
On Interval Routing Schemes and

Treewidth?

Hans L. Bodlaender1, Jan van Leeuwen1, Richard Tan1;2, and Dimitrios M. Thilikos1

1 Department of Computer Science, Utrecht University,

P.O. Box 80.089

3508 TB Utrecht, the Netherlands

fhansb,jan,rbtan,sedthilkg@cs.ruu.nl
2 Department of Computer Science, University of Sciences and Arts of Oklahoma

Chickasha, Oklahoma 73018, USA

Abstract. In this paper, we investigate which processor networks allow k-

label Interval Routing Schemes, under the assumption that costs of edges

may vary. We show that for each �xed k � 1, the class of graphs allowing

such routing schemes is closed under minor-taking in the domain of con-

nected graphs, and hence has a linear time recognition algorithm. This

result connects the theory of compact routing with the theory of graph

minors and treewidth.

We show that every graph that does not contain K2;r as a minor has

treewidth at most 2r � 2. In case the graph is planar, this bound can

be lowered to r + 2. As a consequence, graphs that allow k-label Interval

Routing Schemes under dynamic cost edges have treewidth at most 4k, and

treewidth at most 2k + 3 if they are planar.

Similar results are shown for other types of Interval Routing Schemes.

1 Introduction

A common problem in processor networks is that messages that are sent from
one processor to another processor must be routed through the network. The
classical solution is to give each processor a routing table, with an entry for each
possible destination specifying over which link the message must be forwarded.
A disadvantage of this method is that these tables grow with network size, and
may become too large for larger processor networks.

?This research was partially supported by the ESPRIT Basic Actions Program of the EC
under contract No. 8141 (project ALCOM II). The research of the second author was also
partially supported by the Netherlands Organisation for Scienti�c Research (NWO) under
contract NF 62-376 (NFI project ALADDIN: Algorithmic Aspects of Parallel and Distributed

Systems). The research of the last author was supported by the Training and Mobility of
Researchers (TMR) Program, (EU contract no ERBFMBICT950198). Correspondence on this
paper to the �rst author.

Several di�erent routing methods have been proposed that do not have this
disadvantage. One such method is the interval routing method, together with its
generalisation k-label interval routing and variants of these. An overview of these
and other compact routing methods can be found in [19].

Interval routing was introduced by Santoro and Khatib [24] and van Leeuwen
and Tan [18]. Several well-known classes of networks allow interval routing
schemes that are optimal, in the sense that messages always follow the short-
est path to their destination. The method was applied in the C104 Router Chip,
used in the INMOS T9000 Transputer design [16].

Frederickson and Janardan [15] considered interval routing in the setting of
dynamic cost links (i.e., in the case that the cost of edges is variable). Actu-
ally, they considered a variant of interval routing, called strict interval routing.
For these, they gave a precise characterisation of the graphs with dynamic cost
links which allow optimum strict interval routing schemes: these are exactly the
outerplanar graphs. Bakker, van Leeuwen and Tan [2] obtained a similar result
for general interval routing: a graph with dynamic cost links has an optimum
interval routing scheme, if and only if it is outerplanar or K4. Another restric-
tion of interval routing was introduced by Bakker, van Leeuwen, and Tan in [3]:
linear interval routing. It has also been applied in concrete networks. Here, also a
precise characterisation exists of the graphs which allow optimum linear interval
routing schemes with dynamic cost links.

All of the interval routing schemes assumes that each link has one unique label,
which is a (possibly cyclic) interval of processor names. All can be generalised
to multi-label schemes, where each link has a number of labels. We consider the
k-label schemes: each link has at most k labels. The issue we study in this paper
is: which graphs allow k-label interval routing schemes in the setting of dynamic
cost links.

Surprisingly, new and deep graph theoretical results on graph minors of
Robertson and Seymour (see Section 2.1) can be used for the analysis of this
problem. With the help of these results, we show non-constructively the exis-
tence of �nite characterisations of which graphs allow certain routing schemes.
Also, we give a non-constructive proof of the existence of linear time algorithms
that check whether a desired routing scheme exists for a given graph. These algo-
rithms heavily depend on the use of tree-decompositions. We show that graphs,
allowing a k-label interval routing scheme (in the setting of dynamic cost links)
have treewidth at most 4k. This not only gives a partial characterisation of the
graphs which have such routing schemes, but also, as the hidden constant factor
of these algorithms is exponential in the treewidth of the tree-decomposition, it
helps to decrease the running time of algorithms that would test the property.

As a main lemma, we show that every graph either contains K2;r as a minor,
or has treewidth at most 2r � 2. This can be seen as a special case of a result
of Robertson and Seymour [21]: every planar graph H = (V (H); E(H)) has an
associated constant cH , such that any graphG either contains H as a minor or has

2

treewidth at most cH . The best general bound for cH known is 202(2jV (H)j+4jE(H)j)5

[23]. Our result gives a much better bound in the case of graphs of the form K2;r.
Also, this result is constructive, and can be turned into an O(rn) time algorithm,
that either outputs that the input graph G has K2;r as a minor, or that outputs
a tree-decomposition of G of treewidth at most 2r � 2. Similar results for other
speci�c graphs can be found in [4] (trees), [14] (cycles and subgraphs of cycles), [7]
(disjoint copies ofK3), and [6] (graphs that are minor of a circus graph and (2�k)-
grid). The result of this main lemma can be seen as an additional result, �tting
into this framework. Applied to the routing problem, it gives the �rst graph-
theoretic complexity bound on the graphs that admit optimal k-label interval
routing schemes. Another consequence we discuss is that `most' random graphs
(even `sparse random graphs') do not allow k-label interval routing schemes under
the dynamic cost edges assumption, for small values of k. Additionally, we give
variants of the results when the graphs are restricted to be planar.

This paper is organised as follows. In Section 2, we give most necessary de�-
nitions and some preliminary results. In Section 3, we establish minor-closedness
of the considered classes of graphs, each class containing those networks allowing
certain types of k-label interval routing schemes. As a consequence, we obtain
a non-existential proof of the existence of linear time membership algorithms for
these classes. Also, slower, but constructive algorithms for these problems are
given. In Section 4, we give the result on the treewidth of graphs, avoiding K2;r

as a minor (as discussed above). In Section 5, a similar result is given, but with a
restriction to planar graphs, and with a better bound. Some open problems are
mentioned in Section 6.

2 De�nitions and preliminary results

In this section, we introduce the most important de�nitions and mention some
known results. In Section 2.1, we introduce graph-theoretic notions and results,
and in Section 2.2, concepts and results from interval routing and its variants.

2.1 Graph theoretic de�nitions and preliminary results

All graphs in this paper will be assumed to be undirected, simple and �nite.
Given a graph G we denote as V (G) and E(G) the set of its vertices and edges
respectively. The number of vertices of a graph G = (V;E) will be denoted by
n = jV (G)j. The notion of treewidth was introduced by Robertson and Seymour
[21].

De�nition. A tree-decomposition of a graph G = (V;E) is a pair D = (X; T)
with T = (I; F) a tree and X = fXi j i 2 Ig a family of subsets of V , one for
each node of T , such that

3

�
S
i2I Xi = V .

� for all edges fv; wg 2 E, there exists an i 2 I with v 2 Xi and w 2 Xi.

� for all i; j; k 2 I: if j is on the path from i to k in T , then Xi \Xk � Xj.

The treewidth of a tree-decomposition (fXi j i 2 Ig; T = (I; F)) is
maxi2I jXij � 1. The treewidth of a graph G is the minimum treewidth over
all possible tree-decompositions of G.

There are several well known equivalent characterisations of the notion of
treewidth; for instance, a graph has treewidth at most k, if and only if it is a
partial k-tree, or a subgraph of a chordal graph with maximum clique size at
most k + 1 (see [17]).

A graph G = (V;E) is said to be a minor of a graph H = (W;F), if G
can be obtained from H by a series of vertex deletions, edge deletions, and edge
contractions; where an edge contraction is the operation that takes two adjacent
vertices v and w, and replaces it by a new vertex, adjacent to all vertices that
were adjacent to v or w. A class of graphs G is said to be closed under taking
of minors, if for every G 2 G, every minor H of G belongs to G. For classes of
graphs G;H, we say that G is closed under taking of minors in the domain H, if
for every graph G 2 G \H, every minor H of G with H 2 H belongs to G.

In a long series of papers, Robertson and Seymour proved their famous graph
minor theorem (formerly `Wagner's conjecture'):

Theorem 1 (See [20].) For every class of graphs G, that is closed under taking
of minors, there exists a �nite set of graphs, called the obstruction set of G,
ob(G), such that for all graphs H, H 2 G, if and only if there is no graph G in
the obstruction set of G that is a minor of H.

Fellows and Langston [13] derived the following consequence and variant of
this result.

Theorem 2 Let G be a class of graphs, closed under taking of minors in the
domain H, with G � H. There exists a �nite set of graphs, the obstruction set
of G in H, obH(G), such that for all graphs H 2 H, H 2 G, if and only if there
is no graph G 2 obH(G) that is a minor of H.

It should be noted that the proofs of these results are (inherently) non-
constructive. As for every �xed graph H, there exists an O(n3) time algorithm
that tests whether H is a minor of a given graph G with n vertices [22], it follows
that every minor-closed class of graphs has a cubic recognition algorithm, and
every minor-closed class of graphs in a domain H has a cubic algorithm that
tests whether graphs from H belong to G. However, as the proof of Theorem 1
is non-constructive, we only know the algorithm exists, but we do not have the
algorithm itself.

In several cases, faster algorithms exist.

4

Theorem 3 ([21]) For every planar graph H, there exists a constant cH, such
that for every graph G, either H is a minor of G, or the treewidth of G is at most
cH.

Moreover, for every �xed integer k and graph H, there exists a linear time
algorithm, such that when given a graph G = (V;E) with a tree-decomposition of
treewidth at most k, decides whether H is a minor of G, using standard methods
for graphs with bounded treewidth (see e.g. [1].) As such tree-decompositions
can be found in linear time [5], when existing, the following result holds:

Theorem 4 Let G be a class of graphs that is closed under taking of minors, and
that does not contain all planar graphs. Then there exists a linear time algorithm
that tests whether a given graph G belongs to G.

