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Abstract

Manufacturing and assembly processes often require objects to be held
in such a way that they can resist all external wrenches. The problem of
"�xture planning" is to compute, for a given object and a set of �xturing
elements, the set of placements of the �xturing elements that constrain all
�nite and in�nitesimal motions of the object (due to applied wrenches).
As �xturing problems occur frequently in manufacturing and assembly, it
becomes costly to build a dedicated �xturing solution for each di�erent
problem. Modular �xturing toolkits o�er the advantage of reusability of
the �xturing elements and have therefore gained considerable popularity.
A modular �xturing toolkit consists of a �xturing table with a rectangular
grid of holes, and a set of �xturing elements whose positions are restricted
to the holes in the table. Several recent publications in the �eld of �xture
planning aim at exploring the power of these modular �xturing toolkits.
We give an overview of modular and non-modular �xture planning for
various types of objects and sets of �xturing elements.

1 Introduction

Many manufacturing operations, such as machining, assembly, and inspection,
require constraints on the motions of parts or subassemblies of parts [4, 8]. The
concept of form-closure is over a century old [25] and refers to constraining,
despite the application of an external wrench (force and moment), all motions
of a rigid object (including in�nitesimal motions) by a set of contacts on the
object; any motion of an object in form-closure has to violate the rigidity of the
contacts. Therefore, the problem is to compute contact locations on a given
part shape that achieve form-closure.

In this paper, we are interested in immobilizing planar objects, in partic-
ular polygons. We give an overview of �xturability results and algorithms to
compute form closure con�gurations under di�erent �xture models. We refer
to the set of contacts achieving form-closure as a �xture. We assume that the
contacts are frictionless; note that this is a conservative assumption since any
�xture computed assuming zero friction also holds in presence of friction. By
the �xture model, we imply the set of allowable contact types. The conceptually
simplest model is that of point contacts. See Figure 1 for an example of a �xture
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Figure 1: A polygon that is not �xtured with four point-contacts and the same
polygon that is �xtured.

locator
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Figure 2: A polygon in form closure with one edge-contact and two point-
contacts. A point-�xel can reach into concavities, whereas an edge-�xel cannot.

in a model with four point-contacts. It has been known since Reuleaux that
�xturing a planar object requires at least four frictionless contacts. Mishra,
Schwartz, and Sharir [21] and Markensco�, Ni and Papadimitriou [19] indepen-
dently proved that four point-contacts are also su�cient.

While point-contacts are conceptually simple, they are not always easy to
achieve in practice. The reason is that for form-closure, these point-contacts
have to be capable of resisting arbitrary wrenches and therefore they have to
be backed by bulky supports. This in turn implies di�culty of placing point-
contacts at some points on the boundary of an object, in particular, at narrow
concavaties. Hence, it is important to look for other possible practical �xture
models in order to reduce the number of point-contacts. In everyday life, we
frequently lean an object against a 
at surface, such as a table or a wall, to
constrain its motions. In the planar world, the analog of a wall is a supporting
line. In this paper we also consider �xture models that include edge-contacts
which o�er straight-lines of support. Notice that an edge-contact can touch the
object only along its convex hull. The object simply rests against it; there is
no reaching into concavaties. See for an example Figure 2.

The �rst part of this overview is concerned with �xturability results. We
identify classes of parts that are �xturable under di�erent �xture models includ-
ing point-contacts and one or two edge-contacts. Since it is not only important
to know what parts can be �xtured under a model, but also what parts can not
be �xtured, we also give negative results on existence of solutions.

The second part of the paper deals with modular �xtures which is a subject
of considerable popular interest in the manufacturing industry for the past ten
years or so [1, 2, 13, 14]. Basically, this involves a regular square grid of lattice
holes together with �xture elements (or �xels [5]) that are constrained by the
grid; the object rests against these �xels which constrain its motions. Custom-
built �xtures being expensive, the major bene�t of modular �xtures stems from
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angle-�xel

Figure 3: A polygon in form closure with two edge-�xels (one angle-�xel) and
a point-contact.

Figure 4: A polygon in form closure on a vise.

their recon�gurability; it is often necessary to �xture an object only for short
periods of time after which the same set of �xels can be used to �xture di�erent
objects. Another advantage of modular �xtures is their easy assembly and
disassembly.

Since research in computing form-closures generally involved point-contacts,
it is not surprising that most �xels were designed to achieve point-contact. The
simplest �xel is the locator which is a circular object centered at a lattice hole.
Since achieving contact with four circles constrained to a grid is in general
impossible ([31] shows this even for three circles), it is clear that we need a �xel
that takes care of the slack. Such a �xel is called a clamp which has a �xed
portion, the clamp body, attached to a movable rod, the clamp plunger, that
can translate between certain limits along a grid line. The end of the plunger is
the clamp tip which makes contact with the object. A clamp can be con�gured
so that the motion of the plunger is parallel to either one of the axes; it is
termed horizontal or vertical accordingly. See Figure 2 for an example of a
clamp. An edge-�xel is simply a bar-like object of appropriate dimensions �xed
to the lattice o�ering a straight-edge of support. We assume that an edge-�xel
is at least as long as the longest edge in the convex hull of the object. Two
edge-contacts are achieved by the use of a so-called angle-�xel, see for example
Figure 3. The angle-�xel consist of two edge-�xels that are connected by a joint
(an adjustable angle-�xel) or connected to each other with a �xed angle.

Wallack and Canny [29] consider an interesting model of modular �xtures
which uses four locators and no clamps; instead, the slack is countered by
mounting the part on a split horizontal lattice and allowing the one half to
slide horizontally relative to the other. They call such a �xture device a vise.
See Figure 4 for an example of this �xture model.
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We will give �xturability results for models using the di�erent �xture el-
ements described above and also give an overview of algorithms to compute
all possible form closure con�gurations on a grid. It is important to generate
all solutions rather than just one. The reason is that additional conditions
make some solutions preferable over others. By generating all solutions we can
compare them and choose the one most suited for the particular problem. We
consider both output-sensitive and non output-sensitive algorithms. An algo-
rithm is called output-sensitive if its running time depends on the number of
answers (form closure con�gurations) it computes. A non output-sensitive al-
gorithm has a �xed running time. This is independent from the number of form
closure con�gurations. Usually one prefers output-sensitive algorithms, but it
is not always possible to �nd them.

This overview is structured as follows. We �rst give a short introduction on
the notions of form closure and immobility in Section 2. Then, after introduc-
ing some preliminaries in Section 3, we discuss in Section 4 the di�erent types
of �xture models that are considered in the rest of the paper. In Section 5 we
give an overview of (non-) �xturability results in di�erent models, where we are
not restricted to a grid. We also show how to compute one form closure con-
�guration e�ciently. Section 6 considers the case of modular �xtures. Finally,
we conclude with possible extensions of the algorithms and open problems in
Section 7.

2 Form Closure and Immobility

The terminology used in �xturing literature over the past years has not always
been consistent. Here we discuss a few di�erent notions on immobility of ob-
jects and show how our de�nition of form closure, which we will use in the rest
of this paper, �ts in. Several authors have discussed form closure and immo-
bility [3, 11, 24, 26, 27]. Initially Reuleaux [25] used the term force closure to
describe immobilization (equilibrium) of an object that requires the application
of an externally applied wrench. He de�ned form closure on a body as an equi-
librium that is maintained despite the application of any possible externally
applied wrench (force and moment). The method that we use (and that was
�rst described by Reuleaux) is an instantaneous analysis and describes only
the constraints on in�nitesimal motions. This is equivalent to the notion of
1st order immobility introduced by Rimon and Burdick [26]. 2nd order immo-
bility analysis includes the curvatures of the object and �xel surfaces into the
determination of object immobility and therefore leads to other results [10, 26].
Since most of the literature focuses on 1st order immobility, we will de�ne this
as form closure. (So whenever we use the term form closure, we mean 1st or-
der immobility.) This notion is a su�cient condition for immobility, but not
a necessary one as pointed out by Rimon and Burdick [26]. When taking into
account 2nd order immobility, it turns out that three contacts su�ce to immo-
bilize almost all two-dimensional objects. The three contact normals, however,
must intersect in a single point which is usually hard to accomplish in prac-
tice. From a practical point of view it seems better to use 1st order immobility.
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Figure 5: Motions possible under simple contacts.

Furthermore forces that will be applied on the point-contacts can be arbitrary
large if we use only three point-contacts (if, for example, we drill a hole at the
point where the three normals intersect each other)

3 Geometric Interpretation

Recall that a �xture is said to provide form-closure if it precludes all (planar)
motion, translations and rotations. Let us start by examining what motions
are ruled out by single point- or edge-contacts. Let from now on the object
to be �xtured be a polygon P (not necessarily convex). A point-contact is
a contact of a point-like �xture element (locator or clamp) with an edge or
a vertex of P , whereas an edge-contact is a contact of an edge of a �xture
element with an edge or one or more vertices of the object P . A wrench applied
to P will make it translate or rotate. We will consider rotations only, with the
understanding that translations in a direction are simply rotations about a point
at in�nity along the perpendicular direction. In this manner an (in�nitesimal)
motion of a polygon can be represented by a point in the plane, denoting the
center of rotation of this motion; together with the direction of the rotation:
clockwise (+) or counter clockwise (-). A point at in�nity thus represents an
(in�nitesimal) translational motion.

Denote the boundary of the input polygon P by @P ; n is the number of
edges forming @P . Let CH(P ) denote the convex hull of P . Let the polygon
edge containing a point a on its boundary be denoted by E(a); the directed
line perpendicular to E(a) through a pointing to the interior of P is l(a). We
distinguish the following cases (See Figure 5).

Point-contact at interior of an edge
This is the fundamental contact and the motions allowed by other types of con-
tacts can be deduced by composing those allowed by elementary point-contacts.
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Consider a point-contact at point a in the interior of edge E(a) as shown
in Figure 5. The allowed motions are de�ned by the line l(a). If the object
rotates in a clockwise (positive) direction with a point-contact at a, its center-
of-rotation (COR) will have to lie in the region to the right of (and including)
l(a). Furthermore, any point in this closed right-half-plane is a possible COR
for a positive rotation. Similarly, the COR's for counter-clockwise or negative
rotations lie in the closed half-plane to the left of l(a). These are all and the
only constraints imposed by the point-contact at a. For future reference, we
call these half-plane constraints imposed by a.

