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In accurate coagulation measurements, the observed coagulation rate should be extrap- 
olated to time zero to find the rate of formation of doublets from singlet particles. In the 
theoretical calculation of coagulation rates, generally a steady state is assumed. At the onset 
of coagulation, however, a transient state is present. The results are given of numerical com- 
putations of the transient-state coagulation rate for the cases of Van der Waals attraction 
only and of Van der Waals attraction combined with double layer repulsion. The duration 
of the non-steady state is about tile same as the one calculated by Von Smoluchowski for the 
case of no long-range interaction. It is expected that no transient effects will be found in 
classical coagulation experiments, but they may interfere with rapid (stopped-flow) measure- 
ments of the rate of rapid coagulation. 

I. INTRODUCTION 

During the coagulation of a monodispersed 
hydrophobic colloid, doublet particles are 
formed and these react further to form triplets, 
quadruplets, etc. The presence of multiplet 
particles markedly complicates the picture of 
the reaction kinetics. Although Von Smolu- 
chowski (1) has worked out  an approximate 
theory for the rate of coagulation in a system 
of singlet and multiplet particles, for a quanti- 
tative test of coagulation theory one should 
preferably use experimental information con- 
cerning the formation of doublets from singlets. 
Therefore the rate of coagulation, determined 
in an originally monodisperse sol with spherical 
particles, should be extrapolated to time zero 
to find the true bimolecular rate constant. The 
extrapolation can be improved by rapidly 
mixing the sol and the coagulating agent and 
measuring immediately afterwards, and by 
working with small sol concentrations. 

Then, however, a new difficulty arises. 
Current theories on the rate of coagulation are 
based on the presence of a steady state, but  

immediately after the beginning of the coagu- 
lation process a transient state occurs. An 
analytical calculation of the rate of coagulation 
during this initial state has already been 
performed by Von Smoluchowski for the case 
of no long-range interaction between the 
particles (1). The conclusion is tha t  a marked 
deviation of the steady-state rate exists only 
during a small fraction of the half-time of 
coagulation. I t  is, however, not  certain a priori 
tha t  this conclusion is valid when there are 
interaction forces between the particles (e.g., 
Van der Waals attraction and double layer 
repulsion). In  the latter case an analytical 
solution is not known. In  this paper, we present 
the results of a numerical computat ion for the 
non-steady-state coagulation for a number  of 
interaction types. We also take into account 
the effect of hydrodynamic interaction between 
approaching particles (2, 3). 

II. STATEMENT OF THE PROBLEM 

We used a model for the coagulation process 
that  is the same as the one devised by Von 
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NON-STEADY STATE COAGULATION 99 

Smoluchowsld (1) and extended by Fuchs (5). 
All particles are spheres with radius a. One 
particle is considered to be the "central" one 
and the origin of the system of coordinates 
is placed at its center. Any other particle, 
coming in contact with this one, will perma- 
nently stick to it. So no (centers of) particles 
can be present within a sphere of radius 2a 
around the central particle. The force, acting 
upon a particle at distance r from the central 
one, is denoted by F(r) ;  its sign is positive 
at repulsion. The process of coagulation is now 
treated in the model as a diffusion process in a 
field of force, governed by the equation : 

Ou 1 O [ Or__ r2DF(r)v 1 
. . . .  ~#D-- • EJ-] 
Ot r ~ Or{ Or kT  I 

Here v denotes the number of particles per 
unit volume; t is time; r is the distance from 
the center of a particle to the central particle's 
center; D is the diffusion coefficient of a 
particle with respect to another (viz., the 
central one), i.e., twice the diffusion coefficient 
of a single particle; k is Boltzmann's constant ; 
and T is the absolute temperature. In stating 
Eq. E1-] it is assumed that Einstein's relation 
(mobility of the particle = D/kT)  is valid. 
We use the boundary conditions applied by 
Von Smoluchowski and Fuchs : 

At t = 0, v = uo for 2a < r < ~ ; [2-1 

at t > 0, u = 0 for r = 2a; [3-] 

at t>/ 0, v =  ~0 for r ~ .  [4] 

Here p0 denotes the initial value of the particle 
concentration. Solution of Eqs. [-1-]-[-4-] gives 
the particle concentration as a function of 
distance to the central particle and time. 
From this concentration, the rate of coagu- 
lation is calculated by considering the number 
of particles crossing a sphere, concentric with 
the central particle, in unit time, called the 
"flux" J ;  in accordance with Eq. El-i, J equals 

J ( r ) =  r D.-r D • 

The value of the flux for r---~ 2a gives the 
number of particles that reach the central 
particle in unit time. The rate of coagulation, 
i.e., the number of primary particles disappear- 
ing from unit volume in unit time, is now found 
by multiplying this value of the flux by the 
particle concentration (4). 

