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Abstract

Vehicular travel is increasing throughout the world, particularly in large urban ar-
eas. Therefore the need arises for simulating and optimizing traffic control algorithms to
better accommodate this increasing demand. In this paper we study the simulation and
optimization of traffic light controllers in a city and present an adaptive optimization al-
gorithm based on reinforcement learning. We have implemented a traffic light simulator,
Green Light District, that allows us to experiment with different infrastructures and to
compare different traffic light controllers. Experimental results indicate that our adaptive
traffic light controllers outperform other fixed controllers on all studied infrastructures.

Keywords: Intelligent Traffic Light Control, Reinforcement Learning, Multi-Agent Sys-
tems (MAS), Smart Infrastructures, Transportation Research

1 Introduction

Transportation research has the goal to optimize transportation flow of people and goods.
As the number of road users constantly increases, and resources provided by current infras-
tructures are limited, intelligent control of traffic will become a very important issue in the
future. However, some limitations to the usage of intelligent traffic control exist. Avoiding
traffic jams for example is thought to be beneficial to both environment and economy, but
improved traffic-flow may also lead to an increase in demand [Levinson, 2003].

There are several models for traffic simulation. In our research we focus on microscopic
models that model the behavior of individual vehicles, and thereby can simulate dynam-
ics of groups of vehicles. Research has shown that such models yield realistic behavior
[Nagel and Schreckenberg, 1992, Wahle and Schreckenberg, 2001].

Cars in urban traffic can experience long travel times due to inefficient traffic light con-
trol. Optimal control of traffic lights using sophisticated sensors and intelligent optimization
algorithms might therefore be very beneficial. Optimization of traffic light switching increases
road capacity and traffic flow, and can prevent traffic congestions. Traffic light control is a
complex optimization problem and several intelligent algorithms, such as fuzzy logic, evo-
lutionary algorithms, and reinforcement learning (RL) have already been used in attempts
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to solve it. In this paper we describe a model-based, multi-agent reinforcement learning
algorithm for controlling traffic lights.

In our approach, reinforcement learning [Sutton and Barto, 1998, Kaelbling et al., 1996]
with road-user-based value functions [Wiering, 2000] is used to determine optimal decisions
for each traffic light. The decision is based on a cumulative vote of all road users standing
for a traffic junction, where each car votes using its estimated advantage (or gain) of setting
its light to green. The gain-value is the difference between the total time it expects to wait
during the rest of its trip if the light for which it is currently standing is red, and if it is green.
The waiting time until cars arrive at their destination is estimated by monitoring cars flowing
through the infrastructure and using reinforcement learning (RL) algorithms.

We compare the performance of our model-based RL method to that of other controllers
using the Green Light District simulator (GLD). GLD is a traffic simulator that allows us
to design arbitrary infrastructures and traffic patterns, monitor traffic flow statistics such as
average waiting times, and test different traffic light controllers. The experimental results
show that in crowded traffic, the RL controllers outperform all other tested non-adaptive
controllers. We also test the use of the learned average waiting times for choosing routes of
cars through the city (co-learning), and show that by using co-learning road users can avoid
bottlenecks.

This paper is organized as follows. Section 2 describes how traffic can be modelled,
predicted, and controlled. In section 3 reinforcement learning is explained and some of its
applications are shown. Section 4 surveys several previous approaches to traffic light control,
and introduces our new algorithm. Section 5 describes the simulator we used for our experi-
ments, and in section 6 our experiments and their results are given. We conclude in section
7.

2 Modelling and Controlling Traffic

In this section, we focus on the use of information technology in transportation. A lot of
ground can be gained in this area, and Intelligent Transportation Systems (ITS) gained in-
terest of several governments and commercial companies [Ten-T expert group on ITS, 2002,
White Paper, 2001, EPA98, 1998].

ITS research includes in-car safety systems, simulating effects of infrastructural changes,
route planning, optimization of transport, and smart infrastructures. Its main goals are:
improving safety, minimizing travel time, and increasing the capacity of infrastructures. Such
improvements are beneficial to health, economy, and the environment, and this shows in the
allocated budget for ITS.

In this paper we are mainly interested in the optimization of traffic flow, thus effectively
minimizing average traveling (or waiting) times for cars. A common tool for analyzing traffic
is the traffic simulator. In this section we will first describe two techniques commonly used
to model traffic. We will then describe how models can be used to obtain real-time traffic
information or predict traffic conditions. Afterwards we describe how information can be
communicated as a means of controlling traffic, and what the effect of this communication on
traffic conditions will be. Finally, we describe research in which all cars are controlled using
computers.
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2.1 Modelling Traffic

Traffic dynamics bare resemblance with, for example, the dynamics of fluids and those of sand
in a pipe. Different approaches to modelling traffic flow can be used to explain phenomena
specific to traffic, like the spontaneous formation of traffic jams. There are two common
approaches for modelling traffic; macroscopic and microscopic models.

2.1.1 Macroscopic models.

Macroscopic traffic models are based on gas-kinetic models and use equations relating traffic
density to velocity [Lighthill and Whitham, 1955, Helbing et al., 2002]. These equations can
be extended with terms for build-up and relaxation of pressure to account for phenomena like
stop-and-go traffic and spontaneous congestions [Helbing et al., 2002, Jin and Zhang, 2003,
Broucke and Varaiya, 1996]. Although macroscopic models can be tuned to simulate certain
driver behaviors, they do not offer a direct, flexible, way of modelling and optimizing them,
making them less suited for our research.

2.1.2 Microscopic models.

In contrast to macroscopic models, microscopic traffic models offer a way of simulating various
driver behaviors. A microscopic model consists of an infrastructure that is occupied by a set
of vehicles. Each vehicle interacts with its environment according to its own rules. Depending
on these rules, different kinds of behavior emerge when groups of vehicles interact.

Cellular Automata. One specific way of designing and simulating (simple) driving rules
of cars on an infrastructure, is by using cellular automata (CA). CA use discrete partially
connected cells that can be in a specific state. For example, a road-cell can contain a car
or is empty. Local transition rules determine the dynamics of the system and even simple
rules can lead to chaotic dynamics. Nagel and Schreckenberg (1992) describe a CA model
for traffic simulation. At each discrete time-step, vehicles increase their speed by a certain
amount until they reach their maximum velocity. In case of a slower moving vehicle ahead,
the speed will be decreased to avoid collision. Some randomness is introduced by adding for
each vehicle a small chance of slowing down. Experiments showed realistic behavior of this
CA model on a single road with emerging behaviors like the formation of start-stop waves
when traffic density increases.

Cognitive Multi-Agent Systems. A more advanced approach to traffic simulation and
optimization is the Cognitive Multi-Agent System approach (CMAS), in which agents interact
and communicate with each other and the infrastructure. A cognitive agent is an entity that
autonomously tries to reach some goal state using minimal effort. It receives information
from the environment using its sensors, believes certain things about its environment, and
uses these beliefs and inputs to select an action. Because each agent is a single entity, it
can optimize (e.g., by using learning capabilities) its way of selecting actions. Furthermore,
using heterogeneous multi-agent systems, different agents can have different sensors, goals,
behaviors, and learning capabilities, thus allowing us to experiment with a very wide range
of (microscopic) traffic models.

