Restrictions of graph partition problems.
Part 1

Hans L. Bodlaender, Klaus Jansen

RUU-CS-91-44
November 1991

Utrecht University

o2 Sa .
f (2 Department of Computer Science
-4
%5 g Padualaan 14, P.O. Box 80.089,

47'" '8\» 3508 TB Utrecht, The Netherlands,
Tel. : ... 4+ 31-30-531454

Restrictions of graph partition problems.
Part 1

Hans L. Bodlaender, Klaus Jansen

Technical Report RUU-CS-91-44
November 1991

Department of Computer Science
Utrecht University
P.0.Box 80.089
3508 TB Utrecht
The Netherlands

ISSN: 00243275

Restrictions of graph partition problems.

Part I

Hans L. Bodlaender* Klaus Jansen!

Abstract

In this paper, the problems to partition a given graph into k independent
sets or cliques of bounded size k' are analysed for several classes of graphs.
We investigate the computational complexity of both problems restricted to
cographs, split graphs, bipartite graphs and interval graphs given general or
constant k and k’. It is shown, that the assignment problem for operations
in a branching flow graph to processors, each with a limit on the number of
executable operations, equals the problem to partition into independent sets,
restricted to cographs. In addition a job-assignment problem given intervals
for each job and k machines, each executing at most &’ jobs, equals the problem
to partition into independent sets restricted to interval graphs. It is shown,
that both problem are NP-complete.

1 Introduction

In this paper the problems to partition a given graph into a bounded number of
cliques or independent sets of bounded size are studied. The motivation of this
analysis of graph partition problems is given by practical problems. One application
is an assignment problem of operations given in a flow graph to processors. A flow
graph is an acyclic digraph with operation nodes and independent branching nodes
where the operations are executed in a given time interval. Depending on the control
of the branchings only a subset of all operations must be executed. For this flow
graphs we identify the set of fork nodes by F, the set of join nodes by J and the set
of operation nodes by Op. To allow a branch in the flow graph we give the edges
e = (f,v) going from the fork nodes f € F away additionally a weight w, € {0,1}.

*Department of Computer Science, Utrecht University, P.O.Box 80.089, 3508 TB Utrecht, The
Netherlands. The work of this author was partially supported by the ESPRIT II Basic Research
Actions Program of the EC under contract no. 3075 (project ALCOM).

tFachbereich IV, Mathematik und Informatik, Universitat Trier, Postfach 3825, W-5500 Trier,
Germany.

Definition 1.1 Fach branching flow graph can be represented recursively in the
following form:

o A digraph D = ({v},0) with F = J = 0 and Op = {v} is a flow graph.

o A digraph D = (V,E) given by the union of two disjoint flow graphs D; =
(Vi, Ey), i € {0,1} and by adding a subset of edges of the set

{(0,0)|doue(v) = din(w) = 0,0 € Viyw € Vi,i # k}
which generates no cycle is a flow graph.

o A digraph D = (V,E) given by the union of two disjoint flow graphs D; =
(Vi, E), © € {0,1}, a new fork node f, a new join node j and additionally edges
{(f,v)|v € V;,din(v) = 0} with weight i and edges {(v,])|v € Vi, dous(v) = 0}
for each i is a flow graph.

In addition there are execution times for the operations v given by intervals I,
such that for each pair of operations v # w with directed path from v to w in the
digraph and x € I,,y € I,, = < y.

We note that the constructed flow graph is acyclic and that the sizes of F and
J are equal. Using the first graph operation each partial order can be constructed.
The second operation constructes a branch with a fork node f at the top and a join
node j at the bottom. We see also that each node in this digraph lies on a directed
path from f to j. Each flow graph has m pairs of fork and join nodes specified by
the definition. Using such a pair we can divide the flow graph into different parts.
Let V(f,7) be the vertices v lying on a directed path from f to j, and let Vi(f,7)
be the operations in V/(f,) which can reached over a i-weighted edge going away
from the fork node f. Using a control function ¢ : F — {0,1} for the fork nodes,
the set of executed operations for 1) is defined by

Op,/, = Op\ U ‘/(l—w(f))(f’j)‘
fer

For these flow graphs an incompatibility graph can be defined with an edge
between two operations if they are executed at a common time slot and if they can
be executed depending on the control of the branching nodes together.

Definition 1.2 Two operations v,w of a flow graph are compatible, if one of next
conditions is satisfied:

e I,NI,=0.

o there is no control function ¢ : F — {0,1} and {v,w} C Op,,.

In [5) it was shown that the incompatibility graphs can be classified as the inter-
section of a cograph and an interval graph and that the coloring problem restricted
to these graphs remains NP-complete. Since compatible operations which can be
assigned to the same processor form a clique in the complement graph, the problem
of finding an assignment with a minimum number of processors is NP-complete.

If we have no branching nodes we get the interval graphs as incompatibility
graphs and if all operations have unit-time length we get the cographs. For these
graph classes there are linear time algorithms [4, 9] for the coloring problem. But if
we allow that only a given number of operations can be assigned to each processor,
we get a coloring problem for cographs or interval graphs such that for each color,
there are at most k' operations with that color. A solution of this problem gives
us an assignment such that each processor must execute only a bounded number of
operations.