For special cases, an analytical solution of 
Eqs. [1 ] - [4 ]  is known. Von Smoluchowski 
has already found the solution for the case 
of no force of interaction between the particles, 
i.e., F(r) ~ 0: 

v(r,t) = v0E1-  2a erfcl r -  2a/ 

where 

erfc x = 4~- exp (--z2)dz. 

For large times the argument of the comple- 
mentary error function, erfc, becomes very 
small, so that the value of this function ap- 
proaches 1 : 

This is the so-called steady-state solution, in 
which the particle concentration in any volume 
element remains constant. This result can 
directly be found by setting Or~Or = 0 in Eq. 
I l l .  Differentiation of Eq. [-6-] with respect 
to distance, and substitution of the result 
into Eq. [5-] (with F(r) ~ 0) gives 

J(r--~2a) = @c.2aDuo 1 3- , E8-] 

which in the steady state (t >> a2/D) becomes 

J = 8rraDvo. E9-] 

In the latter case, the flux is independent 
of position, as the particle concentration 
remains constant everywhere (cf., Ref. 4). 

Assuming the presence of a steady state 
(Ov/Ol----0) Fuchs has solved Eqs. E13-E4-1 
for the case of interaction forces between 
particles (5). 
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100 ROEBERSEN AND WIERSEMA 

The purpose of the present work is to find 
solutions of the complete set of Eqs. [-1]-[4], 
to see whether a steady state is reached and 
if so, after how much time. Two kinds of 
forces between the particles are considered: 
Van der Waals forces and electrostatic repul- 
sion forces. For the Van der Waals attraction, 
we used the formula given by Hamaker (6) 
for two equal spheres, from which the formula 
for the force is found by differentiation 

--32A 
° FA(s )  3asa(s 2 _ 4) 2 [103 

Here A denotes the Hamaker constant, and 
s = r / a .  This equation does not take into 
account the retardation effect; this is justified 
in our case because this effect is important 
only at large distances, with the result that 
its contribution to the rate of coagulation is 
negligible. Apart from the retardation effect, 
the validity of this and related formulas has 
beeu the subject of much recent discussion 
(7); but, up to the present, no alternative 
equation for two spheres has been proposed? 

A number of approximate equations for the 
double layer repulsion force (8-11) have been 
compared with numerically calculated results 
(10-13)3 Since both the force and its deriva- 
tive are used in our computations, an approxi- 
mate equation should represent the exact 
values as accurately as possible. For the case 
of constant potential of the particles, one of the 
best approximations for all interparticle dis- 
tances and a large range of potentials and 
electrolyte concentrations appeared to be given 
by Derjaguin's equation (9): 

~,~r exp{ - T(s - 21} 
F,~(~) = , [ 1 1 ]  

2 1 + exp{ -- r ( s  - -  2)} 

where e denotes the dielectric constant of the 

1 Note added in proof. Very recently, formulas for the 
van der Waals interaction between two spheres were 
given by SmTI L E. R., MITCHELL, D. J., AIeD NII,mA~, 
]3. W. ,  .1". Collo~ Interface ScL 45, 55 (1973). 

2 This work was performed by J. J. Vossen in our 
laboratory. 

liquid, ~b~ is the electrostatic potential in the 
Outer Helmholtz Plane, and r = Ka, where 
is the Debye-Hiickel reciprocal length. This 
equation, however, is not valid for very large 
potentials. We did not perform calculations 
for constant charge, as no suitable analytical 
approximation for this case is available, and 
as we did not expect the results to differ much 
from those for constant potential. 

As to the diffusion coefficient, we not only 
worked out the "classical" case, in which it is 
considered to be constant, but  also the more 
realistic case, in which it varies with distance 
between the particles as a result of the hydro- 
dynamic interaction (2, 31. In the latter case 
we used the approximate equation (3): 

6s 2 -- 20s + 16 
D(s )  = Do. , [12] 

6s 2 -- l l s  

where Do denotes the diffusion coefficient of a 
particle in an infinitely dilute solution. 

IIl. METHOD OF COMPUTATION 

Equation Eli and the boundary conditions 
[-2]-[4] were transformed into a dimensionless 
form by the substitutions: 

y ~ a / r  ~ 1/s,  

0 =- Do t /a  ~, [13] 

13(y) =-- D o ~ D @ ) ,  

¢(y) -- aF(r)/kT.  