Proof: (This proof is basically taken from [13], but we now use the algorithm
of [5] for �nding tree-decomposition of small treewidth.) Suppose G is a planar
graph that does not belong to G. First test whether the treewidth of input graph
G is at most cH . If not, we can safely conclude that G 62 G. Otherwise, �nd a
tree-decomposition of G of treewidth at most cH with the algorithm of [5], and
use this tree-decomposition to test whether a graph in ob(G) is a minor of G. ut

Theorem 5 Let G be a class of graphs that is closed under taking of minors in
the domain H, G � H. Suppose there is at least one planar graph that belongs
to H but not to G. Then there exists a linear time algorithm that tests whether a
given graph G 2 H belongs to G.

Proof: (We again use an only slightly modi�ed variant of a proof from [13].)
Suppose H is a planar graph with H 2 H, H 62 G. If G 2 G, then G does not
contain H as a minor, hence has treewidth at most cH . So, again we can �rst
test whether the treewidth of G is at most k. If not, we are done. Otherwise, we
compute a tree-decomposition of G with treewidth at most cH , and then use this
tree-decomposition to test in linear time whether G contains a graph in obH(G)
as a minor. ut

The constant factor of the linear time algorithms mentioned above is expo-
nential in the treewidth of the tree-decomposition used, i.e., in cH , H a planar
graph not in G (but in H). The constant factor in the original result of Robertson
and Seymour was `astronomically large'. In a later paper, Robertson et al. [23]
improved this result, and obtained a constant factor of 202(2jV (H)j+4jE(H)j)5 .

Still, in most, if not all, practical cases, this constant factor is much too large,
and makes the algorithm practically infeasible. This is the motivation, why we
looked for much smaller values of cH for graphs of the form K2;r, as these graphs
are planar, connected and can be shown to be `outside' the considered classes of
graphs.

5

2.2 De�nitions and preliminary results on interval routing

Unless stated otherwise, intervals will be assumed to be `cyclic' in the set
f0; 1; : : : ; n � 1g, (n = jV j); thus if a > b then the interval [a; b) denotes the
set fa; a+ 1; :::; n� 1; 0; :::; b� 1g.

The shortest distance from vertex u 2 V to a vertex v 2 V in a graph
G = (V;E) when edges have costs given by edge cost function c : E ! R, is
denoted by dG;c(u; v). When G and/or c are clear from the context, we drop
them from the subscript. The cost of a path p under edge cost function c is
denoted by c(p).

A node labelling of a graph G = (V;E) is a bijective mapping nb : V !
f0; 1; : : : ; n � 1g. An interval labelling scheme (ILS) of a graph G = (V;E) is
a node labelling nb of G, together with a labelling l, mapping each link to an
interval [a; b), a; b 2 f0; 1; : : : ; n� 1g, such that for every vertex v, the set of all
labels of links outgoing from v partitions the set f0; 1; : : : ; n� 1g.

Given an ILS, routing is done as follows. Each message contains, amongst
others, the node label nb(w) of its destination node w. When a node x receives a
message with destination-label dest, it �rst looks whether nb(x) = dest. If so, the
message has reached its destination, and is not routed any further. Otherwise,
the message is transferred over the link with label [a; b) such that dest 2 [a; b).
An ILS is valid, if for all nodes v, w, messages sent from v to w eventually reach
w by this procedure. An interval routing scheme (in short: IRS) is a valid ILS.

The notion of strict interval labelling schemes is obtained in a similar way:
modify the de�nition of ILS in the sense that all labels of links associated with
nodes v must partition the set f0; 1; : : : ; n� 1g�fnb(v)g, i.e., the label of v may
not appear in the labels of any of its outgoing links. A linear interval labelling
scheme is an ILS where no interval label `wraps' around, i.e., for all interval
labels [a; b) a < b. Strict linear interval labelling schemes, strict interval routing
schemes (SIRS), linear interval routing schemes (LIRS), and strict linear interval
routing schemes (SLIRS) are de�ned in the obvious way.

For each of these notions, we also de�ne k-label variants. Here, each link is
labelled with at most k (cyclic) intervals. All (cyclic) intervals associated with
links of a node v must together partition f0; 1; : : : ; n� 1g (or f0; 1; : : : ; n� 1g �
fnb(v)g, in the case of strict labellings.) Again, a message is transferred over
the link e for which one of its labels is an interval that contains the destination-
number. k-label interval routing schemes, k-label linear interval routing schemes,
etc., are de�ned as can be expected, and abbreviated as k-IRS, k-LIRS, etc. Note
that an IRS is an 1-IRS, etc.

A routing scheme is optimal for a graph G = (V;E), together with an assign-
ment of non-negative costs to each edge e 2 E, if, whenever a message is sent
from node v to node w, the path taken by this message is a minimum cost path
from v to w.

Costs of edges denote the time needed to send a message over the edge. How-

6

ever, in many practical cases, this time may vary. This situation is modelled by
the dynamic cost links setting.

We say that graph G = (V;E) with dynamic cost links has an optimum k-
IRS, if there exists a node labelling nb of G, such that for all assignments of
non-negative costs to edges of E, there exists an IRS (nb; l) that is optimal for
this cost assignment.

The class of graphs k-IRS is de�ned as the set of all graphs G that have
an optimum k-IRS with dynamic cost links. In the same way, we de�ne classes
k-LIRS, k-SIRS, k-SLIRS. See [19] for an overview of several results on these
classes. We have the following relationships.

Theorem 6 (i) (Frederickson, Janardan [15]) k-IRS � (k + 1)-IRS.
(ii) (Bakker, van Leeuwen, Tan [3]) k-LIRS � (k + 1)-LIRS.
(iii) (Bakker, van Leeuwen, Tan [3]) k-IRS � (k + 1)-LIRS.
(iv) k-SIRS � k-IRS � (k + 1)-SIRS.
(v) k-SLIRS � k-LIRS � k-IRS.

3 Closedness under minor taking

In this section we prove that for each �xed integer k � 1, each of the classes k-
IRS, k-LIRS, k-SIRS and k-SLIRS is closed under taking of minors in the domain
of connected graphs. The reason that this result is interesting is that it enables
us to apply results from the theory of graph minors and of graphs of bounded
treewidth to the theory of interval routing. We �rst prove a lemma which will be
used later.

Lemma 7 Let G = (V;E) be a graph with edge costs c : E ! R+ [f0g. There
exists an edge cost function c0 : E ! Z+, such that for all u; v 2 V : each shortest
path p from u to v in G under edge costs c0 is also a shortest path from u to v in
G under edge costs c.

Proof: Let P be the set of all simple paths in G. De�ne

� = minfjc(p)� c(p0)j j p; p0 2 P; c(p) 6= c(p0)g

Note that � > 0. De�ne c0 : E ! Z+ by taking for all e 2 E:

c0(e) =

$
jV jc(e)

�

%
+ 1

Suppose p is a shortest path from u to v under edge costs c0, but not under edge
costs c. Let p0 be another path from u to v with c(p0) < c(p). By de�nition of �,

7

we have c(p0) � c(p)� �. Let n = jV j. Now

c0(p0) =
X
e2p0

(

$
n � c(e)

�

%
+ 1)

� n� 1 +
n

�
c(p0) < n +

n

�
(c(p)� �)

=
n

�
c(p) =

X
e2p

n � c(e)

�

�
X
e2p

(

$
n � c(e)

�

%
+ 1) = c0(p)

So, c0(p0) < c0(p), hence p was not a shortest path from u to v under edge cost c0,
contradiction. ut

Theorem 8 Let k 2 N be a �xed constant.
(i) k-IRS is closed under minor taking in the domain of connected graphs.
(ii) k-LIRS is closed under minor taking in the domain of connected graphs.
(iii) k-SIRS is closed under minor taking in the domain of connected graphs.
(iv) k-SLIRS is closed under minor taking in the domain of connected graphs.

Proof: (i) It is su�cient to prove, that if a connected graph G = (V 0; E 0) is
obtained from a graph H = (V;E) 2 k-IRS by one of the following operations:
removal of a vertex, removal of an edge, contraction of an edge, then G 2 k-
IRS. Suppose H 2 k-IRS; let nb be a vertex labelling, such that for any cost
assignment, there exists a k-label interval routing scheme (nb; l) for H.

First, suppose that G is obtained from H by removing an edge e0. Use the
same numbering nb for G. For any cost assignment c : EG ! R+ [f0g, consider
the cost assignment c0 : EH ! R+ [f0g, where for all e 2 EG : c0(e) = c(e),
and take c(e0) = 1 +

P
e2EG

c(e), i.e., the cost of e0 is chosen so large that no
minimum cost path will ever use the edge e0. Hence, any k-label interval routing
scheme (nb; l) for H with costs c0 will also be a k-label interval routing scheme
for G with costs c.

Next, suppose that G is obtained from H by removing a vertex v 2 V and all
of its adjacent edges. By �rst removing all edges adjacent to v but one, as in the
previous case, it follows that we may assume v has degree 1. Now, no shortest
path between two vertices w and x, x 6= v, x 6= w uses v. Label the vertices in
V 0 as follows: if nb(w) < nb(v), then take nb0(w) = nb(w), and if nb(w) > nb(v),
then nb0(w) = nb(w) � 1. For any edge cost function c on G, we can make an
IRS as follows: consider the same edge cost function c on H, giving the unique
edge from v some arbitrary cost, and �nd an IRS (nb; l) for this function on H.
Applying the same relabelling (decrease all labels larger than nb(v) by one) on
labelling l, we obtain a labelling l0 such that (nb0; l0) is an IRS for G with edge
costs c.

8

Finally, suppose G is obtained from H by contracting the edge (v; w) = e0 2
EH to a vertex, say v0. Let nb0 : V ! f0; 1; : : : ; jV (H)j � 1g be the function,
obtained by taking for all x 2 V (G) � fvg, nb0(x) = nb(x). Actually, there is a
`gap' in nb': there is no vertex x with number nb0(x) = nb(v). This is resolved
by decreasing all labels larger than nb(v) by one, as in the case of removing a
vertex.