Dia (2002) used a CMAS based on a study of real drivers to model the drivers’ response to
travel information. In a survey taken at a congested corridor, factors influencing the choice of
route and departure time were studied. The results were used to model a driver population,
where drivers respond to presented travel information differently. Using this population,
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the effect of different information systems on the area where the survey was taken could be
simulated. The research seems promising, though no results were presented.

2.2 Predicting Traffic

The ability to predict traffic conditions is important for optimal control. For example, if we
would know that some road will become congested after some time under current conditions,
this information could be transmitted to road users that can circumvent this road, thereby
allowing the whole system to relieve from congestion. Furthermore, if we can accurately
predict the consequences of different driving strategies, an optimal (or at least optimal for
the predicted interval) decision can be made by comparing the predicted results.

The simplest form of traffic prediction at a junction is by measuring traffic over a cer-
tain time, and assuming that conditions will be the same for the next period. One ap-
proach to predicting is presented in [Ledoux, 1996], where neural networks are used to per-
form long-term prediction of the queue length at a traffic light. A multi-layer perceptron
[Rumelhart et al., 1986] is trained to predict the queue length for the next time-step, and
long-term predictions can be made by iterating the one-step predictor. The resulting network
is quite accurate when predicting ten steps ahead, but has not yet been integrated into a
controller.

A traffic prediction model that has been applied to a real-life situation, is described in
[Wahle and Schreckenberg, 2001]. The model is a multi-agent system (MAS) where driving
agents occupy a simulated infrastructure similar to a real one. Each agent has two layers of
control; one for the (simple) driving decision, and one for tactical decisions like route choice.
The real world situation was modelled by using detection devices already installed. From
these devices, information about the number of cars entering and leaving a stretch of road
are obtained. Using this information, the number of vehicles that take a certain turn at
each junction can be inferred. By instantiating this information in a faster than real-time
simulator, predictions on actual traffic can be made. A system installed in Duisburg uses
information from the existing traffic control center and produces real-time information on the
Internet. Another system was installed on the freeway system of North Rhine-Westphalia,
using data from about 2.500 inductive loops to predict traffic on 6000 km of roads.

2.3 Controlling traffic by communicating traffic conditions

Once accurate (predictive) information is available, there are several ways of communicating
it to road users. Drivers could be presented with information through dynamic road signs,
radio, or even on-board navigation systems. Several studies have shown the effects of the
availability of relevant information.

Levinson (2003) uses a micro-economic model to consider the cost of a trip, and increases
system reliability, since congestions can be better avoided. This results in a supply curve shift.
Experiments show that increasing the percentage of informed drivers reduces the average
travel time for both informed and uninformed drivers. The travel time reduction is largest in
crowded traffic. In the case of unexpected congestions (for example due to accidents) informed
travellers reduce their travel time by switching routes, but as a result of this the alternative
routes become more crowded, possibly increasing travel times for uninformed drivers.

Emmerink et al. (1996) present the results of a survey taken amongst drivers in Am-
sterdam. The results show that 70% of the drivers sometimes use information presented
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through radio or variable message signs to adapt their routes. Both media are used in similar
ways, and commuters are less likely to be influenced by information than people with other
trip purposes. Business drivers indicated that they would be willing to pay for in-vehicle
information.

Simulation could be used to test control strategies before they are implemented in real-life
environments. Ben-Akiva et al. (2003) tested different strategies for a large highway project,
such as highway access control, drivers’ route choice, and lane control. The simulator offered
a way of testing different configurations of vehicle-detectors, and showed that interacting
control systems could actually worsen traffic conditions. Integration of strategies requires
careful analysis of the impact of each component to avoid interference. A simulator shows to
be a useful tool for such an analysis.

2.4 Vehicle Control

It is a well-known fact that traffic flow would increase drastically if all drivers would drive
at the same (maximum) speed. Another fact is that this will never happen if you let drivers
decide. In this section we first show how vehicles could learn to cooperate. We then describe
an ambitious research program that aims to control all vehicles by on-board computers.

Moriarty and Langley (1998) have used reinforcement learning for distributed traffic con-
trol. Their approach enabled cars to learn lane selection strategies from experience with
a traffic simulator. Experimental studies showed that learned strategies let drivers more
closely match their desired speeds than hand-crafted controllers and reduce the number of
lane changes. Their approach, like ours, focuses on distributed car-based controllers, which
makes it easy to take specific desires/goals of drivers into account such as desired speed or
destination.

In the California Partners for Advanced Transit and Highways (PATH) program, the Au-
tomated Highway System (PATH-AHS) project aims to completely automate traffic [Horowitz
and Varaiya, 2000]. Cars on special roads would travel in so-called platoons. A platoon is a
number of cars that travel at high speed, with little distance in between. Each car controls
its own speed and lateral movement, and makes sure it follows the leader. The leader navi-
gates the platoon, and makes sure that there is enough space between platoons. In order to
optimize flow, a platoon leader receives information about the optimal speed from a road-
side coordinating system. Because of this, and the fact that there is little distance in between
cars in a platoon, an AHS is said to be able to increase road capacity by a factor of about four.

Another aspect of traffic control is controlling traffic lights in a way that minimizes the time
drivers have to wait. We will describe previous research in this area and our car-based,
multi-agent reinforcement learning algorithm in section 4. First we will discuss reinforcement
learning.

3 Reinforcement Learning

Reinforcement learning [Sutton, 1988, Watkins, 1989, Kaelbling et al., 1996] is used to learn
agent control by letting the agent (for example a car) interact with its environment and learn
from the obtained feedback (reward signals). Using a trial-and-error process, a reinforcement
learning (RL) agent is able to learn a policy (or plan) that optimizes the cumulative reward
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intake of the agent over time. Reinforcement learning has been applied successfully in partic-
ular stationary environments such as in games: e.g. in backgammon [Tesauro, 1992] and chess
[Baxter et al., 1997], in maze-like environments, e.g. in [Thrun, 1992, Moore and Atkeson, 1993,
Wiering, 1999], and robot control tasks. Reinforcement learning has also been applied to find
good solutions for difficult multi-agent problems such as elevator control [Crites and Barto, 1996],
network routing [Littman and Boyan, 1993], and traffic light control [Wiering, 2000].

In this section, we will first describe Markov Decision Problems (MDPs) as a model of the
task and environment. Dynamic programming [Bellman, 1957] can be used to compute an
optimal action selection policy if the transition and reward functions of the MDP are known
a-priori. Reinforcement learning can be used to learn to optimize a policy if the environment
is a-priori unknown. We will explain dynamic programming and reinforcement learning and
end with a discussion about some research on multi-agent reinforcement learning.

3.1 Markov Decision Problems

Markov decision problems can be used for modelling the interaction of an agent with its
environment. A MDP M =< S,A,P,R >, in which we consider a finite set of environmental
states S = {S1, S2, S3, . . . , Sn}, a finite set of actions A of the agent, and discrete time
steps t = 1, 2, 3, . . .. Let st denote the state at time t, and at = π(st) the action, where
π represents the agent’s policy mapping states to actions. The transition function P with
elements Pij(a) := p(st+1 = j|st = i, at = a) for i, j ∈ S defines the transition probability
to the next state st+1 given st and at. A reward function R maps state/action/state tupels
(i, a, j) ∈ S×A×S to scalar reinforcement signals R(i, a, j) ∈ IR. A discount factor γ ∈ [0, 1]
discounts later against immediate rewards.

