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Abstract. Contracting an edge is the operation that introduces a new vertex that is adja-
cent to all vertices the endpoints of the contracted edge are adjacent to, and then deletes the
endpoints of this edge and all their incident edges. In this note, we give a formal approach
to the notion of edge contraction and show some basic properties of it.

1 Introduction

In this note, we give a formal approach to the notion of edge contraction, and we derive some
basic properties of the notion. In recent work, we used edge contractions to improve upon lower
bounds for treewidth (see [2, 3]; and [1] for more information on treewidth in general). While in |2,
3], we use the notions more informally, here we establish the more precise definitions, and we give
formal proofs of (mostly intuitive) results that we use without a proof in [2, 3].

Graph contraction is used in several important graph theoretic invetigations. We just mention
here the much studied notion of graph minor — a graph that can be obtained from a graph by a
series of vertex deletions, edge deletions and edge contractions. Well known is the fundamental
work of Robertson and Seymour on graph minors, see e.g. [4].

Even though most of the statements proven in this note are intuitive, a formal proof can
sometimes be more technical than expected. We start by formally defining single edge contractions
and showing the commutativity of such single contractions. We will work towards the notions of
contraction-set and contractions of a graph.

1.1 Preliminaries

Throughout the paper G = (V, E) denotes a simple undirected graph. Most of our terminol-
ogy is standard graph theory/algorithm terminology. The open neighbourhood Ng(v) := {w €
V| {v,w} € E} or simply N(v) of a vertex v € V is the set of vertices adjacent to v in G. As
usual, the degree in G of vertex v is dg(v) or simply d(v), and we have d(v) = |[N(v)|. N(S) for
S C V denotes the open neighbourhood of S, i.e. N(S) = U,cg N(s)\ S.

2 Edge Contraction

It is easy to intuitively understand the meaning of contracting an edge. In Figure 1, we can see
an example when we contract an edge e that belongs to a cycle of length three. This example is
essential, since it shows that there are two ways of looking at edge contractions. In the first case,
the result might be a multigraph, since the endpoints of the edge to be contracted might have
common neighbours as edge e in Figure 1. In the second case, the result is always a simple graph,
because parallel edges that might occur will always be replaced by a single edge. It is evident that
in that case, contracting an edge can decrease the number of edges by more than one. These two
ways of contracting an edge e in G are sometimes denoted as G/e and G/e, (e.g. in [4]).

In this note, we only consider simple graphs, and we use the notation G/e for an edge contrac-
tion which results in a simple graph, because we replace parallel edges by a single edge. Therefore,
contracting edge e = {v;,v;} in the graph G, denoted as G/e, is the operation that introduces a
new vertex a. and new edges such that a. is adjacent to all the vertices in N(e) and delete vertices
v; and v; and all edges incident to v; or v;.
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e

Fig. 1. Original graph; resulting multigraph after contracting edge e; resulting simple graph after con-
tracting edge e

Definition 1. Let be given a graph G = (V, E). Let be e € E, or let be e C V with le| = 1.
Furthermore, let be a. ¢ V. Contracting e in G results in the graph G/e, defined as follows:

G/e:= (V/e,E/e), where

Vie={a.}UV\e

Ele=( {J (f/e)\{e}
feBE\{e}

fle = {;ae}uf\e iffre#0

otherwise

To be formally consistent, we included in the previous definition the case that e is ‘an edge’
consisting of a single vertex. This is important because of previous edge contractions if e belongs
to a set of contracted edges forming a cycle, e can consist of only one vertex, (see Lemma 2).

Lemma 1. Let be given a graph G = (V,E) and two distinct edges e, f € E. Let be G1 =
(Vi,Er) = (G/e)/(f/e) and Go = (Va, Es) = (G/f)/(e/f). Then G1 and Ga are isomorphic, i.e.
G1 = Gs.

Proof. In case e and f are not adjacent, the lemma is easy to see, since the contractions of e and
f do not influence each other. Thus, we assume e = {u, v} and f = {v,w}.

Claim. Vi ={as} UV \ {u,v,w}.