Let c : EG ! R+ [f0g be a cost assignment for G. By Lemma 7, there
exists a cost assignment c0 : EG ! N+, such that all shortest paths under cost
assignment c0 are shortest paths under cost assignment c. Let � = 1+

P
e2EG

c0(e),
a forbidding weight. Now let c00 : EH ! R+ be de�ned as follows: for all edges
fx; yg 2 EH with x; y 62 fv; wg, let c00(fx; yg) = c0(fx; yg). For y 6= w, if
fv; yg 2 E(H), take c00(fv; yg) = c0(fv0; yg). For y 6= v, if fw; yg 2 EH , then if
fv; yg 2 EH , then let c00(fw; yg) = �, otherwise let c00(fw; yg) = c0(fv0; yg)+ 1=4.
Finally, we let c00(fv; wg) = 1=8.

Let (nb; l) be a k-IRS for H with cost c00. We can use l to build a k-IRS (nb; l)
for G with cost c0. First note that H without the edges of cost � is still connected.
So, no shortest path takes an edge of cost �, and all links corresponding to these
edges have an empty label. For every link (x; fx; yg) with x 62 fv; wg, take in l0

the same labels as in l. For a link (v0; fv0; yg), take in l0 the union of the labels
of links (v; fv; yg) and (w; fw; yg). Note that one of these links is either non-
existing or empty, so this label will not consist of more than k intervals. Also,
note that for every node x, the shortest path from v to x does not use w, if and
only if the shortest path from w to x uses v. The same holds with roles of v and
w reversed. It follows that no vertex label will appear in more than one label of
a link outgoing from v0. We now have shown that l0 is a k-ILS.

It remains to be shown that l0 gives shortest paths in G. Consider nodes x
and y in V (G). Let p be a shortest path in H between nodes x and y following
links as directed by l0. If x = v0, then take x = v in H. Similar, if y = v0. Note
that if both v and w appear in p, then they must occur as consecutive nodes on
this path, as all edges except fv; wg have cost at least 1. Let p0 be the path in
G, obtained from p by replacing a possible occurrence of v, w or both by one
occurrence of v0. Observe that l0 will direct a message from x to y via path p0.
Finally, observe that p0 is a shortest path from x to y in G with costs c0, hence
also with costs c.

(ii) (iii) (iv) Similar. ut

Theorem 9 (i) (Frederickson, Janardan [15]) K2;2k+1 62 k-SIRS.
(ii) K2;2k+1 62 k-IRS.

Proof: (i) is shown in [15]. The proof of (ii) is very similar. ut

It follows now from Theorem 2 that for each �xed k � 1, the classes k-IRS, k-
LIRS, k-SIRS, and k-SLIRS have a �nite characterisation in terms of obstruction
sets. Combining Theorem 9, Theorem 8 and Theorem 5 gives the following result.

9

Corollary 10 For each �xed k 2 N, there exists a linear time algorithm that
decide whether given a graph G = (V;E) belongs to the class k-IRS (or: k-SIRS,
k-LIRS, k-SLIRS).

It should be noted that this result is non-constructive: we know the algorithm
exists, but to write down the algorithm, we must know the corresponding �nite
obstruction set, which we do not know. Unfortunately, we only know of much
slower constructive versions of these results. For establishing these constructive
version, we �rst need the following lemma.

Lemma 11 Let G = (V;E) be a connected graph, and let nb be a node labelling
of G. The following statements are equivalent:

1. For every cost assignment c : E ! R+ [f0g, there exists an optimal k-
SIRS.

2. For every vertex v, and for every edge fv; wg 2 E, there does not exist
vertices a1; : : : ; ak+1; b1; : : : ; bk+1 2 V , and a spanning tree T = (V; F) of G
such that

� nb(a1) < nb(b1) < nb(a2) < nb(b2) < � � � < nb(ak) < nb(bk) <
nb(ak+1) < nb(bk+1) or nb(b1) < nb(a1) < nb(b2) < nb(a2) < � � � <
nb(bk) < nb(ak) < nb(bk+1) < nb(ak+1).

� For each i, 1 � i � k + 1, the path in T from v to ai uses the edge
fv; wg.

� For each i, 1 � i � k + 1, the path in T from v to bi does not use the
edge fv; wg.

� nb(w) 2 fa1; : : : ; ak+1g.

Proof: 2 ! 1: Suppose that v, fv; wg, a1; : : : ; ak+1; b1; : : : ; bk+1 and T are as
stated. Now, let c be the cost assignment that assigns cost 1 to every edge in
T , and jV j + 1 to every other edge, i.e., all shortest paths follow T . Now, each
nb(ai) must be in a di�erent interval for the link (v; fv; wg), as when nb(ai) and
nb(ai+1) would be in the same interval, then nb(bi) or nb(bi+1) also would belong
to the interval, and messages to this node bi or bi+1 would be routed in the wrong
direction.

1 ! 2: Suppose for cost assignment c, there is no optimal k-IRS. Note that
we may assume that between every two pairs of nodes, there is a unique shortest
path. (If not, then we can change the weights of some edges with very small
amounts, such that there some non-unique shortest paths disappear, but no new
shortest path routes are created.) Now, there is a vertex v 2 V , and an adjacent
edge fv; wg 2 E, such that at least k+1 intervals, say [c1; d1]; : : : ; [cr; dr], r � k+1
are necessary to give the set of numbers of nodes whose shortest paths from v
use the edge fv; wg. For each interval [ci; di], 1 � i � k, choose a vertex ai with

10

nb(ai) 2 [ci; di], and choose a vertex ak+1 with nb(ak+1) 2 [ck+1; dk+1][� � � [cr; dr],
such that w 2 fa1; : : : ; ak+1g. Next, choose b1; : : : ; bk+1, such that no nb(bi)
belongs to an interval [cj; dj] (1 � i � k + 1, and 1 � j � r), and that nb(a1) <
nb(b1) < nb(a2) < nb(b2) < � � � < nb(ak) < nb(bk) < nb(ak+1) < nb(bk+1) or
nb(b1) < nb(a1) < nb(b2) < nb(a2) < � � � < nb(bk) < nb(ak) < nb(bk+1) <
nb(ak+1). (It is easy to see that this can be done: in general, pick vertices whose
number is between dj and cj+1.)

Let T be the shortest paths tree containing shortest paths from v to all other
vertices. (See e.g. [11], Chapter 25.) The paths in T from v to a vertex ai,
1 � i � k + 1 must use the edge fv; wg, while the paths in T from v to a vertex
bi do not use this edge. ut

Similar results can be shown for k-IRS, k-LIRS, and k-SLIRS: in case of non-
strict versions, additionally we require that v 62 fa1; : : : ; ak+1; b1; : : : ; bk+1g, and
in case of linear versions, bk+1 is not used, and the condition on the numbers of
vertices ai, bi becomes: nb(a1) < nb(b1) < nb(a2) < nb(b2) < � � � < nb(ak) <
nb(bk) < nb(ak+1).

Theorem 12 For any �xed k � 1, one can construct algorithms that test whether
for a given graph G = (V;E) with a node labelling nb and for all costs assignments
c : E ! R+[f0g, there exists an optimal k-IRS (or: k-SIRS, k-LIRS, k-SLIRS)
(nb; l) for G with costs c, in O(n2k+3) (O(n2k+3), O(n2k+2), O(n2k+2)) time.

Proof: We consider the algorithm for checking existence of an optimal k-SIRS.
First, we use the algorithm from [5] to check in linear time whether the treewidth
of G is at most 4k, and if so, to build a tree-decomposition of G of treewidth at
most 4k. If the treewidth ofG is more than 4k, then by Corollary 22, G 62 k-SIRS,
so also for the node labelling nb, there exists a cost assignment which requires at
least k + 1 intervals for some link: we can output `no', and stop.

So, now suppose we have a tree-decomposition of G of treewidth at most
4k. It is well known that jEj � 4kjV j. Now, for every vertex v 2 V , and for
every (v; w) 2 E, and for all vertices a1; : : : ; ak+1; b1; : : : ; bk+1 2 V , with nb(a1) <
nb(b1) < nb(a2) < nb(b2) < � � � < nb(ak) < nb(bk) < nb(ak+1) < nb(bk+1) or
nb(b1) < nb(a1) < nb(b2) < nb(a2) < � � � < nb(bk) < nb(ak) < nb(bk+1) <
nb(ak+1) and w 2 fa1; : : : ; ak+1g, we check whether there exists a spanning tree
T = (V; F) of G such that

� For each i, 1 � i � k + 1, the path in T from v to ai uses the edge fv; wg.

� For each i, 1 � i � k + 1, the path in T from v to bi does not use the edge
fv; wg.

If one of these checks is true, we know by Lemma 11 that there is a cost assignment
for which no k-SIRS (nb; l) exists; otherwise we know that for all cost assignments
such a k-SIRS does exist.

11

Each check can be done in linear time, with help of the tree-decomposition:
notice, that for �xed v; w; a1; : : : ; ak+1; b1; : : : ; bk+1, the existence of T ful�lling
the given properties can be formulated in Monadic Second Order Logic, and
hence be decided (with an algorithm that can be constructed) in linear time for
graphs of bounded treewidth (see [1, 10, 12]). As we must make in total less than
jEj � n2k+1 � k = O(n2k+2) checks, the time bound follows.

The algorithms for the cases of k-IRS, k-LIRS, and k-SLIRS are similar:
because bk+1 is not used, the time bounds for k-LIRS and k-SLIRS are a linear
factor smaller. ut

Corollary 13 One can construct an algorithm that tests whether for a given
integer k 2 N, and graph G = (V;E), G 2 k-IRS (or: G 2 k-SIRS, G 2 k-LIRS,
G 2 k-SLIRS).

Proof: Use the algorithm of Theorem 12 for each permutation (numbering) of
the vertices of G. ut

4 The treewidth of graphs with k-label interval

routing schemes

The main object of this section is to prove the following result.

Theorem 14 Every graph G = (V;E) contains K2;r as a minor or has treewidth
at most 2r � 2.

A variant of these results with a sharper bound for the case that G is planar
is discussed in the next section.

