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Classifying termination of term rewriting
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P.O. box 80.089, 3508 TB Utrecht

Abstract

A classification of types of termination of term rewriting systems is proposed,
built on properties in the semantic level in which terms are interpreted. It can
be considered as a generalization of polynomial interpretations.

1 Introduction

One of the main problems in the theory of term rewriting systems is the detection of
termination: for a fixed system of rewrite rules, detect whether there exist infinite rewrite
chains or not. In general this problem is undecidable ([8, 2]). However, there are several
methods for deciding termination that are successful for many special cases. Roughly
these methods can be divided into two main types: syntactical methods and semantical
methods. In a syntactical method terms are ordered by a careful analysis of the term
structure. A well-known representative of this type is the recursive path order ([4]). All of
these orderings are simplification orderings, i.e., a term is always greater than its proper
subterms. An overview and comparison of simplification orderings is given in [14].

In a semantical method terms are interpreted in some well-known well-founded ordered
set in such a way that each rewrite chain will map to a descending chain, and hence will
terminate. Until now most semantical methods have focussed on choosing the natural
numbers as the well-founded ordered set. The method of polynomial interpretations ([11,
1]) can be seen as a particular case of a semantical method on natural numbers. In this
paper we introduce the notion of a monotone algebra as the natural concept for semantical
methods. Furthermore we propose a classification of types of termination based upon the
types of orderings of the underlying monotone algebras. A lot of remarks and examples
are not claimed to be new but are included for completeness and for illustrating the setting
of monotone algebras.

A survey of the theory of term rewriting systems can be found in [5]. Overviews of
existing techniques for termination detection of term rewriting systems can be found in
[4, 14]. In the literature termination is also called strong normalization.



2 Term rewriting and termination

First we give some standard terminology. Let F be a set of operation symbols, each
having a fixed arity > 0, and let X be a set of variables. Let T(F, X) be the set of terms
over ¥ and X.

An term rewriting system (TRS) is defined to be a set R C T(F,X) x T(F,X).
Elements (I, r) of R are called rules and are often written as [ — r. The reduction relation
of a TRS R is the relation — 5 on T(F,X) inductively defined by

® I7 =g r for every (1, r) € R and every substitution o;

® f(t1,...,tn) =g f(tu,..., k»+++»ta) (only t replaced by t.) for every f € F with
arity n and all terms t1,...,t, and t} with t; —p t;.-

A TRS R is called terminating (or strongly normalizing or noetherian) if there exist
no infinite reductions of the reduction relation —p.

A partial order on T(F, X) is called a reduction order if it is well-founded and closed
under substitution and context. We say that a reduction order > normalizes a term
rewriting system if | > r for each rewrite rule [ — r. This terminology is motivated by
the following proposition.

Proposition 1 A4 term rewriting system is terminating if and only if it is normalized by
a reduction order.

Proof: Assume the term rewriting system is normalized by a reduction order. Then
any infinite reduction chain is an infinite descending chain. Since a reduction order is
well-founded, such chains do not exist, so the system is terminating.

On the other hand, if the system is terminating then the transitive closure of the
rewrite relation satisfies all requirements of a normalizing reduction order. O

3 Monotone algebras

In this paper we consider orderings on terms induced by interpretations. The idea is that
each term is interpreted in some well-founded set in such a way that at each rewrite step
the corresponding value decreases. Well-foundedness of the set then implies termination
of the rewrite system. This idea already appears in [13]. It is convenient not to check
decreasing for all (infinitely many) possible rewrite steps, but only for the rewrite rules,
As we saw above, this holds if the implied order on terms is a reduction order. We shall
see that if the interpretation is an algebra, i.e., it can be defined in a compositional way,
and it satisfies some monotonicity condition, then the corresponding order is indeed a
reduction order.

The same requirements already emerged in the particular case of polynomial interpre-
tations ([11, 1]). We shall extend this concept in such a way that it covers all types of
termination.

We define a well-founded monotone F -algebra (A, >) to be an F-algebra A for which
the underlying set is provided with a well-founded order > and each algebra operation
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is strictly monotone in all of its coordinates, more precisely: for each operation symbol
f € Fandall ay,...,a,,by,...,b, € A for which a; > b; for some 7 and a; = b; for all
J # ¢ we have

fA(ala-- . ,an) > fA(b],. . .,bn).