Equation [-1] becomes 

7o × ~ ( y )  toy + y~ J ' 

with the boundary conditions: 

c(y ,  8 = O) = 1 for O <  y <  ½, [15] 

c(y  = ½, 0) = o for 0 > o, [ 1 6 ]  

~(y = o, o) = 1 for o >I o. E17-I 

An advantage of the use of y as an independent 
variable is that it varies over a finite interval, 
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which greatly facilitates the numerical compu- 
tations. Equation [-14-] is a linear partial 
differential equation of parabolic type. The 
boundary value problem, constituted by this 
equation and conditions [-15~-[171, was solved 
by use of the method of Crank and Nicolson 
(14). 

An equation for the dimensionless flux is 
obtained by substituting Eq. [-13~ into Eq. [-57 : 

J - 1  {0~y ~(y)c 
= _ N =  + - -  _ E l s - ]  

47raDo~o f l ~  y~ J" 

Taking into account that in this case Do is a 
mutual diffusion coefficient, the value of the 
dimensionless flux N for r - ~  2a (i.e., y--~ 0.5), 
appears to be equal to the dimensionless rate 
constant defined in Ref. 3. In obtaining this 
limiting value of N from the r.h.s, of Eq. 1-18~, 
we had to deal with the problem that ~(y) 
approaches minus infinity, while c approaches 
zero in this limit (although the value of the 
complete r.h.s, expression remains finite). 
Therefore N was calculated from the values of 
the separate terms for yl -= 0.5 -- zXy, where 
Ay is the interval used in the numerical compu- 
tation. Since the approximation (Oc/Oy)y=y~ 
= Ac/2~y proved to be inaccurate, we com- 
puted (Oc/Oy)9=y, from the series 

c(y)= ~ bsy ~ (n <~ 5). 
j~o 

[19~ 

The coefficients, bs, of this series were obtained 
by applying a least-squares method to the 
computed values of c(y). This method was 
checked by varying the number, n, of terms 
in the series, and the number of points (c, y) 
used in the computation. Usually, the relative 
variation in the dimensionless rate constant, 
produced this way, did not exceed 2%. 

Any numerical method introduces a discreti- 
zation error into the results of the computation. 
By refining the grid (dimensionless distance 
and/or dimensionless time) the accuracy of the 
results was checked. In the cases of no inter- 
action (Von Smoluchowski) and of Van der 
Waals interaction only (where the force varies 

monotonously with distance), there appeared 
to be little influence of mesh size. In the case 
of double layer repulsion together with Van 
der Waals attraction, where the force has a 
maximmn and a minimum, we found a 
stronger influence of mesh size on the obtained 
values of the concentration and the coagulation 
rate. Generally, halving the mesh size (for the 
dimensionless distance) improved the results 
sharply, but for a number of cases the limi- 
tation of the computer memory prevented the 
production of accurate results by this method. 

Our computer program was written in 
ALGOL 60. We performed most of the compu- 
tations on the Electrologica X8-computer of 
the Academic Computer Centre of Utrecht; 
later some computations were done on its 
new CYBER 73-26. The text of our computer 
program, together with an explanation of its 
use, can be obtained from the authors on 
request. The values of the interaction force 
and its derivative are generated by subroutines 
in the program; an evaluation for other types 
of interaction is possible by either changing 
the subroutines or giving numericM values 
for each grid point. 

IV. RESULTS 

The "relaxation time," tr, is defined here 
as the time, corresponding to 0 = 1, i.e., 

t, = a2/Do. [20~ 

First, the Von Smoluchowski case (no inter- 
action between the particles) was examined 
as a "test case" for the numerical method. 
Complete agreement between the numerical 
and the analytical results (Eqs. [-6~ and [83) 
was obtained. 

(a) Rapid Coagulation 

When only Van der Waals attraction acts 
between the particles, "rapid coagulation" 
occurs. Relevant values of the Hamaker con- 
stant are between about 10 -19 and a few times 
10 -22 J (7); we performed calculations for 
A = 10 -~9, 10 -2°, and 10 -21 J and a temperature 
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102 ROEBERSEN AND W I E R S E M A  

of about 300 K. The results are shown in 
Figs. 1 and 2. The constant B = A/12kT; at 
300 K, A is about 5B X 10 -20 J. 