Given a graph G = (V;E) and a set S � V , let @S = fv 2 V � S j 9u 2
S; fu; vg 2 Eg (i.e., the neighbours of vertices in S that do not belong to S).

De�nition. A set S � V is an s-t-separator in G = (V;E) (s, t 2 V), if s
and t belong to di�erent connected components of G[V � S]. S is a minimal
s-t-separator, if it does not contain another s-t-separator as a proper subgraph.
S is a minimal separator, if there exist vertices s, t 2 V for which S is a minimal
s-t-separator.

Note that minimal separators can contain other minimal separators as proper
subgraphs. We will use in fact a di�erent property of minimal separators, as
given in the following lemma, which is easy to proof.

Lemma 15 A non-empty set S is a minimal separator in G, if and only if
there are at least two connected components, G1; G2 of G[V � S] such that
S � @V (Ci); i = 1; 2 (i.e. each vertex in S has a neighbour in both G1 and
G2). We call two such components separated components.

12

Lemma 16 If G contains a minimal separator S, with jSj � r, then K2;r is a
minor of G.

Proof: Let S be a minimal separator and consider two separated components
GA and GB of G[V � S]. Remove any vertex from any other component and
jSj � r vertices from S. If we now contract all edges in GA and GB that are not
incident with a vertex in S, we obtain K2;r. ut

De�nition. Let G = (V;E) be a graph and S a collection of subsets of V (G).
Denote by CL(G;S) the graph obtained from G by making every set Si 2 S into
a clique, i.e., CL(G;S) = (V;E [ffv; wg j v 6= w; 9Si 2 S : v; w 2 Sig).

De�nition. Let G be a graph and S a collection of subsets of V (G). Denote
by EX(G;S) the graph obtained from G by adding to every set Si 2 S a new
vertex vnew;i which is adjacent to all vertices in Si. (In case jSj = 1, we denote
the \new" vertex as vnew).

De�nition. For given r � 1, let Dr be the class of all graphs G = (V0[V1[V2 [
V3; E), such that

� V0, V1, V2, V3 are disjoint sets.

� V0 = fv0g. v0 is adjacent to all vertices in V1 and no vertices in V2 [V3.

� jV1j < r. Every vertex in V1 is adjacent to at least one vertex in V2 and to
no vertex in V3.

� Every vertex in V2 is adjacent to at least one vertex in V1.

� Every vertex in V3 is adjacent to less than r vertices in V2, and is not
adjacent to vertices in V0 [V1 [V3.

Finally, if R 2 Dr, we de�ne CL(R) = CL(R; f@fvg : v 2 V0(R) [V3(R)g).
Also, we de�ne CL(Dr) = fCL(R) : R 2 Dg.

Let V3 = fv
3
1; : : : ; v

3
mg.

Lemma 17 (See [6].) For any graph G = (V;E), either K1;r is a minor of G
or treewidth(G) � r � 1.

Proof: W.l.o.g., suppose that G is connected. Take an arbitrary depth �rst
search tree T of G. For any vertex v, let Yv be the set of ancestors of v in T
that are adjacent to v or to a descendant of v, and let Xv = fvg [Yv. One can
show that if jYvj � r, then G contains K1;r as a minor (contract v with all its
descendants, and then remove all vertices not in Xv.) For all v, if jYvj � r�1 then
(fXv j v 2 V g; T) is a tree-decomposition of G of treewidth at most r � 1. ut

13

v

V

V

V

0

3

2

1

0

V

Figure 1: Example of a graph in D6.

Lemma 18 (See e.g., [8].) Let (fXi; i 2 Ig; T) be a tree-decomposition of
graph G = (V;E). For any clique K of G, there exists an i 2 I with V (K) � Xi.

Lemma 19 For any graph G 2 Dr, either K2;r is a minor of G or G has a tree-
decomposition of treewidth � 2r� 2 which is also a tree-decomposition of CL(G).

Proof: Let Gclique = CL(G), V (K1;r) = fw0; w1; : : : ; wrg and E(K1;r) =
ffw0; w1g; : : : ; fw0; wrgg. From Lemma 17, either K1;r is a minor of Gclique[V2] or
treewidth(Gclique[V2]) � r � 1. We consider these cases separately.

Case 1. K1;r is a minor of Gclique[V2]: Let i = 0; : : : ; r and Swi
be the set of

vertices in Gclique[V2] that were identi�ed to wi when creating K1;r as a minor.
Notice that any set Swi

induces a connected subgraph in Gclique[V2]. Denote by
R the set of vertices in V3 that are adjacent to vertices in Sw0

. Finally let wi be
a vertex in Swi

that is adjacent to a vertex in Sw0
. (Note that these vertices wi

exist, by the construction of K1;r as a minor.) We observe that Gclique[R [Sw0
]

is connected.
Claim I: G[R [Sw0

] is connected.
Suppose not. As E(G[R [Sw0

]) � E(Gclique[R [Sw0
]), we can add edges in

E(Gclique[R [Sw0
]) � E(G[R [Sw0

]) to G[R [Sw0
] until an edge, say fx1; x2g

14

makes the graph connected. As fx1; x2g belongs to E(Gclique[R [Sw0
]), but not

to E(G[R [Sw0
]), the edge is in one of the added cliques, i.e., there must be a

vertex x3 2 V3 that is adjacent to both x1 and x2. Now we have a contradiction,
as x3 2 R � R [Sw0

.
Claim II: For all i, wi is adjacent to a vertex in R [Sw0

in G.
For all i, there exists a vertex xi 2 Sw0

that is adjacent to wi in Gclique. If
fwi; xig 2 E(G), then we are done. If fui; xig 62 E(G), then there is a vertex
x3i 2 V3 with fxi; x

3
i g; fwi; x

3
i g 2 E(G), and the claim is true, as wi is adjacent

to x3i 2 R.
We can now show that K2;r is a minor of G. First contract all vertices in

R [Sw0
to a single vertex z0. Next for each i, contract all vertices in Swi

to a
single vertex, say zi. Then contract all vertices in V0 [V1 to a single vertex zr+1.
(We can do all of these contractions, as each of these sets induces a connected
subgraph of G.) By claim II, z0 is adjacent to each vertex in fz1; : : : ; zrg. Also
for each i, as Swi

� V2 and each vertex in V2 is adjacent to at least one vertex in
V1, zr+1 is adjacent to each vertex zi, 1 � i � r. We now have a K2;r minor.

Case 2. Treewidth(Gclique[V2]) � r�1: We now show that treewidth(Gclique) �
2r � 2. Take a tree-decomposition (fXi j i 2 Ig; T = (I; F)) of Gclique[V2] with
treewidth � r � 1. Observe that (fXi [V1 j i 2 Ig; T) is a tree-decomposition
of Gclique[V1 [V2] with treewidth at most r � 1 + jV1j � 2r � 2. Using this
tree-decomposition, we can build a tree-decomposition of Gclique of treewidth
� 2r� 2, as follows. Add nodes j0, j

3
1 ; : : : ; j

3
m to I, with Xj0 = fv0g [@fv0g and

Xj3
i
= fv3i g [@fv

3
i g. By Lemma 18 there exists for each i a node j 0i 2 I, with

@fv3i g � Xj0

i
. We make j3i adjacent to this node j 0i. Finally, make j0 adjacent to

an arbitrary node j 00 2 I. We now have a tree-decomposition of G of treewidth
at most 2r � 2. ut

De�nition. A terminal graph is a triple G = (V;E; S) where (V;E) is a graph
and S � V is an ordered subset of its vertices. We call S the terminal set of G.

De�nition. Consider two terminal graphs Gi = (Vi; Ei; Si); i = 1; 2 such that
jS1j = jS2j. De�ne G1 � G2 as the graph obtained by taking the disjoint union
of G1 and G2 and then identifying the corresponding terminal vertices in S1 and
S2.

Lemma 20 Consider two terminal graphs Gi = (Vi; Ei; Si); i = 1; 2 such that
jS1j = jS2j. Suppose that for i = 1; 2, Gi[Si] is a clique. If treewidth(Gi) �
ki; i = 1; 2, then there is a tree-decomposition with G1�G2 of treewidth at most
maxfk1; k2g.

Proof: Take tree-decompositions (fX i
j j j 2 I

ig; T i = (I i; F i)) ofGi of treewidth
at most ki, i = 1; 2. By Lemma 18, there are ji0 2 I i with Si � X i

ji
0

, i = 1; 2.

15

Taking the disjoint union of the two tree-decompositions and connecting nodes j10
and j20 yields the desired tree-decomposition: one easily veri�es that (fX1

j j j 2
I1g [fX2

j j j 2 I2g; T = (I1 [I2; F 1 [F 2 [ffj10 ; j
2
0gg)) is a tree-decomposition

with G1 �G2 with treewidth at most maxfk1; k2g. ut

We are now ready to prove Theorem 14. In fact, we prove the following,
slightly stronger result.

Theorem 21 Let G = (V;E) be a graph that is not a clique. Then, for any r � 1,
either K2;r is a minor of G or for any minimal separator S where jSj < r, G has
a tree-decomposition with treewidth � 2r � 2 that is also a tree-decomposition of
CL(G; fSg).

Proof: We use induction on jV j. The theorem clearly holds for jV j = 3. Assume
that the theorem holds for any graph with less than n vertices. Let G = (V;E)
be a graph with n vertices and let S be a minimal separator with jSj < r (in
the case where jSj � r, we have by Lemma 16 that K2;r is a minor of G). Let
Gi = (Vi; Ei); i = 1; : : : ; m, be the connected components of G[V � S] and
�Gi = EX(G[Vi [@Vi]; f@Vig). We denote the corresponding \new" nodes as vinew.
Notice that each graph �Gi has @fv

i
newg as a minimal separator and j@fv

i
newgj < r.

We consider two cases.