Point-contact at concave vertex
This is shown in the upper-right of Figure 5; a is the concave vertex. Imagine
two points a1; a2 in�nitesimally close to a along the two edges de�ning it. The
motions allowed by a can be determined by intersecting the motions allowed by
the point-on-edge pairs (a1; E(a1)) and (a2; E(a2)) which may be individually
analyzed as above.

Consider rotating a line l through a from l(a1) to l(a2) in the clockwise
direction. The wedge constraints de�ned by a is the intersection of each of the
half-plane constraints obtained along the sweep. Therefore, the motions allowed
by a are described by the intersection of two half plane constraints, this can be
represented by a wedge. The result is shown in the �gure. These will be called
wedge constraints de�ned by a.

Edge-contact at a vertex of CH(P )
An edge-�xel can be in contact with a vertex of the convex hull of P ,CH(P ).
Consider the line l(a) perpendicular to the edge-�xel and directed towards the
side of the �xel that contains the polygon. All points in the half plane to the
left of l(a) can be COR's for counterclockwise rotations. Similarly the points
in the right half-plane are COR's for clockwise rotations of P . Thus, this type
of contact can be described by one half-plane constraint.

Edge-contact at an edge of CH(P )
An edge-�xel can be in contact with the polygon along an edge e the polygon
or at two vertices a3; a4 (adjacent on the convex hull). The latter case is shown
in the Figure 5; the former case can be similarly analyzed considering a3; a4
to be the end-vertices of e. Consider the lines l(a3); l(a4) perpendicular to the
edge-contact and con�ne the two half-plane constraints to get the result shown.
The closed left half-plane at l(a3) allows for negative rotations while the right
half plane of l(a4) allows for positive rotations. The open in�nite \slab" in the
middle, shown shaded in the �gure, denoted slab(a3; a4), disallows all motions
and is a crucial entity in future analysis. The constraint imposed will be called
a slab constraint, which is actually a combination of two half-plane constraints.

We do not give constraints for a point-contact at a concave vertex, because
in practice, these contacts are not used. These contacts are not stable and will
lead to deformation of the part if the forces become too large.

If we want to know if an object is in form closure, we have to construct
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Figure 6: A rectangle that is not �xed with one point-contact and one edge-
contact.

the regions associated with the contacts that are imposed and con�ne them.
If there is no region that allows for positive (or negative) rotations for every
constraint, we have a form closure con�guration, otherwise (in�nitely small) mo-
tions are possible. The method of analysing possible motions in this geometrical
(graphical) way was introduced by Reuleaux [25] in the case of point-contacts.
It should be noted that two (or more) parallel contact normals intersect in a
point at in�nity. See for an example Figure 6, in this case all positive and
negative rotations seem to be excluded, but the intersection point at in�nity
still gives a possible center of rotation. Since this point is at in�nity, a rotation
means translation, thus the rectangle can still be translated to the left or to the
right.

4 Fixture Models

In this paper we will consider four di�erent ways of �xturing objects: with four
point-contacts, with one edge-contact and two point-contacts and two edge-
contacts and one point-contact (of which two perpendicular edge-contacts and
one point-contact is a special case). All these models are minimal in the sense
that for most polygons we need all the �xels in the model to achieve a form
closure con�guration. We can make a comparison of the di�erent �xture models
using a number of criteria. The main criteria that we discuss here are classes
of �xturable objects (which we will call the strength of the model, the model
being stronger if more objects can be �xtured), loading the part, accessability,
e�ciency of computation of �xtures and stability of the �xtures. We also com-
pare the number of contacts that are made in the model in terms of half-plane
constraints. In the rest of the paper we will assume that whenever we use one
or more edge-contacts, one of these edge-contacts will be an edge-contact at an
edge of CH(P ).

Four point-contacts
This is the basic model in which all polygons can be �xtured. In the following
we will discuss why we also look at other �xture models that seem to be less
strong, but do have advantages over the four-point model. A model with four
point-contacts is preferred if we need to have a large accessability of the part,
since edge-contacts will constrain accessability of P more than point-contacts.
The maximum number of half plane constraints that we can get in this model
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is eight, if we place all four contacts at concave vertices of the polygon.

One edge and two point-contacts
An edge-�xel placed against an edge of CH(P ) imposes two half-plane con-
straints on P . The two point contacts can result in a maximum of four half-
plane constraints if we place them at concave vertices. The model is not as
strong as a model with four point-contacts, because we cannot �xture some
parts that have parallel edges, as will be shown below. The reason for this
is that the two point-contacts as imposed by the edge are colinear. The ad-
vantage of the system however is that the computation of all possible �xtures
in a modular model can be done more e�ciently, because P can only be in a
�xed number of di�erent orientations, which is not the case when we only have
point-contacts. Intuitively, the stability of a �xture with an edge-�xel is better
when forces are applied to it, because the force will be distributed along the
edge and not only act on two points. We also believe that it is easier to load an
object into the �xture even when the initial orientation of P is uncertain. If we
�rst load the polygon against the edge-�xel, we already have �xed the orien-
tation of P and can then slide it against the locator and �nally apply the clamp.

Two perpendicular edge-contacts and one point-contact
In this case, again we can not �xture some parts that have parallel edges. Al-
though the model can impose 5 half-plane constraints (or 6 in the case that two
perpendicular edges of P are placed against the edge-�xels), we can not �x-
ture every polygon because there is a dependancy between the three half-plane
constraints that are imposed by the edge-�xels (the directions of the contact
normals and the contact point with the second edge, when we have �xed the
edge against the �rst edge depend on each other). Once we have determined the
edge of CH(P ) to place against the horizontal edge-�xel, we have �xed three of
the half-plane constraints already. The computation of all possible �xtures is
fairly easy. The number of orientations for P is the same as in the model with
one edge-contact and two point-contacts. In addition, for each orientation there
is only the position for the point-contact to consider. Loading the part seems
to be quite easy in the model and intuitively the stability of the �xtures is good.

Two edge-contacts and one point-contact
With this model we have more degrees of freedom than in the case of two per-
pendicular edge-�xels, since we can vary the angle between the two edge-�xels.
As a result, it turns out that we can �xture all polygons. In the model we
can have maximal 6 half-plane constraints, two for each edge-contact and two
for the point-contact (if it is placed at a concave vertex). In addition however,
these are not always the placements that will give us a form closure con�gura-
tion (e.g. a rectangle). But, if this is not the case, we can �nd a form closure
con�guration with a di�erent placement of the part (if we assume that there is
no grid). A disadvantage of the model is that the edges should be positionable
in any orientation, which is not always achievable in practise.

So, in conclusion we can say that the models with four point-contacts and with
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Figure 7: A polygon that is �xtured with four point-contacts.

two edges and one point-contact are the strongest but they have the disadvan-
tages that form closure con�gurations are harder to compute, they are more
di�cult to load and less stable.

5 Fixturability without a Grid

In this chapter we examine what kind of objects are �xturable with each of
the toolkits mentioned in the previous section. We do not yet take modular-
ity constraints into account. For every model we show what is known about
�xturability of classes of objects and algorithms to compute one form closure
con�guration. We will frequently use a property of the contact points of the
maximal inscribed circle of P with the boundary of P as is stated in the fol-
lowing lemma. The lemma follows from Markensco� et al. [19].

Lemma 1 [19] Let P be a polygon without pairs of parallel edges. Let MIC(P )
be any maximal inscribed circle of P and c the center of MIC(P ). Then the

three vectors
�!

cai, ai 2 (MIC(P ) \ @P ), positively span R2.

The time to compute the maximal inscribed circle of a polygon P (MIC(P ))
is O(n) both for convex and non-convex polygons [7]. This can be done by
computation of the medial axis of P , the center of the MIC(P ) is a vertex
of the medial axis of P . We also use the following lemma that can easily be
proved.

Lemma 2 Given a set V = v1; v2; v3 of three vectors that positively span R2.
For every fourth vector v4 in R2, we can de�ne a new set of vectors consisting
of v4 and two vectors from V , such that this new set positively spans R2.

5.1 Four Point-contacts

Since the graphical method of Reuleaux from Section 3 is not always the eas-
iest test for automatically verifying for form closure, other methods for testing
form closure with four point contacts are commonly used. A point-contact-
vector on an object in two dimensions can be described by three variables; the
position of the contact and its torque. Four point contacts provide form clo-
sure if and only if the four associated point-contact-vectors positively span R3.
This can be veri�ed using matrix computations [29] or force-sphere analysis [6].
Markensco� et al. [19] proved the following Theorem.
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Figure 8: A polygon �xtured with one edge-�xel and two point-�xels.

Theorem 3 [19] For any object O that is not a circle there is a set of four
point contacts (possibly at a concave vertex) that provides form closure.

The proof uses the properties of the maximum inscribed circle (MIC(P ))
as stated in Lemma 1. The proof utilizes point contacts that are either on or
close to the points of contact of a maximum inscribed circle of the object. It
distinguishes two cases.
First there is the case where there are three contact points of MIC(P ) with
P . In this case one of these points is replaced by two points that are close to
each other and on either side of the contact point of MIC(P ) and P . It is then
shown that the point-contact-vectors at these four points positively span R3.
The second case is the case where (some of the) MIC(P )'s touch only two
points of P . This only happens when the MIC(P ) touches two parallel edges
of P . In that case the MIC can be slided along these two edges, while its size
remains the same. Thus we do not have a uniqueMIC. The intersection points
of MIC(P ) and P are antipodal. If we assume that there is a third point on
some MIC(P ) that touches P , we can always �nd a fourth point that will give
us a form closure con�guration. If there is no such a third contact point all the
MIC(P )'s touch the boundary only in two points. In this case we can move
the MIC(P ) to the left and the right in order to obtain two couples of forces
that will give a so-called form closure by couples.
The proof is constructive in the sense that it does not only show the �xturability
of objects in the four-point model, but it also indicates how to compute a form
closure con�guration for every two-dimensional object, by computing its MIC,
leading to an algorithm with a running time of O(n).