(b) Slow Coagulation 

For these computations we chose a few 
cases, where the coagulation rate is a consider- 
able fraction of the rate of rapid coagulation, 
i.e., the delay factor W is smaller than 100. 
The results are shown in Figs. 3, 4, and 5. 
The constant C = ea~/2kT  (cf. Eq. [-11~). 
As an example of actual systems, correspond- 
ing to the given parameters we note that  the 
case B = 0.2, C = 30 corresponds to particles 
with Hamaker  constant 10 -2o J (e.g., silica 
particles) of radius 50 nm and potential 
~b~ = 24 inV, The r -- 35 case corresponds to 
a concentration of 45.7 raM, r = 25 to a 
concentration of 23.3 m M  uni-tmivalent 
electrolyte. The case B = 2, C = 90, r = 20 
corresponds to particles with Hamaker  con- 
stant 10 -I9 J (e.g., metal particles) of radius 
150 nm and potential ~b~ = 24 mV in a 1.66 
ram solution of uni-univalent electrolyte. The 
r = 16 case corresponds to an electrolyte 
concentration of 1.06 raM. 

The values of the dimensionless rate con- 
stant N at 100,000 times the relaxation time 
are not equal to the steady-state values, 
calculated numerically according to Fuchs; 
this is due to discretization errors from the 
numerical computation for the transient state. 
The difference between N at 0 = 100,000 and 
Fuchs' steady-state value decreases strongly 
when the grid is refined. The values, shown in 
the figures are produced with the finest grid 
allowed by the computer memory (1280 points). 
An interesting feature of four of the given 
cases is that - the  rate constant as a function 
of time shows a relative minimum and a 
relative maximum. This can be explained as 
follows. The steady decline of the rate constant 
in the beginning of the coagulation process is 
counteracted by the building up of a concen- 
tration peak at the place of the secondary 
minimum in the interaction energy (cf., Fig. 6). 
This concentration peak serves as a secondary 
source of particles that will coagulate in the 
primary minimum, and hence the coagulation 
rate increases again. After some time, the 
concentration peak has reached its maximum 
value; afterwards, it decreases slowly to its 

I(] • 

N 

5 
3 

~ - - . .  2 

A A A A ~ 

© _ _  I I I J 
0 1  1 10  1 0 2  103 

Fro. 1. Dimensionless rate constant for rapid coagulation as a function of dimensionless time. h r = ] /  
47raDov0; 0 = tDo/a 2. Hydrodynamic correction is included. 

(1) B = 0 . 0 2  (A = 10 - ~ * J a t 2 s ° C ) ;  
(2) B = 0.2 (A = 10 -~° J at  25°C) ; 
(3) B = 2 (A = 10 -19 J at 25°C). 
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FIG. 2. Dimensionless rate constant for rapid coagulation as a function of dimensionless time. No 
hydrodynamic correction included. Numbers correspond to the same values of B as in Fig. 1. 

s t e a d y - s t a t e  v a l u e ,  as  d o e s  t h e  r a t e  of  A s  s t a t e d  in  S e c t i o n  III,  i t  a p p e a r e d  to  b e  

c o a g u l a t i o n ,  i m p o s s i b l e  t o  p r o d u c e  m e a n i n g f u l  r e s u l t s  w h e n  
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0.1C 
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lo z l O ~  

7 0.05 

~ ~ +  
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I I 1 
0.1 1 10 

= -  0 

FIG. 3. Dimensionless rate constant for slow coagulation as a function of dimensionless time. Hydro- 
dynamic correction is included. (1) B = 0.2, C = 30, r = 35. B = A/12 kT; cf. Eq. [10-]; C = Ea~b,~/ 
2kT, and ~ = ~a; cf. Eq. ['11]. The delay factor W in the steady state = 6.60. Read N on left scale; 
(2) B = 0.2, C = 30, r = 25. W (steady state) = 65.48. Read N on right scale. 
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FIO. 4. D imens ion les s  r a t e  c o n s t a n t  for s low coagu la t ion  as  a func t ion  of d imens ion less  t ime.  H y d r o -  

d y n a m i c  cor rec t ion  is inc luded.  (1) B = 2, C = 90, r = 20. W ( s t eady  s ta te )  = 1.30. R e a d  N on lef t  

scale ;  (2) B = 2, C = 90, r = 16. W ( s t eady  s ta te )  = 65.34. R e a d  N on  r i g h t  scale. 