Case 1. jV (�Gi)j < n for all i � i � m. From the induction hypothesis it follows
that either K2;r is a minor of �Gi for some i or for all i, �Gi has a tree-decomposition
of treewidth � 2r� 2 that is also a tree-decomposition of CL(�Gi; f@fv

i
newgg). In

the �rst case, as �Gi is a minor of G, K2;r is also a minor of G.
So suppose that for all i, �Gi has a tree-decomposition of treewidth � 2r � 2

which is also a tree-decomposition of CL(�Gi; f@fv
i
newgg). We now construct a

tree-decomposition of CL(G; fSg) of treewidth � 2r � 2. Let Hi be the graph
obtained from CL(�Gi; f@fv

i
newgg) by removing the \new" vertex vinew. Clearly

any graph Hi; i = 1; : : : ; m has a tree-decomposition of treewidth � 2r � 2 and
is a subgraph of CL(G; fSg). Consider now the graphs H1 and H2. We have that
S1;2 = V (H1)\V (H2) � S and thus S1;2 induces a clique in H1 and H2. Make H1

and H2 into terminal graphs with terminal set S1;2. From Lemma 20 the graph
H1;2 = H1 � H2 has also a tree-decomposition of treewidth � 2r � 2. Notice
that H1;2 is a subgraph of CL(G; fSg) and S1;2;3 = V (H1;2) \ V (H3) � S, thus
S1;2;3 induces a clique in H1;2 and H3. Now make H1;2 and H3 terminals with
terminal set S1;2;3 and apply again Lemma 20 to obtain a tree-decomposition
of H1;2;3 = H1;2 � H3 with treewidth � 2r � 2. In this manner, by repeatedly
applying Lemma 20, we can merge all the tree decompositions of the graphs
Hi; i = 1; : : : ; m and thus construct a tree-decomposition of CL(G; fSg) that
has treewidth � 2r � 2.

16

Case 2. We now examine the remaining case where there are only two connected
components inG[V �S] and at least one of them contains only one vertex v0. Con-
sider the set D = @S�fv0g, and assume that it does not contain a minimal sepa-
rator of cardinality � r (if it does, then by Lemma 16, K2;r is a minor of G). Let
Gi be the connected components of G[V �D�S�fv0g] and Ni = @V (Gj) � D,
i = 1; : : : ; m. Notice that, asD does not contain minimal separators of cardinality
� r; jNij < r. Let �Gi = EX(Gi; fNig); i = 1; : : : ; m, and denote the correspond-
ing \new" vertices as vinew. As each �Gi has less than n vertices, by the induction
hypothesis, either K2;r is a minor of �Gi for some i or �Gi has a tree-decomposition
of treewidth � 2r�2 which is also tree-decomposition of CL(�Gi; fNig) for each i.
In the �rst case, as before, �Gi is a minor of G and thus K2;r is a minor of G. In the
second case, observe that F = EX(G[D[S]; fS;N1; : : : ; Nmg) is a member of Dr.
From Lemma 19, either K2;r is a minor of F (which implies that K2;r is a minor
of G, as F is a minor of G) or F has a tree-decomposition of treewidth � 2r� 2
which is also a tree-decomposition of CL(F; fS;N1; : : : ; Nmg). We now construct
a tree-decomposition of CL(G; fS;N1; : : : ; Nmg) with treewidth� 2r � 2. For
each i let Hi be the graph obtained from CL(�Gi; fNig) if we eliminate the \new"
vertex vinew. Also let F0 be the graph obtained from F by eliminating the \new"
vertices vnew;i corresponding to the sets N1; : : : ; Nm. Clearly each Hi and F0

have tree decompositions of treewidth� 2r � 2. We observe that for F0 and H1,
V (F0)\V (Hi) = N1 induces a clique in F0 and H1. Make F0 and H1 into terminal
graphs with terminal set N1. By Lemma 20 the graph F1 = F0 � H1 has also
a tree-decomposition of treewidth� 2r � 2. Now N2 induces a clique on F1 and
H2, so we can make them terminals with terminal set N2, and apply Lemma 20
again to obtain a tree decomposition of F2 = F1�H2 of treewidth� 2r�2. Con-
tinuing in this fashion we can merge all the tree decompositions of the graphs
Hi; i = 1; : : : ; r to the tree-decomposition of F0, and thus construct a tree-
decomposition of CL(G; fS;N1; : : : ; Nmg) of treewidth� 2r � 2. As CL(G; fSg)
is a subgraph of CL(G; fS;N1; : : : ; Nmg), this completes the proof of the theo-
rem. ut

Corollary 22 (i) Every graph in k-IRS has treewidth at most 4k.
(ii) Every graph in k-SIRS has treewidth at most 4k.

Proof: If G 2 k-SIRS or G 2 k-IRS, then K2;2k+1 is not a minor of G hence G
has treewidth at most 2(2k + 1)� 2 = 4k. ut

A direct consequence is that graphs in the classes k-LIRS and k-SLIRS also
have treewidth at most 4k. These results can be seen as partial characterisations
of graphs which allow k-label interval routing schemes (with dynamic edge costs).
The result also indicates a limitation of the interval routing method: as `most
graphs have large treewidth' (see e.g. [17], chapter 5), the set of graphs in k-IRS
only covers a small part of all graphs (or even of all sparse graphs, see [17]).

17

Interestingly, the proof of Theorem 14 can be made constructive, and can be
used to build an algorithm, that either outputs that input graph G has K2;r as
a minor, or that outputs a tree-decomposition of G of treewidth at most 2r � 2,
and that uses O(rn) time. Combined with the results of Lemma 12 this can
lead to a practical algorithm that checks whether for a given node labelling, an
k-IRS (or k-SIRS, k-LIRS, k-SLIRS) exists for this labelling and all possible cost
assignments, especially when additional optimisations are used, and k is small
(e.g., k = 2, or k = 3.)

In the case when k = 1, more precise bounds are known. As 1-SIRS equals the
class of connected outerplanar graphs [15], and outerplanar graphs have treewidth
at most 2, every graph in 1-SIRS has treewidth at most 2. Similarly, the charac-
terisations of 1-LIRS in [3] and of 1-SIRS in [2] show that every graph in 1-LIRS
has treewidth (and even pathwidth) at most 2, and every graph in 1-IRS has
treewidth at most 3, and has treewidth at most 2 if it is not equal to K4.

The results also have consequences for random graphs. We mention some
results, obtained by Kloks [17]. Let Gn;m denote a random graph with n vertices
and m edges. For a precise meaning of the term `almost every' we refer to [17]
or [9].

Theorem 23 (Kloks[17]) (i) Let � > 1:18. Then almost every graph Gn;m with
m � �n has treewidth �(n).
(ii) For all � > 1 and 0 < � < (� � 1)=(� + 1), almost every graph Gn;m with
m � �n has treewidth at least n�.

Corollary 24 (i) Let � > 1:18. Then for almost every graph Gn;m with m � �n,
the smallest k for which Gn;m 2 k�IRS is of size �(n).
(ii) Let � > 1 and 0 < � < (� � 1)=(� + 1). Then for almost every graph Gn;m

with m � �n, the smallest k for which Gn;m 2 k-IRS ful�ls k � n�.

5 The treewidth of planar graphs with k-label

interval routing schemes

In this section we prove results, similar to those of the previous section, for the
case that the graph G is planar.

We �rst need some de�nitions and lemmas. The following lemma is easy.

Lemma 25 Let G be a graph with treewidth(G) � k, k � 2 and w 62 V (G).
Suppose G0 = (V (G) [fwg; E(G) [ffv; wg; fu; wgg) where fu; vg 2 E(G) or
G0 = (V (G) [fwg; E(G) [ffv; wgg where v 2 V (G). Then treewidth(G0) � k.

Lemma 26 Let G be a graph and C = fC1; : : : ; Crg be a collection of vertex sets
in G where G[Ci] is a clique for each i. If treewidth (G) � k and jCij � k for
each i then treewidth (EX(G; C)) � k.

18

2V

1V

Figure 2: A 7-fence.

Proof: Let treewidth (G) � k. There is a tree-decomposition of G of treewidth
� k. By Lemma 18, for any Ci 2 C there exists a node Xi in the decompo-
sition such that Ci � Xi. Now construct a tree-decomposition of EX(G; C) by
introducing r new nodes X 0

i; i = 1; : : : ; r, where X 0
i = Ci [fvnew;ig and make

X 0
i adjacent to Xi in the new decomposition tree. It is easy to check that the

tree-decomposition thus obtained has treewidth � k. ut

De�nition. A graph G = (V1 [V2; E) is called an r-fence, if it can be written
in the following form: V = V1 [V2, with Vi = fv

i
1; : : : ; v

i
rg; i = 1; 2 and E =

f(vij; v
i0

j0) j vij 6= vi
0

j0; jj � j 0j � 1; i; i0 2 f1; 2gg.

An example of a 7-fence is given in Figure 2.

Lemma 27 If G = (V1[V2; E) is an r-fence then treewidth(CL(G; fV1[V2g)) �
r + 1.

Proof: Take the tree-decomposition (fXi : i 2 Ig; T) where T is a path with r
nodes and X1 = fv

1
1; : : : ; v

1
r ; v

2
1; v

2
2g; Xi = Xi�1 [fv

2
i+1g� fv

1
i�1g; i = 2; : : : ; r� 1.

It is easy to see that this is a tree-decomposition of G with treewidth� r+1. ut

De�nition. Let Zr be the collection of graphs G = (V1 [V2; E) that can be
constructed as follows:

� Take two disjoint sets of vertices V1 = fv
1
1; : : : ; v

1
k1
g; V2 = fv

2
1; : : : ; v

2
k2
g with

k1; k2 < r. We call Vi; i = 1; 2, the parts of the graph under construction.

� Add edges fvi1; v
i
2g; : : : ; fv

i
ki�1; v

i
ki
g; i = 1; 2 and edges fv11; v

2
1g; fv

1
k1
; v2k2g.

� Add a maximal set of edges such that

1. the graph stays planar,

2. any vertex in V1 (resp. V2) is adjacent to at least one vertex in V2
(resp. V1),

19

12
VV

Figure 3: The construction of a graph in Z14.

3. the resulting planar graph can be embedded such that the outer face
is formed by the cycle (v11; : : : ; v

1
k1
; v2k2 ; v

2
k2�1; : : : ; v

2
1; v

1
1).

Notice that the graph R constructed so far is outerplanar.

