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Abstract

We present a new and complete multi-level approach for solving path planning problems
for nonholonomic robots. At the �rst level a path is found that disrespects (some of) the
nonholonomic constraints. At each next level a new path is generated, by transformation of
the path generated at the previous level. The transformation is such that more nonholonomic
constraints are respected than at the previous level. At the �nal level all nonholonomic
constraints are respected.

We present two techniques for these transformations. The �rst, which we call the Pick

and Link technique, repeatedly picks pieces from the given path, and tries to replace these by
more feasible ones. The second technique restricts the free con�guration space to a \tube"
around the given path, and a roadmap, capturing the free space connectivity within this tube,
is constructed by the Probabilistic Path Planner. From this roadmap we retrieve a new, more
feasible, path.

In the intermediate levels we plan paths for what we refer to as semi-holonomic subsystems.
Such a system is obtained by taking the real (physical) system, and removing some of its
nonholonomic constraints.

In this paper, we apply the scheme to car-like robots pulling trailers, that is, tractor-trailer
robots. In this case, the real system is the tractor-trailer robot, and the ignored constraints
in the semi-holonomic subsystems are the kinematic ones on the trailers. These are the
constraints of rolling without slipping, on the trailers wheels.

Experimental results are given that illustrate the time-e�ciency of the resulting plan-
ner. In particular, we show that using the multi-level scheme leads to signi�cantly better
performance (in computation time and path shape) than direct transformations to feasible
paths.

1 Introduction

Even in the absence of obstacles, planning motions for nonholonomic systems is not an easy task.
So far there exists no general algorithm for planning the motions of any nonholonomic system,
that guarantees to reach a given goal. The only existing results deal with approximation methods
(i.e., methods that guarantee to reach a neighbourhood of the goal, e.g., [LS90, BLC93]) and exact
methods for special classes of nonholonomic systems (e.g.,[LS90, MS90, RFLM93]); fortunately,
these special classes contain several real robot models.

Obstacle avoidance adds a second level of di�culty : Not only does one have to take into
account the constraints imposed by the kinematic nature of the system (i.e., linking the parameter
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derivatives), but also the constraints due to the obstacles (i.e., dealing with the con�guration
parameters of the system). It appears necessary to combine geometric techniques addressing
the obstacle avoidance with control techniques addressing the nonholonomic motions. Such a
combination is possible through subtle topological arguments ([Lau93]).

Treating the holonomic constraints separately from the nonholonomic ones is nowadays almost
a \classical" approach. It has resulted in planners for various nonholonomic robots ([LJTM94],
[S�SLO95], [SL91]). The idea is that the problem is solved in two separate steps. In the �rst, a
collision-free path is computed without taking into account the nonholonomic constraints. Sub-
sequently, in the second step, this geometric path is transformed into one that respects the non-
holonomic constraints.

For relatively simple systems, that is, with few nonholonomic constraints, e�cient path plan-
ners are obtained with the described scheme. This is for example the case for car-like robots
([LJTM94]). However, for systems with a higher degree of nonholonomy, it turns out that the
second step is too time-consuming. This observation leads to the idea of further decomposition of
the nonholonomic constraints, and introducing them separately.

Our paper, which develops this idea, is organised as follows : We �rst relate our planner to
other works in nonholonomic motion planning (Section 2). Then, in order to introduce our multi-
level planning scheme (Section 4), we discuss the concept of nonholonomy and we de�ne what
we refer to as semi-holonomic subsystems (Section 3). Our method consists of an initial search
for a collision-free (but not necessarily feasible) path, and a number of subsequent transformation
steps. Each such transformation step produces a path respecting more nonholonomic constraints
than its input path. In Section 5 we present two general methods (the PL technique and tube-
PPP) for the transformations. Section 6 is devoted to applying the multi-level planner to the
particular example of a tractor towing a number of trailers. In order to use our planner for a given
system, we need some speci�c local planners for the system and its semi-holonomic subsystems.
The local planners that we use for the tractor-trailer problem (based on RTR and sinusoidal
inputs) are presented in Section 6.2. A method for obtaining the �rst collision-free path (for
a car towing �ctive holonomic trailers) is given in Section 6.3. The paths directly generated
by the di�erent steps of the algorithm are typically very long and consist of many maneuvers.
The �nal path, that is feasible for the tractor-trailer system is therefore hardly executable by
a real (physical) robot. Hence e�ort must be done (and time must be spent) on smoothing
the paths generated by our algorithm. Section 6.4 treats this problem in general (probabilistic
path shortening) and for the tractor-trailer system in particular (geometric NH-approximation).
Finally, the experimental results of Section 7 aim to illustrate that decomposing the nonholonomic
constraints, and introducing separately, clearly reduces the computation time and the quality of
the computed paths. Also, we show that application of the (tractor-trailer speci�c) geometric NH-
approximation algorithm to the intermediate paths gives further improvement of the computation
times in di�cult cases, without severely penalising the search in easy ones.

2 Previous work

In the past few years, there has been a great deal of interest in motion planning algorithms that
generate collision-free paths for nonholonomic systems. The tractor-trailer system is one of the
examples frequently used to illustrate di�erent algorithms. For a given system, the �rst question
we have to answer is : can a robot reach a given goal, while avoiding collisions with the obstacles
of its environment? This is the decision problem. For locally controllable systems [BL93], the
existence of a feasible path between two con�gurations in the interior of the free con�guration
space CSfree is equivalent to the existence of any path between them in the interior of CSfree.
This has led to a family of algorithms, decomposing the search in two phases. They �rst try
to solve the geometric problem (i.e., the problem for the holonomic system that is geometrically
equivalent to the nonholonomic one). Then they use the obtained path to build a feasible and
collision-free one. So in the �rst phase the decision problem is solved, and only in the second phase
the nonholonomic constraints are taken into account.
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The �rst general result was presented by Sussmann and Liu [SL91], who proposed an algo-
rithm constructing a sequence of feasible paths that uniformly converges to any given path. This
guarantees that one can choose a feasible path arbitrarily close to a given collision-free path. The
method uses high frequency sinusoidal inputs. Though this approach is general, it is quite hard
to implement in practice. In [TLM+92], Tilbury et al exploit this idea for a mobile robot with
two trailers. Experimental results however show that the approach cannot be applied in practice,
mainly because the convergence is very slow. Therefore this method has never been connected
to a geometric planner in order to obtain a global planner that would take into account both
environmental and kinematic constraints.

Another approach was developed in LAAS for car-like robots ([LJTM94]), using Reeds and
Shepp works on optimal control to approximate the geometric path. In [RS91] Reeds and Shepp
presented a �nite family of paths composed by of line segments and circle arcs containing a length-
optimal path linking any two con�gurations (in absence of obstacles). The planner introduced in
[LJTM94] replaces the collision-free geometric path by a sequence of Reeds and Shepp paths. This
complete and fast planner was extended to the case of Hilare with one and two trailers, using near
optimal paths numerically computed [LSV94, FGL93] (so far the exact optimal paths for tractor-
trailer system in absence of obstacle are unknown). The resulting planners are however neither
complete nor time-e�cient.

The same scheme was used for systems that can be put into the chained form. For these
systems, Tilbury et al. [TMS93] proposed di�erent controls to steer the system from one con-
�guration to another, in absence of obstacles. Sekhavat and Laumond prove in [SL96] that the
sinusoidal inputs proposed by Tilbury et al. can be used in a complete algorithm transforming
any collision-free path to a collision-free and feasible one. This algorithm was implemented for a
car-like robot towing one or two trailers, which can be put into the chained form, and �nds paths
in reasonable times ([SL96]).

