations. This effect, however, would only 
appear when the electron-lattice interaction is strong, i.e. when the relaxation 
time is short, so that the times involved may be too short for actual ob- 
servation in metals or semi-conductors. Other dissipative systems involving 
slower time scales, like for example spin systems, might present more 
favorable conditions. Let us quote in that respect the nuclear spin system 
of a crystal. Although the present theory is not directly applicable to this 
situation, due to the discreteness of the quantum numbers, it is possible 
to develop a theory based upon the same principles 3). Actual observations 
of nuclear spin relaxation as made by Lowe and Nor b e r g 4) have revealed 
oscillatory behaviour. 
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4. An electron in a pkonon gas. We consider in the present section a 
slightly more complicated situation: one conduction electron in a vibrating 
harmonic lattice, i.e. in a phonon gas. This system has been considered 
preViously as an illustration of the general formalism, with special attention 
to the weak coupling case: a detailed derivation has been given for the 
lowest order master equation describing the evolution of the electron- 
phonon system, and for the result’ing Boltzmann equation which describes 
the time evolution of the electron alone 5). We here consider the same system 
to general order in the electron-phonon interaction and wish to derive from 
the generalized master equation a generalized Boltzmann equation for the 
time evolution of the electron alone. When the phonon energies are neglected 
compared to the electron energy, this equation has the form (2.13) with 
ao, CY, a’ replaced by the electron wave vectors. This is exactly the type of 
equation treated in the foregoing section. 

We consider a crystal of volume 52. The harmonic lattice vibrations are 
described in terms of phonons, characterized by their wave vector q (we 
neglect the polarization). The states of the conduction electron are labelled 
by its momentum k, the spin being neglected. We denote the phonon 
energy by CL)~ and the electron energy by Q. The Hamiltonian H’ = H + IV 
has the form 

with the usual commutation and anticommutation rules for the a*, a; and 

OL&, a;. Under periodic boundary conditions the components of q and k 

run over integral multiples of 27&t. The sum over q is restricted to the 
first Brillouin zone. We extend the sum over k to the whole k-space, thus 
neglecting the band structure of the electron. In the limit of an infinite 
crystal the sum 87&2-l& can be replaced byJ dq and (Q/87$) 8,,,! becomes 
the three dimensional delta function S(q - q’). Because we limit ourselves 
to states with one electron, the basic states can be written 

[a> = (Q/87c3)N+l a*a* k QI ... a& IO>, (4.3) 

where 10) is the no electron, no phonon state. These states have the required 
normalization (2.2) for D --f co. We actually are interested in states (4.3) 
where N is ot the same order as D, so that there is a finite phonon density 
in ordinary space. For such states we define two distribution functions of the 
phonons in q-space, n4 and G2,. The former n4 is simply the occupation number 
of the phonon state q in the state a; it has integral values and will be called 
the fine grained distribution. fiq is the coarse-grained distribution deduced 
from n4 by averaging over a small but finite volume element A, in q-space 

(4.4) 
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where the sum extends over all q in Aq. We shall assume ii, to be smooth 
in q. In the limit of an infinite system this function will remain unchanged 
under creation or destruction of any finite number ot phonons. Consequently 
for any finite time and any finite order in the electron-phonon interactions 
PE(~ 1 CC’OI) and ZP.JE(~ 1 CC’Q) differ from zero only when the state a’ has the same 
coarse grained distribution as the state CC, and in the generalized master 
equation (2.13) we can assume that all states cc’, c(, cc0 have the same coarse 
grained distribution 72,. 

We write down the master equation (2.13) for this specific system: 

dJ%(t I aao) 
---__ = S(a - ail) fE(t/a) $ 

dt 

In this equation k’ is the electron momentum in CC’. The phonon distri- 
bution in CL’ differs from that in a by the fact that phonons ql, . . . qi have 
been removed and phonons ql’, . . . qi’ added. From (4.5) it is possible to 
derive an equation describing the evolution of the electron alone. We first 
remark that the eigenvalues Do, Gz(E) of the operators (2.18), (2.19) 
depend in a very special way on the phonon distribution in the state ICC>. 
Do, Gl(a) are actually functions of k (the electron momentum in CZ), the 
coarse graine distribution gi, and the number 

i= I- &nqcoq, (4.6) 

where ng is the fine grained distribution of the phonons in ia>. As is readily 
checked by calculating Gl(cc) to some low order, i is the only combination 
through which the fine grained distribution enters Gl(cc) and Do. We 
write accordingly 

&(a) = &(k). (4.7) 

In this and later equations the dependence on Eli, is left out because, as 
mentioned above, we can assume ??, to be the same for all states to be 
considered. Similarly the function w,,,( CL’C() turns out to depend only on 
k, k’ (the electron momenta in a and a’), i (as defined in (4.6)), I’ - I, and 
the phonons q1 . . . . qi, ql’ . . . . qj’ which, as defined above, make the dif- 
ference between the phonon distribution in a and ~1’. Thus 

- 
Wll,(cc'a) = W~_,,(k’k, ql’ . . . qj’, q1 . . . qi). (4.8) 

Momentum conservation actually implies that the function (4.8) contains 
the factor 

6(k’ + ql’ + . . . + qj’ - k - q1 . . . -qi). (4.9) 
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Inserting (4.7) in the definition (2.26) we find 

f&t 1 d = f&t 1 k) (4.10) 
with 

,??? = E - & nqwq. (4.11) 

Similarly insertion of (4.8) into (2.25) gives 

Z@[t[ &cc) = E& k’k, Ql’ . . . Qj’, q1 . . . qt). (4.12) 

Also the latter function contains (4.9) as the momentum conservation 
factor. 