� The construction is completed by setting Ej = E(G[Vj]); j = 1; 2 and
applying the following operation for an arbitrary number of times:

For some edge fv2i ; v
2
i+1g 2 E2 and a set of vertices V 1

l;r = fv
1
l ; : : : ; v

1
l+rg �

V1; l; r � 1 such that E(G[V 1
l;r]) � E1 and fv2i ; v

1
l g; fv

2
i+1; v

1
l+rg 2 E(G) we

set

(i) E1 E1 � E(G[V 1
l;r])

(ii) E2 E2 � ffv2i ; v
2
i+1gg

(iii) E(G) E(G) [ffv2i ; v
1
l g; : : : ; fv

2
i ; v

1
l+rgg

[ffv2i+1; v
1
l g; : : : ; fv

2
i+1; v

1
l+rgg.

We call the edges in E(G[V2])� E2 unmarked edges of G.

For an example of the construction of a graph in Z14 see Figure 3.

From now on, given a graph G = (V0 [: : : [V�; E), we will use the notation
Vi(G) = Vi; i = 0; : : : ; � (we call V0; : : : ; V� parts of G).

20

De�nition. If R 2 Zr, then de�ne CL(R) = CL(R; fV1(R); V2(R)g). We call
Vi(R); i = 1; 2, the parts of CL(R). Also we de�ne CL(Zr) = fCL(R) : R 2 Zrg.

De�nition. Let G 2 Zr with parts V1; V2. D(vji ; G); i = 1; : : : ; kj; j = 1; 2 is
de�ned as the number of vertices that are adjacent to vji and belong to part V3�j.

Lemma 28 Let G 2 Zr with parts Vi = fv
i
1; : : : ; v

i
k1
g; i = 1; 2; and k1; k2 < r.

Then, either D(v11; G) � 2 or D(v21; G) � 2.

Proof: Let R be the outerplanar graph from which G has been created according
to the de�nition ofZr. Let also E

1; E2 be the edge sets de�ned by the construction
ofG according to this de�nition. Notice that R 2 Zr and that eitherD(v11; R) = 1
or D(v21; R) = 1. Assume �rst that D(v11; R) = 1. If fv11; v

1
2g 62 E1, then clearly

D(v11; G) = 1. If fv11; v
1
2g 2 E1, then it is easy to see that edge fv11; v

2
2g is the

only edge in E(G)�E(R) that is incident to v11 and thus D(v11; G) = 2. Assume
now that D(v21; R) = 1. If fv21; v

2
2g 62 E2, then D(v21; G) = 1. If fv21; v

2
2g 2 E2,

then it is easy to see that D(v11; R) = 2 and no edge in E(G)� E(R) is incident
to v11. Thus, D(v11; G) = 2. ut

Lemma 29 If G 2 CL(Zr), then treewidth(G) � r.

Proof: Suppose that R = (V1 [V2; E) 2 Zr. We will show that G =
CL(R; fV1; V2g) has treewidth� r.

We will use induction on r. If r � 3, then the proposition is trivial. We assume
that lemma holds for any r � k. We will prove that if R = (V1 [V2; E) 2 Zk+1,
then treewidth(CL(R)) � k + 1.

Let R 2 Zk+1 with parts V1 and V2. Recall that ki = jVij; i = 1; 2. If
k1 < k and k2 < k then R 2 Zk and the induction step is obtained easily. We
claim that it su�ces to prove the induction step for k1 = k2 = k. This is so
because in case k = kj > k3�j for some j = 1; 2, then we set i = 3 � j and
construct a graph R�, containing R as a subgraph, as follows: add kj�ki vertices
viki+1; : : : ; v

i
kj
in part Vi and then add the edge sets ffviki; v

i
ki+1g; : : : ; fv

i
kj�1; v

i
kj
gg

and ffvjkj ; v
i
ki+1g; : : : ; fv

j
kj
; vikjgg. Clearly, R� 2 Zk+1 and treewidth(CL(R)) �

treewidth(CL(R�)) (see Figures 4.i, 4.ii). Thus, it is su�cient to examine the
case where k1 = k2 = k.

If R is a k-fence then the result follows from Lemma 27. Suppose that R is
not an k-fence.

If D(v11; R) 6= 2 or D(v21; R) 6= 2 then set q = 1, otherwise set

q = maxf i : R[fv11; : : : ; v
1
i ; v

2
1; : : : ; v

2
i g] is an i-fence

and the vertex set fv1i ; v
2
i g is a separator of R g:

Notice that q < k. Let R0 = R[fv1q ; : : : ; v
1
k; v

2
q ; : : : ; v

2
kg] and observe that R0 2

Zk�q+2 (see Figure 4.ii).

21

G

G

A

B

S

(i)

(ii)

(iv)

(iii)

Figure 4: An example of the proof of Lemma 29.

Using Lemma 28 we de�ne m according to the following cases:
Case (i) D(v1q ; R

0) = 1. In this case we set m = q.
Case (ii) D(v2q ; R

0) = 1. In this case we also set m = q.
Case (iii) D(v1q ; R

0) > 1 and D(v2q ; R
0) > 1. By a case analysis similar to

Lemma 28 we can see that D(v1q ; R
0) = 2 and D(v2q ; R

0) > 2 and we set m = q+1.
Observe that in Cases (i) and (iii) the set S = fv21; : : : ; v

2
m; v

1
m+1; : : : ; v

1
kg is

a separator of G = CL(R) (see Figure 4.ii). Also, in Case (ii) the set T =
fv11; : : : ; v

1
m; v

2
m+1; : : : ; v

2
kg is a separator of G = CL(R).

We will present the proof for the Cases (i) and (iii). We set GA =
G[fv1m+1; : : : ; v

1
k; v

2
m+1; : : : ; v

2
kg]. Notice that GA is a subgraph of a graph in

CL(Zk�m+1) and, as k � m + 1 � k, by the induction hypothesis, GA has a
tree-decomposition DA = (fXi : i 2 Ig; T) of treewidth � k � m + 1. No-
tice that from Lemma 18 it follows that DA contains a node XA such that
XA � fv

1
m+1; : : : ; v

1
kg. Clearly, D0

A = (fXi [fv
2
1; : : : ; v

2
mg : i 2 Ig; T) is a tree-

decomposition ofG0
A = G[V2[S] with treewidth � k+1. Notice also thatD0

A con-
tains node X 0

A = XA[fv
2
1; : : : ; v

2
mg � S and thus treewidth(Cl(G0

A; fSg)) � k+1
(see Figure 4.iii).

Let now GB = G[fv11; : : : ; v
1
m; v

2
1; : : : ; v

2
mg].

We de�ne a tree-decomposition DB of GB as follows: DB = (fXi : i 2
Ig; T) where T is a path consisting of m� 1 nodes and X1 = fv

1
1; : : : ; v

1
m; v

2
1; v

2
2g,

22

Xi = X 0
i�1 � fv

1
i�1g [fv

2
i+1g; i = 2; m � 1. It is easy to see that DB is a tree-

decomposition of GB with treewidth � m + 1. Notice that DB contains node
XB = Xm�1 � fv

2
1; : : : ; v

2
mg. Clearly, D

0
B = (fXi[fv

1
m+1; : : : ; v

1
kg : i 2 Ig; T) is a

tree-decomposition ofG0
B = G[V1[S] with treewidth � k+1. Notice also thatD0

B

contains nodeX 0
B = XB[fv

1
m+1; : : : ; v

1
kg � S and thus treewidth(Cl(G0

B; fSg)) �
k + 1 (see Figure 28.iv).

Now, if we consider the terminal graphs, obtained by taking CL(G0
A; fSg)

and CL(G0
B; fSg) with S as set of terminals, and then apply Lemma 20, we

obtain that treewidth(G) � treewidth(CL(G; fSg)) = treewidth(CL(G0
A; fSg)�

CL(G0
B; fSg)) � k + 1.

Case (ii) is similar to Case (i). (We use separator T instead of S). ut

De�nition. Let Qr be the collection of graphs G = (V1 [V2; E) that can be
constructed as follows:

Let R be a graph in Zr+1 containing an unmarked edge fv
2
i ; v

2
i+1g; 1 � i < jV2j.

We apply the following two operations:
(i) Let R0 = (V (R); E 0) where E 0 = E(R) [ffv2i ; v

1
1g; : : : ; fv

2
i ; v

1
jV1j
gg [

ffv2i+1; v
1
1g; : : : ; fv

2
i+1; v

1
jV1j
gg.

(ii) Identify vertices vi1 and vijVij; i = 1; 2 in R0.

If R 2 Qr with parts V1; V2, we de�ne CL(R) = CL(R; fV1; V2g) Also, we
de�ne CL(Qr) = fCL(R) : R 2 Qrg.

For an example of the construction of a graph in Q13 see Figure 5.

Lemma 30 If G 2 CL(Qr) then treewidth(G) � r + 2.

Proof: We prove that if R 2 Qr, then G = CL(R) has treewidth � r +
2. According to the de�nition of Qr, R is constructed by a graph R0 2 Zr+1

containing an unmarked edge fv2i ; v
2
i+1g. Let a be a vertex in V1(R0) connected

with both v2i and v2i+1 and let b be a neighbour of a in R[V1]. Let also R1 =
R[V (R) � fv2i ; v

2
i+1; a; bg]. It is easy to see that R1 is a subgraph of a graph

R2 2 Zr�1 (we use the fact that fv2i ; v
2
i+1g is an unmarked edge in R0). From

Lemma 29 we have that treewidth(Cl(R2)) � r � 2 and CL(R2) has a tree-
decomposition of treewidth � r� 2. We can now obtain a tree-decomposition of
G = CL(R) by adding vertex set fa; b; c; dg in each node of the tree-decomposition
of R2. Clearly, this tree-decomposition has treewidth � r+2; this completes the
proof of the lemma. ut

Note that if G = (V0 [V1 [V2 [V3; E) is a planar graph in Dr, then G[V2] is
outerplanar, because otherwise there would exist a vertex in G[V2] not adjacent
with some vertex in V1 contradicting the de�nition of Dr. Using this fact we can
easily see that if G is a planar graph in D2, then CL(G) has treewidth� 3. Also it
is not hard to see that if G is a planar graph in D3, then CL(G) has treewidth� 4.