3.2 Dynamic Programming

The agent’s goal is to select actions that maximize the expected long-term cumulative dis-
counted reinforcement, given an arbitrary (initial) state s0 ∈ S. The value V π(s) is a pre-
diction of the expected discounted cumulative reward to be received in the future, given that
the agent is currently in state s and policy π will be used in the future:

V π(i) = E(
∞∑

k=0

γkR(sk, π(sk), sk+1)|s0 = i)

The expectancy operator E is used to average over all possible future paths through state/action
space.

Action evaluation functions (Q-functions) Qπ(i, a) return the expected future discounted
reward for selecting action a in state i, and subsequently executing policy π:

Qπ(i, a) =
∑

j

Pij(a)(R(i, a, j) + γV π(j))

where V π is defined as:
V π(i) = max

a
Qπ(i, a)

By setting
π(i) = arg max

a
Qπ(i, a)
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for all states i, we then iteratively improve the policy, since we make an effective look-ahead
step by recomputing the value functions V and Q and the policy π. The definition:

Q∗(i, a) =
∑

j

Pij(a)(R(i, a, j) + γV ∗(j))

is known as the Bellman optimality equation [Bellman, 1957]. Here Q∗ and V ∗ are the optimal
value functions. Basically the Bellman optimality equation says that looking one step ahead
does not change the Q-function if it is already optimal. Furthermore, it has been proven
that there is only one optimal Q∗ and V ∗ function. Therefore, by iteration, we can find
the optimal value functions. The well known dynamic programming algorithm called value
iteration [Bellman, 1957] repeats the previous 3 equations for all states and actions, until
the value function does not change anymore. For practical purposes, the iteration is often
stopped once the value function changes hardly anymore (the largest update of a V-value is
smaller than some ε). The value iteration algorithm is given below:

1. Initialise the Q-values and V-values (e.g. to 0)

2. Repeat (3-5) while termination criterion not met

3. Make an “update” for the Q-values:

Q(i, a) :=
∑

j

P (i, a, j)(R(i, a, j) + γV (j))

4. Compute the new value function:

V (i) := max
a

Q(i, a)

5. Adapt the policy so that in each state the action with maximal current Q-value is
selected:

π(i) := arg max
a

Q(i, a)

3.3 Reinforcement Learning

In reinforcement learning the transition P and reward functions R are a-priori unknown.
Therefore, the agent has to learn a policy by interacting with the environment that provides
feedback about the goodness of particular state-action pairs. Reinforcement learning algo-
rithms usually learn to update the Q-function after each performed action. The basic cycle
of a reinforcement learning agent is:

1. Perceive the current state: st

2. Use the policy to select an action: at = π(st)

3. Receive a reward rt and examine the new state st+1 after the action was performed

4. Update the Q-function using the information (st, at, rt, st+1)

5. Set t := t + 1

Usually, the Q-function is initialized to all zero-values, and therefore the initial policy is
completely random. By exploring the results of actions, and learning the best (current) policy
from these, the reinforcement learning agent stochastically improves its behavior.
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3.3.1 Q-learning.

Several reinforcement learning algorithms exist. The most commonly used algorithm is Q-
learning [Watkins, 1989, Watkins and Dayan, 1992]. Q-learning does not use a model of the
environment and updates the Q-function after each step using the following equation:

Q(st, at) = Q(st, at) + α(rt + γV (st+1) − Q(st, at))

Where 0 < α ≤ 1 is the learning rate. If the learning rate is decreased after each time-step
in a specific way, and all state-action pairs are tried infinitely often, the use of Q-learning
converges to the optimal Q-function and policy for Markov decision problems.

3.3.2 Model-based reinforcement learning.

In reinforcement learning we initially do not posess a model containing transition and the
reward functions, but we can learn these from the observations received during the interac-
tion with the world. Inducing a model from experiences can simply be done by counting the
frequency of observed experiences. To this end our agent uses the following variables:

Cij(a) := number of transitions from state i to j after executing action a.
Ci(a) := number of times the agent has executed action a in state i.
Rij(a) := sum over all immediate rewards received after executing action a

in state i and stepping to state j.

A maximum likelihood model (MLM) is computed as follows:

P̂ij(a) :=
Cij(a)
Ci(a)

, and, R̂(i, a, j) :=
Rij(a)
Cij(a)

(1)

After each experience the variables are adjusted and the MLM is updated. In deterministic
environments one experience per state/action pair (SAP) is sufficient to infer the true un-
derlying model. In stochastic environments, however, we need to visit each state-action pair
many times to get reasonable estimates. This also means that we stochastically improve the
policy.

Dynamic programming (DP) techniques could immediately be applied to the estimated
model, but online DP tends to be computationally very expensive. To speed up DP algo-
rithms, efficient update-step management is often performed. This can be done by real-time
dynamic programming [Barto et al., 1995], which uses only few updates of the value functions
using value-iteration steps at each time-step, thereby only partially propagating updates back
in time. Another efficient algorithm for recomputing the value functions is prioritized sweeping
[Moore and Atkeson, 1993] which manages the updates in a way so that the largest updates
are performed first.

3.4 Multi-agent Reinforcement Learning

In multi-agent systems, each agent tries to optimize its own behavior and may be able to
communicate with other agents to make global coordination possible. Since optimizing the
behavior of each agent in a MAS requires huge engineering efforts, we want to employ re-
inforcement learning or other optimization algorithms for automatically optimizing agent
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behavior. This is not completely new: Tan (1993) used multi-agent Q-learning (MAQ-L)
for a predator-prey problem. Littman and Boyan (1993) used MAQ-L for network routing.
Mataric (1994) used RL to train a group of robots to collect pucks. Schaerf, Shoman, and
Tennenholtz (1995) used a multi-agent RL system for learning load balancing. Crites and
Barto (1996) used MAQ-L for training elevator dispatchers. Brauer and Weiss (1997) used
RL to learn to schedule jobs to resources. Wiering, Salustowicz, and Schmidhuber (1999)
used RL to learn soccer strategies from scratch. Nowadays, it is clear that RL provides use-
ful, although not well understood, algorithms for optimizing MAS and we expect that the
number of applications will grow continuously. Stone and Veloso (1997) and Wiering et al.
(1999) are good surveys of multi-agent learning systems, but the field is rapidly expanding.

4 Traffic Light Control

Traffic light optimization is a complex problem. Even for single junctions there might be no
obvious optimal solution. With multiple junctions, the problem becomes even more complex,
as the state of one light influences the flow of traffic towards many other lights. Another
complication is the fact that flow of traffic constantly changes, depending on the time of
day, the day of the week, and the time of year. Roadwork and accidents further influence
complexity and performance.

In practice most traffic lights are controlled by fixed-cycle controllers. A cycle of con-
figurations is defined in which all traffic gets a green light at some point. The split time
determines for how long the lights should stay in each state. Busy roads can get preference
by adjusting the split time. The cycle time is the duration of a complete cycle. In crowded
traffic, longer cycles lead to better performance. The offset of a cycle defines the starting time
of a cycle relative to other traffic lights. Offset can be adjusted to let several lights cooperate,
and for example create green waves.