Another important class of motion planning algorithms consists of search based methods that
build and explore a graph, with nodes being robot-con�gurations and edges corresponding to
(simple) feasible paths. With increasing computation time, the graph tends to cover CSfree.
Often heuristics are used to guide the search, in order to reduce the computation time required for
obtaining a graph capturing su�ciently the connectivity of CSfree. These methods are of course
penalised when the size of the search space grows.

The Probabilistic Path Planner PPP ([K�SLO95, �SO95]) builds a graph of states in the free
con�guration space CSfree. The nodes are chosen randomly, and a local planner searches for
paths linking pairs of admissible and close con�gurations. Whenever such a (local) connection
succeeds, a corresponding edge is added to the graph. Given path planning problems can be then
solved by performing searches in this graph (or roadmap). The critical point of PPP when applied
to nonholonomic robots is the speed of the nonholonomic local planner.

For car-like robots very fast local planners have been developed. Thanks to this, PPP applied
to the car-like robots resulted in fast and probabilistically complete planners for car-like robots
that move both forwards and backwards, as well as for such that can only move forwards ([�SO95]).

Local planners for tractor-trailer robots however tend to be much more time-consuming, which
makes direct use of PPP less attractive. In [�SV95] a local planner is presented and integrated
into PPP, that uses exact closed form solutions for the kinematic parameters of a tractor-trailer
robot. In [S�SLO95] the local planner using sinusoidal inputs for chained form systems is used.
For practical use, both local planners appear to be too expensive for capturing the connectivity of
CSfree. For this reason, in [S�SLO95] a two-level scheme is proposed, where at the �rst level the
portion of CSfree is reduced to a neighbourhood of a geometric path, and at the second level a
(real) solution is searched for within this neighbourhood. The multi-level algorithm proposed in
this paper can in fact been seen as a generalisation of this two level scheme.

Barraquand and Latombe [BL93] propose a heuristic brute-force approach to motion planning
for tractor-trailer robots. It consists of heuristically building and searching a graph whose nodes
are small axis-parallel cells in con�guration space. Two such cells are connected in the graph if
there exists a basic path between two con�gurations in the respective cells. The completeness of
this algorithm is guaranteed up to appropriate choice of certain parameters. The main drawback
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of this planner is that when the heuristics fail it requires an exhaustive search in the discretised
con�guration space. Furthermore, only the cell containing the goal con�guration is reached, not
the goal con�guration itself. Hence the planner is inexact. Nevertheless, in many cases the method
produces nice paths (with minimum number of reversals) for car-like robots and tractors pulling
one trailer. For systems of higher dimension however it becomes too time consuming.

Ferbach [Fer] builds on this method in his progressive constraints algorithm in order to solve
the problem in higher dimensions. First a geometric path is computed. Then the nonholonomic
constraints are introduced progressively in an iterative algorithm. Each iteration consists of ex-
ploring a neighbourhood of the path computed in the previous iteration, searching for a path
that satis�es more accurate constraints. In fact, for an intermediate path the tangent vector at
each point is not constrained to lie in a given tangent space (imposed by the nonholonomic con-
straints), but only in a larger space containing this tangent space. This \larger space" tends to
the exact tangent space during iterations. The underlying assumption of this approach is that the
current path can actually converge towards a nonholonomic solution, when the forbidden areas of
the phase space1 expand. This assumption is however not true in general, for which reason the
algorithm is not complete. Nevertheless, smooth collision-free paths in non-trivial environments
were obtained with this method for car-like robots towing two and three trailers. The multi-level
path planner introduced in this paper also decomposes the search into several phases of compu-
tation using intermediate paths. We however want to stress that the basic principle (leading to
complete planners) is fundamentally di�erent from the progressive constraints method. In the pro-
gressive constraints method all nonholonomic constraints are relaxed at the beginning and then,
all together, taken into account more and more during the iterations, whereas in the multi-level
scheme the nonholonomic constraints are added one by one. At each step a path is computed
whose tangent vectors are chosen in a \subspace" containing the tangent subspace imposed by the
nonholonomic constraints of the system. Whereas in the progressive constraints method only the
size of this space is reduced in each iteration, our multi-level planner decreases the dimension of
this space. Thanks to this, the number of intermediate paths is deterministic and known at the
very beginning of the search. Besides, there is no discretization of the space and the elementary
paths are exact (not computed by numerical integration).

Apart from the above general nonholonomic motion planners, some speci�c planners have been
developed for special cases.

Dealing with tractor-trailer problem for example, we can cite [Luz94] in which a rule-based
incremental control was applied to the special problem of parallel parking.

Another example is [SSB94] in which the goal is reached approximately (there is no control
on the �nal position of trailers). This work concerns only cases in which a path without reversals
between the extremal con�gurations exists. In these cases, the di�erence is computed between
the area swept by the front car and that swept by a given trailer. Then, in many realistic cases,
planning for the �rst car (going only forwards) can guarantee obstacle avoidance for the whole
tractor-trailer system. This method is especially useful for industrial applications in which the
exact position of trailers is not important, and the environment can be adapted to mobile robots
that can perform only forward motions. At �rst glance, the method shows some similarities with
the �rst planning step of our multi-level planner for tractor-trailer robots, as presented in this
paper. However, conceptually there are again fundamental di�erences. In [SSB94], the planning
is done only for the front car, and the trailers are ignored. The trailers just follow the car with
feasible motions, induced by their nonholonomic constraints. In our case, the �rst path will be
computed for a �ctive system composed by a real car pulling \holonomic" trailers, and the planning
is done for the entire system. That is, not the trailers are ignored, but merely their nonholonomic
constraints. Through this, completeness of the multi-level planner is guaranteed. The concept of
�ctive, or semi-holonomic subsystems, is developed in the next section.

1The phase space is the set of (c,c') where c is a con�guration and c' a velocity (not necessarily adapted to c for
any particular nonholonomic system).
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Figure 1: A car-like robot.

3 Nonholonomic systems and �ctive simpli�cations

Holonomic constraints can be characterised by a set of equations involving only the system-state.
This means that they only reduce the free con�guration space CSfree, which makes it possible
to apply any classical geometric approach (e.g., cell-decomposition, potential �eld) for tackling
such problems. Nonholonomic constraints can only be characterised by a set of non-integrable
equations involving, apart from the system-state, also the derivative (with respect to time) of
this state. Because the equations cannot be integrated, the nonholonomic constraints do not
reduce CSfree. However, they restrict the direction in which a CS motion is allowed. So, for a
nonholonomic robot, not every collision-free path (that is, a path lying in the CSfree) is a feasible
path.

For example, a car-like robot is nonholonomic. Physically, the nonholonomy is induced by the
fact that the wheels cannot slide. This imposes a relation between the robot orientation and its
admissible velocity. This relation can be expressed by the following non-integrable equation (see
also Figure 1):

_x sin � � _y cos � = 0

Now let us consider a car-like tractor pulling n trailers. A con�guration c of this system can
be represented by n + 3 parameters : c = (x; y; �0; : : : ; �n). The position of the tractor is de�ned
by x and y, the orientation of the tractor by �0, and the orientation of the kth trailer by �k. See
also Figure 2. The orientation of the tractors front wheels (�) is not taken into account here.

For each trailer we have an equation analog to the one above, linking the velocity of the
(rear) axle midpoint and the orientation of the trailer. So the nonholonomic constraints of the
tractor-trailer system are represented by n+ 1 equations of type (0 � i � n) :

Ei : Fi(c; _c) = 0

These can be transformed to a non-integrable system of equations of the form :

_c = G(c; u)

where u is a control vector of dimension 2 (see [BL93]).
For such a system we can de�ne n+ 1 �ctive systems : S0; : : : ; Sn. Si is de�ned as the system

respecting the nonholonomic constraints represented by the equations E0 to Ei. We refer to Si as
the semi-holonomic subsystem of degree i.
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Figure 2: A tractor-trailer robot (with n trailers) placed at con�guration c = (x; y; �0; �1; : : : ; �n).