For the interval graphs there is another application. Let T be a set of jobs with
start-time s(t) and end-time e(t) of the execution and let M be a set of k machines.
We search for an assignment of jobs to machines where each job is executed by
exactly one machine and where each machine can only execute one job at the same
time. If each machine can execute only a bounded number of jobs we get the same
coloring problem for interval graphs.

If we have jobs with unit time-length equal one, a partial order P = (T, A) for
the set of jobs, m machines and a deadline D and if we ask for a m machine schedule
for T that meets the deadline D and obeys the precedence constraints, we get the
classical PRECEDENCE CONSTRAINED SCHEDULING problem. We can show that
if the partial order is an interval order, we get the partition into bounded cliques
problem, restricted to interval graphs.

2 Definition of the problem

An important combinatorial problem is the coloring problem of an undirected graph
G = (V,E). A k-coloring is a mapping f : V — {1,...,k} with for all edges
{v,w} € E, f(v) # f(w). A set U is called independent if each pair v,w € U with
v # w is not connected by an edge. The k-coloring problem corresponds to the
problem of finding a partition of the vertices into k independent sets. Karp [7] has
shown that the coloring problem is NP-complete for general undirected graphs and
up to this time no polynomial-time algorithm is known for this problem.

However, the coloring problem becomes much easier, when we restrict the in-
puts to certain special graph classes. For example there are efficient algorithms for
interval graphs [4], cographs [9] and split graphs [3].

A graph G = (V, E) is an interval graph, iff to each vertex v € V, a closed interval
I, in the real line can be associated, such that for each pair of vertices u,v € V,
u # v, {u,v} € E, if and only if I, N I, # 0. The complement G° of an interval
graph G can be transitively oriented with (u,v) € Aiff (z € I,,y € I, — = < y).

This orientation A induces a partial order P = (V, A). Partial orders obtained in
this way are called interval orders.

Cographs are graphs without a path of length four as induced subgraph [9].
These graphs can be generated by disjoint union and join operations on graphs
starting with single-vertex graphs and can be represented about these operations.
For graphs G; = (V;, E;) with V1NV, = 0 the union of G; and G;, U(G1, Gs) is given
by (Vi U V3, E1 U E;). The join of Gy and G, denoted by +(Gy, G:) is obtained by
first taking the union of G; and Gz, and then adding all edges {v;, vy} with v; € V.
The join of three or more graphs Gi,...,G, is obtained similary: take the disjoint
union, and add all edges between vertices in different graphs G;.

To each cograph G one can associate a corresponding rooted binary tree T,
called a cotree of G, in the following way. Each non-leaf node in the tree is labeled
with either U (union-nodes) or + (join nodes). Each non-leaf node has exactly
two children. Each node of the cotree corresponds to a cograph and a leaf node
to a single-vertex graph. We remark that the usual definition of cotrees allows for
arbitary degree of internal nodes. However, it is easy to see that both definitions
have the same power and that arbitrary cotrees can be transformed to cotrees with
two children per internal node. In [1] it is shown that one can decide in O(n + ¢€)
time, whether a graph is a cograph, and build a corresponding cotree.

A graph G = (V, E) is called bipartite if there is a partition of the vertices V'
into two disjoint set V;, V5 where the set of edges E forms a subset of {{v,w}|v €
Wi,w € V3}. A graph G = (V, E) is a split graph if there is partition of the vertices
V = U U C into an independent set U and a clique C. There is no restriction on
edges between vertices of U and C. Another characterization of the split graphs is
the condition that G and the complement G are both chordal graphs. A chordal
graph can be represented by an intersection graph of a family of subtrees of a tree.
Thus, each interval graph is chordal.

For an overview to the coloring problem restricted to different graph classes, we
refer to [6]. In this paper, we consider two problems, related to the coloring problem.
The first we consider, is the problem, given a graph G = (V, E), and two integers
k, ¥, to determine whether G can be partitioned into k independent sets of size
at most k. In other words, we search for a coloring of G with at most k colors,
such that for each color, there are at most k' vertices with that color. We call this
problem PARTITION INTO BOUNDED INDEPENDENT SETS. We also consider this
problem on the complement of G. Then it becomes the following problem:

Problem: PARTITION INTO BOUNDED CLIQUES

Input: Undirected graph G = (V, E), k, k' € IN.

Question: Is there a partition of V into cliques Cj,..., Cy with
[Ci|<k'for1<i<k?

This problem is NP-complete, because it contains the problem PARTITION INTO
CLIQUES [7]. We denote with x(G, k') the minimum number of independent sets of

size at most k' that cover G and we denote with «(G, k') the minimum number of
cliques of size k' that cover G.

In this paper, we have analysed the PARTITION INTO BOUNDED CLIQUES (INDE-
PENDENT SETS) problems for cographs, split graphs, bipartite graphs and interval
graphs.

3 Cographs

Since the complement of a cograph is again a cograph, the same results hold for the
complexity of PARTITION INTO BOUNDED CLIQUES and PARTITION INTO BOUNDED
INDEPENDENT SETS when restricted to cographs.

Theorem 3.1 The problems PARTITION INTO BOUNDED CLIQUES (INDEPENDENT
SETS) remain NP-complete for cographs.