Fixed controllers have to be adapted to the specific situation to perform well. Often
a table of time-specific settings is used to enable a light to adapt to recurring events like
rush hour traffic. Setting the control parameters for fixed controllers is a lot of work, and
controllers have to be updated regularly due to changes in traffic situation. Unique events
cannot be handled well, since they require a lot of manual changes to the system. Fixed
controllers could respond to arriving traffic by starting a cycle only when traffic is present,
but such vehicle actuated controllers still require lots of fine-tuning.

Most research in traffic light control focuses on adapting the duration or the order of
the control cycle. In our approach we do not use cycles, but let the decision depend on the
actual traffic situation around a junction, which can lead to much more accurate control.
Of course, our approach requests that information about the actual traffic situation can be
obtained by using different sensors or communication systems. We will first describe related
work on intelligent traffic light control, and then describe our car-based reinforcement learning
algorithm.

4.1 Related Work in Intelligent Traffic Light Control

4.1.1 Expert Systems.

An expert system uses a set of given rules to decide upon the next action. In traffic light
control, such an action can change some of the control parameters. Findler and Stapp (1992)
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describe a network of roads connected by traffic light-based expert systems. The expert
systems can communicate to allow for synchronization. Performance on the network depends
on the rules that are used. For each traffic light controller, the set of rules can be optimized
by analyzing how often each rule fires, and the success it has. The system could even learn
new rules. Findler and Stapp showed that their system could improve performance, but they
had to make some simplifying assumptions to avoid too much computation.

4.1.2 Prediction-based optimization.

Tavladakis and Voulgaris (1999) describe a traffic light controller using a simple predictor.
Measurements taken during the current cycle are used to test several possible settings for the
next cycle, and the setting resulting in the least amount of queued vehicles is executed. The
system seems highly adaptive, and maybe even too much so. Since it only uses data of one
cycle, it could not handle strong fluctuations in traffic flow well. In this case, the system
would adapt too quickly, resulting in poor performance.

Liu et al. (2002) introduce a way to overcome problems with fluctuations. Traffic detectors
at both sides of a junction and vehicle identification are used to measure delay of vehicles
at a junction. This is projected to an estimated average delay time using a filter function
to smooth out random fluctuations. The control system tries to minimize not only the total
delay, but the summed deviations from the average delay as well. Since it is no longer
beneficial to let a vehicle wait for a long time, even if letting it pass would increase the total
waiting time, this introduces a kind of fairness. Data of about 15 minutes is used to determine
the optimal settings for the next cycle, and even using a simple optimization algorithm, the
system performs well compared to preset and actuated controllers.

4.1.3 Fuzzy Logic.

Tan et al. (1995) describe a fuzzy logic controller for a single junction that should mimic
human intelligence. Fuzzy logic offers a formal way of handling terms like ”more”, ”less”,
”longer” etc., so rules like ”if there is more traffic from north to south, the lights should stay
green longer” can be reasoned with. The fuzzy logic controller determines the time that the
traffic light should stay in a certain state, before switching to the next state. The order of
states is predetermined, but the controller can skip a state if there is no traffic in a certain
direction. The amount of arriving and waiting vehicles are quantized into fuzzy variables, like
many, medium and none. The activation of the variables in a certain situation is given by a
membership function, so when there are 5 cars in the queue, this might result in an activation
of 25% of ’many’ and 75% of ’medium’. Fuzzy rules are used to determine if the duration of
the current state should be extended. In experiments the fuzzy logic controller showed to be
more flexible than fixed controllers and vehicle actuated controllers, allowing traffic to flow
more smoothly, and reducing waiting time. A disadvantage of the controller seems to be its
dependence on the preset quantification values for the fuzzy variables. They might cause the
system to fail if the total amount of traffic varies. Furthermore, the system was only tested
on a single junction.

Lee et al. (1995) studied the use of fuzzy logic in controlling multiple junctions. Controllers
received extra information about vehicles at the previous and next junctions, and were able
to promote green waves. The system outperformed a fixed controller, and was at its best in
either light or heavy traffic. The controller could easily handle changes in traffic flow, but
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required different parameter settings for each junction.
Choi et al. (2002) also use fuzzy logic controllers, and adapted them to cope with congested

traffic flow. Comparisons with fixed fuzzy-logic traffic light controllers indicated that this
enhancement can lead to larger traffic flow under very crowded traffic conditions.

4.1.4 Evolutionary Algorithms.

Taale et al. (1998) compare using evolutionary algorithms (a (µ, λ) evolution strategy [Rechen-
berg, 1989]) to evolve a traffic light controller for a single simulated intersection to using the
common traffic light controller in the Netherlands (the RWS C-controller). They found com-
parable results for both systems. Unfortunately they did not try their system on multiple
coupled intersections, since dynamics of such networks of traffic nodes are much more complex
and learning or creating controllers for them could show additional interesting behaviors and
research questions.

4.1.5 Reinforcement Learning.

Reinforcement learning for traffic light control has first been studied by Thorpe [Thorpe, 1997,
Thorpe and Andersson, 1996], but Thorpe’s approach is different from ours. He used a traffic
light-based value function, and we used a car-based one. Thorpe used a neural network for the
traffic-light based value function which predicts the waiting time for all cars standing at the
junction. This means that Thorpe’s traffic light controller have to deal with a huge number
of states, where learning time and variance may be quite large. Furthermore, Thorpe used
a somewhat other form of RL, SARSA (State-Action, Reward-State Action) with eligibility
traces [Sutton, 1996], and we use model-based RL.

Thorpe trained only a single traffic light controller, and tested it by instantiating it on a
grid of 4 × 4 traffic lights. The controller can decide to let either traffic on the north-south
axis or on the east-west axis pass. A neural network is used to predict the Q-values for each
decision, based on the number of waiting cars and the time since the lights last changed. The
goal state is the state in which there are no cars waiting.

The system outperformed both fixed and rule-based controllers in a realistic simulation
with varying speed. Performance is said to be near optimal. Controllers trained on a single
junction had the same performance as controllers trained in a network.

4.1.6 Intelligent Agents.

Roozemond (1998) describes an intelligent agent architecture for traffic light control. Intelli-
gent traffic signalling agents (ITSAs) and Road Segment Agents (RSAs) try to perform their
own tasks, and try to achieve local optimality. One or more Authority Agents can commu-
nicate with groups of ITSAs and RSAs for global performance. All agents act upon beliefs,
desires, and capabilities. No results were presented.

4.2 Our Approach

We are interested in the behavior of cars and traffic lights. Each cycle, cars can wait 1 time-
step at a traffic light, they can drive to the next position of a road-lane, or they can cross
an intersection and go to another road-lane. We define a (waiting) queue as all cars that are
immediately affected by the setting of their traffic light, because they will have to brake for a
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red light. Note that a car standing on the first place of a road-lane is always in the queue. If a
car is the first in the queue and the light is green, it crosses the intersection and starts on the
last place (cell) of the new road-lane for the next traffic light. After one or more time-steps,
it will finally end up at some place in a new queue at the next traffic light or it reaches its
destination (and exits the infrastructure).