Notice that the semi-holonomic subsystem, as explained above by the example of tractor-
trailers, is a general concept. Indeed any nonholonomic system is de�ned by a set E of constraint
equations of type Ei. So we can associate to it semi-holonomic subsystems by considering only
subsets of E .

4 The multi-level scheme using transformations between

semi-holonomic subsystems

For simple systems, that is, with few nonholonomic constraints, e�cient path planners are obtained
by separating the holonomic constraints from the nonholonomic ones, and computing paths in two
steps, according to the following (classical) scheme :

1. Compute a collision-free path without taking into account the nonholonomic constraints. If
such a path does not exist, there is no solution to the problem.

2. Replace the (holonomic) path by a sequence of feasible ones.

The complexity of the transformation step (2) and the quality of the �nal path however depend
on the initial path. There is a trade-o�. The more the initial path respects the nonholonomic
constraints, the faster will be the transformation, and the nicer will be the resulting path. How-
ever, more computation time is required to compute such initial paths. For robots with many
nonholonomic constraints, it turns out that it pays o� to spend more time on getting \good"
initial paths.

The multi-level path planning scheme that we propose in this paper aims at this, by introducing
a sequence of transformation steps, instead of just one. It uses the concept of semi-holonomic
subsystems, as de�ned in the previous section. Given a real system S with n+ 1 semi-holonomic
subsystems S0; : : : ; Sn, we �rst �nd a path P0 for system S0. Then, in n subsequent steps, we
transform it to a path feasible for the real system S. At step i (0 � i < n), path Pi, feasible for
Si, is transformed to a path Pi+1 feasible for Si+1. Hence, the multi-level scheme that we propose
is as follows :
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1. Compute a collision-free path P0, respecting the nonholonomic constraints of system S0. If
such a path does not exist, there is no solution to the problem.

2. for i = 0 to n� 1 :
Transform path Pi to a collision free path Pi+1,
respecting the nonholonomic constraints of system Si+1

Of course, the key ingredient is the transformation of the paths, in a way that they become feasible
for the \next" system. In the following section we present two such techniques. Also, means for
obtaining the initial path P0 are required.

5 Obtaining initial paths and transformation techniques

The initial path P0 is a path feasible for the (simple) system S0, which has only one nonholonomic
constraint (described by equation E0). It is typically an easy task to compute such a path, with
existing planners. For example, in the planner that we have implemented for tractor-trailer robots
(as described in the Sections 6 and 7), an initial roadmap is computed with the Probabilistic Path
Planner (See Section 6.3). This roadmap stores paths feasible for S0, that is, paths respecting the
tractors nonholonomic constraints, but ignoring those of the trailer(s).

In the rest of this section, we focus on ways of performing the transformation steps in the
multi-level algorithm. We assume that Si is the (sub)system for which we want to transform a
path Pi�1 to a path Pi. Furthermore, we assume that Li is a local planner for system Si. That is,
Li is a function that takes two robot con�gurations as arguments, and returns a path connecting
its arguments, that (in absence of obstacles) is feasible for system Si. A local planner must posses
a topological property, in order to guarantee completeness of the transformation step. We give this
property in Section 5.3.

5.1 PL method

One way of performing the transformation of a path Pi�1 to a path Pi is the Pick and Link (PL)
method. Let us assume that the collision-free path Pi�1 is parametrised by s 2 [0::1]. Pi�1(0) and
Pi�1(1) are the extremal con�gurations. We �rst try to join these two con�gurations using the local
planner Li . If the obtained path is collision-free then we have a feasible path avoiding obstacles,
and the problem is solved. If not, we take an intermediate con�guration (let us say Pi�1(

1
2)) on

the collision-free path Pi�1 and we apply recursively the same treatment to the portion of the
collision-free path between Pi�1(0) and Pi�1(

1
2 ) and to the portion of the path between Pi�1(

1
2)

and Pi�1(1). As the algorithm proceeds, the considered extremal con�gurations will lie closer
and closer to each other. Thanks to the topological property of the local planner, when the �nal
con�guration tends to the initial one, the length of the local path linking them tends to zero. This
guarantees the convergence of the algorithm. For a serious demonstration see [SL96].

Strong points of this technique are its completeness and relative time-e�ciency in cluttered
regions of CS. The paths produced are however often very long and \ugly", and therefore require
signi�cant smoothing (See also Section 6.4). Furthermore, the completeness of the algorithm is
only guaranteed if the input path Pi�1 has a non-zero clearance from the obstacles.

5.2 Tube-PPP

The second transformation technique that we describe is based on the Probabilistic Path Planner,
or PPP ([K�SLO95, �SO95]).

PPP is conceptually quite simple. A roadmap R is constructed incrementally, by repeatedly
generating a random2 free con�guration c, and trying to connect c to a number of previously
generated con�gurations with the local planner. Whenever such a connection succeeds (that is,

2Heuristics have been developed for generating more nodes in certain interesting/di�cult areas of CSfree .
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Figure 3: A path Pi�1 de�nes a tube in CS, in which a roadmap, feasible for system Si, is
constructed. Note that, although all nodes lie in the tube, the local paths are allowed to exit it.

the computed local path is collision-free), the roadmap is extended with the corresponding local
path. Once a roadmap has been constructed in the above manner, it can be used for retrieving
feasible paths. We denote PPP with a speci�c local planner L by PPP(L).

Given a path P we now de�ne T�(P ) to be the subset of CS that lies within distance � of P ,
where � is a (small) constant. We refer to T�(P ) as the CS-tube around P . Formally :

T�(P ) = fc 2 CSj9~c 2 P : j~c� cj � �g

The transformation is now performed by executing PPP(Li) on T�(Pi�1) \ CSfree. That is,
instead of picking the node con�gurations randomly from the whole CSfree, they are only picked
from the free portion of T�(Pi�1). The concept is illustrated in Figure 3. The start and goal
con�gurations s and g are added as nodes at the very beginning, and the roadmap is extended in
the standard way until s and g are graph-connected. Then, a graph search and concatenation of
appropriate local paths gives a path Pi, feasible for the (sub)system Si.

With respect to the PL transformation algorithm, tube-PPP has advantages as well as dis-
advantages. The paths produced are typically much shorter than those constructed by the PL
technique. This means that less time has to be spent on smoothing them. Also, no minimal
clearance between the (input) paths and the obstacles is required. However, the method is only
probabilistically complete, and transformations of path segments where only concatenations of
many short paths bring a solution tend to be more time-consuming than with the PL method.

Choosing the transformation techniques for the di�erent transformation steps requires sensible
choices to be made. In the implementation that we present in Section 7 we have based these
choices on experiments.

5.3 Completeness of the transformation steps

Let us consider a con�guration space CS equipped with a metric d : CS � CS �! <+. Let
B(c; r) be the ball of radius r around the con�guration c. Let ` : CS �CS �! CS[0;1] be a local
planner; for two con�gurations a; b 2 CS , `(a; b) is a path `a;b(t); t 2 [0; 1] such that `a;b(0) = a

and `a;b(1) = b.
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Figure 4: A tractor-trailer robot placed at con�guration (x; y;�; �0; �1; : : : ; �n), with also shown
the tractors front point F0, the vehicles rear points Ri, the main axes Axi and the rear point
distances di.