Proof:

We proof the result for PARTITION INTO BOUNDED CLIQUES. Clearly the problem is
in NP. To prove NP-hardness, use a transformation from the BIN-PACKING problem
to the PARTITION INTO BOUNDED CLIQUES problem on cographs. An instance of
the bin-packing problem is given by numbers a;,...,a, € IN, by K € IN bins and by
a bin-capacity B € IN with B > a; and K > 1. The question is to decide whether
there exists a partition of the set {1,...,n} in sets I;,..., Ix with Yier; ai < B for
each 1 < j < K. This problem is NP-complete, see [2]. We may assume that the
bin-capacity B is greater than the number n, because we can multiply the capacity
B and the numbers a; with the value n and get an equivalent problem.

For every number q;, we construct a graph Gy, in the following way. Take a
complete graph with B a; vertices, Cp.,,, and take the union of this complete graph
with K — 1 independent vertices. Let G, . q, be the graph, obtained by taking the
join of all G,; (1 < i < n). We note that a maximal clique in this graph can be
represented by an index set I C {1,...,n} such that the vertices of this clique are
given by the B-a; vertices in G,, for each : € I and by one of the K — 1 independent
vertices in G, for each ¢ ¢ I. Now we can prove the following equivalence.

There is a partition I,...,Ix of {1,...,n} with Yier,ai < Bfor1 <j < K iff
the graph G, . 4, has a partition into K cliques each of size at most B2 — B + n.

First suppose we have a partition Iy,...,Ix of {1,...,n}, with Yier; @i < B for
1 £ 3 £ K. We take for each index set I; the corresponding clique C; described
above. Then the cliques C),...,Ck form a partition into cliques and the sizes |C}]
can be bounded by

Y Bai+(n—|L) < B(B-1)+n.

iel;

Now, suppose we have a partition of G, .4, into cliques Cy,...,Ck such that
each clique has at most B(B —1)+n vertices. By the construction of the graph each

5

clique C; must be a maximal clique; otherwise we can not cover the whole graph.
Therefore the cliques C; can be represented by their index sets I;. Now take these
index sets as solution of the bin packing problem. To prove that we obtain a correct
solution of the bin packing problem in this way, consider the following inequality.

Gl = 5 B +(n — 1) < BE—1) +n.
iel;

By using |I;] < n < B we get:

B(B-1)+|I B
a; < < — = B.
,.Ze,j B B

]

Since the problems to partition into k cliques or independent sets of size at most
k' are NP-complete, we look at instances with constant k or k. When k' = 3 and
k = |V|/3, we get the problem PARTITION INTO TRIANGLES. For constant k' we
can use the recursive structure of the cograph.

We consider vectors = (z, ..., zx) where z; gives the number of cliques of size
¢ used for the cograph. We call such a vector ¢ = (z1,...,zk) feasible with respect to
G, if there is a partition of G into cliques where z; cliques have size 7 for 1 < < k.
For every graph G, let L(G) be the set of feasible vectors. We compute a partition
into a minimum number of cliques of size at most k¥’ by computing sets L(G). If
V = {v} then the set L(G) consists of one vector (1,0,...,0). The generation of
these vector sets can be done recursively on the cograph.

Lemma 3.2 Let G = (V, E) be a cograph. If G = U(G1,G3) then
L(G) = {z + yl|z € L(G1),y € L(G2)}.

For G = +(G1,G2), 2z € L(G), if and only if there exist x € L(G,), y € L(G,) and
a mapping f : {(3,7) | 1,7 >0, 1 <i+j < k'} > Ny, such that:

(1) itk f(z’J) =z 1<i< K
(2) Tiirick f(’,'J) =y; 1<j<FK
(3) E.’,j|.'+j=h fj)=2zn 1<A<K.

Proof:
For the union the assertion is clear. For the join let z € L(G;) and y € L(G;) and
let Cy,...,Ck be a partition into cliques of size at most k’. A clique in G of size k'

is given either by a clique of size £’ in G; or G; or is given by a clique of size : with
1 <2 < K in one of both graphs and of size k' — 7 in the other. For a clique of size
less than k' we have a similar representation. Using z; for the numbers of cliques of
size ¢ we can describe an assignment of cliques in Gy, G2 by such a mapping f. O

We note that we must only store k' — 1 of the components of the vector, because
the last component is given by the number of vertices and the other components.
Therefore only O(n*'~1) vectors are possible for each cograph.

Theorem 3.3 The problems PARTITION INTO BOUNDED CLIQUES (INDEPENDENT
SETS) of at most a constant size k' can be computed in polynomial time.