5.2 One Edge-�xel and Two Point-�xels

The problem of immobilizing a polygon with one edge-contact (where the
edge-�xel is placed against a convex-hull-edge of P ) and two point-contacts
was analysed by Overmars et al. [23]. In Section 3 we have described what
motions are constrained by an edge-edge contact and a point-edge contact. To
constrain all motions of the object the set of allowable centers of rotation must
be empty. The following lemma gives a more useful condition for form closure
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Figure 9: The tangent points of the largest inscribed circle of P with P give us
the edge- and point-contacts for form-closure.

in this model. Let a1 and a2 be two points on an edge of P , and a3 and a4 two
adjacent vertices on CH(P ).

Lemma 4 [23] An object P is in form-closure with point-contacts a1; a2 and
edge-contact (a3; a4) if and only if

1. the three vectors along l(a1); l(a2); l(a3) positively span R2, and

2. the intersection point of l(a1) and l(a2) lies in the interior of slab(a3; a4).

See Figure 8 for an example of an object that is in form closure with one edge-
contact and two point-contacts.

Overmars et al. showed that if no edges of P are parallel then a form closure
con�guration always exists [23]. Their proof goes as follows. If we have the
maximal inscribed circle of a convex polygon without parallel edges, there are
always (at least) three intersection points (a1; a2; a3) of P and MIC(P ), that
lie in the interior of edges of P and whose contact normals positively span R2

(Lemma 1). If we place one of these edges against the edge-�xel, we obtain form
closure by placing the two point-contacts at the other two intersection points of
P and MIC(P ). This is true because the contact normals to these two points
will intersect at the center (c) of MIC(P ) and the slab de�ned by the edge-
contact has c strictly in its interior. From Lemma 4 we can now conclude that
this is a form closure con�guration. See for an example Figure 9.

A similar proof can be given if P is not convex. If at least one of the edges
of CH(P ) is on the MIC(P ) we can use the same form closure construction as
for a convex polygon, since the edge-�xel can then be placed against this edge of
CH(P ). If none of the intersection points of P andMIC(P ) is on a convex hull
edge of P we cannot place any of these edges against the edge-�xel. Instead,
we grow the circle until we touch an edge of CH(P ). We can then place this
edge against the edge-�xel and choose two points of (a1; a2; a3) whose contact
normals will span R2 together with the direction of the edge-contact normal
(corresponding to the edge-contact) using Lemma 2. See for example Figure
10. Thus we obtain the following Theorem.
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a1

a2
a3

Figure 10: Growing the maximal inscribed circle of a non-convex polygon, until
it hits an edge of CH(P ) gives a form closure con�guration.

Figure 11: A rectangle can not be �xtured in the model with one edge-contact
and two point-contacts. We can always still translate it in horizontal or vertical
direction.

Theorem 5 [23] Let P be an arbitrary polygon. If no edge of P is parallel to
one of the edges of CH(P ) then P can be held in form closure with one edge-
and two point-contacts.

However, it is not true that all polygons that do have parallel edges cannot
be �xtured. We can even show that rectilinear polygons of which the convex-
hull is not a rectangle are �xturable with an edge-�xel and two point-contacts.

The proof is again constructive, leading to an O(n) algorithm for computing
one form closure con�guration.

Not all polygons can be �xtured in this model, for example a rectangle
and some trapezoids cannot be �xtured as shown in Figures 11 and 12. The
rectangle can always be translated in horizontal or vertical direction if we place
the point-contacts at interiors of edges of P . The trapezoid with two parallel
edges, a and c can not be �xtured. Consider all possibilities to place one
edge of the trapezoid against the edge-�xel, then it can be seen that none of
the correctly oriented contact normals will intersect in the slab de�ned by the
edge-contact. Thus, according to Lemma 4 a form closure con�guration does
not exist.

5.3 One Angle-�xel and a Point-�xel

In a �xture model with one angle-�xel and a point-�xel, there are two possi-
ble sets of contacts. The angle-�xel can sometimes be placed such that both
edges of the �xel make contact with an edge of the convex-hull of P . In this
case the intersection between the two slabs de�ned by the edge-contacts is a
parallelogram, s. For an example see Figure 13. If we want to obtain a form-
closure con�guration the contact normal to the point-contact should intersect
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Figure 12: Trapezoid abcd can not be �xtured in a model with one edge-�xel
and two point-�xels, since the intersection of two slabs is never intersected by
a third slab that is correctly oriented.
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Figure 13: A polygon in contact with an angle-�xel, where the two contacts are
both edge-contacts.

the parallelogram and be correctly oriented. Let a1 be the the leftmost vertex
contacting the �rst edge-contact and a2 the rightmost vertex contacting this
edge. Similarly a3 is the leftmost vertex contacting the second edge and a4 the
rightmost contact vertex.

Lemma 6 An object P is in form-closure with edge-contacts (a1; a2) and (a3; a4)
and point-contact a5 if and only if

1. The three vectors along l(a1); l(a3); l(a5) positively span R2, and

2. l(a5) should intersect the interior of slab(a1; a2) \ slab(a3; a4).

In the other case one edge-�xel can be placed against an edge of CH(P )
(this contact will de�ne a slab-constraint) and the other edge will contact P at
a vertex of the convex hull (imposing an edge-vertex constraint as described in
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RRA-�xelLRA-�xel

Figure 14: A polygon in form closure with a LRA-�xel and a point contact and
with a RRA-�xel and a point-contact.

Chapter 3). If we intersect these two constraints (i.e. a slab and a line), we
obtain a segment, s. In fact this is a special case of Lemma 6, where a3 and a4
coincide, Thus reducing the parallelogram to a segment. We will consider two
di�erent cases. One in which the two edge-�xels make a right angle and one in
which the angle can be chosen arbitrarily.

5.3.1 Right Angle-�xel and a Point

In this section we investigate �xturing an object with a right-angle-�xel and
a point-�xel. A right-angle �xel o�ers two edge-contacts, perpendicular to
each other. See Figure 14 for an example. We assume one of the edges to be
horizontal. We will consider two possible orientations of the �xel that will give
di�erent form closure con�gurations. One way of placing the angle-�xel is such
that the second (vertical) edge will be to the left of the object (LRA-�xel) and
the other placement where the second edge is to the right of P (RRA-�xel). See
Figure 14 for the two placements of the RA-�xel. An object is called �xturable
in the model if it can be �xtured with at least one of the orientations of the
RA-�xel. A rectangle can not be �xtured, since no triple of contact normals
can positively span R2. Currently, we have no other examples of polygons that
cannot be �xtured in this model.

We will now show that any convex polygon without parallel edges can be
�xtured. For non-convex polygons this is still an open problem. The pair of
boundary features (edges, vertex) of a convex polygon P intersected by the
two closest parallel lines of support of P satis�es a property that turns out to
be useful the proof of Theorem 8. A supporting line of P either intersects P
in a vertex or along an edge. A pair of boundary features intersected by two
parallel supporting lines is referred to as an antipodal pair. Note that in the
case that the polygon P has no parallel edges, an antipodal pair consists of
either two vertices or one edge and one vertex. The distance between the two
closest parallel lines of support is referred to as the width of the polygon. The
antipodal pair that determines the width of P , i.e., the pair of features that
are intersected by the two closest parallel supporting lines, consists of an edge
ew and a vertex vw [15]. The pair (ew; vw) can be computed in time linear in
the number of polygon vertices, Lemma 7 gives an interesting property of the
antipodal pair determining the width.
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Lemma 7 Let P be a convex polygon without parallel edges and let vw be the
vertex and ew be the edge intersected by the two closest parallel supporting lines
of P . Then the line through vw and perpendicular to ew intersects the interior
ew.

Proof: The lemma is true if and only if vw lies in the open slab sl(ew) of
all lines that perpendicularly intersect the edge ew. Assume without loss of
generality that the edge ew and the two closest parallel supporting lines of P
are horizontal, as in Figure 15. As a result, the slab sl(ew) is vertical. Assume,
for a contradiction, that vw does not lie in the slab sl(ew). Let us assume that
vw lies to the right of the slab. Let c be the right endpoint of the edge ew.
Recall that the (horizontal) lines of support at vw and ew are the two closest
parallel lines of support of the polygon. By the assumption that no two edges

vw

ew

sl(ew)

c

�

v0w

ee0w

e1
e2

Figure 15: When vw lies to the right of the slab sl(ew) of lines that perpen-
dicularly intersect ew, a small clockwise rotation about c causes the polygon to
loose contact with the upper horizontal line.

of the polygon are parallel, neither the edge e incident to c nor the edge e1
incident to vw can be horizontal. The convexity of the polygon implies that
it is entirely contained in the wedge bounded by the supporting half-lines of
e1 and e2 emanating from vw and in the wedge bounded by the supporting
half-lines of ew and e emanating from c. Let � be some arbitrary angle smaller
than the angle between the edge e and the lower horizontal line and the angle
between the edge e1 and the upper horizontal line. A clockwise rotation of �
about c causes the wedge at vw to fall strictly below the upper horizontal line,
whereas the wedge at c remains above the lower horizontal line. As a result,
the distance between the two horizontal lines of support can be decreased by
lowering the upper line, contradicting the fact that the initial horizontal lines
are the closest parallel lines of support. Hence, the vertex vw cannot lie to the
right of the slab sl(ew). Similar arguments apply if vw lies to the left of the
slab sl(ew), using a counterclockwise rotation about the left endpoint of ew.
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ew

vw

`wv1
v2

Figure 16: The line `w through vw perpendicularly intersects ew. The vertical
lines of support intersect the polygon in the vertices v1 and v2.

Thus, the vertex vw must lie inside the slab sl(ew) of lines that perpendicularly
intersect ew. Hence, vw must be on a line that perpendicularly intersects ew. 2

Informally, Lemma 7 tells us that we can put any convex polygon without
parallel edges into an orientation where one of its edges is horizontal and the
highest (top) vertex lies above that horizontal edge. This will be the orientation
in which we will �xture the object.