De�nition : A local planner ` veri�es the Topological Property (TP) if:

8� > 0; 9� > 0 such that 8c0 2 CS; 8c 2 B(c0 ; �) :

8t 2 [0; 1] : `c0;c(t) 2 B(c0; �)

Property : Let ` be a local planner that respects the topological property TP. The completeness
of both the PL algorithm as PPP using ` is guaranteed. For proofs we refer to, respectively, [SL96]
and [�SO95].

6 Application to tractors with trailers

In this section we describe how the multi-level planning scheme can be applied to robots consisting
of a car-like tractor, towing a number of trailers. First, in Section 6.1, we formally de�ne tractor-
trailer robots, and we give formulas that describe their nonholonomic constraints. We have seen,
in Section 5, two transformation methods for the intermediate steps, requiring local planners
respecting the topological property TP. In Section 6.2, we describe such local planners for tractor-
trailer robots and their semi-holonomic subsystems. In addition to the transformation methods,
we need an initial path. One way of obtaining such a path for S0 is described in Section 6.3.
Finally, in Section 6.4, we present methods for heuristically improving the quality of the paths
produced by the transformation algorithms.

6.1 The tractor-trailer system

As described in Section 3, a con�guration of a tractor with n trailers can be represented by
c = (x; y; �0; �1; : : : ; �n). We have seen that the nonholonomic constraints of this system can be
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expressed by n+ 1 equations that lead to a control system with two inputs. For example, we can
choose as inputs the tangential and the angular velocities of the tractor. If we consider a real
tractor, the mechanical stops on the front wheels constrain the motion of the vehicle to have a
bounded curvature. For the motion planning problem, this imposes a relation between the two
inputs. Rather than treating the problem in this way, we consider the angle � of the car front
wheels (with respect to the x-axis) as a coordinate of the con�guration c = (x; y;�; �0; �1; : : : ; �n)
(See also Figure 4). Then the mechanical stops are simply geometric constraints on this coordinate.
We use 1

3� as maximal steering angle. That is, when the front wheels are in a "straight" position,
they cannot turn over an angle of more than 1

3� (clockwise or counterclockwise). This corresponds
approximately to normal cars.

We now �rst introduce some notations and terminology, which we will use throughout this
section (See also Figure 4). The tractor is denoted by A0, and the j-th trailer by Aj . We refer
to the midpoint between front wheels of A0 as the tractors front point, and the midpoint between
its rear wheels as the tractors rear point. These points are denoted by, respectively, F0 and R0.
The line going through these two points is referred to as the tractors main axis, denoted by Ax0.
Furthermore, for the trailers (that is, for j > 0), the midpoint between the wheels of Aj is the rear
point of trailer j, denoted by Rj, and the line going through Rj and Rj�1 is the main axis of trailer
j, denoted by Axj. If we want to specify any of the above variables for a speci�c con�guration c at
which the robot is placed, we parameterise the variable by this con�guration. Finally, we denote
the (�xed) distance between the rear point Ri�1 of a trailer and the rear point Ri of the vehicle
in front by di.

For a tractor pulling two trailers, the kinematic model of the system can be expressed by the
following equations : 8>>>>>>><

>>>>>>>:

_x = cos�0v0
_y = sin�0v0
_� = !
_�0 =

1
d0
tan(�)v0

_�1 =
1
d1
sin(�0 � �1)v0

_�2 =
1
d2
sin(�1 � �2)cos(�0 � �1)v0

The inputs here are v0, the velocity of the car, and !, the front wheels angular velocity (that
is, the derivative (in time) of the tractors steering angle). For a realistic system, not only do we
have to take into account some bounds for the steering angle �, but also for the angles between
consecutive bodies composing the robot (that is, between their main axes). We use �1

2� and 1
2�

as bounds.
The nonholonomic constraints of this system are imposed by the rolling without slipping of

the wheels. So a natural way of building subsystems for a system composed by a tractor and n

trailers is to ignore the existence of some of the wheels. We de�ne the subsystem Sk (0 � k � n)
as in Section 3. That is, Sk is a car-like robot with the �rst k trailers nonholonomic (that is, with
wheels), and the remaining n� k trailers being holonomic. This means that the last n� k trailers
can rotate freely (within [�1

2�;
1
2�]) around their linking point with the vehicle in front.

6.2 Local planners for the subsystems

As we have seen above, for the both described transformation schemes we need a local planner
respecting the topological property. Let us assume that we posses such a local planner ` for the
system composed of the �rst i + 1 bodies of our robot (that is, for the tractor and the �rst i

trailers). We can then de�ne a local planner `i for the system Si as follows : we �rst plan a path
only for the tractor and the �rst i trailers with the local planner `. Then we simply interpolate the
linking angles of the remaining trailers between the extremal con�gurations (see also Figure 5). It
is easy to prove that such a local planner `i always respects the topological property for Si.

So in order to have a suitable local planner for the subsystem Si, we need a local planner for a
tractor with i nonholonomic trailers, respecting the topological property. We will now introduce
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Figure 5: A path feasible for the tractor and the �rst trailer. The orientation of the second trailer,
relative to the orientation of the �rst, is interpolated. In other words, we see a path feasible for
system S1.

such local planners.

6.2.1 RTR-planner for a car-like robot

For a car-like robot we use a quite simple local planner `. Given two (car-like) con�gurations,
it constructs the shortest path connecting them that consists of a (constant curvature) curve, a
straight path segment, and another (constant curvature) curve. We refer to this local planner
as the RTR local planner, and we denote it by LRTR. This local planner is quite a cheap local
planner, in the sense that construction and collision checking of the local paths can be done very
e�ciently. Furthermore, it guarantees probabilistic completeness of PPP (See also [�SO95]).

6.2.2 Sinusoidal planner for tractor-trailers

Brie
y, the principle of the sinusoidal local planner is to transform the state coordinates into the
chained form and to apply sinusoidal inputs to the transformed system.

In what is considered as the classical tractor-trailer system in the literature (and that we
consider in this paper), each vehicle is hitched to the centre of the rear axle of the front vehicle.
Such system can be put in a form called the \chained form", locally around almost any point
of the con�guration space. The singularities are the points where one of the angles between two
vehicles is 1

2
�. If we consider a physical system for which 1

2
� is an upper bound for the admissible

values of these angles (this is the assumption we have made for our tractor-trailer), then locally
around any point of the con�guration space the system can be put in the chained form :8>>>>>>>><

>>>>>>>>:

_z1 = u1
_z2 = u2
_z3 = z2:u1
:

:

:

_zn = zn�1:u1

In the appendix the particular system of a tractor pulling two trailers is converted into chained
form. For the classical system of tractor with n trailers, a general method of transformation into
chained form is given by Sordalen [Sor93].
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For chained form systems, there exists several types of control that bring them from one point
to another : piecewise constant inputs, polynomial inputs or sinusoidal inputs [TMS93]. We need
one of the corresponding local planners that respects the topological property.

The sinusoidal inputs for a chained form system of dimension n are de�ned as :�
u1 = a0 + a1sin(!t)
u2 = b0 + b1cos(!t) + b2cos(2!t) + :::+ bn�2cos((n � 2)!t)

! is �xed and T = 2 �
!
is the integration time (the time required to steer the system from the

start to the goal position). a1 is chosen non-zero, and has in
uence on the shape of paths. The
other parameters (a0; b0; :::; bn�2) are functions of the extremal con�gurations.

We can prove that for a chained form system, a local planner using sinusoidal inputs respects
the topological property TP ([SL96]).