Proof:

We consider PARTITION INTO BOUNDED CLIQUES; for the other problem PARTITION
INTO BOUNDED INDEPENDENT SETS, consider the complement of the input graph.
For every node of the cotree, we compute the set L(H), where H is the cograph,
associated to the node. Note that the number of feasible vectors in a set L(G) is
polynomial, for constant ¥'. The computation for the set L(G), when G is obtained
by the union of G; and G, can be done in O(n?*¥'~1)) steps, given the sets L(G;)
and L(G2). Since the set {(7,7)|¢,j € INo,1 < i +j < k'} has only a constant
number ""‘#’i < Kk’ +1 of elements, for each vector pair z,y there are at most
polynomial O(n*"*'+1) many feasible mappings f. Therefore, if G is obtained by the
join of G; and G, L(G) can be determined in polynomial, namely O(n¥ (K¥+2)-1)
many steps. In this way, we can compute L(H) for every cograph H, associated
with a node of the cotree. At the end, we can choose a feasible vector z € L(G)

with a minimum number of cliques, i.e. with Y% ; z; minimum over all z € L(G).
O

A similar approach we can use for the problems where the number of cliques k is
constant. For these problems we describe partitions into cliques Cy, ..., Ci by the
sizes |C4, ...,|Ck| and consider sequences of sizes instead of subsets of the vertices
V. We call a sequence of sizes feasible, if it corresponds to a partition. Since k
is constant the number of different feasible sequences for a graph can be bounded
by a polynom O(n*). Using that one component is given by the size |V| and the
other components, we must store only O(n*~!) sequences. Now we give a recursive
formula for the sets S(G) of feasible sequences and a cograph G. If V = {v} then
S(G) = {1}. Let o denote the concatenation of two sequences and let ¢(s) denote
the length of a sequence s. Given a sequence s with £(s) < k we denote with 3 the

sequence of length k, obtained from s by adding zero or more zeros at the end of
the sequence s.

Lemma 3.4 Let G = (V, E) be a cograph and let k be a positive integer. If G =
U(Gl,Gg) then

S(G)={t=s05|s€ S(G1),s € 5(Ga),L(t) < k}.
IfG = +(G1,G2) then

S(G) = {wl +up...wr + ukl w=73,8 € S(Gl),t € S(Gz),
witu; <kforl <i<k,
and u is a permutation of f}.

Proof:
For the union the assertion is clear. Let us consider the disjoint join of two graphs
Gi = (V;, E;). Let Cy,...,Cr, and C1,. . ., C',’c2 be partitions of G; and G into cliques
with |Cy|, |C!| < k' and with ky,k; < k. By adding to the collections Ci,...,C,,
and Cj,...,C}, a number of empty sets, we can assume that k; = k; = k. Now
for every permuation 7 of {1,...,k}, we have that C; U CLy,...,Ck UCLy, is a
partition of G into cliques. If the sizes are bounded by k' we get a solution of S(G).
For the other direction let Cy,...,Ch be a partition into A < k cliques of size
|C;i| < k. By intersection of these cliques with vertices V; and V; we get partitions
of G, and G, with the properties described above. O

Theorem 3.5 The problems PARTITION INTO K BOUNDED CLIQUES (INDEPEN-
DENT SETS) of size at most k' with constant k can be solved in polynomial time for
cographs.

Proof:

We use that each set S(G) contains at most O(n*~!) sequences. Compute for each
node of the cotree the set S(H) with H the cograph corresponding to that node,
after these sets have been computed for the children of the node. From lemma 3.4
it follows that these computations cost at most O(k - k! - n?(*=1)) time. Hence, the
total time for the algorithm is bounded by O(n**-1+1) time, given a constant k. O

4 Split graphs

In this section we consider the problem PARTITION INTO BOUNDED CLIQUES for
split graphs. The same results hold for PARTITION INTO BOUNDED INDEPENDENT
SETS for split graphs, as the complement of a split graph is again a split graph. We
transform the problem to a covering problem, which may — at first sight — seem a
hard problem. However, we show that it can be solved efficiently, using a maximum
flow algorithm. We use the following problem.

Problem: P,
Input: Sets S1,...,9m C {1,...,n}, L,h e N
Question: Do there exist subsets A; C S; with |4;| < { and |UR, A;| > h?

Lemma 4.1 The problem PARTITION INTO BOUNDED CLIQUES for split graphs is
equivalent to P,.

Proof:
Consider the vertices u; € U of the independent set and the neighbors I'(u;) C C.
Define n = |C|, m = |U|, S; = {j|v; € T'(wi)} for : € {1,...,m}. Note that each

clique can contain at most one vertex in U. An optimal solution of the partition

8

problem is obtained by finding the largest h for which this instance of P; has a
solution, and then taking cliques {u;} U A; of one vertex in U and at most k' — 1
vertices in C. The remaining vertices in C’ can be covered in an optimal way.

It is not hard to see, that the construction above can be reversed. Hence, a

solution of the partition problem on split graphs can also be transformed to a solution
of P,. 0O

Lemma 4.2 Problem P, can be solved in polynomial time.

Proof:
Define the following digraph

D=({st}U{S1,...,Sm}U{L,...,n},
{(s,8)I1 < <m}uU{(5,t)]1 <5 <n}U{(Si,5)ls € S:}).

with capacities 0 < ¢(s, S;) < min(]Si],£), 0 < ¢(Si,7),¢(j,t) < 1. Then a maximum
flow in this digraph corresponds with the largest h, for which P, has a solution. O

Theorem 4.3 The problems PARTITION INTO BOUNDED CLIQUES (INDEPENDENT
SETS) for split-graphs can be solved in polynomial time using a maz flow algorithm.