Theorem 8 Any convex polygon without parallel edges can be immobilized by
a right angle �xel and a single point contact.

Proof: Let ew be the edge and vw be the vertex intersected by the two closest
parallel supporting lines of the polygon. Let `w be the line through vw and
perpendicular to the edge ew, which, by Lemma 7, intersects the interior of ew.
We assume, without loss of generality, that the edge ew and the two closest
parallel supporting lines are horizontal. The line `w is vertical.

Consider the two lines of support that are perpendicular to the two closest
parallel supporting lines (see Figure 16).

Each of these lines intersects the polygon boundary in a vertex; in the
accidental case that the line intersects the polygon along an edge, simply take
its top endpoint to be the vertex of intersection. Note that the two resulting
vertices v1 and v2 are the candidate contact points with the second �xel bar
if one �xel bar is placed along ew. Choose vv to be the highest (in vertical
direction) of the two vertices v1 and v2. We place the angle �xel in simultaneous
contact with the full edge ew and the vertex vv. Let `v be the horizontal line
through vv, and let q be its intersection point with `w. The point q lies strictly
below vw. Note that the contact normal at vv is directed along `v and pointing
towards the interior of the polygon. The contact normals at ew point upward.

It remains to show that there exists a point p on the polygon boundary
such that the right angle �xel placed against ew and vv and a point contact at p
immobilize the polygon. More speci�cally, we show that there exists a point p
such that (i) the contact normal at p positively spans the plane with the contact
normals at vv and ew and (ii) the supporting line l(p) of the contact normal at
p intersects the supporting line `v of the contact normal at vv in q, which is
contained in the slab induced by the edge contact at ew. By Lemma 6, this will
imply form closure.
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Figure 17: The angle �xel is placed in simultaneous contact with ew and vv. A
point contact p can be placed on the convex polygonal chain C such that p and
the angle �xel hold the polygon in form closure. The closer view of C on the
right shows that if p moves from p0 to p00 along an edge of C, the intersection s
of l(p) and `w moves from s0 to s00. Given the initial and �nal positions of s on
`w, the point s must eventually pass through q.

Now assume that vv is the vertex intersected by the left vertical supporting
line. The contact normal at vv points to the right. Figure 17 shows the situation.
We claim that there is a point p satisfying (i) and (ii) on the convex polygonal
chain C to the right of `w and above `v. The chain is strictly decreasing and
contains no vertical edges by the observation that the vertex of intersection
with the right vertical supporting line of the polygon lies below `v. As a result,
the contact normal at any point p 2 C satis�es condition (i). Let r be the
endpoint of C on `v.

Let us consider the motion along `w of the intersection point s of l(p) and
`w when p moves from vw to r (see Figure 17). By placing p su�ciently close
to vw on C, we can put the intersection point s arbitrarily close to vw, and,
hence, above q. By placing p at r or su�ciently close to r on C if r is a vertex
- we can put s below q by the fact that r is on a non-vertical edge. If p moves
towards r along some edge of C then the intersection point s moves downward
along `w (see Figure 17 where s moves from s0 to s00 as p moves from p0 to p00);
if p passes a vertex then s jumps back up. As a consequence, the point s will
pass through q as p moves along one of the edges of C on its way from vw to r.
Hence, there exists a point p that satis�es conditions (i) and (ii). As a result,
a point contact at p establishes form closure for the polygon placed against the
angle �xel. Similar arguments apply when vv is the vertex intersected by the
right vertical supporting line. 2

This �xturability-proof can be generalized to angle-�xels with an arbitrary
�xed angle, we will not give the proof here, but only state the corresponding
theorem.

Theorem 9 Any convex polygon without parallel edges can be immobilized by
a �xed angle �xel and a single point contact.

Since computation of the width of P takes O(n) [15] and testing the edges
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Figure 18: A rectangle �xtured by an angle-�xel and a point-�xel.

on the chain C takes O(1) per edge, a form closure con�guration can be com-
puted in linear time.

5.3.2 Adjustable Angle-�xel and a Point-�xel

In this section we consider �xtures with an adjustable angle �xel as shown in
Figure 18 and a point contact. The angle-�xel is horizontally �xed, but the
second edge can be adjusted by rotation about the joint that connects the two
edges of the �xel. The second edge can be either to the left or to the right of the
horizontally �xed edge. The most stable �xtures can be obtained if two edges
of CH(P ) are in contact with the edge-�xels. We can prove that there is such
a �xture for all polygons without parallel edges. In the case where we do have
parallel edges (e.g. a rectangle) we may not be able to �xture P in this manner,
but one of the contacts with the angle-�xel should be a point-edge-contact. We
will prove �xturability of all polygons using these types of contacts. We use the
following lemma.

Lemma 10 Given a polygon P and a point c in the interior of P . If we grow
a circle with center c, the �rst point that will be hit on the boundary of P is a
point on an edge of P , tangent to the circle or a concave vertex of P . Similarly,
if we grow a circle with center c in the exterior of P , we will �rst hit a convex
vertex of P or an edge of P .

We �rst deal with the case in which no two edges of the convex hull of P
are parallel.

Theorem 11 Let P be an arbitrary polygon. If no edges of CH(P ) are parallel
then P can be held in form closure with an adjustable angle �xel and a point-
contact.

Proof: Let MIC(CH(P )) be the maximum inscribed circle of CH(P ). The
center ofMIC(CH(P )) is called c. Since P has no parallel edges,MIC(CH(P ))
will touch CH(P ) in at least three points: a1; a2; a3. Let ei be the convex
hull edge containing ai and let di be the direction of the contact normal at ai
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Figure 19: Computation of the contact point if a1; a2 and a3 are not on the
boundary of P .

(1 � i � 3) The vectors (d1; d2; d3) positively span R2.
If (at least) one of the edges e1, e2 or e3 is an edge of P itself, say e1, we can
place the point contact at a1 and the edge contacts at e2 and e3, it follows
from Lemma 6 that we have a form closure con�guration now. If none of the
edges e1; e2 or e3 is an edge of P , we have to �nd another contact point. We
distinguish two cases.
Case 1. Point c is in the interior of P .
We grow a circle centered at c inside P , until we touch P either at a concave
vertex or on an edge of P (Lemma 10). Let the contact point be a4. The
direction of the corresponding contact normal, d4 will span R2 together with
two vectors of V according to Lemma 2. Suppose these vectors are d1 and d2.
Now we can position P such that e1 and e2 are the edge contacts and the point
contact is placed at a4. Since the contact normals intersect in c, this is a form
closure con�guration.
Case 2. Point c is in the exterior of P .
Since none of the distinct edges e1; e2 or e3 belongs to P , each of the points
a1; a2 and a3 lie in cavities H1;H2 andH3 of P (A cavity is a non-empty polygon
bounded by the polygon edges connecting two adjacent convex hull vertices and
the convex hull edge connecting these two vertices). Assume that H3 is one of
the cavities that does not contain c (as c can lie in only one cavity). Thus, by
growing a circle from c, we will hit a convex vertex of H3 (which is a concave
vertex of P ) or an edge of H3 that is also an edge of P . The place where we
hit H3, a4, is the position of the contact point. From d1; d2 or d3 we can now
select the two vectors that will positively span R2 together with the contact
normal d4 at a4. The corresponding edges of CH(P ) will provide form closure
by making them the edge contacts. 2
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Figure 18 suggests that polygons with parallel edges are �xturable in a
model with an adjustable angle-�xel and a point-contact. We will prove this
for convex polygons. In this case the �xel-edges cannot both be placed against
convex-hull edges of P , because this can not always give us a form closure
con�guration as the example with the rectangle shows.

Theorem 12 For every convex polygon P a form closure con�guration exists
in the model with one adjustable angle-�xel and a point-contact.

Proof: We only give a sketch of the proof.
From the proof of Theorem 11 we can deduce that the problem with parallel
edges arises when the maximal inscribed circle touches two parallel edges. Let
us call these edges e1 and e2. The contact points are a1 and a2 resp. Observe
that not all four angles of e1 and e2 with their adjacent edges can be acute
angles (viewed from the interior of P ). Otherwise P would not have been a
convex polygon. Choose one of the edges (e1; e2) that has at least one obtuse
angle with an adjacent edge. Without loss of generality suppose this edge is e2.
We can now show that there is always a form closure con�guration such that
e1 is placed against the horizontal edge.

Let l be the line through a1 and a2, thus l also contains the center of
MIC(P ), c. The line l is a vertical line, since we have placed e1 horizontally,
and passes through the center c ofMIC(P ). Our goal is now to �nd two contact
normals that are correctly oriented (they have to positively span R2 together
with the upward pointing contact normal at e1) and have their intersection
point on l. Since l is contained in the slab de�ned by e1, we then have a
form closure con�guration. More precisely, we want to �nd one contact normal
with direction in I1 = (�1

2
�; 0) and one with orientation in I2 = [�; 11

2
�), that

intersect on l. Since P is convex, the contact normals associated with interval
I1 will originate from contacts to the left of l and those associated with I2 from
the right of l. We now proceed by distinguishing two cases:
Case 1. One of the edges adjacent to e2 forms an acute angle with e2, the
other one an obtuse angle. An angle of 1

2
� will be considered an obtuse angle.

Without loss of generality we assume the acute angle to be to the left of e2 and
the obtuse angle to the right. For an example, see Figure 20.

In this case the edge-�xel will be placed at the vertex of the acute angle
adjacent to e2. Let this vertex be v1. By adjusting the angle of the edge-�xel
from 0 to 1

2
�, we will rotate the edge of the �xel around v1. Since the angle is

acute and P convex, we can always do this without collisions with edges of P .
The orientations of the contact normals will during the rotation increase from
�1

2
� to 0. At the same time the intersection point of the contact normal at v1

with l will travel (back and forth) along l from y = �1 to y = ya2 , where ya2
is the y-coordinate of a2. In other words, for each point on l below a2, there
exists an orientation of the �xel edge such that the contact normal at v1 passes
through that point and has an orientation in the range I1.

