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Abstract: A field-theoretical model, due to Lévy, is studied. It contains a triplet of
quarks and a pseudoscalar and a scalar meson nonet, The original SU(3) X SU(3)
syminetry is broken by terms linear in the scalar meson fields. A renormaliza-
tion and regularization procedure is defined in order to remove the ultra-violet
divergences. The possibility of a spontaneous breakdown of the symmetry is
described and the Goldstone theorem is verified in the one~loop approximation.

Moreover, the Ademollo-Gatto theorem is reproduced. The axial vector
coupling constants differ in first order of the SU(3) symmetry breaking.

1. INTRODUCTION

Some years ago Gell-Mann [1] and Gell-Mann, Oakes and Renner [2]
proposed a model for the strong interactions with two important features.
In the first place the Hamiltonian density was given by

H = gfo-COuo-CBua y

where %K is invariant under SU(3) x SU(3) symmetry and the scalar den-
sities u; together with the pseudoscalar densitiesv; (i=0, 1,...,8) trans-
form according to the (3, 3) + (3, 3) representation of SU(3) X SU(3). Further
the equal-time commutation relations of the vector and axial vector charge
operators were assumed to remain valid also in the presence of the

SU(3) x SU(3) breaking interaction.

One may be interested to what extend the symmetry breaking manifests
itself in observable quantities. For example, according to the Ademollo-
Gatto theorem no first order SU(3) symmetry breaking effects occur in
the weak vector coupling constant. It is an interesting question as to what
the symmetry breaking effects may be for the axial vector current. Ex-
perimentally no large breaking of SU(3) symmetry is seen, and one may be
tempted to speculate that in certain models an Ademollo-Gatto-like
theorem holds for the axial vector currents. In fact, recently Matsuda and
Oneda [3] forwarded an argument concerning this possibility.

In this article we intend to study the effects of symmetry breaking in a
field-theoretical example of Gell-Mann's proposal. This model was sug-
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gested by Lévy [4] as an extension of the well-known sigma model. The
densities #; and v; are provided by the scalar and pseudoscalar meson
fields. Besides the eighteen scalar and pseudoscalar mesons the model
contains a triplet of quarks. Lévy investigated the effect of the symmetry
breaking terms in the tree approximation. However, if one wants to study
the effects of symmetry breaking in a wider sense one must compute
higher order corrections. Fortunately the model is renormalizable and a
procedure is available which conserves the symmetries of the model. Lee
[5] gave a demonstration of this procedure for the sigma model and his
arguments can easily be generalized for Lévy's model. The essential part
of Lee's arguments is that it is possible to make the theory finite by using
only the counterterms of the symmetric theory. Moreover he describes
how the handle the terms linear in the scalar fields correctly in perturba-
tion theory.

The first terms of a perturbation expansion including the effects of one
closed loop are computed in this paper. Sect. 2 gives the explicit form of
the model and its symmetry properties. An important point is the existence
of some Ward-Takahashi identities, which serve as a test for the calcula-
tions.

In sect. 3 the renormalization and regularization scheme is presented.

Sects, 4 and 5 give the calculation of the propagators and the verifica-
tion of the Goldstone theorem [7]. Moreover the coupling constants of the
vector and axial vector currents are determined.

In sect. 6 some SU(3) symmetry breaking effects are considered. The
coupling constant of the strangeness changing vector current turns out to
be unrenormalized to first order in SU(3) symmetry breaking. This is in
accordance with the Ademollo-Gatto theorem [8]. In the case of a sponta-
neously broken solution this theorem remains valid. The difference of the
strangeness changing and strangeness conserving axial vector coupling
constants is of first order in SU(3) symmetry breaking. This is in contra-
diction with the suggestions of ref. [3].

2. THE MODEL AND ITS SYMMETRY STRUCTURE

The Lagrangian of the model is
L=-Gy,9,q-3Tr{@,P?+0, 2?2 +n2(P2+32)}
-gqliys P +2)q - AWy (P, Z) - pW3(P, =) - vW3(P, Z)+ cgZg+cgZg , (2.1)

where ¢ is a quark triplet of four-component fermion fields and Z and P
are nonets of scalar and pseudoscalar meson fields, which are represented
by three-by-three matrices in the following way:
1 1
P='\/.—§Pi>ti and E=‘—/Ezi7ti.
The A; are the usual Gell-Mann matrices [1], ¢ =0, 1,...,8). W{(P, Z),
Wy(P, =) and W3(P, T) are meson-meson interactions of the following type:
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w,(P, 2) = Tr{P*+ 5%+ 422 P2 2P PZ}
Wy(P, T) = [Tr{P2+22}]2
Wy(P, Z) = 2Tr{z3}-3Tr{s} Tr{=2} +(Tr{z=}3
-6Tr{zP%} +6 Tr{zP} Tr{P}+3Tr{z} Tr{P?}
-3Tr{z} (Tr{P})2. (2.2)