6.3 Obtaining the initial paths for S0

We have now all the ingredients required for transforming a Si-path to a Si+1-path, for any i � 0.
This is however not enough. We must also have means for obtaining the initial S0-paths, that is,
paths for car-like robots towing a number of holonomic trailers. Path planning for such robots is
however not a very challenging problem. One could �rst compute a fully holonomic path with, for
example, a potential �eld method, and subsequently transform this path into a S0-path with one
of the transformation steps described in this paper.

In the planner that we implemented, and for which we will give experimental results in the
next section, we however chose another solution. Given a particular scene, we construct a suf-
�cient S0-roadmap (that is, a roadmap storing paths feasible for system S0) with PPP. As also
described in Section 5.2, PPP builds a roadmap incrementally by probabilistically generating free
con�gurations, and interconnecting these by a local planner, where possible. The local planner
l0 (based on RTR), as described in Section 6.2, is used. Given a constructed roadmap, solving
a particular path planning problem (s; g) is done by connecting both the start con�guration s

and goal con�guration g to the same connected component of the roadmap, with, for example,
again the local planner. Of course, one may fail to compute such connections. In such a case,
either there is no solution to the problem (that is, s and g lie in separate components of the free
con�guration space), or the roadmap is not yet su�cient, and has to be further extended.

An advantage of using PPP in the initial phase is that a roadmap is constructed only once,
and paths can subsequently be retrieved very quickly, while for example a potential �eld method
would require expensive computations to be performed each time a new (S0-)problem is to be
solved.

However, most time will typically be spent during the transformation phases, and hence we
do not consider the use of PPP in the initial phase as a crucial ingredient of our nonholonomic
planning scheme.

6.4 Smoothing the intermediate and �nal paths

We have not yet said anything about the quality of the paths generated by the di�erent steps in our
algorithm, and neither about the in
uence that the quality of a Si-path has on its transformation
to a Si+1-path. For this cause, we should de�ne what the quality of a path is. Unfortunately, it
is not clear how to de�ne such a measure formally.

One could say : the shorter a path, the better its quality. This is however problematic.
Computing shortest paths for car-like robots (and cars towing trailers) amidst polygonal obstacles
is still an open problem. Hence, one can compare two equivalent paths and determine which one is
better, but since one does not know the length of the shortest path, it is impossible to determine
the actual quality of a path. So if we apply some heuristic path shortening algorithm to paths
that we �nd too long, we have no sensible stop criterion. Other intuitive quality measures are the
number of reversals a path contains (the less, the better), and the minimal clearance of a path with
the obstacles (the greater, the better). Again however we encounter the di�culties sketched for
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the length-measure, and, moreover, the measures contradict each other. For example, a shortest
path typically touches obstacles, and a reversal-less path can be \unnecessarily" long.

For the initial and intermediate transformation steps however, we do not really have to worry
about these considerations. We are merely interested in obtaining paths whose transformations
are easy, that is, fast. Firstly, we recall that the PL method requires input-paths of a certain
non-zero clearance for completeness. Furthermore, from experiments we noticed that the length
of a path is of very large in
uence on the time-e�ciency of its transformation. The shorter a
path, the faster its transformation (on the average). However, there is another factor that plays
an important role. Given a Si-path Pi that is to be transformed to a Si+1-path Pi+1, it appears
that one can measure the extent to which Pi violates the (i+ 1)-th nonholonomic constraint. The
more severe this violation is, the longer the transformation will take (again, on the average).

So, during each (initial and intermediate) step, we want generate paths that are short and
do not violate severely the \next" nonholonomic constraint. Also, if the PL method is used, we
must guarantee a non-zero clearance. The latter is quite easy (See also Section 7), so we now
concentrate on the two �rst criterions.

Both presented transformation algorithms are actually very bad with respect to the two cri-
terions. The generated paths are typically very long, up a hundred times longer then necessary,
and they can hardly be used directly. Also, the transformation algorithms in no way aim at
generating paths that somewhat respect the not yet introduced nonholonomic constraints. Fortu-
nately, it appears to be quite easy to heuristically improve the paths su�ciently in order to make
their transformations possible (and fast). First, in Section 6.4.1, we introduce a general heuristic
smoothing technique for reducing path lengths. Then, in Section 6.4.2, we de�ne the mentioned
(tractor-trailer speci�c) \nonholonomy-violation" measure, and we propose an algorithm that im-
proves paths with respect to this measure. This algorithm is again heuristic, and conceptually
quite similar to the path-shortening one.

Regarding the �nal transformation, not much can be said in general about smoothing, for the
reasons mentioned earlier. In the experiments that we present in the next section, we simply
smoothed the paths (using path-shortening) until they intuitively looked nice (in our opinion),
and their lengths seemed reasonable, with respect to the problems they solve.

6.4.1 Probabilistic path shortening

Let Pi be a Si-path, and Li be a local planner for the system Si. Reducing the length of Pi can
be done as follows :

loop until . . .
Let Q be a random path segment of Pi, with start-con�guration s and end-con�guration e.
Let QL be Li(s; e).
if QL is collision-free and length(QL) < length(Q)
then replace Q by QL in Pi.

This simple smoothing algorithm, that we refer to as probabilistic path shortening, works very
well in practice. A problem however is the stop-criterion, as explained before. In our experiments,
we simply run the algorithm until it stops making (signi�cant) progress. See again Section 7.1 for
experimental results.

6.4.2 Geometric approximation of nonholonomic constraints

Given an arbitrary (not necessarily feasible) path for a tractor with n trailers, one can measure in
how far the i-th nonholonomic constraint of system Sn is violated. In Section 6.1 the nonholonomic
constraints of a tractor-trailer robot have been described mathematically. However, using the
terminology introduced in Section 6.1 (and in Figure 4), the nonholonomic constraints can also
be characterised geometrically (See also Figure 6). During any motion of the robot :

1. the angle that F0's velocity vector can make with Ax0 is bounded, in absolute value, by a
constant, i.e., the tractors maximal steering angle �max, and
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Figure 6: A tractor-trailer robot, with grey arrows indicating the directions of velocity that
the front and rear points are allowed to have, in order for the robot not to violate any of its
nonholonomic constraints.

2. for each j 2 f0; : : : ; ng Rj's velocity vector must lie on Axj.

De�nition 1 Let c1 and c2 be con�gurations of a tractor with n trailers, and let D denote the
Euclidean distance in R2. For i 2 f0; : : : ; ng, the i-violation of (c1; c2), denoted by Vli(c1; c2), is
de�ned as follows (See also Figure 7) :

Vli(c1; c2) = D(Axi(c1); Ri(c2))

If a Sn-robot performs a (very) short (and feasible) motion from a con�guration c1 and c2 then,
for each j 2 f1; : : : ; ng, Vlj(c1; c2) will be approximately 0. Now let P be a (not necessarily feasible)
path for a tractor with trailers, parameterised by t 2 [0; 1], and let P � be an �-discretisation of P .
That is, P � is an ordered list of con�gurations [c1; : : : ; ck] with c1 = P (0) and ck = P (1), such
that no two consecutive con�gurations lie more that a distance � apart (in con�guration space).

If � is chosen small and the i-th nonholonomic constraint is not violated in path P , then for
any pair of consecutive con�gurations (cj ; cj+1) in P �, Vli(cj ; cj+1) will be approximately zero. If
however P does violate the i-th nonholonomic constraint, then P � will contain some pairs (cj; cj+1)
with Vli(cj; cj+1) non-zero. Moreover, the more Ri's velocity vector de
ects from Axi, the higher
will be the value of Vli, for con�guration pairs in the P �-segments where this violation occurs.
This all follows from the geometric characterisation of the nonholonomic constraints given above.