The point contact ac will be placed somewhere at the interior of the edge
adjacent to e2 on the right side. Since the angle formed by this edge with e2
is obtuse, we know that the contact normal at e2 will be in the interval I2.
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Figure 20: A polygon with one obtuse and one acute angle adjacent to edge e2
as in Case 1 of the proof of Lemma 12.
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Figure 21: A polygon with two obtuse angles adjacent to edge e2 as in Case 2
of the proof of Lemma 12.

Because of this orientation, we know that the intersection point of the contact
normal to ac with l will have a y-coordinate yc smaller than ya2 .

Having �xed the point-contact, we now orient the angle-�xel such that the
contact normal to v1 intersects l in the same point as the contact normal to ac,
which is always possible. The orientation of the angle �xel will never be 0 or
1

2
�, because Ip does not contain the values �1 or ya2 .
Case 2. Both edges adjacent to e2 form an obtuse angle with e2. See for
example Figure 21.
Consider the y-coordinates of the highest left-most vertex lP of P , yl and of
the lowest right-most point rP of P , yr. Without loss of generality assume that
yl > yr. We will now prove that we can �nd a form closure con�guration by
placing the edge-�xel to the left of l and the point-�xel just above rP .
Consider the edges with orientation in I1 and their end-points. This is a chain
of edges starting from v1 and ending with vertex lP . The chain will at least
contain one vertex (v1). We now rotate the edge-�xel from angle 0 to 1

2
�. First
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the �xel will contact v1 and an angle of 1

2
� will result in a contact with lP .

During the rotation the edge will contact all vertices in the chain. If we look at
the contact normals at the vertex of contact, during the rotation, we see that
the intersection point with l will move continuously from y-coordinate �1 to
ylP . During the process, this point might have a y-coordinate above ylP , but
we do not need these points.
We now have to �nd a point contact to the right of l with orientation in I2 and
intersection point with l somewhere below ylP . This is true for a point contact
just above rP . We can also �nd a form closure con�guration in the case that
ylP = yrP , but will not discuss this special case here. 2

A �xturability-proof can also be given for arbitrary non-convex polygons.
In this case we can always construct a form-closure-con�guration if we make
the adjustable angle extremely small (such that both edges are nearly parallel).
The construction though is not very stable and therefore rather impractical.

The time to compute a form-closure con�guration depends on the time
needed to compute the maximal inscribed circle of P . This is O(n) [7].

6 Modular Fixtures

In this section we consider �xturing polygonal 2-dimensional objects with mod-
ular �xturing systems. We are given a rectangular 
at surface into which cir-
cular holes have been drilled to form a regular square lattice. We assume that
the size of the �xture table is large enough to place the �xture elements such
that all possible form closure con�gurations can be accomplished. Grid points
are hole centers while grid lines are the vertical and horizontal lines through
the grid points. Unit distance is de�ned as the distance between two adjacent
grid points on a single grid line. Let P denote the given polygonal object with
perimeter p and diameter d, and let P be de�ned by n edges. In this section we
will consider algorithms that compute all possible form closure con�gurations
on a grid in a speci�c model. The �xels are assumed to be of zero size, thus
they can be placed anywhere without intersections with other �xels or the ob-
ject. (This restriction is not realistic but can often be enforced by taking the
Minkovsky sum of the polygon and the �xel, thus reducing the �xel to a point.
Also solutions can be checked afterwards to see whether they are actually real-
isable.) We will use the following �xture elements:

Locators. A locator must be placed at a grid point. It provides a point-contact
with P . The locator has zero radius and the point of contact is a grid point.

Clamps. The �xed part of the clamp must be placed at a grid point. The
extension of the clamp is assumed to be at most one grid unit along a grid line.
In our model, where we assume that �xels have no size, this means that a clamp
can be placed anywhere along a grid line. A clamp provides a point-contact
with P on a grid line.
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Edge-�xels. An edge-�xel is assumed to be attached to the lattice on one of
the grid-lines. We normally put the �xel along the x-axis of our reference frame
with P in the positive y-half-plane. An edge-�xel provides an edge-edge contact
with P .

Angle-�xels. An angle-�xel basically consists of two edge-�xels. One of the
edge-�xels is placed horizontally along a grid-line, the other edge-�xel is at-
tached to this �xel perpendicularly (Right-angle-�xel), such that it extends in
the y-direction, or is attached by a joint, such that the angle with the horizontal
edge-�xel is adjustable. The types of contacts with angle-�xels are discussed in
the related subsections.

6.1 Four Point-contacts

We �rst discuss a number of di�erent ways to �xture the polygon with four
point-contacts.

6.1.1 3L/1C

Since achieving contact with four locators restricted to a grid is in general im-
possible, we need at least one �xel that takes care of the slack. So, the �rst
model that we consider here is a model where we have three locators and one
clamp (3L/1C). The existence of modular �xtures in this model was investi-
gated by Zhuang et al. [31]. They proved a negative result (they identi�ed a
set of non-�xturable polygons). A complete algorithm to compute all possible
form closure con�gurations was described by Brost and Goldberg [5]. We re-
view both results brie
y.

Non-�xturability
Intuitively one can see that a very small or long and skinny part might be
un�xturable in the model, since three of the point-contacts (associated with
the locators) must occur at a grid point. However, Zhuang et al. [31] proved
the following theorem on convex polygons of arbitrary large diameter.

Theorem 13 [31] For any given diameter there exists a convex polygon of
greater diameter that can not be �xtured on a grid with three locators and one
clamp.

So, we can construct a convex part of arbitrary size that is un�xturable.
The proof of the theorem consist of two main steps. First it is shown that for
any given positive number M , a disk of radius > M can be constructed that
touches at most two grid points. The construction of this disk uses the �niteness
of the set of all circles uniquely determined by all triplets of grid-points. It can
then be shown that this disk can be transformed into a regular polygon while
preserving this property. Since the part should contact three locators (placed at
grid points) in order to obtain a form closure con�guration, this regular polygon
cannot be �xtured under the 3L=1C model.
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Algorithm to compute all form closures
Brost and Goldberg [5] presented an algorithm that computes all possible form
closure con�gurations in the 3L=1C-model for polygonal objects. The algorithm
is complete, since it outputs all possible form closure con�gurations. Further-
more, the algorithm can identify the optimal �xture according to an arbitrary
quality metric. The main steps of the algorithm are the following.

1. For every combination of three (not all three identical) edges, the area swept
out by the second edge by translating and rotating the �rst edge while main-
taining contact with the origin of the grid is computed. This area is an annulus,
of which only the part in the �rst quadrant has to be considered (to eliminate
equivalent �xtures). Then for each grid point in this area, the possible positions
for the third locator are in the intersection of the annulus de�ned by possible
locations for the third edge with respect to the �rst and the annulus de�ned
by the third edge with respect to the second locator position. This area can
be re�ned by taking into account the angular limits of the part con�gurations
that simultaneously contact the �rst and second locator.

2. Having found the triplets of locators and the corresponding contact edges,
the set of consistent part con�gurations can be found by a so called con�guration-
space analysis. There may be two di�erent poses of the part that permit si-
multaneous contact with the three chosen locators. In this case two candidate
locator setups are generated.

3. For each of the generated locator-set-ups in the previous step, the region of
possible clamp-positions is identi�ed, using force-sphere analysis. The analysis
identi�es all possible positions where form-closure is obtained. The force-sphere
represents all planar forces by direction (x and y) and moment components of a
line of force exerted in the plane. A locator-clamp set-up should be able to re-
sist all forces applied in the plane. The set of correct contact normals obtained
with the force-sphere analysis, is then mapped back onto the part perimeter
and intersected with the horizontal and vertical grid-lines to obtain the clamp-
positions that give a form closure con�guration.

Brost and Goldberg prove the following theorem.

Theorem 14 [5] All con�gurations holding P in form closure with three loca-
tors and one clamp can be computed in time O(n4d5). The maximum number
of possible �xtures is O(n4d5).

6.1.2 4C or T-slots

In order to be able to �xture more objects in a modular �xturing system with
only four point-contacts than in the 3L=1C-model, we consider here a model
with four clamps that turns out to be equivalent to the T -slot model considered
in [31]. In this model we have four continuous degrees of freedom, wheras for a
locator the number of possible positions is �nite and discrete. We assume that
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the clamp can have an extension of at most one grid unit. Thus, the extension
of a clamp can increase continuously from 0 to 1 grid-unit. So, in the 4C-model,
contacts that are made with the polygon can lie anywhere on a grid line. In
this subsection we describe two classes of objects that were shown to be �x-
turable by Zhuang and Goldberg [31]. There is no algorithm yet that e�ciently
computes all form closure con�gurations in this model. It seems quite hard to
do this, since we do not only have to deal with a discrete number of possible
clamp positions, but also with four continuous degrees of freedom, namely the
four extensions of the clamp plungers.

Fixturable polygons
Improving on a result of Mishra [20], Zhuang and Goldberg proved the following
theorem. Remember that the distance between two adjacent grid points on a
grid line is 1.

Theorem 15 [31] Let P be a rectilinear polygon with all edges of length > 1,
then there always exists a �xture using at most 4 clamps.

The proof shows that a �xture always exists when P is aligned with the axes
of the lattice. Because of the restriction on the minimal length of the edges,
we can always embed a unit-length square into P . By extending the four sides
of this unit-square, we intersect the boundary of P in eight points that are not
vertices. It can then be shown that two sets of four of these points yield form
closure for the part. The unit-square can be placed such that its vertices all lie
on grid-points and thus the intended contact points are actually on grid-lines,
which means that the four clamps can indeed be placed such that form closure
is obtained.

Nguyen [22] showed how to �nd sets of 4 edge segments on an arbitrary
polygon such that if we place a point contact somewhere on every of these four
segments, the part is in form closure. Such segments are now called Nguyen
segments. Zhuang and Goldberg also showed that a convex polygonal part is
�xturable if there exists a set of at least three Nguyen segments of length >

p
2

[31]. Here we show another result, where existence of a �xture depends on the
lengths of the edges of P itself rather than the lengths of the Nguyen segments.

Theorem 16 Any polygon with all edges of length greater than
p
3 and without

parallel edges is �xturable on a unit grid in the 4C model.