23

(ii)(i)

Figure 5: The construction of a graph in Q13

In what follows, we will prove that if G is a planar graph in Dr; r � 4, then CL(G)
has treewidth� r + 2.

In the remainder of this section, we letDr be as de�ned in the previous section,
but we remove from the class all graphs that contain at least one vertex of degree
at most two. Lemma 25 shows that we can actually remove these graphs (the
purpose of the proof below is to show that planar graphs in Dr have treewidth
at most r + 2.)

De�nition. We de�ne Pr; r � 4 as the set of planar graphs that can be con-
structed from a planar graph G 2 Dr; r � 4, by applying the following four
steps:

(a) Consider a planar embedding of G. W.l.o.g. we assume that the ver-
tices in V1 are arranged around v0 in the cyclic order v11; : : : ; v

1
jV1j

; v11.
Let G0 = (V (G0); E(G0)) be de�ned by V (G0) V (G) and E(G0)
E(G) � E(G[V1]) [ffv

1
1; v

1
2g; : : : ; fv

1
jV1j�1; v

1
jV1j
g; fv1jV1j; v

1
1gg. Notice that

we have basically the same planar embedding of G0 as of G, and that
CL(G0) = CL(G). The resulting graph is now further denoted as G.

(b) If there exist an edge fa; bg 62 E(G) such that at least one of a; b belongs
to V2, a; b 62 V3, and G0 = (V (G); E(G) [ffa; bgg) is a planar graph, then
add this edge to G. We repeat this step until no such edge can be added
in G.

24

Notice that: (i) all faces in the planar embedding of the resulting graph G
are triangles. (ii) G[V2] is outerplanar and connected.

(c) If there is a biconnected component in G[V2] that consists of a single
edge fa; bg then it is easy to see that there is a vertex d 2 V1 such that
fa; dg; fb; dg 2 E(G). In this case, add a new vertex c to V2, and add edges
ffa; cg; fb; cg; fc; dgg. Repeat this step until there exist no biconnected
component in G[V2] that is an edge. The resulting graph is now further
denoted as G.

Notice that G[V2] is outerplanar and G has an embedding such that all
vertices of V3(G) are at the inside of the cycle(s) formed by V2(G). We call
this planar embedding the outerplanar embedding.

In the outerplanar embedding, we identify the regions of G[V2] as the areas
of the plane that constitute an interior face in the embedding of V2(G),
obtained by restricting the embedding of G to G[V2].

Notice that each region of V2 has at most one vertex of V3 inside and that
each region of V2 that does not contain a vertex of V3 inside is a triangle.

(d) If there is a triangle in G[V2] with vertices a; b; c, whose region does not
contain a vertex of V3 inside, then add a new vertex d to V3, and add edges
fa; dg; fb; dg; fc; dg. Repeat this step until all the regions in G[V2] contain a
vertex of V3 inside in the outerplanar embedding of G. The resulting graph
G becomes a member of Pr.

After step (d) any region F of G[V2] contains a vertex of V3. We denote
this vertex by vF .

Finally, if R 2 Pr, we de�ne CL(R) = CL(R; f@fvg : v 2 V0(R) [V3(R)g).
Also, we de�ne CL(Pr) = fCL(R) : R 2 Pg.

For an example of the construction of a graph in Pr see Figure 6.
From the de�nition of Pr we can see that if any graph in CL(Pr) has

treewidth� r + 2, then for any planar graph R 2 Dr, with r � 4, it holds
that the treewidth CL(R) is at most r + 2. In what follows, we prove that if
G 2 CL(Pr), then treewidth(G) � r + 2.

De�nition. Let G = (V0[V1[V2[V3; E) be a graph in Pr, r � 4. Consider the
outerplanar embedding of G. We call the edges that are incident to the exterior
face of G[V2] exterior edges. If e is an exterior edge of G, then we denote as F (e)
the set of vertices in V2 that belong to the unique interior face adjacent to e, in
the embedding of G[V2], obtained by restricting the embedding of G.

25

(a) (b)

(d)(c)

Figure 6: The construction of a graph in P7

26

De�nition. Let G be a graph in Pr; r � 4. Consider the outerplanar embedding
of G. For each region F in G2 we let SF the collection of sets Se, over all edges
e = fv; v0g 2 E(G[F]) that belong to another region of G[V2], where Se is the
set fv; a; : : : ; b; v0g, a; : : : ; b 2 V1 such that the cycle (v; a; : : : ; b; v0; v) does not
separate v0 and vF . (Vertices a; : : : ; b are consecutive vertices in the cyclic order
v11; : : : ; v

1
jV1j

; v11). We denote the region of (v; a; : : : ; b; v0; v) that does not contain
v0 and vF the induced region of Se.

Notice that SF is a collection of separators of G (see Figure 7). We �rst prove
the following result:

Lemma 31 If G = (V0 [V1 [V2 [V3; E) 2 CL(Pr), r � 4 such that G[V2] has
only one biconnected component, then for any exterior edge e = fv; v0g 2 G[V2],
treewidth(CL(G;SF (e) [ffv; v

0g [V1g)) � r + 2.

Proof: Let G be a graph in CL(Pr). Let also R 2 Pr be a planar graph such
that CL(R) = G. Recall that G[V2] is an outerplanar graph. We use induction
on the number of faces in G[V2].

Suppose that the planar embedding of G[V2] contains only one region. No-
tice that in this case F (e) = V2, SF (e) = ; and thus G0 = CL(G[V1 [
V2];SF (e) [ffv; v

0g [V1g) 2 CL(Qr). From Lemma 26 we have the required
as G = EX(G0; f@fug : u 2 V0 [V3g).

Suppose now that lemma holds for any graph G 2 CL(Pr) where G[V2] con-
tains less than l faces. Let now G be a graph in CL(Pr) where G[V2] contains l
faces. We now prove that lemma also holds for G.

Let SF (e) = fS1; : : : ; Stg. For each Si 2 SF (e) we de�ne the vertex set Ui �
V2 [V3 to be the set of all the vertices contained in the induced region of Si.
Let Go

i = G[@Ui [Ui]; i = 1; : : : ; t and Go = G[V (G) �
S
i=1;:::;t Ui]. Notice that

V (Go) \ V (Go
i) = Si; i = 1; : : : ; t. Observe that, as jF (e)j < r and jV1j < r,

we have that CL(G[V (Go)� (fvF (e)g [V0)];SF (e) [ffv; v
0g [V1g) 2 Qr and, by

Lemmas 30 and 26, treewidth(CL(Go;SF (e) [ffv; v
0g [V1g)) � r + 2.

Let Si = fui; ai; : : : ; bi; u
0
ig; i = 1; : : : ; t where fui; u

0
ig = F (e) \ V (Go

i) and
fai; : : : ; big = V1(G) \ V (G

o
i) for i = 1; : : : ; t (see the de�nition of SF above).

Observe that Go
i is a subgraph of a graph G

0o
i in CL(Pr) and the number of regions

in the planar embedding of V2(G
0o
i) is less than l for i = 1; : : : ; t (w.l.o.g. we

assume that V (G0o
i) = V (Go

i)). Notice also that fui; u
0
ig = Si � V1(G

0o
i) and that

the edge ei = fui; u
0
ig is an exterior edge in the planar embedding of V2[G

0o
i] for i =

1; : : : ; t. From the induction hypothesis we obtain that treewidth(CL(G0o
i ;SF (ei)[

ffui; u
0
ig [V1(G

0o
i)g)) � r + 2; i = 1; : : : ; t. Finally, using that Si = fui; u

0
ig [

V1(G
0o
i), we conclude that treewidth(CL(G

o
i ; fSig)) � treewidth(CL(G0o

i ; fSig)) �
treewidth(CL(G0o

i ;SF (ei) [fSig)) � r + 2; i = 1; : : : ; t.
We now set Hi = CL(Go

i ; fSig); i = 1; : : : ; t, andH 0 = CL(Go;SF (e)[ffv; v
0g[

V1g)). We make terminal graphs of Hi by taking as set of terminals Si, for i =

27

2ua

u’

v’

v

b

u’

V V V

a

u

2

b

v

G

v’

v u

u’

v

u’

u

v

v

G G

v

u

v

u’

u

u’

V

2

2

F(e)

0

2

0

1

1

1

1

0

2

1 F(e)

1

3

1

0 1 2

2

o

2

o

1

0

1

2

o

Figure 7: An example of the proof of Lemma 31.

28

1; : : : ; t. If now we successively take Si, i = 1; : : : ; t as terminals in H and apply
repeatedly Lemma 20 we conclude that the graph (: : : ((H 0�H1)�H2) � � ��Ht) =
CL(G;SF (e) [ffv; v

0g [V1g)), (where during each � operation, a di�erent set of
terminals is used), has also treewidth � r + 2 (this construction is the same as
the one used in the proof of Theorem 21). For an example of the construction of
the proof see Figure 7. ut

De�nition. Let G be a graph in Pr; r � 4. Given a vertex v 2 V2, we de�ne
Cv as the collection of the biconnected components in G[V2] that contain v. If
jCvj > 1, we call v rich, otherwise we call it poor.

De�nition. Let G be a graph in Pr. Consider the outerplanar embedding of G.
For each vertex v 2 G[V2] we de�ne a collection Sv of sets of vertices, as follows:

(i) Set Sv ;. Also, if v is a rich vertex, then set A = ;.
(ii) We examine two cases:

Case (a) If v is a rich vertex, then for each biconnected component Ci 2
Cv � A; i = 1; : : : ; t we set Sv Sv [fSig where G[Si] de�nes a cycle
(v; a; : : : ; b; v); a; : : : ; b 2 V1 that separates the vertices in fv0g

S
j=1;:::;t;j 6=i V (Cj)�

fvg from the vertices in V (Ci)�fvg (vertices a; : : : ; b are consecutive vertices in
the cyclic order v11; : : : ; v

1
jV1j

; v11). We call the area of the plane inside or outside
the cycle, that contains the vertices in V (Ci)� fvg the induced region of Si.