Let (A,>) be a well-founded monotone F-algebra. Let A* = {a: X — A}. We
define

$:T(F,X)xA¥ > A
inductively by

¢(z,0) = 2,

¢(f(tla ce ,tn),a) = fA(¢(tlaa), Ty ¢(tm a))

forz€ X,a: X - A,fe F,ty,.. -»tn € T(F,X). This function ¢ induces a relation
>4 on T(F,X) as follows:

t>pt <= (Vae AY:4(t,a) > #(t', a)).
We shall prove that >4 is a reduction order; first we need a lemma.

Lemmal Leto : X — T(F,X) be any substitution and let a : X — A, Define
B:X — AbyB(z)= ¢(2°,a) forz € X. Then

$(t7, ) = ¢(t,8)
forallt e T(F,X).

Proof: Induction on the structure of ¢. O

Proposition 2 Let (4,>) be a non-empty well-founded monotone F-algebra. Then >4
is a reduction order on T (F, X).

Proof: Irreflexivity, transitivity and well-foundedness of > 4 follow from the correspond-
ing properties of >. We still have to prove the closedness under substitution and context
of > A

Let ¢ >4 t' for ¢, € T(F, X)andlet o : X — T(F,X) be any substitution. Let
a: X — A. From the lemma we obtain

¢(tava) = ¢(t’ﬂ) > ¢(tla:3) = ¢(tw’a)'

The key point here is that 8 does not depend on t. This holds for all o : X — A, so
17 >4 t"”. Hence >4 is closed under substitution.
For proving closedness under context let ¢ > at'for t,t' € T(F,X), and let fer.

Since t >4 t' we have ¢(t,a) > #(t',a) for all « : X — A. Applying the monotonicity
condition of f4 we obtain

HfCate) @) = falosdlt,0), ) > falen, @t ), ) = GFC.,E,. ), )
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This holds for all a : X — A, so
flooosty. ) >a f(o. 8,000,

which we had to prove. O

We say that a non-empty well-founded monotone algebra (A, >) normalizes a term
rewriting system if the corresponding reduction order >4 normalizes the term rewriting
system. This terminology is motivated by the following proposition.

Proposition 3 A term rewriting system is terminating if and only if it is normalized by
a non-empty well-founded monotone algebra.

Proof: Assume the term rewriting system is normalized by a non-empty well-founded
monotone algebra. Then it is normalized by a reduction order. From proposition 1 we
conclude that it is terminating.

On the other hand, assume the system is terminating. Define A = 7 (F, X'), and define
> to be the transitive closure of the rewrite relation. One easily verifies that (A4,>) is a
non-empty well-founded monotone algebra. We still have to prove that ! >4 r for each
rewrite rule ! — r. Let a : X — A. Since A = T(F,X) we see that o is a substitution.
Then
¢(t,a) = t*

for each term t, which is easily proved by induction on the structure of t. Since | — r is
a rewrite rule, the term [* can be reduced in one step to r*. So

d(l,a) = 1" > r* = §(r,a).

This holds for each a : X — A, so | >4 r, which we had to prove. O

The way of proving termination of a term rewriting system is now as follows: choose a
well-founded poset A, define for each operation symbol a corresponding operation that is
strictly monotone in all of its coordinates, and prove that ¢(I) >4 ¢(r) for all rewrite rules
I — r. Then according to the above proposition the term rewriting system is terminating.

For the case that (A,>) = (IN,>), or, by translation equivalently,

(4,>)=({neN|n>N},>)

for some natural number N, and the operations in the algebra A are polynomials, this
corresponds to polynomial interpretations.

In the following examples we consider IN to be defined as the set of integers strictly
greater than zero.

Example 1: Consider the term rewriting system consisting of one rule, corresponding to
associativity:

f(f(z,9),2) — f(=, f(y,2)).

Define (A,>) = (IN,>) and fa(z,y) = 2z + y. Clearly it is strictly monotone in both
coordinates, so (A4, >, f4) is a well-founded monotone algebra. Further

¢(f(f(x7 y)':z)’a) = 2(2"1;0 + ya) + 2% = 4z° + 2y°' + <

4



and
¢(f($, f(yv z))va) =2z% + (2ya + za) = 2z% + 2y* + 2°.

Since the former is greater than the latter for all o : {z,y,2} — N, we conclude that

the term rewriting system is normalized by the well-founded monotone algebra, and so is
terminating.