Proof: Let P be a polygon with all edges of length >
p
3 and without parallel

edges. The maximal inscribed circle MIC (P ) of P , which is assumed to be
centered at c, touches P in three points. Assign the names a1, a2, and a3 to
these points in counterclockwise order such that \a1ca2 � \a2ca3;\a3ca1. The
vectors ~a1c, ~a2c, and ~a3c positively span the plane. Moreover, \a1ca2 � 2�=3.

Each of the three points a1, a2, and a3 is either a point in the interior of an
edge of P or a concave vertex of P . In the case that a point ai (1 � i � 3) lies
in the interior of an edge, a point contact at ai induces a half-plane constraint
along the supporting line of ~aic. In the case that ai is a concave vertex, a point
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Figure 22: The points a1 and a2 are placed on horizontal grid line. The half-line
h bisects the angle between ca1 and ca2; � is the angle between h and ca3.

contact at ai induces two half-plane constraints whose conjunction implies the
half-plane constraint along the supporting line of ~aic. Moreover, the normals
to the edges incident to ai positively span ~aic. As a result, the composite
constraint induced when ai is a concave vertex is stronger than the constraint
induced when ai is a point in the interior of an edge.

As a �rst step, we put the two points a1 and a2 on a horizontal grid line and
hold them with horizontal clamps. We assume that the constraints imposed at
a1 and a2 are the weakest constraints, namely half-plane constraints along the
supporting line of ~a1c and ~a2c. Assume that a3 lies above the horizontal grid
line and let h be the (vertical) half-line emanating from c and bisecting \a1ca2.
Let � be the (counterclockwise) angle between h and ca3. Figure 22 shows the
half-line h and the angle �.

The fact that ~a1c, ~a2c, and ~a3c positively span the plane and the bound
\a1ca2 � 2�=3 jointly imply that 2�=3 � � � 4�=3. As a consequence, an
edge tangent to MIC (P ) at a3 cannot be too steep. In fact, the projection on a
horizontal grid line of any such edge of length greater than

p
3 will have more

than unit length.
Simply assuming that the constraint imposed by the contact at a3 is a half-

plane constraint would not give us form closure, as it will not exclude c as a
center of both clockwise and counterclockwise rotation. A more thorough anal-
ysis of the contact at a3 is necessary to exclude c. We disinguish three cases for
a3 (see Figure 23).

a3 is a concave vertex and neither of the edges incident to it is tan-
gent to MIC (P ):
Instead of a single half-plane constraint at a3, the point contact at a3 induces a
wedge of half-plane constraints (see Section 3), leaving a half-wedge of centers
of clockwise rotation and a half-wedge of centers of counterclockwise rotation.
By the assumption that neither of the edges incident to the vertex a3 is tan-
gent to MIC (P ), the supporting line of ~a3c lies in the interior of the wedge of
constraints. As a result, c is strictly in the interior of the wedge, excluding it as
a center of both clockwise and counterclockwise rotation. Hence, P is in form
closure. By sliding a1 and a2 along the horizontal grid line we can put a3 on
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Figure 23: Three cases: (a) c lies in the interior of the wedge induced by the
point contact at a3; (b) c lies in the interior of the slab induced by the point
contacts at p and p0; (c) c lies in the interior of the union of the slab induced
by the point contacts at a3 and p and the wedge induced by the point contact
at a3.

a vertical grid line, thereby establising that all contact points lie on grid lines.
Note that in this case we need only three clamps.

a3 is a point in the interior of an edge:
Since a3 lies in the interior of an edge, we choose two points p and p0 on either
side of a3 on the same edge. Point contacts at p and p0 induce a slab constraint
which has the supporting line of ~a3c strictly in its interior. The slab constraint
excludes c as a center of clockwise and counterclockwise rotation. Hence, the
point contacts at a1, a2, p, and p0 hold P in form closure. As each edge has
length at least

p
3, we can choose p and p0 such that the projection of the seg-

ment pp0 onto a horizontal grid line has unit length. By sliding a1 and a2 along
the horizontal grid line we can put p and p0 on neighboring vertical grid lines,
thereby establising that all contact points lie on grid lines.

a3 is a concave vertex and (exactly) one of the edges incident to it is
tangent to MIC (P ):
Let e be the edge tangent to MIC (P ) at a3. We choose a point p in the interior
of the edge p. Point contacts at p and a3 induce a slab constraint and a wedge
constraint which have the supporting line of ~a3c as a common boundary. Careful
analysis shows that c lies strictly in the interior of the union of the slab and the
wedge: c lies to the right of the interior of the slab and to the left if the interior
of the wedge, or vice versa. As a consequence, no rotation about c is allowed.
Hence, the point contacts at a1, a2, a3, and p hold P in form closure. As each
edge has length at least

p
3, we can choose p such that the projection of the

segment a3p onto a horizontal grid line has unit length. By sliding a1 and a2
along the horizontal grid line we can put a3 and p on neighboring vertical grid
lines, thereby establising that all contact points lie on grid lines. 2
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6.1.3 Vise

Wallack and Canny [29] described an algorithm to compute all form closure
con�gurations using a �xture vise. A vise consists of two modular �xturing
tables, of which one can translate horizontally relative to the other table. Lo-
cators can be placed at the grid points of both tables. See for an example of a
vise Figure 4. Here we have in addition to the discrete number of placements
for the locators, only one continuous degree of freedom, namely the translation
of one vise table in x-direction with respect to the second table. The two ta-
bles are also referred to as the left and right jaw. The �xture elements that
are used are simply locators. If one of the locators is placed on one table and
the other three on the other table, this model is similar to the 3L=1C-model
(although there are some di�erences). A di�erent case is encountered if two of
the locators are placed on each �xture table. There are no known positive or
negative results on existence of �xtures in this model.

Algorithm to compute all form closures
The algorithm of Wallack and Canny basically consists of two parts. In the
�rst phase of the algorithm, all possible con�gurations of locators are gener-
ated, such that the locators are in contact with P . In the second phase of the
algorithm, the corresponding orientation of the part is computed and then all
con�gurations generated in the �rst phase are tested for form closure, using
matrix computations (checking if the four contact points can resist arbitrary
forces and torques). More speci�cally the �rst phase of the algorithm consist
of three steps:

1. Enumerate all quadruple of edge-combinations of P , where every edge can
occur more than once.

2. For each quadruple enumerate all di�erent combinations of intended jaw-
contacts, i.e. for every edge specify if it will contact a locator on the right jaw
or on the left jaw. Seven situations should be considered for every quadruple
of edges (four where three edge segments contact the left jaw and three where
pairs of edge-segments contact both jaws).

3. For each quadruple obtained in the previous step, compute �xture con�gura-
tions providing simultaneous contact. This is done by choosing the �rst locator
at some origin and then examining all possible positions for the second, third
and fourth locator consecutively.

It should be clear that the last step is rather complex, regions that are
swept out while maintaining contact with the already �xed locators should be
described. In the paper, a description of these regions is computed exactly,
using two di�erent types of con�gurations, one where there are two locators on
each table and the other one where there are three locators on one table and
one on the other. Analysis of their algorithm gives the following theorem.

Theorem 17 [29] All con�gurations holding P in form closure on a vise with
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locator
clamp

edge-�xel

Figure 24: A form closure con�guration with an edge-�xel, a clamp and a
locator.

four locators can be computed in time O(n4d4r2), where r is the largest range
of distance between points on two edges. The maximum number of form closure
con�gurations is also O(n4d4r2).

It should be noted that the algorithm uses this much time even when there
are only a few resulting form closure con�gurations, since we only check for form
closure after having generated all the possible contact positions of the locators.

6.2 One Edge-�xel, a Locator and a Clamp

In this section we consider an algorithm to compute all �xtures in a model
with one horizontal edge-�xel, a locator and a clamp. The edge-�xel is assumed
to be attached to the grid parallel to one of the horizontal grid-lines. We can
distinguish two possibilities for placing the clamp. One, where the clamp is
placed such that its extension is along a horizontal grid line (horizontal clamp)
and the other case where the extension is along a vertical grid line (vertical
clamp). Here, we will only discuss the algorithm for a horizontal clamp in de-
tail. In addition we will brie
y describe how to apply similar ideas to vertical
clamps. We will also give a theorem about a class of rectilinear objects that
can be �xtured on a modular grid.

Algorithm to compute all form closures
Since we know that at least four point contacts are necessary to �xture a poly-
gon, we need to place P always such that at least two point contacts are made
between P and the edge-�xel. The only assumption that we will make about
the edge-�xel is that it is long enough, i.e. at least as long as the longest edge
on the convex hull of P . P will always be placed with an edge of the convex
hull against the edge-�xel. Hence, we only have O(n) di�erent orientations for
P , which makes the algorithm more e�cient than algorithms for �xturing with
four point-contacts.

To get a better understanding of the problem, we �rst give a naive (non-
output sensitive) algorithm for computing all form closure con�gurations.

Consider the polygon P shown bold in Figure 25 resting with some particular
edge of its convex hull against the edge-�xel, the thick bar shown at the bottom.
As P may not be touching a grid-point on its boundary, we slide it, say to the
left, until it does. Now we have a possible position for the locator. To compute
all possible locator positions, it is su�cient to slide the polygon only one unit
to the left and mark all grid-points encountered during the slide. Let P = P (0)
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Figure 25: Sliding the polygon one unit along the edge-�xel to enumerate all
feasible locator positions.

indicate the initial position of the polygon and P (t), the polygon when shifted
by distance t to the left, 0 � t � 1. We call t the shift variable. A locator
position L exists only at certain discrete values of the shift variable; at each
one it contacts a certain edge e of P . Let us term each such contact as a
locator-edge combination.

Clamp positions are those points on the boundary of P intersected by the
grid lines at some P (t). We distinguish two cases: those points intersected by
the horizontal grid lines are called horizontal clamp positions while the others
are vertical clamp positions. Notice that since the shift is horizontal, horizontal
clamp positions remain constant for all shift values and can be computed from
the unshifted polygon. On the other hand, vertical clamp positions vary with
the shift value. A vertical grid line might intersect several edges e of P during
the shift resulting in (vertical) clamp-edge combinations.