The goal is to minimize the cumulative waiting time of all cars before all traffic lights met
before exiting the city. There are two ways of approaching this problem:

• Traffic-light based controllers. We can make a controller for each traffic node,
taking into account environmental inputs such as the number of cars waiting at each of
the 8 directions and learning a value function mapping environmental states and traffic
node decisions to the overall waiting time until all cars standing at the intersection have
exited the city.

• Car-based controllers. We can make a predictor for each car to estimate the waiting
time of the car alone when the light is green or red and combine all car predictions to
make the decision of the traffic light.

Making a control policy and learning a value function for each traffic node (as done by
Thorpe) has the disadvantage that the number of situations for a traffic node can be huge.
Furthermore, it is difficult to compute total trip waiting times for all road users standing at
the traffic node, since this quantity has a huge variance. Although we could cope with these
issues by designing a special traffic-node representation summing individual waiting times of
cars, this system does not allow for communicating information to cars or for making decisions
for cars (e.g. which paths they should take).

4.2.1 Car-based traffic light control.

Therefore, we chose the second possibility that allows for a lot of flexibility, since we have the
option to model each car’s destination, position, and possibly speed. This is also a natural
system, since if cars would exactly know their overall waiting time until their destination
(note that this would require static traffic patterns) when the light is green or red, a voting
system that adds all waiting times for different traffic node decisions can be used to minimize
the overall waiting time. Furthermore, the number of states for a car is not so large. For
example if we use the information that the car is at a traffic node, occupies some place, is at
some direction, and has some destination, this makes a feasible number of car-states which
can be stored in lookup tables. Note that we take the destination address of cars into account.
This allows us to compute the global waiting time until the car has reached its destination.
Finally, by computing different expected waiting times for a car when it is standing at one of
the different directions (traffic lights) before a traffic node, we can also use this information to
choose a path to the destination address for each car. This makes co-adaptivity (co-learning)
possible in which both the traffic nodes and the driving policies of cars are optimized.

4.2.2 Car-based value functions.

To optimize the settings of traffic lights, we can simply sum all expected waiting times of all
cars given all possible choices of a traffic light, and select the decision which minimizes the
overall waiting time at the intersection. For this, we need to learn a value function which
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estimates for each car how long its waiting time will be until it has reached its destination
address given that the light is green or red.

4.2.3 Global design of the system.

Each car is at a specific traffic-node (node), a direction at that node (dir)1, a position
in the queue (place), and has a particular destination address (des). We are interested
in estimating the total waiting time for all traffic lights for each car until it arrives at the
destination address given its current node, direction, place, and the decision of the light (red
or green). We write Q([node, dir, place, destination], action) to denote this value, which is
sometimes shortly denoted as Q([n, d, p, des], L). We write V ([node, dir, place, destination])
to denote the average waiting time (without knowing the traffic light decision) for a car at
(node, dir, place) until it has reached its destination address.

4.2.4 Making a traffic light decision.

Given the current traffic situation, we can make a choice for each traffic node node as follows.
All cars standing at those directions of the traffic node which are made green by the decision
of the traffic node are examined and their individual advantages are summed up. The decision
Aopt

j is finally selected by:

Aopt
j = arg max

Aj

∑

i∈Aj

∑

(n,d,p,des)∈queuei

Q([n, d, p, des], red) − Q([n, d, p, des], green)

Note how we calculate the overall advantage for deciding on the action: it sums over all
cars at each traffic light set to green by the action of the traffic node (all the other traffic
lights are red for all decisions). Since we sum overall waiting times (where waiting times
are caused by the current traffic node, but also by next traffic situations), we have a global
perspective. If the car is not on the first place and not waiting in the queue (i.e., the car can
still drive onwards until it meets the queue), we do not let the car vote for the total waiting
time, since the current decision of the traffic light does not affect the current transition of the
car (the car always moves the same number of places further).

4.2.5 State transition probabilities and the reward function.

For computing the functions Q and V we use state transition probabilities. The proba-
bilistic state transition function is given by a lookup table consisting of the probabilities:
P ([node, dir, place, des], L, [new node, new dir, new place]) where L denotes whether the light
for (node, dir) is red or green. This lookup table may seem to contain a huge number of el-
ements, but that is not true: for all cars not standing at the first place of the queue, there
can at maximum be few successors: staying in the same state or going to a next place for the
same traffic light (node, dir). Note also that the des variable for a car always stays the same.
For cars standing at the first place, there can be at maximum 3 new road-lanes and some
new-places which also means a small amount of possible state transitions. If a car crosses
a traffic node, we compute its state transition probability to the new node, dir and place
as that place where it is (at a certain moment) for the first time standing after traversing

1A traffic light is represented by combining the values for node and direction.
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the junction (this is slightly different from our implementation in [Wiering, 2000] where the
transition went to the next place a car would be standing in a queue).

We also compute probabilities P (L|[node, dir, place, destination]) which give the prob-
ability that the light is red or green for a car waiting at (node, dir, place) with a par-
ticular destination. These probabilities are needed to compute the average waiting time
V ([node, dir, place, destination]). Finally, we use a reward function as follows:
R([node, dir, place], L, [node, dir, place]) = 1, if a car stays at the same place — it waits a
time-step if it stays on the same place (note that this can be caused by the traffic light which
is red or by too many cars on the next road-lane so that the first car cannot continue even
when the light is green). Otherwise R=0 (the car can advance).

4.2.6 TC-1: Computing the V- and Q-functions.

For our system, TC-1 (traffic controller 1), we compute the Q-function as follows:

Q([n, d, p, des], L) =
∑

(n′,d′,p′)

P ([n, d, p, des], L, [n′, d′, p′])

(R([n, d, p], L, [n′, d′, p′]) + γV ([n′, d′, p′, des])) (2)

Where γ is the discount factor (0 < γ < 1) which ensures that Q-values are bounded. We
compute the V-function using the Q-function and the probabilities of the light being green
or red as follows:

V ([n, d, p, des]) =
∑

L

P (L|[n, d, p, des])Q([n, d, p, des], L) (3)

Thus, if the probability of waiting is large (for which the immediate reward or cost is 1),
the V-value and Q-values will be large. The V-value simply averages the Q-function using
the different action probabilities. The Q- and V-functions are initialized to 0.0 values.

After each simulation step we compute the new transition probabilities and then we com-
pute the V-values and Q-values by iterating using Real Time Dynamic Programming (RTDP)
[Barto et al., 1995] which fixes the number of iterations. We could iterate until all values are
exactly computed, but this would take a very long time. Therefore it may be better to iterate
a small number of iterations (e.g., only 1). In our current experimental setup, we only update
Q- and V-values of states where cars arrive during the current time-step. Although this does
not recompute the complete value function, it is a very fast way of partially recomputing the
desired functions.

TC-1 only uses locally available information and computes waiting times of cars without
considering traffic situations at other traffic lights. It needs to know car-places for cars
(which in realistic applications could be inferred using camera’s mounted on the traffic lights,
by measuring and communicating the distance to the traffic light, or by reliable inductive
loops in the roads). Furthermore, the algorithm uses the destination address of cars which
should be communicated to the traffic light.

4.2.7 Some notes on the behavior of the controllers.

If we analyze the learning equations and the voting mechanism, we can observe how the
behavior of the adaptive traffic light controller will be:
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• If many cars are waiting at a traffic light, they count more in the overall decision process
than if only a single car has to wait. Therefore long queues are usually passed first.