Apart from the terms linear in the = fields, the Lagrangian is invariant
under the following infinitesimal SU(3) x SU(3) transformations [4]:

_ . Vl - _ . V_1
0g = zai zhiq, 0qg = zai qg)xi ,
_ Vo 1
GP—ldi (zkiP—ngi),
62‘,=ia¥(%hi2)-2§hi), i=1,...,8 2.3)

and

_ AL
bg = ia; 2);v: 49, 67 =

Nh—

.A~
qus

A
0P =-a; (3N, Z+ZH\),

6% = aA(xP+P1 ), i=1,...,8. 2.4)

Note that the P; and Z; transform according to the (3, 3)+ (3, 3) representa-
tion of SU(3) % SU(3)
The transformations (2. 3) generate an octet of vector currents.

el
68u C!i
= i(}-yu —;—xiq+ iTr {%Ai[P, a“ P] +§xi[z, a”z]} . (2.5)
An octet of axial vector currects is generated by the transformations (2.4).
_ 5L = 1 1 1
Am. = _Eé:a_iA =iy, V52N 4 +Tr{z)\i{P, auz}- Exi{z, a“ P}t . (2.6)

The brackets [,] and { ,} mean commutation and anticommautation,
The equations of motion give the PCAC result
8L

-—MA_ (d +dz]8 8)Pj 2.7

it

3 A
TRy

and for the vector currents
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Due to the simple structure of the symmetry breaking part of the
Lagrangian (2.1) we have some useful Ward-Takahashi identities [9]:

0
‘ax—u‘<0|T(A“

(0|T(V

—<0|T(V

=— (0| T( v,
u
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G =
[Ty aaV = Jijg8 %) -

;@PLON|0) = - @, gcq+dy gcg)

x (0| T(P (x)P (0))]0)- i z.].0<o|zolo>

”8 (o\z lo))a %),

() %0 )]0 = |t (x)Z(O NI

m8 8

+ifl.j8 <o|28|0> ot (*),

{9 Bi(9) Py(2))[0) = £, g (O T (Z,,(x) P, () Py (2))|0)

+i8%(2- 97, O T(P, () Py (2)|0)

#3062 O T (B ) P, ()]0,

{9 4 8(2)|0) = ;34 ¢4 O T(Z;(x) a(y) 4(2) |0)

5% - ) 2y (0|T(q(y)c'1(z))|0>+6 (x-2) O] T (a(y) 2(2) |0) 22, ,

(O|T(A

X (OIT(Pj(x)Q(y)EI(z)) |0>-5 (x-3) 33,75 ©O|T (90 q(2)) |0)

i) () 8(2) [0} = - (d; 3 ¢+ dyz )

~6%(x-2) QT (@) 7)) |0) ¥, 3, .

(2.8)

(2.10)

(2.11)

(2.12)

(2.13)

The identities (2.9) and (2.10) give essentially the Goldstone theorem [7] as
pointed out by Lee [5]. The identities (2.11) and (2.12) assure the vector
coupling constants of the currents with ¢ = 1, 2, 3, 8 to be unrenormalized,
which is a sufficient condition to derive the Ademollo-Gatto theorem [8].

3. RENORMALIZATION AND REGULARIZATION

Some years ago Lévy calculated the physical quantities of the model
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(2.1) in a tree-approximation [4]). However, such a calculation does not
show some well-known effects like the renormalization of coupling con-
stants. Because we are interested in SU(3) symmetry breaking of the re-
normalized current coupling constants we have to take into account the
effect of closed loops. For convenience we take the coupling constants of
the meson-meson interactions (2.2) equal to zero.

Consider now a perturbation series in g. Following Lee [5] (gFp) and
(gFg) are taken to be of order zero. This corresponds to an expansion
with respect to the number of closed loops [10] (not counting loops contained
in the tadpoles). Fg and Fg are the vacuum expectation values of the Zg and
Zg fields, obtained by summing all diagrams representing the vanishing of
a Zg or zg line into the vacuum. As a result of this approach two consis-
tency relations for Fg and Fg are obtained, as will be shown more expli-
citly in sect. 4.

When calculating diagrams we are concerned with the problem of ultra-
violet divergencies. By adding certain counterterms one can make the
theory finite. Generalizing the arguments for the sigma model [5, 6] it is
clear that the counterterms of the SU(3) X SU(3) symmetric theory are
sufficient. For the symmetric theory in the one-loop approximation we need
ouly four counterterms:

-zauzz Tr{P z}% -1)Tr{(a“P)2+(auE)2+p.2(P2+Z)2)}

_ 4
- -1 3 g-g BAW,(P, Z). 3.1
(z )qyu p9-8 16 ) 8.1)

F
These counterterms make the boson and fermion propagators finite. The
fourth counterterm cancels the divergence of the box diagram with a fermion
going around.