5 Bipartite graphs

Cliques in a bipartite graph have at most the size two and therefore the problem
PARTITION INTO BOUNDED CLIQUES can be solved in polynomial time using a
matching algorithm. But for independent sets the situation is more difficult.

Theorem 5.1 The problem PARTITION INTO THREE BOUNDED INDEPENDENT SETS
remains NP-complete for bipartite graphs.

Proof:

We give a transformation from CLIQUE to this partition problem on bipartite
graphs. Let G = (V, E) be a graph and k > 5. We assume that the number of edges
is bounded by: |E| < |V|+ k(k — 2). It is not hard to see that CLIQUE remains
NP-complete under this restriction. To prove this, take the graph G' = (VUV', E),
obtained from G by adding a disjoint set of isolated vertices V' with |V'| = |E|.
Then G’ has a clique of size k iff G has a clique of size k£ and |E(G')| = |E| <
V| + |E| + k(k —2) = |V(G)| + k(k - 2).

Suppose we have a graph G = (V, E) with |E| < |V| + k(k — 2). We define a
bipartite graph Gg = (V; U V;, Eg) with V; = VU A, V, = E U B. The number of
verticesin A is [V|—2k+ ﬂkT_ll and the number of vertices in B is |V|+k(k—2)—|E|.
Since we have the inequalities |E| < |V|+ k(k—2) and k > 5 the number of vertices

in A and B are positive. As edges we take all pairs {a, v}, {v1,b} witha € A,be B
and v; € V; and for an edge e = {v,w} € E we take {v,e} and {w,e}.

Now we can prove the following equivalence: G has a clique of size k iff Gg has
a partition into three independent sets of size k' = |V| — k + ﬂkz;ll

Let C be a clique of size k and let E¢ be the edges with both endpoints in C.
Define as independent sets: U; = AUC, U; = (V\C)UE¢ and Us = BU(E \ E¢).
The union of these sets are the vertices of the bipartite graph and the sizes of the
independent sets are |Uy| = |Us| = |Us| = &'

Now let Vg = U; U U; U Uz be a partition into independent sets where each
independent set is bounded by k’. Since the number of vertices equals 3k’, all
independent sets must have the same size k’. At first consider the set A. If the set
A is distributed in two different sets U; and U,, the vertices in B and E must lie in
the last set Us. Since the size |Us| > |B| + |E| = k' + ﬂkZ—'ll > k' is to large in this
case, the set A is a subset of one of the independent sets. The same can be proved
for B. W.lo.g. assume A C U; and B C U;. To get k' independent vertices in U;
and U; we can only add k vertices from V to U; and |E| — ﬂ%?—ll vertices from E to
Us. The remaining vertices from V and from E must form the independent set U,.
Define the set C as the k vertices from V in U;. Then this set forms a clique of the
graph G. Otherwise U; can not be independent. a

Now we analyse the problem PARTITION INTO BOUNDED INDEPENDENT SETS
of at most constant size k'.

Lemma 5.2 Let G = (V, E) be a bipartite graph with partition V = VU V,, E C
{{v1,v2}|vi € Vi} and let a = |Vi|mod(K’) + |V2|mod(k') and b = w,lc,v’ﬂ Then
we get

= b fora=20
x(G,K) € {b+1,b+2} forO<a<k
= b+2 otherwise.

If exactly one of the terms |V;|mod(k') = 0, we get x(G, k') = b+ 1.

Proof:
We get the assertion by using the following inequality for a bipartite graph

VL v < Vi 4 v

h<xiem <
The first inequality is satisfied for each graph if we replace |V;| + |Vz| by |V|. The
second holds, because we can cover both independent sets V; with at most |'|V|1
independent sets of size k’.

Now we consider the case that a = |Vi|mod(k’) + |Vz|mod(k') = k'. In this

case we need either 1Lt independent sets of size k' or one set more. The other

cases with 0 < @ < k' can be transformed by adding some isolated vertices to this
problem.

10

We must decide whether x(G,k') = b+ 1 or x(G, k') = b+ 2, (with b as in
lemma 5.2). We transform this decision problem to a problem of finding a sequence
of independent sets in G. For example we get b + 1 if we have an independent set
U = U, UU, with U; C V; and |U;| = |Vi|mod(k’). But in general it is possible to
have several independent sets which eliminate the overhanging |V;|mod(k’) in both
sides.

Lemma 5.3 Let G = (V, E) be a bipartite graph with partition V=V, UV,, E C
{{v1,v2}|vi € Vi} and let a = |Vi|mod(k') + |Va|mod(k') = k'

Then x(G,k') = LYL',:%'E if and only if there is a sequence of t > 0 pairwise
disjoint independent sets Uy, p, = U, U Uy, of size k' which satisfies the following
conditions:

(1) Uy, WV, 0< (Ul =a; < ¥
(2) Uy, CVo,0< |Up| =b; < ¥
(3) (T amod(K) = [Vilmod(k)
(8) (T, bymod(k) = Vylmod(K)

Proof:
By simple calculation. m|

We can omit condition (4), as it follows from condition (1) - (3), because all
independent sets have size k' and because |V;|mod(k’) + |Va|mod(k') = k'

Theorem 5.4 The problem PARTITION INTO BOUNDED INDEPENDENT SETS of size
at most k' with constant k' can be solved in polynomial time for bipartite graphs.