• If the first car has a large advantage of exiting immediately, instead of entering a new
long queue, this car may get a stronger vote since we expect its gain to be larger.

• If cars at some light have to wait a long time, the probability of waiting gets large. Note
that if this probability goes to 1, the overall computed expected waiting time for the
red light goes to infinity2. Since large waiting probabilities mean large expected waiting
times and thus large votes against having to wait, the individual waiting times of cars
are likely to be spread across the traffic lights of a traffic node. In this perspective, the
traffic light controllers are very fair.

• The traffic light controllers are adapting themselves all the time. Therefore they can
handle changing traffic flow patterns, although it may cost some time for the algorithm
to adjust the parameters.

4.2.8 Adapting the system parameters.

For adapting the system, we only need to compute the state transition probabilities, since the
reward function is fixed (standing still costs 1, otherwise the reward/cost is 0). First of all
we compute P (L|[node, dir, place, des]), the probability that a light is red or green for a car
with some destination at a specific place. For computing this probability we update counters
after each simulation step: C([node, dir, place, des], L) counts the number of times the light
was red or green when a car was standing in the queue at the position determined by place.
C([node, dir, place, des]) denotes the number of cars with some destination which have been
standing in the queue at place. From this, we can compute the probability:

P (L|[node, dir, place, des]) =
C([node, dir, place, des], L)
C([node, dir, place, des])

Furthermore, we have to compute the state transition probabilities for the first (or other
cars). In the general version this is: P ([node, dir, place, des], L, [n, d, p]). For cars which are
not able to cross an intersection, this is quite trivial. There are only few possible state-
transitions; a next place or the current place. State transitions are stored in variables:
C([node, dir, place, des], L, [n, d, p]). If the car has made a transition to the next traffic light,
it arrives at a new place at the next road-lane, and we also update the counter variables.
To compute the requested probability, we normalize these counters by dividing each counter
value by the total number of times a car was standing at a particular road-cell (with the
specific destination of the car):

P ([node, dir, place, des], L, [n, d, p]) =
C([node, dir, place, des], L, [n, d, p])

C([node, dir, place, des], L)

4.2.9 Co-learning.

A nice feature of our car-based value functions is that they can be immediately used to select
a path of traffic lights for a car to its destination address. Note that in a city there can be

2In case no discounting is used.
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multiple (approximate) shortest paths from one starting point to a destination address. The
normal (non co-learning) systems generate at each traffic light what the current options are
to go from one traffic light to the next one in order to go to the destination address along
one of the shortest ways. Then they select one of these randomly. Co-learning can be used
to select among these shortest paths that path with minimal expected waiting time.

Suppose a car on the first place, planning to traverse the intersection, has destination des
and is at (node, dir). Then it generates a list of options at each traffic light, where each option
is given by a pair (n, d), a new node and a new dir (thus a road-lane leading to possibly a next
traffic light). Then we compute Q(n, d)-values to select the best next (n, d). For TC-1, we
use Q(n, d) = V (n, d, 1, des) to determine the next road-lane (n, d). Thus, we only compare
the remaining average waiting time when the car would come to the first place at the next
queue. Note that we do not use information about the number of cars in the next queue to
estimate the place a car will enter a next queue. We want to examine possible advantages of
including the next road’s crowdedness in future research.

4.3 Discussion

As mentioned before, most traffic light controllers are fixed-cycle controllers, in which all
alternative traffic lights settings get a particular time-interval for being green. In our ap-
proach, we use the actual situation to set the traffic lights, and therefore we have much more
possibilities for optimizing the traffic light settings. Furthermore, our algorithm learns au-
tomatically, and does not require any manual tuning. This also leads to an adaptive system
which can cope with changing traffic conditions. Since we use car-based value functions in-
stead of traffic-light based value functions as used by Thorpe (1997), we do not need to use
an approximation technique such as neural networks for learning the value function. Instead
by using voting, we are able to get very accurate predictions of the consequences of different
traffic light settings. Furthermore, our system is very fair; it never lets one vehicle wait all
the time, not even if competing road-lanes are much more crowded. The fairness is a result
of the learning and voting mechanism, and we did not need to design this ad-hoc. Finally, we
can use the value functions for optimizing driving policies, where cars drive to minimize their
waiting times, and traffic light controllers set the lights to minimize the waiting times as well.
This co-learning system exploits the learned value functions and leads to very interesting
co-operative multi-agent system dynamics.

We have not yet included green waves in our system, although we have included a simple
technique for dealing with congested traffic. The bucket algorithm, which we use, propagates
gains of one traffic light to the next lane, if the first car on a lane cannot drive onwards,
because the next lane is full. This will lead to higher gain values for setting green lights to
road-lanes that are full, and for which other cars have to wait if their light is set to green.
This bucket technique is used in our current experiments, but needs more research to work
fruitfully with our adaptive model-based RL algorithm.
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Figure 1: A screenshot from the Green Light District simulator. The image shows a junction
with traffic lights, two edge-nodes, and some roads with cars. The number above the circled
edge-node on the right indicates its spawning frequency.

5 Green Light District

We used the Green Light District (GLD)3 traffic simulator for our experiments. GLD consists
of an editor to define infrastructures (based on cellular automata), a Multi-Agent System
(MAS) to run the simulation, and a set of controllers for the agents. The simulator has
several statistical functions to measure performance. In the next section we will describe the
simulator.

5.1 The Simulator

5.1.1 Infrastructures.

An infrastructure consists of roads and nodes. A road connects two nodes, and can have
several lanes in each direction (see Figure 1). The length of each road is expressed in units.
A node is either a junction where traffic lights are operational (although when it connects
only two roads, no traffic lights are used), or an edge-node.

5.1.2 Agents.

There are two types of agents that occupy an infrastructure; vehicles and traffic lights. All
agents act autonomously, following some simple rules, and get updated every time-step.

Vehicles enter the network at the edge-nodes. Each edge-node has a certain probability of
generating a vehicle at each time step. Each vehicle that is generated is assigned a destination,
which is one of the other edge-nodes. The distribution of destinations for each edge-node can
be adjusted.

There are several types of vehicles, defined by their speed, length, and number of passen-
gers. For our experiments we only used cars, which move at a speed of two units (or one or

3GLD is free, open-source software, and can be downloaded from {http :
//sourceforge.net/projects/stoplicht/}
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zero if they have to brake) per time step, have a length of two units, and have two passengers.
The state of each vehicle is updated every time step. It either moves with the distance given
by its speed, or stops when there is another vehicle or a red traffic light ahead. At a junction,
a car decides to which lane it should go next according to its driving policy. Once a car has
entered a lane, it cannot switch lanes.

Junctions can be occupied by traffic lights. For each junction, there are a number of
possible ways of switching the lights that are safe. At each time-step, the traffic light controller
decides which of these is the best. It can use information on waiting vehicles and their
destination, and about other traffic lights to make this decision.

5.1.3 Statistics.

Data can be collected through several statistical functions. For each node, the number of road
users that crossed, and the average time that a car has to wait can be recorded. Globally,
the total amount of arrived road users, the average junction waiting time, the average trip
waiting time (ATWT) and the total waiting queue length can be recorded. The waiting queue
is the amount of vehicles that is generated, but cannot enter the infrastructure because the
lanes from one or more edge-nodes are occupied.