So our Lagrangian has the following structure:

L= -1 P ) +Z
qy ) qg-3 Tr {(a ) + (a ) + U )}

s 2 2 2
- 89(vs P+Z) q+c( T +Cg Zg-30u" Z TriP +3°}

-3(2g-1) Tre{@, PP @, 27+ kPP 2P)

_ 4
-(ZF- l)q'yua#q-g oA WI(P’ z). (3.2)

To fix the counterterms in every order we insist that the pion propagator
has a pole at pz =- u.z = - m%, my is the physical mass of the pion, and
furthermore we require the pion fields and one of the quark fields to be
asymptotically normalized to unit amplitude. The fourth counterterm
contains one free parameter which may be fixed by the experimental 7- 7
coupling constant.

In order to carry through this renormalization scheme we add a set of
regulator fields to the Lagrangian (3.2):



210 B.de Wit, SU(3)} x SU(3) symmetry breaking

L= L+ LREG »

where
Lppc = El[ My, 0, 4m) Q- Bty 0 4m) Q)
-g.{@?zQ?-Q?EQ%@?PQ%@?PQ;}]
+ T [-4m, Tr{(2 nk) + (2 szk) rut @ a2}

k=1

-8R qlvg I, +Q,)q] - (3.3)

Q and @; are triplets of fermion regulator fields. They have opposite
parlty S{) for every j there are six regulator fields which form an SU(3)
triplet and a parity doublet. The various fermion regulators Q »2 are
quantized according to the anticommutation (€;= +1) or committation rela-
tions (€; = -1). I1pand 2 are SU(3) nonets of pseudoscalar and scalar
boson regulators with normal (7 = +1) or indefinite metric (7 = - 1).

Because we want to conserve the symmetry of the original Lagrangian,
we are obliged to require the following SU(3) X SU(3) transformation
properties for the regulator fields:

1,2 . v, 1,2 vV-1,2,
OQ]. =i, zxz.Qj , 6Q ia, Q]. ZAi y
iV . L A Y _o 1
6Hk_zai (zxi Hk Hk zxi) , 5Qk-zai (zxz.szk kaki) , (3.4)
and
1 A, 2 =1 A2,
GQ]. =a, ZAiQ] , o = az_ 7 z)ti ,
2 A, 1 =2 A1,
5Q _al ZAzQ] H 61 - a,‘ Q] zhi’
o1l =-aA(AQ+Q ) 69=aA(AH L zx) . (3.5)
k iR R 2T AR R "N é :

Apart from the terms linear in the Z fields, £ + LRpq is invariant under
the combined transformations (2.3), (3.4) and (2.4), (3.5). Therefore all
the symmetry relations like Ward-Takahashi identities remain unchanged.

Concerning the fermion regulators, this procedure is an SU(3) generali-
zation of the concept of parity doublet regulators as proposed by Gervais
and Lee for the sigma model [6].

By means of these regulator fields one can make the theory finite, Be-
cause these fields are unphysical, their masses will be taken very large,
When doing this, four divergences appear in our calculations, which will
be denoted by Dy, Dg, D3 and D4. They can be absorbed into the counter-
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Fig. 1. Diagrams with corresponding functions. Clebsch-Gordan coefficients are not
included in the definitions. Tadpoles are attached to internal fermion lines, which
give the internal quarks a mass: myz = gF,. However, such attachments are

omitted in all the figures.

terms. In appendix A the regularization procedure is worked out for all
diagrams that we need later. Those are listed in fig. 1.

The Feynman rules for the Lagrangian (3.2) are shown in fig. 2. The
quark mass in the tree approximation is

mq = gFy , (3.6)
where a denotes p, n or A quark. F, is defined by
F,=F, =L (Fo+-1Fg)
P~ "n-~ V3 0 V2 8/ s
1
Fy = —\/—,5 Fo- w/§F8) . (3.7)

Because SU(2) symmetry is conserved, we will use only the indices p and A.
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Fo or FB
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quark line

quark-P or quark-X vertex

linear £ _or ):.8 term
o

mass renormalizaetion counter-
term

wave function renormalization
counterterm

wave function renormalization
counterterm

meson-meson counterterm

vacuum expectation value
of the Z‘.o or Zg field

vertices belonging to the
vector and axial vector currents

Fig. 2. The Feynman rules for the Lagrangian (3.2).

4. CALCULATION OF THE PROPAGATORS;
CONSISTENCY RELATIONS

The counterterm 8A cancels the divergence of the fermion loop contribu-

tions to the four-point boson vertices. Calculation gives the result:

D

6A=—1

8712

A may be fixed by the experimental 7~ 7 coupling constant.
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To determine the counterterms Zg and 6u2, we impose the pion propa-
gator to exhibit the behaviour

i

D (s) = 5 as  s—- u2 . 4.2)
S+
The expression for the pion propagator is given in appendix B, and leads to
2
| 2 g2 1 y 2 2 "p
= - = - - 1 —r
iD (s) =s+u 2 gs[D3 3]+6D2 3 mp+ mp og uz
1 sx(1 - x)+ m2
+3s [ dxlog—zJE+4g2}\m2
0 U P
v 2 U2+ (Zo-1) (s + 1) (4.3)
B B . .