a large maximum in the interaction force at a 
short distance was present. But inspection of 
the figures shows definite trends in the size 
of the transient effect: The relative deviation 
from the s teadystate  rate, at a fixed dimen- 
sionless time, is generally less when electro- 
static repulsion is present than when it is not; 

for 0 > 1, the deviation decreases with in- 
creasing repulsion force (cf. the case B = 0.2, 
C = 30 , ,  = 25, hydrodynamic correction with 
the case r = 35, other parameters unaltered,) 
Furthermore, the relative deviation from the 
steady-state rate generally increases with 
increasing Hamaker constant. This holds for 

0.4q 
N1 

.~----. 
• L A A .IL 

O~ 

I I I 
01 1 10 102 

FIG. 5. Dimens ion less  r a t e  c o n s t a n t  for slow coagu la t ion  as a func t ion  of d imens ion less  t ime.  No  

h y d r o d y n a m i c  cor rec t ion  included.  (1) B = 0.2, C = 30, r = 25. W ( s t eady  s ta te )  = 7.45. R e a d  N or~ 
lef t  scale ;  (2) B = 2, C = 90, r = 20. W ( s t eady  s ta te )  = 1.06. R e a d  N on r i gh t  scale. 
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FIG. 6. D i m e n s i o n i e s s  p a r t i c l e  c o n c e n t r a t i o n  a r o u n d  a c e n t r a l  p a r t i c l e  as  a f u n c t i o n  of d imens ion less  

d i s t ance ,  c = v / r0 ;  s = r/a.  H y d r o d y n a m i c  c o r r e c t i o n  is i n c l u d e d ;  B = 2, C = 90, r = 20 rcf .  Fig .  4, 

l ine ( 1 ) ] :  (1) 0 = 0 .02 ;  (2) 0 = 5;  (3) 0 = 100000.  

both rapid and slow coagulation. This is a 
strong indication that in the cases of very 
stable sols (large W) and of slowly coagulating 
sols with a low Hamaker  constant the transient 
effect is relatively even less important than 
in the reported cases. 

V. D I S C U S S I O N  

From the results we concluded that gener- 
a l l y - w h e n  Van der Waals attraction is 
present alone, or combined with double layer 
repulsion--the non-steady state occurs during 
a short time only, just as in the "pure Von 
Smoluchowski" case. The question of whether 
the non-steady state can be observed will be 
discussed. 

In  coagulation measurements there is a 
minimum time interval, say At, that  is required 
to mix the sol and the coagulating agent and 
to obtain sufficient data afterwards; the value 
of At depends on the experimental method. 
The non-steady state can be detected only 
if, at t = zXt, the rate of coagulation still differs 
appreciably from the steady-state value. From 

inspection of the figures, we see that this 
condition implies that  0 < p, where the value 
of p is determined by the accuracy of the 
measurement and by the Van der Waals and 
double layer forces. For instance, when the 
coagulation rate must exceed the steady-state 
value by at least 10%, the value of p for 
a rapidly coagulating polystyrene latex 
(B ~ 0.02) is about 20 (Fig. 1). From the 
definition of 0 (Eq. [-13-]) we see that 0 < p 
means (tDo/a 2) < p. Since this condition must 
apply within At, we have 

a2p/Do > At. [21] 

Expressing the mutual diffusion coefficient Do 
by means of Stokes' law, we obtain 

#T At 
a s > - - ' - - ,  [22] 

37rn p 

which sets a lower limit to the particle radius 
at given experimental conditions; ~ denotes 
the viscosity of the solvent. For water at 
25°C and with p = 20, [22] reduces to 
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a > 300(At)~, where a is expressed in nanom- 
eters and At in seconds. 

There is, however, a second condition for 
detection of the transient state. The coagu- 
lation rate is measured by observing the rate 
of change of a certain quantity, such as 
number of particles or turbidity. To measure 
the coagulation rate, and a change of this rate 
with time, it is required that the relative 
change of the observed quantity be sufficient 
during the interval At. Assuming that the 
observed quantity is proportional to the 
particle concentration, v, we can express this 
condition as 

1 du 
. . . .  At > q, [-23-] 
v dt 

where q is again a number determined by the 
accuracy of the measurement; the value of q 
is at least 0.05. Since ( i /y) .  (dv/dt) equals the 
"flux" J (i.e., the frequency of collisions 
against one central particle) we obtain, using 
Eq. [-9-] as an approximation, 

81raDovo" At > q. [24] 

The half-time of coagulation, according to 
Von Smoluchowski (1), is equal to O = ~raDovo, 
so this condition implies At > ½q0. 