Hence, it is sensible to de�ne the extent to which the i-th nonholonomic constraint is violated
by a path P in terms of the i-violation function Vli applied to consecutive pairs of con�gurations
in P �. We chose for the following de�nition :

De�nition 2 Let P be a (not necessarily) feasible path for a tractor pulling n-trailers, and let
P � = [c1; : : : ; ck] be a �-discretisation P . For i 2 f0; : : : ; ng, the i-violation of P �, denoted by
Vli(P �), is de�ned as follows :

Vli(P �) =
X

j2f1;:::;k�1g

Vli(cj; cj+1)

So De�nition 2 gives us means for measuring the violation of the i-th nonholonomic constraint
in a given path, and this is exactly what we need. I.e., when a path Pi�1 (for system Si�1) is
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Vl0(c1; c2)

Figure 7: A tractor with n trailers is placed at two con�gurations c1 and c2. The i-violations of
the con�guration pair, de�ned as the distances between main axes Axi(c1) and rear points Ri(c2),
are shown by thick line segments.

to be transformed to a path Pi (for system Si), it is the i-th nonholonomic constraint that is to
be introduced. The more this constraint is already respected in path Pi�1, the easier (and hence
faster) will the transformation be. Hence, when a path Pi�1 has been yielded by a transformation,
one should try to reduce its i-violation, before passing it on to the next transformation step.

We again do this with a probabilistic algorithm, similar to probabilistic path shortening. How-
ever, instead of trying to replace random path segments by shorter ones computed by the local
planner, we now try to replace the path segments by alterations of themselves that are of lower
i-violation. Both the path segments as the alterations are generated probabilistically. We will
refer to this algorithm, described bellow, as geometric NH-approximation.

Let Pi�1 be the path for which the i-th nonholonomic constraint is to be approximated.
loop until . . .

Let Q be a random path segment of Pi�1.

Let ~Q be an i-alteration of Q.

if ~Q is collision-free and Vli( ~Q�) < Vli(Q�) then replace Q by ~Q in Pi�1.

The i-alterations, aimed at modifying the path (slightly) with respect to orientation of the i-th
trailer, can, for example, be generated as follows :

Let (x; y;�; �0; : : : ; �n) 2 C
[0:::1] be the path (segment) to be \i-altered".

Let � 2]0; 12�[ be a (experimentally) chosen constant.

Let ~� = Random[��; �]:

Replace �i(t) by �i(t) + sin(�t) � ~� (for all t 2 [0; 1]).

This simple method works �ne, but other alterations are of course also possible, as long as the
keep they path continuous.

In the next section we will present experimental results that show the positive in
uence of
geometric NH-approximation on the transformation steps, and, through this, on the overall per-
formance of our multi-level path planner.
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Figure 8: S0-paths solving the problems 1, 2, and 3 in Scene 1.

7 An implementation of the algorithm and experimental

results

We now describe an implementation of the multi-level algorithm for tractor-trailer robots with 2
trailers. The initial S0-paths are obtained, as explained, by retrieval from a roadmap computed
with PPP. For the S0 ! S1 transformation step we use tube-PPP, while for the S1 ! S2 trans-
formation step we use the PL method. Because the PL method requires a non-zero clearance
of its input-paths, we use a slightly grown robot (by a factor of 0.035) in the initial (PPP) step
and the �rst (tube-PPP) transformation step. We based these choices on experiments. For the
S0 ! S1 step both transformation algorithms seem to be of approximately the same speed, but
the quality of the paths is better with tube-PPP. For the second step however, the PL method is
much faster. We apply probabilistic path shortening to the intermediate paths. Furthermore, we
have also implemented the geometric NH-approximation algorithm, and we will give experimental
results for both cases where it is used, as for cases where it is not. Finally, we also give exper-
imental results for the case where the S0 ! S2 transformation is performed in one single step
(with the PL method). From these results it follows that a large gain is obtained by doing the
transformations separately, according to the multi-level scheme that we propose in this paper.

We have performed experiments with our planner in 2 di�erent environments, which we refer to
as Scene 1 and Scene 2. For both scenes, we have de�ned 3 di�erent path planning problems (that
is, 3 pairs of start and goal con�gurations), and we have measured the performance of our planner
for solving these problems. We are mainly interested in the performance of the transformation
steps (this is the di�cult part). For this reason, we take, for each problem, a number of di�erent
S0-paths solving it, and we measure the performance of the transformation steps for each of the
(equivalent) S0-paths. We will refer to these S0-paths, as the initial test paths. Scenes 1 and 2 are
shown in Figures 8 and 9, together with the initial test paths that we use. In Figures 10 and 11
we see, for each problem, a S0-path and a (smoothed) S2-path to which it has been transformed
by the multi-level planner. Figure 12 shows a 3D visualisation of a path, feasible for system S2,
computed by our multi-level planner.

The set of equivalent (but di�erent) S0-paths is obtained by retrieval from independently
constructed roadmaps by PPP. We think that the set of S0-paths that we present for each problem
is fairly representative for paths that PPP, in general, generates for S0-robots.

7.1 Experimental results

All experiments have been performed on a Silicon Graphics Indigo2 workstation rated with 96.5
SPECfp92 and 90.4 SPECint92 (136 MIPS).

For both scenes we have �rst constructed a su�cient S0-roadmap with PPP. For Scene 1 this
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Figure 9: S0-paths solving the problems 1, 2, and 3 in Scene 2.

took about 40 seconds, and the resulting roadmap had 550 nodes. For Scene 2 about 30 seconds
where required, resulting in a roadmap with 650 nodes.

7.1.1 Results for the multi-level algorithm with geometric NH-approximation

First we give results for the multi-level planner, using geometric NH-approximation. For each
initial test path P0, we measured the computation times required for :

1. Retrieving and smoothing P0 from the S0-roadmap.

2. Transforming P0 to a S1-path ~P1, with tube-PPP. Since tube-PPP is probabilistic, we give
averages over 20 independent runs.

3. Transforming ~P1 to a \smooth" path P1, with probabilistic path shortening. The algorithm
was iterated until the point where no longer any signi�cant length reduction was achieved.

4. Transforming P1 to a path P1, respecting more the second trailers nonholonomic constraint,
with geometric NH-approximation. We executed this algorithm for prespeci�ed amounts of
time.

5. Transforming P1 to a S2-path ~P2, with the PL method.

6. Transforming ~P2 to a \smooth" path P2, with probabilistic path shortening. Again, the
algorithm was iterated until the point where no longer any signi�cant length reduction was
achieved.

The results are presented in Tables 1 and 2. Each problem has its own subtable. Within each such
subtable, a row gives the computation times for the corresponding initial test path, except for the
last row, which gives average values over the di�erent initial test paths. Furthermore, the most
right column gives the total required computation times. The values between square brackets give
the lengths3 of the corresponding paths.

3We measure the distance that the tractors rear point travels, considering the scene to be (tightly) bounded by
a unit square.
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Problem 1: S0-path 1 Problem 1: S2-path 1
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Problem 3: S2-path 1

Figure 10: For each problem in Scene 1, a S0-path and a (corresponding) S2-path solving the
problem is shown.
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Problem 2: S0-path 1

Problem 3: S0-path 1

Problem 2: S2-path 1

Problem 3: S2-path 1

Problem1:
S2-path 1

Problem1:
S0-path 1

Figure 11: For each problem in Scene 2, a S0-path and a (corresponding) S2-path solving the
problem is shown.
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Sorry, �gure too BIG...

Figure 12: A 3D visualisation of a S2-path, computed by our planner. It is a transformation of
Path 2 solving Problem 2 in Scene 1 (See Figure 8).