Imposing the condition (4. 2), the contribution of the counterterms is

2
2 2, gz 1 u 2 2 "p
Z,ou +(ZB-1)(s+u )-—~{.&>‘[D3-‘,‘]+GDZ-3 "o+ m log —

4712 “2
2 2, 2 2,: 2 2
+3 sBpp(— p) -3 +u")u Bbp(' 1} - 4g i (4.4)
where we used the notation
1 sx(l—x)+m2x+m2(1—x)
b

B_(s)= [ dxlog 2 )

ab 0 “2
B! (s)= 2B _(s) 4.5

ab ds ab'"’ "’ )

a and b denote the particular members of the quark triplet.

@
I

I
—— ..-_.O._.... FER S

i

|

o
+ x4 -

Fig. 3. Diagrams of the meson propagators.

The diagrams that contribute to the meson propagators are shown in
fig. 3. Appendix B gives the corresponding expressions. Because a Pg- Pg.
and a Zg- Zg mixing arises, the propagators of the £g- =g and the Py - Pg
combinations are represented by two-by-two matrices. A straightforward
calculation gives the following result for the pseudoscalar mesons:
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z'D;,1<s)=s+u2-fzz [s[B,,(6)- B, (- uP) +(s+u®) u? By 1D}, (4.6)
2 2
-1, 2 g2 {4 2. My g My
iDy (s) =s+u -5 {3 mp m )(19m +3mp)+m log z—mplog?
+s[B_,(s)-B (—uz)]+(m -m)zB (s)
pA PP p A TpA
+(seu?yu? By - uD)} 4 rmy(my -m ) @)
m2 m

NT DN

-1, 2 g% gy 2 2 2 a2 p
zD08(s) =s+u - = {4 (mp—m)\)+m>L log uz-mp log

u

+3 s[B,, (s) +Bpp(s)— 2Bpp(- uz)] +(s+ uz) uzBl')p(- uz)}

2 2
2 2 2 MmN 2 m
_2g 7x(mp m)+3[32 {4 m mx+m log 2-mplogu—g
9 P 1 2V2
1
+3 S[B,, (s)-B__(s)]}+2g" Mm_-m))] . (4.8)
M e P2 vz

The propagators of the scalar mesons, denoted by a wiggle, have the
following form:

2 2
zD s)=s5 - m +S B B 4m_B
Ys)=s+u 82{% +[ (u)]+ o Bop'®)
+(s+ud) 2B (s)}+8g2Am2 : 4.9)
PP P

2 2

e YR 2 g_2 1 2 ﬂ 2 _mp

Dy (s)=s+p a2 {-3(mk+mp)(lgm)t—3mp)+m)t log #z-mp log —5

+ s[BpA(s)- Bpp(- uz)] +(mp+ mk)2 BpA(s)

2
+(s+ 4D p.zBi)p(- 1))+ 44 am(m +m,) (4.10)
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.1 2 g2 2 2 2 m m%
iD () =s+u -5 {-3m%-9m’ +m log—5 -m’ log —
08 8712 p AT U-Z p u2

2 2
:s[B B, . (s)-2B (- 2m”B_ (s
+35] pp(s)+ o (8) pp( uo)]+ m pp( )
2 2.2 ., 2 2. 2 . 2
+2m)\BML(s)+(s+u ) Bpp(vu )}+2¢ )\(mp+3m>\)

2
178 2 2 2 A2
+3[25{9(m  -m)+m_ log—5 -m_ log —5
8.2 p- Aty loe T g mmplog g

+35[Byy(8) - B ()] +2m2 By, (5)-2m2 B (5)}
1 2v2
+6g°A(m - )] ) . (4.11)
P 22 -1

By means of the formulae (4.6)- (4.11) we can calculate the masses, the
wave function renormalization constants and the mixing angles of the
mesons, because these quantities are determined by the poles and the
residues of the propagators.

?
i
NP g T
I
o
+ ---x--@ + -—-®--0

Fig. 4. The pictorial representation of the consistency relations.