5.2 The Controllers

Every junction is controlled by a traffic light controller (TLC) that decides on the best con-
figuration of red and green lights. A TLC will only consider safe configurations, that is,
configurations in which moving cars do not intersect. A TLC can share information with
other controllers to improve global performance. GLD has several built in TLCs, and allows
for custom TLCs. In the next subsections we describe the controllers that were used in our
experiments.

5.2.1 TC-1.

The TC-1 algorithm uses the reinforcement algorithm described is section 4.2. TC-1 computes
the gain of setting (two) lights to green, and chooses the configuration with the highest gain.
To compute the gain, TC-1 compares expected trip waiting times for when the current light
is set to green and red for the road user. To this end it needs information on the destination
of the car. The discount factor used by the algorithm was set to 0.9.

5.2.2 TC-1 Destinationless.

TC-1 Destinationless is a simplified version of TC-1 that does not use destinations in its
computations.

5.2.3 TC-1 Bucket.

TC-1 Bucket is TC-1 extended with the Bucket algorithm that is described below.

5.2.4 TC-1 Co-learning.

Co-learning can be used with TC-1 and with TC-1 Bucket, but not with TC-1 Destinationless,
since it requires information about vehicle destinations. We only use co-learning with TC-1.
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5.2.5 The Bucket algorithm.

We developed the bucket mechanism for optimizing traffic flow in cities of very high traffic
densities. It can easily be applied to any traffic light controller algorithm that calculates gain
values for individual traffic lights per node. The basic thought underlying the mechanism is
that each traffic light from which no movement is possible due to overfull destination lanes
communicates part of its summed gain values there to stimulate movement. Each traffic light
sums the gain values calculated by the traffic controller algorithm into its bucket. This value
is used to determine the optimal configuration of green traffic lights, instead of the originals
calculated by the TLC. In case the light is green but the road users cannot move due to full
destination lanes, we siphon over part of the bucket value into the bucket of the destination
traffic light. Once a road user passes a traffic light the bucket value is decreased by 1/n, where
n is the number of road users on the lane. Though this seemingly simple mechanism is based
on purely local communication it creates directed global flow of traffic. The usage of the
bucket principle also provides a measure against indefinite waiting of small numbers of road
users for crowded lanes at the same node; due to the summation in the bucket mechanism
their bucket value will ensure that they will be able to move on.

5.2.6 Best First.

The best first controller chooses that option where the most road users waiting for a junction
can move. Thus it just counts each car that can drive on, and chooses the traffic light setting
such that most cars can drive further.

5.2.7 ACGJ-3.

ACGJ-3 was the first traffic light controller algorithm we paired with the bucket mechanism.
The gain value for a traffic light is calculated by summing over all waiting road users, multi-
plying the road user weight (i.e., number of passengers, or fixed value) with a length-factor.
By choosing this factor f < 1 we force the algorithm to value most the first road users,
whilst by choosing f > 1 we weigh longer waiting queues exponentially. In the experiments
presented in this paper we used the ACGJ-3 algorithm (with f = 1), resembling the Best
First algorithm paired with the bucket mechanism.

5.2.8 Relative Longest Q.

The relative longest queue is the queue with the maximum ratio of waiting road users versus
length of the road. Because completely filled up roads get priority over roads where many
people are waiting, but are not full, this algorithm may avoid jammed traffic.

5.2.9 Random.

Random is the simplest controller we used. As one might guess, it decides totally random.
Results of the random controller do not show in our experimental results, since we only
used it as a worst-case scenario (it would always lead to completely congested traffic in our
experiments).

19



5.3 Driving Policies

At a junction, a car has to decide which lane to go to next in order to reach its destination.
The way this decision is made can be changed by using different driving policies.

5.3.1 Shortest Path.

For all junctions, there is a list of shortest paths to every destination. All paths that are no
more than ten percent longer than the shortest path are in this list. When a decision has to
be made, one of these shortest paths is selected randomly.

5.3.2 Co-learning.

The “theory” of co-learning was already explained in section 4.2. In GLD, Co-learning is
implemented as follows. When a driving decision has to be made, all the shortest paths to
the destination are collected. The shortest path with the lowest co-learn value is selected
for the car intending to cross the intersection. The selected path should be the path to the
destination with minimal expected waiting time.

6 Results

We compared the TC-1 reinforcement learning algorithms to other traffic light controllers
using the GLD traffic simulator. All tests were performed with reasonably high traffic load.
We first experimented with different amounts of cars entering the network each cycle by
adjusting the spawning frequencies. We then set them as close as possible to the point where
traffic would get jammed, the congestion point.

For each test, we ran ten simulations of 50.000 cycles each. The results show the average
over those ten simulations. The measure we used to compare performance is the average time
a car has to wait during a trip, the ATWT.

6.1 Experiment 1: A Large Infrastructure

6.1.1 Experiment.

For our first series of experiments, we used the grid-like infrastructure depicted in Figure 2.
With 12 edge nodes and 16 junctions, 15 of which have traffic signs, and 36 roads, 4 lanes
wide each, it is quite a big structure. When totally filled up, it could contain about 1500
vehicles. All edge nodes were set at the same spawning frequencies, and for each edge node,
all other nodes were given an equal chance of being the destination of a new car.

We tested all controllers under the same, high traffic load. All edge-nodes were set at
the same spawning frequencies, and destinations were distributed equally. Preliminary ex-
periments showed that a maximum load is reached when all spawning frequencies are set to
0.4. At this load, traffic gets jammed when the simpler (for example random) controllers are
used, but the more complex controllers keep traffic flowing. At higher levels, no controller
can avoid congestion, therefore we set all spawning frequencies to 0.4 in this experiment.
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Figure 2: Infrastructure for the first experiment. Nodes marked with E represent edge-nodes.
All intersections are controlled by traffic lights, and all edges represent roads with two lanes
in each direction. At each edge node, 0.4 cars are generated each cycle.
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Figure 3: Results of the first experiment. Each result is an average of ten simulations.
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Controller ATWT
1 TC-1 Co-learning 6.46
2 TC-1 Destinationless 7.14
3 TC-1 7.40
4 TC-1 Bucket 8.20
5 ACGJ-3 8.46
6 Best First 9.27
7 Rel Longest Q 9.46

Table 1: Comparison of the controllers on the infrastructure of Figure 2. the ATWT shown
is an average over the last 10.000 cycles of all ten experiments.

6.1.2 Results.

As shown in Figure 3, the TC-1 algorithms outperform all fixed algorithms. TC-1 with co-
learning clearly performs best, with an average ATWT of 6.46 during the last 10.000 cycles
(see Table 1). TC-1 Destinationless, the simplified version of TC-1, performs surprisingly well,
and seems to outperform TC-1 when co-learning is not used. The TC-1 bucket algorithm is
the worst performing of the TC-1 algorithms, but still outperforms ACGJ-3, which is a best
first algorithm with a bucket. Note that the best non-adaptive controller (ACGJ-3) has
an average waiting time which is more than 30% larger than the ATWT of the best TC-1
algorithm.

6.2 Experiment 2: Co-learning

In this experiment we use a simple infrastructure to study whether and how the use of co-
learning as a driving policy can improve performance of a traffic network.