Proof. This is easy to see:

(Vie)/(f/e) = ({act UV \{u,v})/({ac, w})
={as}U({ac} UV \ {u,w})\ {ac, w}
={as} UV \ {u,v,w}

<

In the same way, we obtain: Vo = {a.} UV \ {u,v,w}, and therefore, we see that V; and V5 only
differ in the name of one element, namely the only new vertex.
We define a mapping ¢ : V; <> V5 in the following way:

i(v) = v ifveV
~ | ae otherwise, ie. if v =ay

Now, we will prove that the mapping ¢ is an isomorphism between G; and G2. From above, we
already know that |V;| = |V2|. What remains to be shown is that two vertices x and y are joined
by an edge in G; if and only if the corresponding vertices are joined by an edge in Gs.

The next two claims can be deduced from the Definition 1 and the definition of G; and Gs.
First, we consider the case that the considered vertices x and y are pairwise different from the
new vertex. Note that i(z) = 2 and i(y) = y.
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Claim. {z,y} € E1x Nay € {z,y} < {z,y} € Es Nac & {z,y}
Proof.

{z,y} € B1 Nay & {z,y} < {z,y} € EJe N{ac,w}N{z,y} =0
<~ {z,y} € EA{u,v,w}nN{z,y} =10
= {z,y} € E/f NMu,ar} N {z,y} =0
= {z,y} € BEa Nac & {x,y} =10

<

Now, we consider the case that ay € {z,y}. W.lo.g. let be x = ay. Note that i(z) = a. and
i(y) =y

Claim. {ay,y} € E1 <= {ae,y} € Es
Proof.

{as,y} € By <> {ae,y} € E/eV{w,y} € E/e
— {u,y} € EV{v,y} € EV{w,y} € E
= {u,yt € E/fVias,y} € E/f
< {ae,y} € E

<

We can summarise this: {z,y} € E1 <= {i(z),i(y)} € E2. Therefore, mapping i is an isomorphism
and (G; and Gy are isomorphic. O

Note that any two sequences of the same elements can be transformed into each other by
successively swapping the positions of neighbouring elements. Therefore, with Lemma 1, we can
conclude the following corollary.

Corollary 1. Contracting edges in a graph is commutative.

Hence, it is sensible to define the contraction of a set of edges. Hereafter, we use the following
shorthand:

er/ezfes/...[ep = (e1/e2)/(es/e2)/ .../ (((ep/€2)/ (e3/€2))...)
Definition 2. Given a graph G and a set of edges E' = {eq, ..., e, }, we define:
G/E :=GJei/...[ep

When contracting a set of edges, the edges to be contracted might be modified due to earlier
contractions. The next lemma makes a statement about the edge which is contracted last, if a set
of edges is contracted that forms a cycle in the graph.

Lemma 2. Let C = (v1,...,vp) be a cycle of length p > 3, and let E' be the set of edges in C,
i.e. B' = {e1 = {v1,v2},....ep = {vp,v1}}. W.lo.g. we contract the edges in the following order:
€1, ...,ep. Then e, will degenerate to a single vertexr due to the contractions of e, ...,ep—1, t.e.:

ep/ei/.../ep—1 = {ac, ,}

for a new vertex Ge,_y -
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Proof. We prove this by induction on p. For p = 3, we have: e; = {v1,v2}, ea = {va,v3}, and
e3 = {v3,v1}.

es/e1/ea = (e3/e1)/(e2/e1)
= ({vs, vi}/{v1,v2})/({va, v3}/{v1, v2})
= {ael’v3}/{a’el’vs}
= {ac,}

Hence, we assume the lemma holds for cycles of length p, and we will show it also holds for cycles
of length p + 1. Let be given a cycle ey, ..., e,11 of length p 4+ 1. Contracting e; introduces a new
vertex ae, and we see that ea/eqr = {ae,,v3} and ept1/e1 = {ae,, vpt1}. All other edges are not
influenced by contracting e;. Hence, this results in a cycle of length p, for which we know that the
lemma holds. a

Definition 1 defines edge contractions. For technical reasons, it also defines the contraction
of ‘an edge’ consisting of a single vertex. However, such a contraction in G results in a graph
isomorphic to G.