For the vacuum expectation values of the Zg and the Zg field two con-
sistency relations hold. They are represented by the diagrams of fig, 4.
The corresponding expressions are shown in appendix B. A straightforward
computation yields the result:

2 g2

' =1 1
[u g2 H B pCH )] P73 Co*,/gcs]’ (4.12)
2_g 4p 1
7+ £y By £y =L (g VBey)
m2 2
+4g A(m - my )F + {m [log 2 L1-m [log—g 1g’-]}F)\. (4.13)
"
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By means of these consistency relations one can derive certain equa-
tions for F,, F, and the inverse propagators at the point s = 0. These
equations, ‘which are a consequence of the Ward- Takahashi identities (2.9)
and (2.10), have the following form:

00 F =713 [eg+ ,/igce] : (4.14)
iD;(I(O)[Fp‘LFA] = ‘/—23 [co_glﬁ%] , (4.15)
iﬁg(l(O)[Fp-FA] = Vicg, (4.16)
ip(');(O) F-c. (4.17)

Where DB};(O) is a two-by-two matrix and ¢ and F represent the vectors:

1
c=(cg, 60'508) s

1
=5 (V2(Fp- Fy), Fp+2F)) . (4.18)
The equations (4.14)-(4.17) give the well-known result that a spontaneous

breakdown of a symmetry entails the existence of massless bosons, which
is the Goldstone theorem [7].

: N

——Y - 4 Ly X /
-,

" e

Fig. 5. Diagrams of the quark propagators

The diagrams contributing to the quark propagators are shown in fig. 5.
The corresponding expressions are given in appendix B. We fix the count-
erterm Zg in such a way that the proton quark field is asymptotically
normalized to unit amplitude:

F

where we used the notation

. g2 2 2, 2
Z_ =1 +é;§ {%[D4+ s +A(- mp)- 2mpA (- mp)} ’ (4.19)
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sx(l-x)+plx+ mp(l x)

#2

1
A(s) = f dxx42 log
0

sx(l-x)+ u2x+m§(1 -x)
+ log 5 ,
u

e . d
A'(s) = g5 As) . (4.20)
Using this result, the quark propagators obtain the following form:
2
-1 , g 2 2 2 2
S =fg-im_-F =514 ~A(-m )+2m” A (-m7)}, (4.21)
q ) =#-imy-# 5 {ADT)-Al-mp)+2m Al o
where q denotes a particular member of the quark triplet.

The poles and the residues of the propagators determine the quark
masses and wave function renormalization constants:

2
2 g 2
M =M =m_{1+2m !
p =My =mp{ile2m By alm)},
2
_ g 2 2 . 2, 2
M, = mh{l +8———ﬂ2 [A(- mx) -A(- mp) +2mpA (- mp)]} ,
zloz1.4q,
p n

-1

z; -1-—Z{A(m _Al-m +2m A(-m?

2)- 2m A-mD)} . (4.22)

5. THE CURRENTS

In this section we calculate the renormalized vector and axial vector
coupling constants, which are defined in the matrix elements between
quark state of the strangeness changing and the strangeness conserving
currents. One has for instance

@(p)|V, len(pz»

_ 2 Vv 2
— 2 2
and similarly for the other matrix elements.
q = pg- p1, where pg and p; denote the momenta of the in- and outgoing
quarks respectively.
The coupling constants g are defined by
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<

& -z2z2FY )
1+i2 p n 1+#2°7°
Ey,i5 " zészZ+i5(0) ;
gf+i2 - Zizianz(o) ,
Zhis = 273 P 6.1

Zp, Zp and Z) are the wave function renormalization constants calculated
in the previous section.

The diagrams which represent the contributions to the matrix elements
of the currents are shown in fig. 6. The diagrams of the third type vanish,

: : BY

—re X et + —— Y / + L Y
-,

-~

Fig. 6. Diagrams of the current matrix elements.

because the contributions of the various mesons cancel. Diagrams other
then shown here will give a contribution only to the scalar and pseudo-
scalar form factors. For the vector currents V1,49 and V4,45 the
diagrams give the following expression:

Zyp {Z')’u_ - i[ZAp,p(pl |~P2)+AMA(P1|P2)]

+ays[20yo(p1102)+ A pa (1] p9)] 75}, (5.2)

where A 5(P1|p2) is calculated in appendix A.
For the axial currents the contribution has the following form:

Zp Loy vs+iv5 (20 p( Py | D9) + Ay (D] 29)]
- i[28,p(D1] 82) +Apa (D1] D2)]Y5) - (5.3)

Note that up to order g2, D9 gives the only difference between the (1 +%2)th
and the (4 +45)th component of the vector and axial vector current. p9 is
the momentum of a neutron quark in the first and of a lambda quark in the
second case. When the quarks are on mass-shall this gives an SU(3)-
breaking effect. Using eqs. (4.19) and (4.22), a straightforward calculation
yields
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v
8,2 =1
2 A(-m2)- A(-m)
\4 g , 2, 2 2 2., 2 p x
_=1-251m” A(-m)+m] A (-m)-3(m_+m,) _
84.4i5 gr2 | P p by AT T m)%'mlz) !
A g 2 .
& .2 1 2——2-817 mpA(-m ),
2 2
2 A(- m2) - A(- m$)
A . g 2 ,, 2 2 20 a2 p A}
g4+i5_1_8—1r impA(-mp)+m)\A(-m)\)-z(mp mx) m%—mz

P (5.4)

6. SOME RESULTS OF BROKEN SU(3) SYMMETRY

Given the result of our calculations we can verify some theorems con-
cerning SU(3) breaking. We define the SU(3) symmetry breaking parameter
£ by '

Fg
= —F‘—O .