Proof:

By using of Lemma 5.3. We search for sequences of independent sets of size k' with
the given conditions. We can show at first that the length ¢ of these sequences can
be bounded by ¥’ — 1.

Consider ¢ = |Vj|mod(k') > 0 and sequences of t pairwise disjoint indepen-
dent sets Uy, p; of size k' with (i, a;)mod(k') = c¢. We must only consider se-
quences where no subsequence satisfies these conditions. Using this fact the values
(Th, a;)mod(k') with 1 < ¢ <t must all be different and must lie between 1 and
k' — 1. Therefore we can bound ¢ by ¥’ — 1.

Since the values a; € {1,...,k' — 1} we have only a constant number of these
sequences which we must consider. For each such sequence a;...a; we can test in
polynomial time whether G has such a sequence of disjoint independent sets, because
the size of these sets can be bounded by the constant (k' — 1)¥'~1. o

11

6 Interval graphs

In this section we show that the problem PARTITION INTO BOUNDED CLIQUES can
be solved in linear time. For the other problem we can show the NP-completeness
even if the sizes of independent sets are bounded by a constant. At first we give a
relation between interval orders and interval graphs. This relation can be used for
the problem PARTITION INTO BOUNDED CLIQUES.

Lemma 6.1 Let G = (V, E) be an interval graph, let P = (V, A) be the correspond-
ing interval order and let k, k' € IN. Then the following equivalence is satisfied:
There is a partition of G into k cliques of size at most k' iff there is a feasible
schedule of P with unit-times which needs at most k' machines and k time steps.

Proof:
Let Ci, ..., Ck be a partition of G into cliques with |C;| < k’. For each clique C; there
is at least one point z on the real line with = € (,¢c, Io. We assume that the cliques
are ordered according to these points on the real line. Define T'(v) = ¢ if v € C;.
We now prove that T' gives a feasible schedule. Let v,w € V with (v,w) € A. Since
the interval I, lies on the left side of I,, the corresponding cliques C; with v € C;
and C; with w € C; satisfy ¢ < j and therefore we have T'(v) =i < j = T'(w). The
number of vertices at each time step is less or equal £’ and the number of steps is k.
Now let T : V — {1,...,k} be a feasible schedule where for each 1 < i < k we
have |{v|T(v) = i}| < k. Define C; = {v|T(v) = :}. If C; is not a clique there
are vertices v,w € C; with {v,w} & E. This means that the intervals I, N I,, = 0.
Therefore I, lies to the left or to the right side of I,,. In both cases we have an arc
in P and hence, we have not a feasible schedule. Therefore each set C; is a clique
and we get a partition into k cliques with |C;| < ¥'. O

Theorem 6.2 The problemm PARTITION INTO BOUNDED CLIQUES can be solved in
linear time on interval graphs.

Proof:
Apply lemma 6.1 and solve the scheduling problem for interval orders using a linear
time algorithm by Papadimitriou and Yannakakis [8]. 0

We get a different result, for the problem to partition into independent sets, on
interval graphs.

Theorem 6.3 The problem PARTITION INTO BOUNDED INDEPENDENT SETS re-
mains NP-complete for interval graphs.

Proof:
We can use basically the same transformation as in the proof of theorem 3.1. (Use
that the complement of G, ,. 4, is an interval graph.) a

12

For the problem with constant number k of independent sets we can use the
same approach as for the cographs. A partition U;,...,U, with A < k for an
interval graph can be identified with a sequence of sizes |Uy|,...,|Us| and the last
endpoint z; = maz,ey; maz(l,) on the real line for each set U;. Using dynamic
programming we can generate all feasible sequences.

Theorem 6.4 Given a constant k the problem PARTITION INTO K BOUNDED INDE-

PENDENT SETS, each of size at most k' can be solved in polynomial time for interval
graphs.

The complexity of PARTITION INTO BOUNDED INDEPENDENT SETS each of size
at most k' is open for k' = 3. This problem (for k' = 3) contains the problem
PARTITION INTO TRIANGLES for the complement of interval graphs (namely when
k= [V]/3).

Theorem 6.5 The problem PARTITION INTO BOUNDED INDEPENDENT SETS each
of size at most four remains NP-complete for interval graphs.

Proof:
We give a transformation from NUMERICAL 3-DIMENSIONAL MATCHING (2] to the
partition problem. An instance of numerical 3-dimensional matching is given by
disjoint sets W, X and Y each containing m elements, a size s(a) € IN for each
element ¢ € WU X UY and a bound Z such that ¥ ,cpuxoy s(a) = mZ. The
question is to decide whether W U X UY can be partitioned into m disjoint sets
A; such that each A; contains exactly one element from each of W, X and Y and
such that for 1 <7 < m, Y44, s(a) = Z. This problem remains NP-complete if we
require that s(a) < -g— for alla € WU X UY. This can be proved by transforming
the original problem in one where this assumption holds, by adding the value Z to
eacha € WU X UY and by setting 2’ = 4Z.