W now introduce the partial transition probability FE(t j kk,$ for the elec- 
tron alone, which will be shown to obey a generalized Boltzmann equation. 
Let 

IPO> =/ 1~~0) dao c(~o) 

be the wave function of the electron-phonon system at time t = 0 and 
assume as before that all states for which C(Q) # 0 have the same coarse 
grained phonon distribution F&. Define 

p,(t Ikko) = [P(~o)I-~- ScGLj d~J~40) dao ~~~E,~(~/~~o)I~(~o)12~ (4.13) 

PFo) = lcc(0) Ic(ao) I2 duo, (4.14) 

where the integral in a runs over all states with electron momentum k and 
the two integrals in a0 over all states with electron momentum ko. PECEaj 1 (tlaao) 

is the same~ quantity as in (4.5) except that the suffix E is replaced by 

E(Ea) = E + & n,w, (4.15) 

n4 being the fine grained phonon distribution of cc. Note that 

E(&a) = E(da’) with E’ = E + coq, + . . . + coq, - wq,, - . . . -wp,,. (4.16) 

Return now to the master equation (4.5). Replace E by E(ea) everywhere 
except in z0~(t - t’ I a, a’) PE(~’ I a’ao) where it has to be replaced by the 
identical quantity E(&‘a’). Using (4.10), (4.1 l), make the substitution 

f~&t I4 = JE@ 14 

Similarly, with (4.1 l), (4.12) substitute 

w,+,,(t - t’ 1 a’a) = ii,(t - t’ I k’k, Ql’ . . . qj’, Q1 . . . qg) 

~~(~,~,)(t - t’ j aa’) = Ge.(t - t’ 1 kk’, q1 . . . qi, ql’ . . . qj’). 

Multiply both sides of (4.5) by Ic(ao)l2i$(k ) 0 an d sum over all a0 with electron 
monentum ko. Sum further both sides over all a with electron momentum k; 
for fixed ql, . . . qg, ql’ . . . qj’ the state a‘ then runs over all states with 
electron momentum 

‘I( k’ = k + q1 + . . . + qz - 41’ - . . . - qj’. 

U&ng (4.13), these summations amount to replacing PECEIJ(t 1 aao) by 
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P,(t 1 kko) and PE1(Elb.j (t’l a’cq) by P,(t’I k’ko). The result is the following 
generalized Boltzmann equation for an electron in a phonon gas 

&l:(Wo) = 6(k - ko)fc (tlk) + 

+ 2na2 S,‘df’i%o j. /dk’ r&i dq, ITi,=i dq,’ . 

. Zi,,(t - t’ I kk’, q1 . . . qi, ql’ . . . q,‘)& (t’ I k’k,,) - 

- 2nL2 
s* 

dt’ 5 5 
s 

dk’ n;-, dq, JJi,_, dq,’ . 
i=l) j=o 

. TZe(t - ; 1 k’k, ql’ . . . q,‘, q1 . . . qt) P,(t’l kk,,), (4.17) 

where E’ is, as before, the following function of E, q,, and qO’ 

i i 

Et = E + x Oqp - c COq,‘. (4.18) 
p=l 0-l 

Eq. (4.17) may be simplified further if the phonon energies can be neglected 
with respect to the electron energy. E’ can then be identified with E and we 
find 

dpe (t I kko) 

dt 
= 6(k - ko) L(t I k) + t 

+ 2n12 s s dt’ dk’w& - t’ I kk’) p’,(t’ j k’k,,) 
0 

- 2d2 
s s 
t dt’ dk’w,(t - t’ j k’k) PE(t’ 1 kko) (4.19) 
0 

with 

w,(t-t’lkk’) = 5 ~jn:=,dq,nj,=,dq~~~,(t-tt’lkk’, ql...qi, ql’...q,‘).(4.20) 
i=o .j=o 

Eq. (4.19) entirely agrees with the generalized Boltzmann equation for an 
electron in a system of random scattering centers, which is the case studied 
in the previous section. The approximate solution there obtained also 
illustrates the behaviour of an electron in a phonon gas under neglection 
of the phonon energies. It might be interesting to look for an approximate 
solution of equation (4.17) which incorporates these energies, but no attempt 
has been made in this direction. 
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