3 (6.1)

6.1. The Gell-Mann-Okubo mass formula
From formulae (5.8) and (5.11) one can easily evaluate the pseudoscalar
and scalar masses in order g2 An explicit calculation gives the result.

2 2 .2 _ .3
3mn+m7r—4mK =0(t%) , (6.2)

for the pseudoscalar as well as for the scalar meson masses. This result
is just the Gell-Mann-Okuba mass formula [1, 11]. r'ﬁ% denotes the pole of
the 7 propagator, which is not equal to the physical 7 mass because of the
singlet-octet mixing. The mixing angles of the scalar and pseudoscalar
mesons are given by tg ¢ = V2.¥

6.2. The Ademollo-Gatto theorem
Expanding the coupling constant of the strangeness changing vector
current (5.4) in powers of £, one obtains

gy 5 =1+0E%) , 6.3)

which is the Ademollo-Gatto theorem [8]. This result is not affected by a
spontaneous breakdown of the symmetry, which is in contradiction with a
recent assertion by Korthals Altes [12]. His result is not correct for the
following reason. As shown by Fubini and Furlan [13], the Ademollo-Gatto

* Because the interactions Wg(P, Z) and W5(P, Z) (eq. (2.2)) were not taken into
account, the mixing angles are not proportional to £.
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theorem can be derived by saturating the equal-time commutation relation
(between proton quark states):

(p(P)|[F4445 Fa-i5]|p(p)) ={p(p)|F3+V3Fg|p(p)) . (6.4)

However, this proof breaks down when the symmetry is spontaneously
broken. In that case the commutator is saturated by states with an energy
equal to that of the proton quark. Hence the lambda intermediate state
gives no contribution, which makes it impossible to derive in this way a
theorem concerning the weak vector coupling constant. However, the
original proof [8] still holds, which agrees with our result (6.3). Moreover,
the theorem may be derived from Ward- Takahashi identities [14], indepen-
dently of how the symmetry breaking arises. This is shown in appendix C.

6.3. SU(3) breaking of the axial vector coupling constants
The axial vector coupling constants, given in the formulae (5.4), are
obviously renormalized in first order £. Evaluating the difference

gf:+i5 -g‘f‘+i2, we obtain the following expression:
A A _g2.2 . 2 2,6 2 2
g4+15 'g1+12 - m [mp A (' mp)' m}\A (' mx)]"’o(‘g ) ’ (6-5)
which is also of first order in £.

This contradicts the results of Matsuda and Oneda [3], who prove,
under the assumption of asymptotic SU(3) symmetry, that g?+i5 -gﬁiz

should be of second order in £. Asymptotic symmetry means that the
charge operator F6 +i7 behaves in the infinite momentum limit as an exact
SU(3) generator, even in a broken world. In this limit the hypothesis
enables then to truncate the sum over a complete set of intermediate states,
when saturating an equal-time commutator which contains Fg ;7. However,
this assumption obviously goes wrong in the case of the disconnected
diagrams shown in fig. 7. Due to these diagrams the matrix element

{a(p)B0)| Fg,i7| ()

does not vanish in the infinite-momentum limit. Therefore several results
based on the asymptotic symmetry hypothesis have to be modified.

TOREE— — € Sa ol e

a(P) <

Fig. 7. Diagrams that disturb the asymptotic symmetry hypothesis.
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APPENDIX A

The expressions, represented by the diagrams shown in fig. 1, have the
following form:

N Wfd kTr (k- )

Jg] 1
]=1 @niu fd kTr <k iMyja TkE- ’sza) (A.1)

5 _ig 4 1 1,
r‘;.tab(‘b) T en)t Jd kT - imy, 4 w5 Brp- imy WS)

]g] 1
E fd Tr (Jé le'b u,léub’ ’Mlja)

+z]21 ")J JaeTr (7 iy "u TP I’sza) : (A.2)
HZb(f’z) =- (527)4' Ja* Tr(}é-limb i7515+,ﬁ-1ima ivg)
- ]El ( ;,jz Sk (g i}lflzjb fova iMlja)
_]E)l @Ti Sathre (5 i}leb o f—lisza> , (A.3)
0% - - (;%)4 Sk (Jé-limb oy )
ﬁ

J 1
- dkTr - -
j=1 (27r)4 f (]e'-lejb K+ - ’Mlja)