Now we give the construction of a set of intervals. The interval graph that is
modeled by this set of intervals forms the instance for the partition problem. Write

W = {wy,...,wn}, X ={z1,...,2m} and Y = {y1,...,Ym}-
1. take for each w; € W an interval a; = [0, w;].
2. take for each w; € W, z; € X an interval b; ; = [w; + 1,w; + z; + (§ Z)].
3. takefor each z; € X,yx € Y aninterval cjp = [(7+1)Z —yx+1,(m+1)Z + k).
4. take foreach 1 < k <m an interval dx = [(m +1)Z + k+1,(m +3)Z + 1].

5. take for each w; € W (m — 1) intervals e;, = [1,w;] and (m — 1) intervals
fivl = [0’ 0]'

6. take for each 1 < j < m (m — 1) intervals g = [(j + 1)Z,(m + 3)Z + 1] and
(m — 1) intervals h;, = [0,7Z].

13

7. takeforeach 1 < k< m (m—1)intervals pre = [(m+1)Z + k+1,(m +3)Z]
and gre=[(m+3)Z +1,(m+3)Z +1].

We give an example in Figure 1. In this example, we have w; = 1w, = 2,2, = 1,
z2=1,y1=2,y92=3and Z =5m = 2.

lo]1]2]3]4[5]6]7]8]9f10f11]12]13}14|15]16]17]18]19]20[21]22]23]24]|25]26]

ay I b1,1 C1,2 | d2
a; | bs 2 [e | di
fo e | 2% |] 9
filel by 2 | I 92
hy | | ez | P2 02
hy |] C1,1 | 2 Q

Figure 1: Example for the transformation

Denote the set of all intervals a; (1 < ¢ < m) by A. In a similar way, define sets
B,C,D, E, F,G, H, P, Q; each of these sets contains all intervals denoted with
the same letter. At first let us consider which sets of vertices form a clique. These
are AUFUH, AUEUH, BUH,CUG, PUGUD and PUQU D and some other
which depend on the instance. We note that each independent set in the interval
graph has size at most five.

The sizes of the sets are |A| = |D| = m, |B| = |C| = m? and the other sets
E,F,G, H, P, have size m(m—1). In total, this are 8m?—4m vertices. We consider
the problem to partition the interval graph, corresponding to the set of intervals into
2m? —m independent sets of size at most four. Note that each independent set must
have size exactly four.

Let h € H and consider an independent set U of size four which contains h.
Then the only possibility is to choose one vertex ¢ € C, one vertex p € P and one
vertex ¢ € @ for the set U. For a vertex g € G and an independent U which contains
g we can only take one vertex b € B, one vertex e € E and one vertex f € F. If we
delete these vertices, we have only m elements of A, B,C and D.

We now study ‘cuts’ between two sets of vertices in the interval graph. Consider
the following cuts:

14

(1) AUE and B
(2) BUH and CUG
3) C and PUD.

We consider first the last of these three cuts. We see that the sizes |C| and
|PU D| are equal to m2. Since G has m?—m vertices and since CUG and PUDUG
are cliques, we must choose for the m? independent sets one vertex of C and one of
PUD.

Now we prove that for each vertex c;i there is a vertex pr, € P or a vertex
dr € D such that both are together in one of the independent sets. This means
that there is no independent set U with {c;k,pre} C U or {cjk,d} CU if k # K.
Assume that this is not the case. We have m? independent sets where each contains
exactly one element of C and one of P or D. Let c;x a vertex with minimum k
which lies in an independent set with a vertex pi ¢ or dps for k # k'. If k > k' the
intervals overlap and therefore this case is not possible. But if k¥ < &', the vertices
with second index less than k are correctly connected. Therefore at least one of the
vertices in {pre|l < £ < m — 1} U {d;} must be connected to a vertex c; y» with
k" > k. Since the corresponding intervals overlap, we get a contradiction.

Let us consider the second cut with BU H on the left and with C UG on the right
side. Since we have 2m? — m vertices in both sets, and since both sets are cliques,
each independent sets must have one element from B U H and one from C U G.
We see that w; + z; + jZ < (j + 1)Z and that the interval ¢;; with left endpoint
(74+1)Z —yx +1 intersect with h;;q¢. Therefore we have the same situation as above
and can prove in similar way that there is no independent set U with {b; j,¢;ix} C U
or with {b.-,j,gj:,g} C U or with {hj,(,c_,‘r,k} cU fOI‘j # j’.

For the first cut AU E and B we get with the same argument that only vertices
of a;,e;¢ are together with vertices by ; if w; = wy. It is possible to swap elements
between independent sets, such that each a; and each e; lies in an independent set
together with one b, ;.

(From this analyse of cuts, we have that we may assume that the independent
sets contain pairs of intervals, illustrated in the following table. In other words,
there is for example no independent set which contains {a;, bir ¢} or {e;¢, by p} for

i # .

first interval | second interval
a; or e; b; -

b_jorhj_ | cj-org;-

c—k di or p, .

Now consider the interval graph after deleting all independent sets U which
contain h € H or ¢ € G. We now have m independent sets U; which cover the
verticesin A, D and the remaining verticesin B, C. Using that each g, — is connected
to one b_ ; and that each h;_ is connected to one c;_ we have for each j exactly one

15

vertex b_ ; in the rest of B and one ¢;_ in the rest of C. Therefore each independent
set U; has the form U; = {a.-, b,',j,c]"k,dk}.