Table 1 :

Scene 1 ! P0
P
! ~P1

SP! P1
SG! P1

L
! ~P2

SP! P2 Total

Problem 1
Path 1 0.3 1.9 0.9 4.3 0.8 [8.6] 1.7 [1.7] 9.9
Path 2 0.3 0.6 0.2 4.3 3.9 [28.8] 19.4 [1.7] 28.7
Avg. 0.3 1.3 0.6 4.3 2.3 [18.7] 10.5 [1.7] 19.3

Problem 2
Path 1 2.4 7.4 2.2 6.5 13.7 [88.3] 129.0 [7.4] 161.0
Path 2 1.8 6.7 4.3 6.5 14.1 [87.4] 64.5 [4.9] 97.8
Path 3 1.9 3.7 2.2 6.5 9.9 [63.2] 25.8 [3.8] 49.9
Avg. 2.0 5.9 2.9 6.5 12.6 [79.6] 73.1 [5.4] 103.0

Problem 3
Path 1 1.5 2.6 2.2 6.5 7.1 [61.1] 51.6 [4.8] 71.4
Path 2 1.2 8.2 4.3 6.5 3.1 [15.4] 8.6 [3.3] 31.8
Path 3 1.5 34.1 4.3 6.5 18.1 [128.8] 322.5 [7.8] 386.9
Avg. 1.4 15.0 3.6 6.5 9.4 [68.4] 127.6 [5.3] 163.4
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Table 2 :

Scene 2 ! P0
P
! ~P1

SP! P1
SG! P1

L
! ~P2

SP! P2 Total

Problem 1
Path 1 0.3 0.6 0.4 4.3 0.9 [4.5] 2.2 [2.0] 8.6
Path 2 0.5 1.4 0.4 4.3 0.5 [3.0] 2.2 [2.0] 9.2
Avg. 0.4 1.0 0.4 4.3 0.7 [3.8] 2.2 [2.0] 9.0

Problem 2
Path 1 1.4 34.4 8.6 6.5 7.3 [52.4] 38.7 [6.5] 96.8
Path 2 0.5 1.0 2.2 6.5 2.9 [17.5] 8.6 [6.3] 21.6
Path 3 1.3 9.7 4.3 6.5 13.2 [100.1] 387.0 [6.5] 422.0
Avg. 1.1 15.1 5.0 6.5 7.8 [56.6] 144.8 [6.4] 180.1

Problem 3
Path 1 0.9 1.4 2.2 6.5 8.5 [69.6] 25.8 [3.7] 45.2
Path 2 0.9 38.6 4.3 6.5 25.9 [268.1] 645.0 [5.8] 721.2
Path 3 0.5 5.3 2.2 6.5 4.4 [34.9] 17.2 [4.0] 36.0
Avg. 0.8 15.1 2.9 6.5 12.9 [99.3] 229.3 [4.5] 267.5

We see that the total computation times are on the order of seconds for the two easy problems
(Problem 1 in Scene 1 and Scene 2), and on the order of a few minutes for the other, more di�cult,
problems. When we look at the distribution of the computation times over the di�erent steps of
our algorithm, we see that most time is spent on the second transformation and, especially, the
�nal smoothing step. Hence, it appears to be much easier to obtain an arbitrary S2-path than one
which is (intuitively) nice.

When we take into consideration the path lengths of the intermediate paths, we see very
clearly that the length of the non-smoothed S2-path ~P2 is of great in
uence on the �nal smoothing
step. Also, not surprisingly, we see a strong correlation between the computation time of a (non-
smoothed) S2-path, and its length.

7.1.2 Other results

We have also done experiments with variations of the multi-level algorithm. Below, we give results
obtained by (1) omitting geometric NH-approximation, and (2) skipping the S1-level. We have
not managed to smooth su�ciently all S2-paths generated by the two-level planner (that is, the
one without the S1-level). We therefore do not give results for the �nal smoothing phase of this
planner (the averages would be meaningless).
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Without geometric NH-approximation :

Scene 1 ! P0
P
! ~P1

SP! P1
L
! ~P2

SP! P2 Total

Problem 1
Path 1 0.3 1.9 0.9 1.9 [13.6] 2.2 [1.8] 7.2
Path 2 0.3 0.6 0.2 3.2 [24.4] 8.6 [1.9] 12.9
Avg. 0.3 1.3 0.6 2.6 [18.9] 5.4 [1.9] 10.1

Problem 2
Path 1 2.4 7.4 2.2 29.2 [180.8] 150.5 [5.1] 191.6
Path 2 1.8 6.7 4.3 12.3 [87.5] 38.7 [4.3] 63.7
Path 3 1.9 3.7 2.2 20.3 [151.5] 38.7 [3.0] 66.7
Avg. 2.0 5.9 2.9 20.6 [139.9] 76.0 [4.0] 107.4

Problem 3
Path 1 1.5 2.6 2.2 37.2 [331.4] 1032.0 [4.9] 1075.5
Path 2 1.2 8.2 4.3 11.7 [119.9] 51.6 [3.6] 77.0
Path 3 1.5 34.1 4.3 28.7 [210.1] 361.2 [8.1] 429.8
Avg. 1.4 14.9 3.6 25.9 [220.5] 481.6 [5.5] 527.4

Scene 2 ! P0
P
! ~P1

SP! P1
L
! ~P2

SP! P2 Total

Problem 1
Path 1 0.3 0.6 0.4 2.2 [15.2] 6.5 [1.9] 10.0
Path 2 0.5 1.4 0.4 4.0 [34.0] 8.6 [1.8] 14.9
Avg. 0.4 1.0 0.4 3.1 [24.6] 7.5 [1.9] 12.5

Problem 2
Path 1 1.4 34.4 8.6 51.7 [354.1] 141.9 [4.7] 238.0
Path 2 0.5 1.0 2.2 7.3 [55.9] 17.2 [6.0] 28.1
Path 3 1.3 9.7 4.3 27.0 [269.2] 774.0 [7.5] 816.4
Avg. 1.1 15.1 5.0 28.6 [226.4] 311.0 [6.1] 360.8

Problem 3
Path 1 0.9 1.4 2.2 35.9 [311.0] 129.0 [3.3] 169.4
Path 2 0.9 38.6 4.3 32.3 [355.6] 1032.0 [7.1] 1108.1
Path 3 0.5 5.3 2.2 8.8 [86.0] 25.8 [3.6] 42.6
Avg. 0.8 15.1 2.9 25.7 [250.9] 395.6 [4.7] 440.0
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Direct S0 ! S2 transformations :

Scene 1 P0
L
! ~P2

Problem 1
Path 1 21.6 [231.4]
Path 2 5.3 [40.5]
Avg. 13.5 [136.0]

Problem 2
Path 1 77.8 [394.7]
Path 2 66.3 [408.3]
Path 3 72.0 [463.2]
Avg. 72.0 [422.1]

Problem 3
Path 1 30.9 [208.7]
Path 2 53.8 [393.6]
Path 3 264.7 [875.1]
Avg. 92.6 [492.5]

Scene 2 P0
L
! ~P2

Problem 1
Path 1 2.1 [12.2]
Path 2 4.6 [39.0]
Avg. 3.4 [25.6]

Problem 2
Path 1 335.5 [1266.7]
Path 2 5.2 [45.4]
Path 3 61.3 [577.3]
Avg. 134.0 [629.8]

Problem 3
Path 1 11.1 [95.3]
Path 2 197.8 [1066.3]
Path 3 28.4 [197.8]
Avg. 79.1 [453.1]

7.1.3 Comparison of the results

In order to have a comprehensive overview of the experimental data, we plot the average
computation times for each of the 6 presented problems in separate charts (Figure 13). The
(average) cumulative computation time is set against the computation phase of the algorithm.
Again because of the smoothing problems for some of the S2-paths obtained by the two-level
planner, the dotted plots stop at the ~P2 point.