There are at most O(p) grid points (locator positions) generated by this
process (a more precise bound is O(min(d2; p)), where d is the diameter of P ).
Furthermore, the total number of locator-edge and clamp-edge combinations is
O(n+ p) and can be computed in O(n+ p) time.

A naive procedure to generate all valid �xtures is therefore to consider each
locator-edge combination and clamp-edge combination pair, check if they si-
multaneously exist (w.r.t. the shift variable; this is necessary only for locators
with vertical clamps) and if so, test if they achieve form-closure. Iterating over
all convex hull edges against the edge-�xel gives a �(n(p+ n)2) algorithm.

Horizontal clamp
Instead of considering the placements of the locator and clamp (on the grid),
we can also look at the possible contact normals associated with these grid
points. We can then abstract from the grid and polygon and only have to look
at directed lines. We assume that P is placed with one of the edges of its convex
hull CH(P ) against the edge-�xel. This edge-contact induces a slab as de�ned
in Section 3. As mentioned before, horizontal clamp and locator contact points
can be determined by intersecting the horizontal grid lines with the boundary
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Figure 26: The directed line segments (directed lines representing half-plane
constraints restricted to the slab formed by the edge-�xel at the bottom) re-
sulting from the object in Figure 25. The dotted line segments (from left to
right) correspond to the locators while the solid lines (from right to left) are
from the horizontal clamps.
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of P . The contact points are always achievable, since we assume that the clamp
can have a one grid-unit extension. Let us assume for now that the locator will
be placed to the left of P (meaning that by sliding P from right to left, we will
obtain a contact with it) and the clamp is placed to the right. We obtain two
sets of lines. The clamp lines are the lines normal to the points of contact (as
obtained by intersection of P with the horizontal grid lines) directed into the
object and having an orientation in the open interval (1

2
�; 3

2
�). This actually

means that the lines cross the slab from right to left. There are O(n + p) of
these lines. The locator lines are the possible contact normals that cross the
slab from left to right. The set of locator lines will will have O(n+ p) elements.

Thus we obtain two sets of directed lines de�ning half-plane constraints on
P ; one set of lines associated with possible clamp positions and one set of lines
for the possible locator positions. We want to �nd all combinations of lines, one
from each set, such that Conditions 1 and 2 in Lemma 4 are satis�ed. Intersect-
ing the directed (in�nite) lines with the slab corresponding to the �xed convex
hull edge of P , we obtain two sets of directed line segments. Given a locator
line segment, we wish to detect, in an output-sensitive manner, all clamp line
segments that (properly) intersect it and such that the vectors along the two
segments and the upward vertical vector positively span R2. See Figure 26.
Formally, the basic query that we want to answer is:

QUERY Let S be a set of m directed line segments, each with the end-points
along two vertical lines (the \slab"), and each with an orientation from the
open interval (�1

2
�; 1

2
�). Store S such that for a query segment q also similarly

anchored on the slab but with orientation in the interval (1
2
�; 3

2
�) one can report

all segments s 2 S such that

1. the vectors along s; q and the upward vertical vector positively span R2,
and

2. s and q intersect strictly inside the slab.

Using a two-level partition tree, such queries can be solved in timeO(log2m+
k), where k is the number of reported segments (see [23] for details). Since we
have to perform this query for all O(n+ p) clamp segments and O(n) possible
orientations of P , we obtain a total time of O(n(n+p) log2(n+p)+K), whereK
is the number of form closure con�gurations. Actually in contrast to querying
the clamp lines one at a time, we can process them all together and improve
the time complexity to O(n(n+ p) log(n+ p) +K).

Theorem 18 [23] All con�gurations holding P in form closure using one edge-
�xel, one locator and one horizontal clamp can be enumerated in time O(n(n+
p) log2(n+ p) +K), where K is the number of form closure con�gurations.

Vertical clamp
In the case of a vertical clamp we can apply a query algorithm that is similar
to the one above. In this case, however, the place where the clamp will contact
P 's boundary depends on the extension of the clamp. As described in the naive
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algorithm above, we have to deal with an extra 'shift'-variable. The actual
clamp-line for a speci�c clamp position depends on this variable. Locator lines
exist only at one time during the shift (when an edge of the polygon shifts
over the corresponding grid-point) In order to solve this problem, we can add
an extra dimension to the query problem, representing the shift. In this query
structure a locator line is a segment inside a block and clamp lines are repre-
sented by parallelograms inside a block. Again, we query the structure with
every parallelogram. Because of the three-dimensional nature of this problem
this leads to the following result.

Theorem 19 [23] All con�gurations holding P in form closure using one edge-
�xel, one locator and one vertical clamp can be enumerated in time O(n(n +

p)
4

3
+� +K), where K is the number of form closure con�gurations.

Fixturable polygons
We can prove that a subset of rectilinear polygons is �xturable under the edge-
locator-clamp (ELC)-model. The result is comparable to [31]. Speci�cally, we
are interested in simple polygons that satisfy the following conditions.

1. The edges of the polygon are parallel or perpendicular to each other (rec-
tilinear polygons).

2. The convex hull of the polygon is not a rectangle.

3. Each edge is of length at least � grid units.

We term such a class of polygons as �-long rectilinear polygons. By Condi-
tion 2, they are necessarily non-convex. The convex hull of such a polygon has
at least one edge that is neither parallel nor perpendicular to the edges of the
polygon. Such convex hull edges are termed skew edges.

Theorem 20 2+
p
2-long rectilinear polygons are �xturable with an edge-�xel,

a locator and a clamp.

Proof: We can show that for every con�guration of a �-long rectilinear polygon
P in which a skew edge rests against the edge-�xel, P can be set into form-
closure by a locator and a clamp if � � 2 +

p
2. In this proof we will use

the name of a segment to denote the length of the segment as well. Consider
a �-long rectilinear polygon placed with a skew edge against the edge-�xel as
shown in Figure 27. Consider the two edges ei and ej of P joining the two
points of contact, ei extending to the right from the leftmost contact vertex and
ej extending to the left of the rightmost contact vertex. Let T be the triangle
de�ned by the skew edge and the supporting lines of ei and ej . Let a and b be
the triangle edges along ei and ej respectively. Since ei and ej do not intersect
each other, at least one of them will be fully contained in a or b. Observe that
this will be the least steep edge of the two. Without loss of generality let us
assume that the leftmost edge of ei and ej is fully contained in T . Thus, a � �.
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Figure 27: Proving a class of rectilinear polygons as �xturable.

a0

b0

a b
�b

�a �

Figure 28: Extending a and b such that they are equally long inside the slab.

Let � = tan�1 b=a 2 (0; 1
4
�]. Orient the edges of the polygon in counter-

clockwise order. Then in this particular con�guration, the orientations of the
edges of the polygon fall into four categories:

�; �=2 + �; � + �; 3�=2 + �:

Further, observe that, for form-closure purposes, the only locator/clamp contact
points possible are along edges with orientations

�=2 + �; � + �;

the locator being on an edge from one orientation class and the clamp contact
point on an edge from the other. Let us call these the principle orientations.
This is only a necessary condition. For su�ciency we also require that the two
directed lines representing the half-plane constraints intersect inside the slab
de�ned by the points of contact with the edge-�xel.

To ensure the second condition, we can project the edges a and b onto the
edges of P with the principal orientations, one point-contact placed in the pro-
jection of a and one in the projection of b will give a form-closure con�guration.
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However, since we do not know anything about the length of b and its projec-
tion, we do not know if we can place a clamp or locator here. This is why we
�rst extend edge b, obtaining a new edge b0 = b +�b and move a such that it
extends from b0. This gives us two new edges, a0 = a � �a and b0 inside the
slab, such that their projection onto the edges with principal orientations will
give us positions for a form closure con�guration. See Figure 28. In order to
say something about the edge-length � of the polygon, such that we can always
place a locator in the projection of a0 and a clamp in the projection of b0, we
will compute the length of a0 and b0 if a0 = b0, because we would like to have
both projections as long as possible. We can show that

�a = �b tan � (1)

and
b = a tan �: (2)

Thus,
b+�b = a��b tan �; (3)

which gives us
�b = (a� a tan �)=(1 + tan �): (4)

Substitution of (2) and (4) in b0 = b+�b gives us

b0 = a(tan2 � + 1)=(tan � + 1) (5)

> �(tan2 � + 1)=(tan � + 1) (6)

The function f(�) = (tan2 � + 1)=(tan � + 1) has its minimum on the interval
(0; 1

4
�] at � = �

8
, f(�

8
) = 2

p
2� 2. This means that

b0 = a0 > �(2
p
2� 2): (7)

However, in the rest of the proof it seems better to extend b until a0 = b0 if
a0 = b0 < ej , or until its length equals the length of ej .

Consider the outermost projections of a0 and b0 onto P . By this we mean
the edges with principal orientation inside the slabs de�ned by a0 and b0, start-
ing from the edge that intersects the �rst (lower) slabline and whose intersec-
tion point with the slabline has the highest y-coordinate. Then we walk along
the polygon starting towards the interior of the slab until we meet the second
slabline. If we meet the �rst slabline again, we will forget about the edges that
we have visited and start all over again at the next intersection point with the
�rst slabline. All edges with the correct orientation that we visit during our
walk towards the second slabline are the edges that we will consider. See for an
example Figure 29. For slab(b0), we know that we will always reach the second
slabline, since edge ej intersects both slablines. So there exists a point of P to
the right of or on the second slabline. For slab(a0), we know it, because there
is a part of the polygon at both sides of the slab (edge ej is to the right of the
slab and the edge extending to the left from the leftmost contact vertex is to
the left of the slab, since slab(a0) is contained in slab(a)), so we know that there
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Figure 29: Projection of a0 onto the principal edges of P .

should be edges that connect the parts to the left and to the right of the slab
that will intersect the slab. Let the obtained sets of projected edges be A and
B. If both sets contain one edge of length at least

p
2, then we can obtain form

closure. This is so, because the edge from A will intersect a vertical grid line
and the edge from B a horizontal grid line. We can slide P to the right until the
edge from B encounters a grid-point. Place the locator there. Because of the
minimal edge-length of

p
2 a vertical grid line is still intersected after the shift

of P against the locator. Thus this vertical grid line gives the clamp position.
In order to have a segment in A of length at least

p
2, we should have that

the width of the slab (which is equal to a0 and b0) should be at least 2
p
2.