Case (b) If v is a poor vertex, then there is a unique biconnected component
Cv 2 Cv that contains it. Let Wv be the set of the rich vertices in Cv. For each
reach vertex vi 2 Wv we set Sv Sv [Svi where Svi is de�ned by setting A = Cv
and applying Case (a) for vi, i = 1; : : : ; jWvj.

Notice that Sv is a collection of separators of G (see Figure 8 for Case (a) and
Figure 9 for Case (b)). We now prove the following:

Lemma 32 Let G = (V0 [V1 [V2 [V3; E) be a graph in CL(Pr); r � 4. Then
for any vertex v 2 G[V2], treewidth(CL(G;Sv [ffvg [V1g)) � r + 2.

Proof: Let G be a graph in CL(Pr). Let also R be a planar graph such that
G = CL(R). We use induction on the number of biconnected components in
G[V2].

Suppose thatG[V2] contains only one biconnected component. Clearly, for any
vertex v 2 G[V2] we have that there exists an exterior edge e = fv; v0g; v0 2 G[V2]
that is incident to v. From Lemma 31 we have that treewidth(CL(G;SF (e) [
ffv; v0g [V1g)) � k + 2. As CL(G; ffvg [V1g) is a subgraph of CL(G;SF (e) [
ffv; v0g[V1g) and Sv = ;, we have that treewidth(CL(G;Sv[ffvg[V1g)) � r+2.

Suppose now that the lemma holds for any graph G 2 CL(Pr) where G[V2]
contains less than l biconnected components. Let now G be a graph in CL(Pr)

29

V V32

G’

v

V V

a

b
a

v

b=a

v

b

G’

v

G

v v v

vvv

0 1

1

2 3

2
1

0

3

o

1

o

0

0

0

0

2

o o

3G’

Figure 8: Case (i) of the proof of Lemma 32.

30

where G[V2] contains l biconnected components. We prove that the lemma also
holds for G.

Let Sv = fS1; : : : ; Stg. For each Si 2 Sv; i = 1; : : : ; t we de�ne the vertex set
Ui � V2 [V3 to be the set of all the vertices contained in the induced region of
Si.

Let Go
i = G[@Ui [Ui]; i = 1; : : : ; t and Go = G[V (G) �

S
i=1;:::;t Ui]. Notice

that V (Go) \ V (Go
i) = Si; i = 1; : : : ; t. We examine two cases:

(i) v is a rich vertex. Notice that jV (Go)j � r + 1 and, clearly
treewidth(CL(Go;Sv [ffvg [V1g)) � r + 2 (see Figure 8).

(ii) v is a poor vertex. Let Cv be the unique biconnected component of G[V2]
that contains v. Let also V v

3 be the set of vertices in V3 that are adjacent with
at least two vertices in V (Cv). We de�ne Go = G[fv0g [V1 [V (Cv) [V

v
3]. It

is easy to see that G0 = CL(Go;Sv) 2 CL(Pr) and that G0[V2] = Cv has only
one biconnected component. Let also e0 = fv; v0g 2 E(Cv) be an exterior edge of
Cv containing vertex v. From Lemma 31 we have that treewidth(CL(G0;SF (e0) [
ffv; v0g[V1g)) � r+2. It is now easy to see that, as CL(Go;Sv [ffvg[V1g) is a
subgraph of CL(G0);SF (e0) [ffv; v

0g [V1g), we have that treewidth(CL(G
o;Sv [

ffvg [V1g)) � r + 2. (See Figure 9).
Observe now that Go

i is an induced subgraph of a graph G0o
i 2 CL(Pr) such

that V (Go
i) = V (G0o

i) � fv0g. Notice also that the number of biconnected com-
ponents in the planar embedding of V2(G

0o
i) is < l for i = 1; : : : ; t. Set fuig =

Si � V1(G
0o
i) (notice that if v is a rich vertex then ui = v; i = 1; : : : ; t). From the

induction hypothesis, we have that treewidth(CL(G0o
i ;Sui [ffuig [V1(G

0o
i)g)) �

r + 2 and, as Si = fuig [V1(G
0o
i), we obtain that treewidth(CL(G0o

i ; fSig)) �
r + 2; i = 1; : : : ; t. Finally, since Go

i is a subgraph of G0o
i we conclude that

treewidth(CL(Go
i ; fSig)) � r + 2.

We set Hi = CL(Go
i ; fSig); i = 1; : : : ; t, and H 0 = CL(Go;Sv [ffvg [V1g).

For i = 1; : : : ; t, we make Hi a terminal graph by taking Si as set of terminals.
If now we successively take Si; i = 1; : : : ; t as set of terminals in H and apply
repeatedly Lemma 20 as in the end of the proof of Lemma 31, we conclude that
the graph CL(G;Sv [ffvg [V1g) has also treewidth � r + 2. ut

Lemma 33 If G 2 Dr and G is planar, then treewidth(CL(G) � r + 2.

Proof: We have already examined the cases where r = 2; 3. For the case where
r � 4, the theorem holds because of Lemma 32 as, for any planar graph G 2 Dr

there is a graph G0 2 Cl(Pr) such that CL(G) is a subgraph of G0. ut

Now, we can use the proof of Theorem 21, but with the result of Lemma 33
instead of the one of Lemma 19, and obtain the following result.

Theorem 34 If G is planar, then either G contains K2;r as a minor or the
treewidth of G is at most r + 2.

Corollary 35 (i) Every planar graph in k-IRS has treewidth at most 2r + 3.
(ii) Every planar graph in k-SIRS has treewidth at most 2r + 3.

31

1

v

b

a

b

u

v’

v

V

u

VVV V

G G’

v

u

u

v
V

v’

v

v u

G’

20

0

1
o o

2

3

v1

2

0

o

0 1 2 3

1

0

1

1

2

2

3

v1

a

u

Figure 9: Case (ii) of the proof of Lemma 32.

32

6 Conclusions

In this paper, we made a perhaps somewhat surprising and interesting connection
between the theory of compact routing schemes, and the theory of graph minors
and treewidth of graphs. Several angles of this connection are still left unexplored.

As main open problems, we like to mention several issues that deal with
constructivity. Is it possible to construct linear time algorithms that test whether
a given graph belongs to k-IRS or one of its variants, for a �xed k? In several
other cases, a non-constructive proof of a linear or small degree polynomial time
bound was only the �rst step towards a fully constructive solution (e.g., [5]).
Will our Corollary 10 also be such a �rst step? But even if we know that a
graph belongs to k-IRS (or a related class), we do not have a corresponding node
labelling. How much time does it cost to construct such a node labelling? And,
given a node labelling, how much time does it cost to verify that it has a k-label
IRS (or variant) for every edge cost assignment? More related open problems are
mentioned e.g. in [19].

References

[1] S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable
graphs. J. Algorithms, 12:308{340, 1991.

[2] E. M. Bakker, J. van Leeuwen, and R. B. Tan. Work in progress.

[3] E. M. Bakker, J. van Leeuwen, and R. B. Tan. Linear interval routing
schemes. Algorithms Review, 2:45{61, 1991.

[4] D. Bienstock, N. Robertson, P. D. Seymour, and R. Thomas. Quickly ex-
cluding a forest. J. Comb. Theory Series B, 52:274{283, 1991.

[5] H. L. Bodlaender. A linear time algorithm for �nding tree-decompositions
of small treewidth. In Proceedings of the 25th Annual Symposium on Theory
of Computing, pages 226{234, New York, 1993. ACM Press. To appear in:
SIAM J. Comput., 1996.

[6] H. L. Bodlaender. On linear time minor tests with depth �rst search. J.
Algorithms, 14:1{23, 1993.

[7] H. L. Bodlaender. On disjoint cycles. Int. J. Found. Computer Science,
5(1):59{68, 1994.

[8] H. L. Bodlaender and R. H. M�ohring. The pathwidth and treewidth of
cographs. SIAM J. Disc. Meth., 6:181{188, 1993.

[9] B. Bollobas. Random Graphs. Academic Press, London, 1985.

33

[10] R. B. Borie, R. G. Parker, and C. A. Tovey. Automatic generation of linear-
time algorithms from predicate calculus descriptions of problems on recur-
sively constructed graph families. Algorithmica, 7:555{581, 1992.

[11] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
MIT Press, Cambridge, Mass., USA, 1989.

[12] B. Courcelle. The monadic second-order logic of graphs I: Recognizable sets
of �nite graphs. Information and Computation, 85:12{75, 1990.

[13] M. R. Fellows and M. A. Langston. Nonconstructive tools for proving
polynomial-time decidability. J. ACM, 35:727{739, 1988.

[14] M. R. Fellows and M. A. Langston. On search, decision and the e�ciency
of polynomial-time algorithms. J. Comp. Syst. Sc., 49:769{779, 1994.

[15] G. N. Frederickson and R. Janardan. Designing networks with compact
routing tables. Algorithmica, 3:171{190, 1988.

[16] Inmos. The T9000 Transputer Products Overview Manual, 1991.

[17] T. Kloks. Treewidth. Computations and Approximations. Lecture Notes in
Computer Science. Springer Verlag, 1994.

[18] J. van Leeuwen and R. B. Tan. Computer networks with compact routing
tables. In G. Rozenberg and A. Salomaa, editors, The Book of L, pages
298{307. Springer-Verlag, Berlin, 1986.

[19] J. van Leeuwen and R. B. Tan. Compact routing methods: A survey. Techni-
cal Report UU-CS-1995-05, Department of Computer Science, Utrecht Uni-
versity, Utrecht, 1995.

[20] N. Robertson and P. D. Seymour. Graph minors | a survey. In I. Anderson,
editor, Surveys in Combinatorics, pages 153{171. Cambridge Univ. Press,
1985.

[21] N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of
tree-width. J. Algorithms, 7:309{322, 1986.

[22] N. Robertson and P. D. Seymour. Graph minors. XIII. The disjoint paths
problem. J. Comb. Theory Series B, 63:65{110, 1995.

[23] N. Robertson, P. D. Seymour, and R. Thomas. Quickly excluding a planar
graph. J. Comb. Theory Series B, 62:323{348, 1994.

[24] N. Santoro and R. Khatib. Labelling and implicit routing in networks. Com-
puter Journal, 28:5{8, 1985.

34