€8

1 :
j=1 (277)4 fd kTr (,% iMajp K+ p- znga) (4.4)
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- & 1 1
Za(P) ==t (277)4-[d k,ﬁ-k-ima k2+y.2
2
8 . 4 1 1
pD . , A.5
lk 1 (2m? H-K-img 22 (49
g2 4, (Py+Pg-2k), 1 1
A (plp)=-iE— [d%Fk :
pa' 117, (217)4f K-tmy  (p1-R2+ 2 (py- k)24 2
"kgk ey (P +Dg-2k), 1 1
-t i/ — 2 2, 2’
b= 1(2n> “ta (py k)24 g (Dy-k)2+ P
‘A.6)

where due to the tadpole attachements to the internal fermion lines (also to
the fermion regulators)

mgy =gF, ,
Mlja = mj+g]-Fa ,

sza=m]-—g]-Fa . (A7)
a and b denote the members of the fermion triplets. €; and np, take the
values +1, as described in sect. 3. To obtain the formulae (A.1)- (A.6), we
used the explicit structure of the currents and the Lagrangian which contain
the regulator fields.
To assure the expressions to be finite we impose the following condi-
tions:

g2+2‘2 e.g?:O,
j=1 73

P Z) n,&,=0. (A.8)

Because the regulator fields are unphysical we take their masses very
large. In that case four divergences arise:

4 2 ' 2,2 2
€.8; me 85 mée

D; = 2 20 log—i2 , Do = 2 5 ]2 i Iog—lz— (A.92)
j=1 Pe I j=1 & K
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2 ~2 2
¢  m np& i
D3= E]—zjlog——]-, Dy= 2 kzklog '; (A.9b)
j=1 & K k=1 &
Computation of expressions (A.1)- (A.6) yields the result:
g2 F m2 11
ga=_m 36D2+2D1m +m (1og " =-ut, (A.10)

1
“ab(P)‘tP g2 (F +F)(D3-%)+Of dx[Fax+Fb(1-x)]

11 b
2 2
p %(1 - x) + my X+ my (1 - x)
X log 5 , (A.11)
n
5 .2 . g2 (.2 . 2 2
Hab(p )—-1—4;.2‘,17 (D3—3-)+6D2+2D1(ma+mb_mamb)
2 2
2 2 2 My 2 My
(19ma+19m —16mam ) +3 m, log #2 +zmy logﬁ
1 pzx(l-x)+m2x+m2(1-x)
2
+z[p"+(m_-m )2] J dxlog a b , (A.12)
a b 2
0 L
2, . g2 (.2 . 2 2
Hab(p )--zm p (D3-3)+6D2+2D1(ma+mb+mamb)
2 2
m m
-g(19m2+19m2+16m m)+2 m2 log 3+%mt2)10g g
1 pzx(l-x)+m x+m2(1- x)
2 2 +
+3[p +(ma+mb) ] f dx log 2; b i, (A.13)
0 . [
b (p)_-li 3H(D, +3)+im (D, +1)
4 4,2 2 2 a4
1 pzx(l-x)+ 2xsm2(1-x
+ [ dx(px+im ) log - all-x) , (A.14)
0 a “2
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A (p Ip)—lg—zii (D, +3)
pa'P1'P2’ =g 2 27 Yg e
1 X, (0%, 1%, 4% 1x, 3)
+fdxfdy['y loga 1 22
U
0 0 )
,ﬁzx-,qyw'm
c@py1- - al1-23), — 2 el (a.15)
Xa(pl: pz,q |x’ y)
where ¢ = pg- Py, and xa(p%, p%, q2 \x, 9) is defined by
2 ,2 2 2 2 2
X, (P]) Py 47| %, 9) = 1 9(1-2) 4Py (x- 9) (1- %) +4" y(x - )
+ u2x+mz(1 -Xx). (A.16)

Two important relations hold for the expressions (A.10)- (A.15). They
are essentially a consequence of the Ward- Takahashi identities (2.9) and
(2.12).

b, T (8D = W T+ F |- [F, + FIND (8, (A.17)
(Pz-Pl)u Au.a(pl’p2) = Ea(Pl)-Za(pz) ) (A.18)

APPENDIX B

The expressions for the meson propagators, represented by the dia-
grams shown in fig. 3, have the following form:

1,2 .5 1 4 2 .2
zDﬂ (s) =s+1 -szp(s)+ 38 6A[4FO+2F8+4«/ 2F0F8]
Z 6p24(Z - 1)(s+ uP) (8.1)
+ B ’J, + B- +u ’ .
1, 2 .5 4 2
zDK (s)=s+u - szA(s)+ 38 . 6A[4Fg+14 8-2\/2F0F8]

szgud ez -(s+ud, (B.2)

iDga(s) = s+ % i [Hzp(s)+ 2, (s)]+ 8 SA[4F + 5F2 - 2V2F Fy)
Zy ou? H(Zg-1(s+ u2)+{-éi[ng(s)- 12, (s)]
1 2%‘2‘)