According to Equation (7), in that case � � 2 +
p
2. Then, if A contains one

single edge it is clear that this edge has length at least 2
p
2 (the width of

the slab). If A contains two edges, the length of one of the edges is of length
� 2

p
2=2 which is at least

p
2. If A contains three or more edges, at least one

of them is fully contained in the slab, (observe that only two of the edges are
cut by a slabline according to our de�nition of outermost projection) meaning
that its length is at least � and thus larger than 2 +

p
2. The same arguments

hold for the projection B if we extended b such that a0 = b0. In the other
case where we extended b until the length of ej , we know that the width of
slab(b0) is > �, since this is the minimum edge length for ej . Thus we can apply
similar arguments as above and see that there will always be an edge of length
at least

p
2 in the projection B. Thus we have shown that we can �xture �-long

polygons if � > 2 +
p
2. 2

Such a �xture can be computed in O(n) time. Also note that as a con-
sequence of Theorem 20, in the absence of a grid any rectilinear polygon for
which the convex hull is not a rectangle can be �xtured with an edge and two
points. This extends Theorem 5 in Section 5.
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s

Figure 30: The segment s that should be intersected by the contact normal to
the clamp contact when P is placed against a right-angle �xel.

6.3 One Angle-�xel and a Clamp

Finally we discuss modular �xtures using an angle-�xel and one clamp. The
three types of angle-�xels that we will consider are a so-called right-angle �xel,
a �xed-angle �xel, where the angle is not 1

2
� and the adjustable angle �xel.

No results are known about what objects can be �xtured in this model. The
algorithms described here are quite straightforward and follow directly from the
geometric interpretation of the contacts.

Right angle-�xel and a clamp
In order to obtain a form closure con�guration P will always be placed with
one of the edges of CH(P ) against one of the edges of the �xel. Assume this to
be the horizontal edge. P is then slided along the horizontal edge, until it hits
the second, vertical edge of the �xel. Usually this will yield a contact of a vertex
of P with the vertical edge. Having done this, the orientation and position of P
are �xed. For a �xed orientation of P , we can compute the intersection between
the slab de�ned by the edge-contact with the horizontal edge of the angle-�xel
and the contact normal to the point-contact with the vertical edge of the �xel
(Lemma 6). The angle-�xel can be placed to the left or to the right of P . The
computation of all form closure con�gurations is similar for both cases. Let us
assume here that the right-angle �xel is placed to the left of the polygon as in
Figure 30. The intersection of the contact normals give us a horizontal segment
s. See Figure 30. The possible contact points for the clamp can be obtained
by intersection of the boundary of P with the horizontal and vertical grid lines.
This gives us O(n+ p) possible contact points and their corresponding contact
normals. For every element in this set we now have to check if they have an
orientation in the interval (�; 11

2
�) and if they intersect s. Since we have to do

this for every orientation of P , we get the following result.

Theorem 21 All con�gurations holding P in form closure with a right-angle
�xel and a clamp can be enumerated in time O(n(n+ p)).
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Figure 31: The segment s that should be intersected by the contact normal to
the clamp contact when P is placed against a �xed-angle �xel.

Note that when P also touches the second, vertical, edge of the �xel with
an edge of its convex hull, instead of a segment s, we obtain a rectangle that
should be intersected by the contact normal of the clamp contact. This does
not increase the time bound.

Fixed angle-�xel and a clamp
The algorithm as described above for the case of a right-angle �xel can equally
be applied to the case of an arbitrary �xed-angle �xel. The only things that
we have to change are the check for the orientation of the contact normal to
the clamp, if the angle of the �xel is �, the angle of the contact normal to the
second, non-horizontal edge will have direction (11

2
� + �). This means that

the orientation of the contact normals that will provide form closure must be
somewhere in the interval (� + �; 11

2
�).

Theorem 22 All con�gurations holding P in form closure with one �xed-angle
�xel and a clamp, can be computed in time O(n(n+ p)).

Adjustable angle-�xel and a clamp
If the angle of the angle-�xel is adjustable, the number of form closure con-
�gurations can be in�nite, it might be possible to generate intervals of angles
for the �xel together with a �nite number of possible clamp positions that will
provide form closure. No such algorithm currently exists. Another possibility
is to restrict the form closure con�gurations to those con�gurations where both
edges of the �xel are in contact with an edge of CH(P ). In this way though an
existing solution might be overlooked, for example for a rectangle we will not
�nd a form closure con�guration, although one exists.

7 Extensions and Open Problems

The algorithms described in this paper only give results for a basic situation
(�xels of zero size, no quality metrics applied, only two-dimensional polygonal
objects). Some of the algorithms can be extended or changed such that ad-
ditional cases can be dealt with as well. Here we give a short overview of a
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Figure 32: Three di�erent models for a vise combined with an edge-�xel.

number of known extensions.

Computation of Nguyen regions
Nguyen [22] introduced an algorithm to compute Nguyen regions of an object
in a model with four point contacts. Nguyen regions de�ne possible placements
of the point contacts, such that form closure is obtained if we place at least one
contact in every region. Since the Nguyen regions are independent of a grid,
we can usually �nd more e�cient algorithms to compute these regions than to
compute all possible �xtures on a grid. Nguyen described an O(n4) algorithm
to compute al these combinations of regions. In the case of a right-angled �xel
and a point contact, all regions where we can place the point contact for all
orientations of P can be computed in time O(n log3 n+K) time, where K is the
number of resulting regions. This can be achieved by adding an extra level in
the partition tree. In the case of one edge and two point contacts we currently
only have e�cient algorithms for rectilinear polygons and c-oriented polygons.

Fixels with size > 0
Up to now we assumed the �xels to have 0 size. This is highly unrealistic.
To deal with locators of non-zero size one can compute the Minkovsky sum
of the polygon with the locator. This blows up the polygon and reduces the
locator to a point. For the clamps we can either test for intersecting afterwards
or use similar techniques. Finally, the size of the edge-�xels never causes a
problem (it only shifts the polygon with respect to the grid). For example,
the algorithm of Brost and Goldberg [5] thus needs time O(n5d5). The time
complexity of the vise-algorithm of Wallack and Canny [29] (Theorem 17) does
not change. The Minkovsky di�erence can also be embedded in the algorithm
for one edge-�xel, a locator and a clamp [23] (Theorems 18 and 19), The time
for a vertical clamp does not change (Theorem 19), for a horizontal clamp we
get an O(n(n+ p) log3(n+ p) +K) algorithm.

Vise with wall
Wallack and Canny [29] considered a vise with four locators, but what happens
if we replace two of the locators by an edge-�xel? We can distinguish three
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cases. See Figure 32. In the �rst case the edge-�xel is placed in horizontal
direction (the direction of the translation of one of the two tables of the vise).
In addition one locator is placed on each of the tables of the vise. We can
generate all form-closure con�gurations with the output-sensitive algorithm for
an edge-�xel, a locator and a horizontal clamp (Theorem 18), since we can
view the locator on the moving table as a horizontal clamp. If the edge-�xel is
placed perpendicular to the direction of movement of the vise, we can obtain
form closure for two types of placements of the locators. In the �rst case the
locators are both on di�erent tables. This case is similar to a model with one
edge-contact, one locator and one vertical clamp and we can use the algorithm
for this model to compute all form closure con�gurations (Theorem 19). In
the other case, the two locators are both placed on the top table (the moving
table). It is an open problem how to compute all form closure con�gurations
in an output-sensitive way in this case.

Curved edges
Wallack and Canny [30] also presented an algorithm to compute form closure
con�gurations on a vise, where the objects to be �xtured are so called general-
ized polygons. These are two-dimensional objects with a boundary composed
of linear edges and circular arcs. It is unclear how to generalize the other algo-
rithms in this paper to polygons with curved edges.

Three dimensional �xturing
Markensco� et al. showed that for three-dimensional polyhedra, seven friction-
less point contacts are necessary and su�cient to �xture the part [19]. In addi-
tion Wagner et al. [28] proposed a three-dimensional modular �xturing system
using seven struts that are mounted to the walls of a rectangular four-sided
frame on which mounting-sockets are arranged in a regular grid. They also
presented an algorithm that enumerates all �xtures for a polyhedron, whose
pose is given. All possible seven-membered sets of simultaneously contacting
strut-positions are enumerated and tested for form closure, leading to a O(t7)
algorithm, where t is the number of lattice sites in the projection of the faces of
the polyhedron on the �xture frame. Clearly, this bound is quite high and can
possibly be improved. An open question is yet how to determine all possible
poses of the polyhedron. It would be nice if there was a graphical representation
of possible motions in 3-D similar to the 2-D representation of Reuleaux [25],
since this would probably help in �nding output-sensitive algorithms.

Quality metrics
After we have generated a list of all possible form closure con�gurations for a
given part, we would like to rank them according to some quality metric. Sev-
eral quality measures have been proposed in literature based on the smallest
contact force necessary to resist applied forces [9, 18]. One such measure is the
radius of the largest sphere that can be embedded inside the wrench convex
[12, 17]. Brost and Goldberg [5] describe a quality metric that is used to rank
the �xtures obtained by their algorithm for three locators and a clamp. The
metric allows the user to specify a list of expected forces on the part. The
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quality metric scores each �xture by estimating the maximum contact reac-
tion force required to resist the list of expected applied forces. However, any
suitable quality metric can be applied, since ranking the �xtures is done as an
extra �nal step of their algorithm. It would be nice if, rather than checking all
solutions afterwards, one could incorporate the metric in the algorithm itself.
Thus, hopefully, reducing the running time.

As can be seen from this paper much progress has been made in �xture
design over the past few years but many questions are still open. For example,
only partial results are known about which polygons can be �xtured in which
model (either with or without a grid). Also many of the algorithms for modular
�xturing seem to be far from optimal. Finally, the extensions to curved objects,
three-dimensional �xtures and incorporation of the quality metric are far from
being solved.
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