For the simple problems, that is, the problems 1, we do not see much structure. All three
algorithms seem to perform well. For the other, more di�cult, problems we do see signi�cant
di�erences. Over the whole, the multi-level algorithm with geometric NH-approximation is clearly
the winner, while the two-level algorithm scores worst. Moreover, if we recall that most com-
putation time is spent in the �nal smoothing phase and strongly depends on the length of the
non-smoothed S2-path ~P2, it is clear that the two-level algorithm performs very poorly indeed.

We have performed experiments with another two-level planner as well, namely one that trans-
forms fully holonomic paths (that is, paths that also disrespect the tractors nonholonomic con-
straints) directly to S2-paths, using the PL method. As could be expected, the results where
considerably worse than even those for the S0 ! S2 planner. For sake of brevity, we do not
include these results in our paper.

Summarising the experimental results, we come to the following conclusions. Firstly, over the
whole the multi-level algorithm (with and without geometric NH-approximation) performs better,
with respect to computation times and path qualities, than just two-level planning. Secondly, even
though the geometric NH-approximation algorithm consumes some extra time, use of it does not
severely penalise the overall performance in easy cases, while clearly improving the performance
in more di�cult ones.

8 Conclusions and future work

We have presented a new multi-level approach to path planning for nonholonomic robots amidst
static obstacles. At the �rst level an initial path is generated that respects only some (easy)
nonholonomic constraint(s). Then, at each subsequent level, this path is transformed to a more
feasible path, that is, to a path that respects more nonholonomic constraints. The �nal path
is fully feasible for the real robot. Two general transformation algorithms (PL and tube-PPP)
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Figure 13: The average performances of the di�erent algorithm settings for Scene 1 and Scene 2.
The solid polylines correspond to the multi-level planner with geometric NH-approximation, the
dashed polylines to the multi-level planner without geometric NH-approximation, and the dotted
polylines to the two-level planner.

are described, as well means for obtaining initial paths (PPP). Also, techniques are presented
for heuristically smoothing the intermediate and �nal paths (probabilistic path shortening and
geometric NH-approximation).

The multi-level scheme is very general. It is applicable to any nonholonomic robot, provided
that the robot is locally controllable, and that one has local planners for the corresponding sub-
systems. In order to obtain completeness, these local planners must respect a basic topological
property.

We have applied the multi-level scheme to tractor-trailer robots (with two trailers). The result-
ing planner is complete, and, as experimental results show, quite time-e�cient. Problems involving
a tractor with two trailers in realistic environments are solved on the order of, at most, a few min-
utes. The experimental results also show that the multi-level algorithm performs signi�cantly
better than just two-level planning (that is, direct transformation of an initial path to a feasible
one). Furthermore, use of the tractor-trailer speci�c geometric NH-approximation algorithm, that
heuristically reduces violations of the nonholonomic constraints, gives further improvement.

There remain various open questions and topics of future research. For example, it is not clear
in general what should be the order in which the nonholonomic constraints are to be introduced.
For tractor-trailer robots, we made this choice just intuitively. Also, from the experimental results
we can observe that the running times of our algorithm vary considerably over di�erent initial
paths solving the same problem. Therefore, in our opinion, it is an important topic of future
research to formulate criteria for initial paths, that indicate the di�culty of transforming these
initial paths to feasible ones. Such criteria could be used for guiding the generation of the initial
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paths. Also, better stop-criteria for the smoothing algorithms would be desirable.
Finally, we want to mention the possibility of multi-level roadmap generation. Instead of taking

an initial path, and, in a number of steps, transforming it to a feasible path, one could also take
an initial roadmap, and perform the transformations on this whole roadmap. One then ends up
with a fully feasible roadmap, that is, a roadmap from which paths, respecting all nonholonomic
constraints of the robot, can directly be retrieved. Of course, the total computation times will, in
non-trivial scenes, be very high (on the order of hours or days). However, if one is dealing with a
truly static environment, an algorithm that within a few hours or days computes a roadmap from
which fully feasible (and smoothed) paths are directly retrievable can be favourable to one that
requires no preprocessing, but takes a few minutes to compute each single path.
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Appendix

If we consider the particular case of the car-like robot pulling 2 trailers, we have already seen a
kinematic model of the system in section 6.1. Another one can be :8>>>>>>><

>>>>>>>:

_x2 = cos�2cos(�1 � �2)cos(�0 � �1)cos(� � �0)v0
_y2 = sin�2cos(�1 � �2)cos(�0 � �1)cos(� � �0)v0
_� = !
_�0 =

1
d0
sin(� � �0)v0

_�1 =
1
d1
sin(�0 � �1)cos(� � �0)v0

_�2 =
1
d2
sin(�1 � �2)cos(�0 � �1)cos(� � �0)v0

where (x2; y2) is the rear point R2 of the second trailer, and � is the angle of the tractors front
wheels, with respect to the x-axis (See also Figure 4). The inputs are v0, the tangential velocity
of the tractors front point, and !, the angular velocity of the front wheels.

The following change of coordinates convert the control system above into chained form :

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

z1 = x2

z2 =

 
( 1+tan2( �0��1 ) ) ( 1+tan2(��1+�2 ) )

cos(��1+�2 )

�
�
� tan(��+�0 )

d0 cos(��1+�2 ) cos( �0��1 )
� tan( �0��1 ) v3

d1 cos(��1+�2 )

�
+ 2 tan( �0��1 ) tan(��1+�2 ) ( 1+tan2(��1+�2 ) )

cos(��1+�2 )

�
� tan( �0��1 )

d1 cos(��1+�2 )
� tan(��1+�2 )

d2

�
+ tan( �0��1 ) ( 1+tan2(��1+�2 ) ) sin(��1+�2 )

cos2(��1+�2 )

�
� tan( �0��1 )

d1 cos(��1+�2 )
� tan(��1+�2 )

d2

�
� 4 tan( �0��1 ) ( 1+tan2(��1+�2 ) ) sin( �2 ) tan(��1+�2 )

d2 cos(��1+�2 ) cos( �2 )

+ 6 d2 tan(��1 + �2 ) tan( �2 ) ( 1 + tan2(��1 + �2 ) )

�
�
� tan( �0��1 )

d1 cos(��1+�2 )
� tan(��1+�2 ) v3

d2

�
� 3 tan3(��1 + �2 )

�
1 + tan2�2

�
� 12 tan3(��1+�2 ) tan( �2 ) sin( �2 )

cos�2

+ d2 ( 1 + tan2(��1 + �2 ) )2
�
� tan( �0��1 )

d1 cos(��1+�2 )
� tan(��1+�2 )

d2

�
+ 2 d2 tan2(��1 + �2 ) ( 1 + tan2(��1 + �2 ) )

�
�
� tan( �0��1 )

d1 cos(��1+�2 )
� tan(��1+�2 )

d2

�
� 4 tan2(��1+�2 ) ( 1+tan2(��1+�2 ) ) sin( �2 )

cos�2

!�
( d1 d2 cos5�2 )

z3 =
1

d1 d2 cos4�2
:
tan(�0��1)
cos(�1��2)

� (1 + tan2(�1 � �2))

+ 1
d2 cos

4�2
� tan(�1 � �2)(3tan(�1 � �2)tan�2 � (1� tan2(�1 � �2)))

z4 =
1
d2
:
tan(�1��2)

cos3�2

z5 = tan�2
z6 = y2
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