2vZ -1

4 2
++ g OA[-Fg+2V2F  Fgl} (B.3)
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x-1 2 . 4 2 2
zﬁﬂ (s)=s+p -zIIpp(s)+g 6A[4F0+2F8+4\/—2F0F8]

vz otz -1 s, (B.4)

4

-1 2 . 2 2
iDy (s)=s8+pu"- zIIpA(s) +g 6A[4F0+ 2Fg - 2 «/§F0F

g

Zy ou2+(zB_1)(s+u2), (B.5)

1 2 . 4 2
zDoa(s) =s+p°- %z[ﬂpp(s)+ HM(s)]+g 6A[4F0 + 5F§ - 2\/_2F0 F8]

25002+ (Zg- 1) (s w4 - HIT (9)- T, (0)]

4 5 1 2v2
+8 OA[-F o +2V2F, Fol} . (B.6)
® 08 lave 1

The wiggle denotes the propagators of the scalar mesons. Because a
Pg- Pg and a Zg- Zg mixing arises, the propagators corresponding to
those particles are represented by two-by-two matrices. These propagators
are denoted by Dgg(s) and Dgg(s) respectively. The functions Hgb(s) and
I, ,(s) are calculated in appendix A.

The consistency relations, pictorially represented in fig. 4, are given
by

O 1 4 i 2 1 ,
F.o=—_ L1 Aenars12F F2_2v2F)-L 27 4+ o
07 25,2 8 CAAFpr12F, Ty 8l- 75 [2Fp+ Al
1 2 2
‘E[ZBG“ +(Zg- V"1 Fy , (B.7)
Fo- B L A art e o vaF B BTN
87 27 3 g +4Fo g ofgl-5 1%p= %
1 2 2
" [Zgou®+(Zg-1)u"|Fg . (B.8)

The function ¥, is calculated in appendix A.
For the quark propagators the following expression holds:

S, (0) = £ 1gF_ +25 (§)+ Z,(P)- v 22 (§)+ 2,(P)] v+ Zp-VF,  (B.9)

where Ea( p) is calculated in appendix A.
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APPENDIX C

As claimed in sect. 6, one can give a derivation of the Ademollo-Gatto
theorem based on Ward-Takahashi identities. This derivation remains
unchanged in the case of spontaneously broken SU(3) symmetry. We will
give the proof for the current matrix element that is related to Kypg decay.

The unrenormalized vertex function for the vector current is given by

(P1+02)p f4(s1, s2, ) +(P2-P1)p f-(51, s2, 1) . (C.1)
p1 is the momentum of the outgoing pion, pg of the incoming kaon.
t= (pz-pl)z, s1 =p% and sg =p%.
We separate the contribution of the kappa pole:
f(s1, s9, t) = J_(s1, sg, £)-iD, () f(t)G(sy, Sg, t) ;

G(s1, s9, t) is the unrenormalized 7Kk vertex function, Dy the unrenor-
malized propagator of'the kappa meson and f, characterizes the weak
kappa decay.

Due to the Ward- Takahashi identities (2.10) and (2.11), the following
relation holds:

(sg-89) f,(sy, 89y V48] (54, 55, ) +VFFgGlsy, sy, )
= D} (s,)-iD (s,) . (C.2)

Dk and D; are the unrenormalized kaon and pion propagators. Relation
(C.2) exhibits a non-singular behaviour for ¢ = 0, even in the case of spon-
taneously broken symmetry.

If Fg = 0, all observable quantities show SU(3) symmetry and the theory
is invariant under a transformation proposed by Sirlin [14]:

G5 = Cexp[in5] . (C3)
C denotes the charge conjugation operator. This invariance implies:

Glsy, sg,t) = G(sy, 59, 1),
1,52 2 51

f+(sls 9, t) = f+(32) S$1» t).
In the case of broken symmetry we expect

G(Sl, 82, t) = G(Sz, Sl, t)+o(£) ’

f+(81, S9, t) = f+(82, Sl’ t)+0(§) , (C4)

where £ is the symmetry breaking parameter as defined by (6.1).
Differentiating relation (C.2) with respect to s; or sg we obtain the
following results for ¢ =0, §y=- m12r and Sg = mlz(:
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f+('_ m:, - mi, 0)- (mi-mi) (%1 f sy —mlz(, O)Islz-m%
A@Féé%cwr-m;oﬂﬁ;m%=z:,-‘ (C.5)
+1F, % G(-m2, 5,, 0) o ac zi! . (C.6)
2=-"g

Multiplying eq. (C.5) with (C.6), and using relation (C.4) and m,zr- mlz( = 0(&),
we obtain

1

(f (-m2, 2, 0% = 27 2 o)

which is the Ademollo-Gatto theorem.
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