6.2.1 Experiment.

For this experiment, we designed a simple infrastructure, where drivers have a choice between
a crowded and a less crowded route. The infrastructure is shown in Figure 4. In this network,
we created two streams of traffic, one moving from E2 to E3, and one moving from E1 to E4.
Traffic from E1 to E4 has a choice between two routes of equal length, route A (via nodes 1,
2, 3, and 6) or route B (via nodes 1, 2, 4, 5, and 6). Route B is the busier route, since part of
it is occupied by traffic moving from E2 to E3, so vehicles traveling through route B can be
expected to have higher waiting times than those that take route A. Preliminary experiments
showed that traffic was crowded, but kept flowing, when the spawning frequencies were set
to 0.6 for E1, and 0.54 for E2. We performed experiments using the TC-1 algorithm with a
shortest path driving policy, and with the co-learning driving policy.

Driving Strategy ATWT
Co-learning 0.19
Shortest Path 0.40

Table 2: Results of experiment two: Average ATWT during the last 10.000 cycles.
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Figure 4: Infrastructure for the second experiment. Nodes marked with E represent edge-
nodes, and nodes 2 till 6 are junctions with traffic lights. All edges represent roads with two
lanes in each direction. Traffic from E1 to E4 could choose route A or route B, which have
the same length, but route B is busier due to heavy traffic from E2 to E3.

6.2.2 Results.

The results are shown in Figure 5 and Table 2. They show that co-learning is an improvement
on the driving policy, and results in 50% lower waiting times when compared with a random
shortest path policy. What does not show in these results, but did show in observing the
experiments is the actual driving behavior. In the beginning of each experiment, during
which the controllers for the traffic lights have not learnt much yet, vehicles from E1 to E4
are divided between route A and B, but within several hundred cycles, all follow route A.
The fact that there still is some waiting time when co-learning is used is caused by the fact
that, in choosing an optimal route, vehicles in node 1 in Figure 4 select the same optimal
next lane. This causes some waiting time due to the high spawning frequency.

6.3 Experiment 3: An Inner City

Our aim for the third experiment was to measure performance in a city-like structure. We
designed an infrastructure that represents the ring-road around a city, the access to the city,
and the access to highways.

6.3.1 Experiment.

The infrastructure that we used for our third experiment is shown in Figure 6. The inner
edge-nodes represent access to the city center, and the outer edge-nodes are the connections
to the approach roads. The network is quite big, with a total of 615 units length of two-lane,
two-way roads. We again determined a traffic load near saturation by experimenting with
different spawning frequencies. For this infrastructure, this point occurred when all spawning
frequencies are set to 0.4.

6.3.2 Results.

The results are shown in Table 3 and Figure 7. The TC-1 algorithms again outperformed
the others, but TC-1 with co-learning is no longer the best. TC-1 with the normal shortest
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Figure 5: Average trip waiting time of TC-1 when drivers take the shortest path, and when
drivers use Co-learning. Results are an average of ten simulations on the infrastructure
depicted in Figure 4. Co-learning improves performance because vehicles follow route A
rather than the busier route B.
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Figure 6: Infrastructure for the third experiment. The inner edge-nodes represent a city
center, surrounded by ring roads. Traffic from outside the city can either drive around or
enter the city center. Traffic coming from the center always leaves the city. All intersections
feature traffic lights.
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controller ATWT
1 TC-1 Destinationless 2.67
2 TC-1 2.68
3 TC-1 Co-learning 2.82
4 TC-1 Bucket 3.25
5 ACGJ-3 3.57
6 Best First 4.23
7 Rel Longest Q 4.75

Table 3: Results of the third experiment.
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Figure 7: Results of the third experiment.

path driving policy performs better, indicating that the effect of co-learning depends on the
infrastructure. In this particular structure, where there are few origins and destinations, but
always multiple routes, choosing between routes randomly may result in an equal distribution
of vehicles. When co-learning is used, all drivers with the same origin and destination choose
the same route, and that route might get more saturated. Another interesting result is the
fact that the TC-1 destinationless algorithm, which is a simplified version of TC-1, performs
as well as the TC-1 algorithm. Note that the best non adaptive controller (again ACGJ-3)
has an ATWT which is more than 25% larger than the ATWT of the best RL algorithm.

6.4 Discussion

In our experiments, we have seen that our adaptive controllers clearly outperform fixed con-
trollers. The simulator currently makes use of some simplifications, since we do not model
acceleration and deceleration. It could quite easily be extended to offer such a higher level of
detail, and adaptive algorithms could benefit from this by incorporating actual speed infor-
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mation of road users in their calculations.
We have seen that co-learning may work well, but more research can be done to improve

the idea of co-learning even more. Now we use the first place, but in our current set-up we
could also have used the V-value of the last place on a roadlane. Furthermore, in previous
work [Wiering, 2000] we communicated how many cars are standing on each next lane to
choose the next lane. This may also improve the results of co-learning.

Finally, we have not compared our adaptive methods with other adaptive traffic light
controllers. We want to integrate other traffic light controllers in our system and evaluate
these.

7 Conclusions

In this article we first showed that traffic control is an important research area, and its benefits
make investments worthwhile. We described how traffic can be modelled, and showed the
practical use of some models. In section 3 we explained reinforcement learning, and showed
its use as an optimization algorithm for various control problems. We then described the
problem of traffic light control and several intelligent traffic light controllers, before showing
how car-based reinforcement learning can be used for the traffic light control problem. In
our approach we let cars estimate their gain of setting their lights to green and let all cars
vote to generate the traffic light decision. Co-learning is a special feature of our car-based
reinforcement learning algorithm that allows drivers to choose the shortest route with lowest
expected waiting time.

We performed three series of experiments, using the Green Light District traffic simulator.
We described how this simulator works, and which traffic light controllers were tested. The
experiments were performed on three different infrastructures. The first experiment, which
uses a large grid, shows that reinforcement learning is efficient in controlling traffic, and
that the use of co-learning further improves performance. The second experiment shows that
using co-learning vehicles avoid crowded intersections. This way, vehicles avoid having to
wait, and actively decrease pressure on crowded intersections. The third experiment shows
that RL algorithms on more complex and city-like infrastructure again outperform the fixed
controllers by reducing waiting time with more than 25%. The third experiment also shows
that in some situations a simplified version of the reinforcement learning algorithm performs
as well as the complete version, and that co-learning not always increases performance.

7.1 Further Research

Although the reinforcement learning algorithm presented here outperforms a number of fixed
algorithms, there are several improvements that could be researched. For example, we can use
communication between road-lanes to make green waves possible, and let estimated waiting
times depend on the amount of traffic on the next road-lane.

The co-learning driving policy might be improved as well. The current implementation
suffers from saturation and oscillation. Because all drivers on a route choose the optimal
lane, this lane might become crowded. Only when the performance of such a lane decreases
because of this crowding, drivers will choose another lane. A less greedy form of co-learning
might prevent this effect.

Although the bucket algorithm works well for the fixed algorithms, it did not work well
together with the RL algorithms. We have to study this more carefully, since the bucket
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algorithm, when designed well, may help in creating green waves in very crowded traffic
conditions.

The simulator might be refined as well, to allow for comparison with other research.
Refinements could include more complex dynamics for the vehicles and other road users, as
well as an implementation of fixed-cycle traffic-light controllers.
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