The conditions [-21-] and [-24-] can be 
combined to give 

> q/6p, [25] 

where 9 = (4/3)IraSvo is the volume fraction 
of the colloid. Since we used Eq. [9,], the 
condition [25-] applies to rapid coagulation; 
for slow coagulation the right-hand side 
should be multiplied by the delay factor W. 
With p = 20 and q = 0.05, [25-] sets a lower 
limit of 4.2 X 10 -4 to ~. 

Returning to [22-] we observe that the time 
interval, At, is at least 10 sec for particle 
counting methods [e.g., flow ultramicroscope 
(15), Coulter counter (16); assuming that the 
coagulation is stopped artificially after At-] 
and also for classical turbidimetric methods. 
With p -- 20 and At = 10 sec, [22] implies 
a > 630 nm, i.e., a particle diameter over 

1 #m. For particles of this size range, and 
> 4.2 X 10 -4 (condition [-25-]), the optical 

density of the sol is too high for accurate 
turbidimetric measurements. The Coulter 
counter is suitable for particles of this size. 
However, in any experimental method, ortho- 
kinetic coagulation occurring during the 
mixing of sol and electrolyte could very well 
cause additional complications for particles 
having a diameter over 1 #m (17). 

The turbidimetric stopped-flow method 
(18) can be used to measure coagulation rates. 
This reduces At to about 0.1 sec. For this value 
of At, condition [-21-] implies a > 140 nm. In 
this case, combination with the condition 
9 > 4 X 10 -4 will allow workable optical 
densities, but only for large wavelengths (near 
800 rim) and for a rather limited range of 
particle sizes (radius about 250 nm) (19). 3 

We conclude this discussion with a few 
more general remarks on the diffusion model 
used in the computations, considering es- 
pecially the question to which extent the 
application of the computed results is re- 
stricted by the use of the boundary conditions 
[2]- [4] .  Strictly speaking, the assumption of 
a completely random initial particle distri- 
bution (Eq. [2-]) is not correct for a sol with 
interacting particles, but for dilute sols this 
is not a serious problem. Moreover, convection 
during the mixing of sol and coagulating agent 
should provide a random distribution. 

Equation [4-], which assumes a constant 
concentration in the region far away from the 
central particle, looks unrealistic because, in a 
coagulating sol, the particle concentration de- 
creases everywhere. The coagulation rate 
constant kc of a real sol, however, is calculated 
from the "bimolecular" coagulation rate 
k,v~(t), where v(t) is the time-dependent aver- 
age particle concentration in the sol. In this 

Experiments with the stopped-flow method in our 
laboratory (rapid coagulation of polystyrene latex) 
did not, up to the present, show transient effects. I t  is 
rather difficult to obtain the conditions, for which the 
result should be observable, and the accuracy of the 
apparatus, is rather poor under these conditions. 
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way the rate constant itself is calculated to a 
good approximation, even for advanced stages 
of the coagulation. 

In  our opinion, Eq. [-3] is a more restricting 
boundary condition. The use of this "sink 
condition" implies tha t  only particles tha t  
stick to each other are considered as coagu- 
lated, while an optical detection method may  
"see" a doublet when two particles are near 
to each other, but  do not  yet  touch. Hence, 
the model cannot be applied to coagulation 
(or flocculation with polymers) into a second- 
ary minimum. I t  would be interesting to replace 
Eq. [ 3 ]  by 

J = 0  at r = 2a and t>/  0, [-26] 

which only implies tha t  the particles cannot 
penetrate into each other. [-This condition has 
already been mentioned by Von Smoluchowski 
(20) in a somewhat different context.]  With 
Eq. [-26] instead of [-3], the complete partial 
differential equation [-1] must  be solved to 
obtain the coagulation rate at all. The simplifi- 
cation Ov/Ot = 0 would in this case give only 
the final equilibrium state, which is a Boltz- 
mann distribution of particles in the inter- 
action field. When this field has a deep pr imary 
minimum, the final state corresponds to a 
completely coagulated sol. 

VI. CONCLUSIONS 

When Van der Waals attraction and/or  
double layer repulsion are taken into account 
in the computations, the transient state occurs 
during about the same time as in the case of no 
long-range interaction, for which an analytical 
solution was known. Hydrodynamic  interaction 
tends to diminish the duration of the transient 
state. The relative deviation from the steady- 
state rate during the transient stage is generally 
less, when electrostatic repulsion is present. 

In  classical coagulation rate measurements, 
no non-steady-state effects can be observed. 
Under certain circumstances, the transient 
state may  just be observable in stopped-flow 
experiments on rapid coagulation. 
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