Lemma 3. Let be given a graph G = (V, E) and x € V. Furthermore, let be G' = (V' E') = G/x.
Then we have: G' = G.

Proof. Looking at Definition 1, we see that V’ = {a,} UV \ . We do not delete any edges from
E to obtain E’, but we update all single edges which contained z to contain a,. Therefore, G’ is
isomorphic to G, since we only changed the name of vertex x into a,. O

Lemma 4. Let be given o graph G = (V,E) and a set of edges E1 = {h1,...,hq} and a set of
edges Ey = {e1,...,ep}, E1 N Ey = 0. Let Ey form a cycle e, ...,e, with 3 < p. Let be E' =
{h1,....,hq,€1,...,ep} and E"”" = {h1,...,hq,e1,...,ep_1}. Then G/E' is isomorphic to G/E", i.e.
G/E' 2 G/E".

Proof. From Corollary 1, we know edge contractions are commutative. Therefore, we choose to
contract edges in the following order: ey, ..., ep, h1, ..., hg. Then we have:

G/E' =G/ei]...)ep-1/ep/h1]..)hy

(from Lemma 2 follows:)

= Gfer/.fepr/{ap}/In] ./ Ry

(from Lemma 3 follows:)

= G/el/.../ep_l/hl/.../hq
~ G/E"

a

From the last lemma, we easily conclude that we can delete an arbitrary edge in a cycle in a
set of edges £’ C E to be contracted, for a graph G = (V, E). We can repeat this until there are
no cycles left . The result will be a maximal spanning forest E” of G[E'] := (U,cp €, £'), and we
have G/E’ is isomorphic to G/E”, i.e. G/E' =2 G/E". Since we can restrict ourself to edge sets
without cycles, we use the term contraction-set to refer to such sets.

Definition 3. A contraction-set E' in G = (V, E) is a set of edges E' C E, such that G[E'] is a
forest. A contraction H of G is a graph such that there exists a contraction-set E' with: H = G/E’.

After the previous observations, we develop another view on contracting a set E’ of edges. The
graph G[E'] is composed of connected components Oq, ..., O, with O; = (V;, E;). When contracting
E’ in G, then every connected component O; will be replaced by a new single vertex a;. This vertex
a; will be made adjacent to every vertex in N¢(V;), i.e. all vertices that are neighbours in G of a
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vertex in O;, but that do not belong to V;. It becomes evident from the previous lemmas that this
definition of edge contractions is equivalent to Definition 1.

Note once again that after each single edge-contraction the names of the vertices are updated
in the graph. Hence, for two adjacent edges e = {u,v} and f = {v,w}, edge f will be different
after contracting edge e, namely in G/e we have f = {a.,w}. However, it might be convenient to
use f to represents the same edge in G and in G/e. The same applies also to vertices.

The next lemma tells us that an edge contraction might decrease the degree of a vertex, but
it can never decrease it by more than one.

Lemma 5. Let be given a graph G = (V,E), veV ande € E.
v e=dg(v) >da(v) —1
vEe=dgelae) > da(v) — 1

Proof. We prove this by considering an exhaustive case distinction.

Case 1: e = {u,v} Av € e. Clearly, we have:
Ngyelv] = Ne[v] U Nolu] U {ac} \ {u, v}
And therefore it holds:

dg/e(v) = |Ngse(v)] = [Ngye[v]| = 1
= [Ng[v] U Ng[u] U {ac}\ {u, v} -1
> [Nglv] U{ae} \ {u, v} -1
> [Nel][+1-2-1=|Ng[]| -2 =|Ng(v)| -1=dg(v) -1

Case 2: e = {u,w} A le N N(v)| = 2. We have:

Naye(v) = Na(v) Ud{act\ {u, w}

and thus:

dg/e(v) = INa/e()] = [Na(v) U {ach\ {u,w)]
= [No(@)| +1 -2 = [No(v)| -1 = dg(v) ~ 1

Case 3: e = {u,w} A leN N(v)| < 1. In this case, the neighbourhood of v is not affected, apart
from a possibe change of the name of one vertex in N(v). Therefore, dg/.(v) = da(v). O
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