Now we can prove that there is a partition of WU X UY into sets A; with exactly
one element of W, X and Y and with Y ,c4, s(a) = Z iff the constructed interval
graph has a partition into 2m? — m independent sets of size at most four.

Let Uy,...,Uym2_m be such a partition. From the analyse above, it follows
that we may assume w.l.o.g. the first m independent sets have the form U; =
{ai, bi j, ¢k, di} such that the sets {j|b;; € U;,1 < i < m}, {klc;x € Ui, 1 < i< m}
are equal to {1,...,m}. Using that U; is an independent set, we have w; +z;+jZ <
(+1)Z — yx + 1 and therefore we get w; + =; + yx < Z. Since each index appears

exacly once, we have
Ew;+2a:j+ Eyk =mZ.
i=1 j=1 k=1
Therefore w; + z; + yx = Z and the sets A; = {w;,z;,yx} given by the intervals U;
solve the matching problem.
To prove the equivalence in other direction, let A; = {w;, z;, yx} be the sets with
Yoaca, $(a) = Z. As the first m sets we choose

U; = {ai, bij, ¢k, di}.

The interval a; lies on the left side to b;; and the interval di lies on the right
side to cjx. To prove that b;; lies on the left side to c;r we compare the right
endpoint of b;; and the left endpoint of c;x. Using that w; + z; + yx = Z, we get
wi+z;+(JZ) < (j +1)Z — yx + 1. Therefore the set U; is independent.

Let B’ C B be the set of vertices which are not covered and construct iteratively
independent sets. Let b;; € B’. Then take vertices e;y, fir,g;e which are not
covered and put them together in one set U. Clearly, this set is independent. The
construction is correct, because each index ¢ and j appeares only (m — 1) times in
B'. Now consider the set C’ C C of vertices which are not covered and construct in a
similar way independent sets. For these take for each ¢;ix € C' vertices hj ¢, pr.er, Gk e
which are not covered. After these steps all vertices are covered and we have 2m2?—m
independent sets. a

7 Conclusion and Applications

In the following two tables we give an overview about the results for the problems
PARTITION INTO K BOUNDED CLIQUES and PARTITION INTO K BOUNDED INDE-
PENDENT SETS each of size at most k¥'. An entry NPc means that the problem is
NP-complete and an entry P that the problem can be solved in polynomial time. The
complexity of PARTITION INTO BOUNDED INDEPENDENT SETS is open for interval
graphs for k¥’ = 3.

16

graph class general | constant k | constant k'
cographs NPc P P
split graphs P P P
bipartite graphs P P P
interval graphs P P P

Table 1: Complexity for bounded clique partition

graph class general | constant k£ | constant k'
cographs NPc P P
split graphs P P P
bipartite graphs | NPc NPc P
interval graphs NPc P NPc (K > 4)

Table 2: Complexity for bounded independent set partition

We conclude the paper with the complexity of the applications mentioned in the
introduction. The first problem we consider is to find an assignment of operations
in a branching flow graph to a minimum number of processors.

Theorem 7.1 The problem to decide whether there is an assignment of the unit-
time operations in a branching flow graph to k processors where each processor can
only execute at most k' operations is NP-complete. If one of the integers k or k' is
constant, the problem can be solved in polynomial time.

We get also a consequence for the job-assignment problem where each machine
has a limit of licences.

Theorem 7.2 Given a set T of jobs with interval times and k machines, where
each machine can execute only k' jobs. The problem to find an assignment of the
jobs to the machines, where each machine executes at most one job per time, is

NP-complete even for constant k'. It can be solved in polynomial time if the integer
k is constant.

References

(1] D.G. CORNEIL, Y. PERL, AND L.K. STEWART, A linear recognition algo-
rithm for cographs, SIAM J. Comput. 4 (1985), pp. 926 — 934.

[2] M.R. GAREY AND D.S. JOHNSON, Computers and Intractability: A Guide
to the Theory of NP-Completeness, Freeman, San Francisco, 1979.

17

(3]

[4]

[5]

(6]

[7]

[8]

[9]

M.C. GOLUMBIC, Algorithmic Graph Theory and Perfect Graphs, Academic
Press, London, 1980.

U.I. GuPTA, D.T. LEE AND J.Y.-T. LEUNG, Efficient algorithms for interval
graphs and circular arc graphs, Networks 12 (1982), pp. 459 — 467.

K. JANSEN, The processor optimization problem, to appear in Theor. Comp.
Science.

D.S. JoHNSON, The NP-completeness column: an ongoing guide, J. Algorith.
6 (1985), pp. 434 - 451.

R.M. KARP, Reducibility among combinatorial problems, in: Miller and

Thatcher: Complexity of Computer Computations, Plenum Press (1972), pp.
85 - 104.

C.H. PAPADIMITRIOU AND M. YANNAKAKIS, Scheduling interval-ordered
tasks, SIAM J. Comp. 8 (1979), pp. 405 — 409.

D. SEINSCHE, On a property of the class of n-colorable graphs, J. Comb.
Theory B 16 (1974), pp. 191 — 193.

18