Example 2: Consider the term rewriting system consisting of the rule:

f(f(2)) — fg(f(2))).
We give two termination proofs. First define A = IN x IN and define
(a,0) > (c,d) <= a>cAb>dA (a,b) # (c, d).
Now (4,>) is a well-founded poset; note that it is not total. Define
fa(a,b)=(a+b,a) and ga(a,b) = (b,a)

for all (a,b) € A. Clearly both f4 and g4 are strictly monotone, so (A, >, fa,g4) is a
well-founded monotone algebra. Let z* = (a,b), then

¢(f(f(x))’a) = fA(fA(av b)) = fA(a + bva) = (2(1 +b,a + b)
and
¢(f(9(f(2))), @) = fa(9a(fa(a,b))) = (2a + b, a).

The former is greater than the latter in the poset (4,>) for all (a,b) € A. So the

term rewriting system is normalized by the well-founded monotone algebra, and so is
terminating.

For the second proof define A = {0, 1} x N and define
(a,n) > (b,m) <= a=bAn<m.
Again (A, >) is a non-total well-founded poset. Define
fa(0m) = (0,7 +1), fa(1,m) = (0,7), 94(0,n) = ga(L,n) = (1,m)
for all n € IN. Both f, and ga are strictly monotone, while

fA(fA(O,n)) (0,n+2) > (0,n+1)

= fa(9a(fa(0,n))),
fA(fA(lvn)) = (0’n+1) > (Oan)

fa(ga(fa(1,n)))

for all n € IN, proving termination.

.......................................................................................



Again define A = {0,1} x IN and a,n) > (b,m) & a = bAn < m. Define
fA(O,n) = (1,2n), fA(lan) = (l’n + l)agA(O’n) = (O,TL + 1),9,4(1,”) = (0’277‘)

Both f4 and g4 are strictly monotone, while

fa(94(0,m)) = (L,2rn+2) > (1,2n4+1) = f4(£4(0,n)),
fA(gA(lan)) = (1,4n) > (1’n+2) = fA(fA(l,n))’
9a(fa(0,n)) = (0,4n) > (0,n+2) = ga(ga(0,n)),
9a(fa(l,n)) = (0,2n+2) > (0,20 4+1) = ga(ga(l,n)).

So the term rewriting system is normalized by the well-founded monotone algebra, and
so is terminating.

.......................................................................................

If no confusion is possible, we shall sometimes remove subscripts and superscripts, so
we write f,g,... instead of f4,g4,..., and write z,Y,...instead of z,y°, .. ..

4 Simple termination

If F is finite it is sometimes convenient to replace the well-foundedness condition in the
definition of a well-founded monotone algebra by a simplicity condition as follows. A
simple monotone F-algebra (A, >) is defined to be an F. -algebra A for which the under-
lying set is provided with a partial order > such that each algebra operation is strictly
monotone in all of its coordinates, and

fA(ah s ’an) 2 a;

for each f € F, a1,...,a, € A, and i € {1,...,n}. The corresponding reduction order
>4 is called a simplification ordering. This definition coincides with that in [5]. These
definitions are motivated by the following two propositions.

Proposition 4 Let F be finite and let (A,>) be a simple monotone F-algebra. Let A’
be the smallest subalgebra of A, i.e., A’ is the homomorphic image of the ground terms.
Then (A',>) is a well-founded monotone F-algebra.

Proof: The only property to prove is well-foundedness. Assume the restriction of > to
A’ is not well-founded. Then there is an infinite chain

h(to) > h(t1) > h(t3) > h(ts) > - -,

where h is the homomorphism from ground terms to A. The key argument is Higman’s
lemma ([6]), which is a special case of Kruskal’s tree theorem ([10]); the relevance for
termination of term rewriting systems is explained in [5]. Higman’s lemma states that
there is some ¢ < j such that # can be homeomorphically embedded in tj. Since (4,>)
is a simple monotone algebra and 4 is a homomorphism, we conclude that h(t;) > h(t:),
contradicting irreflexivity and transitivity of >. O



Proposition 5 Let F be finite and let (A,>) be a non-empty simple monotone F-algebra.
Let R be a term rewriting system such that I >4 r for all rewrite rules | — r of R. Then
R is terminating.

Proof: Apply proposition 4: A’ is a well-founded monotone algebra normalizing R. In
the case that F does not contain constants, add one dummy constant symbol forcing

A #£0.0

For a set F of operation symbols we define Emb(F) to be the term rewriting system
consisting of all the rules
fl@r,...,20) —

with f € Fand i € {1,...,n}.

Proposition 6 Let R be a term rewriting system over a set F of operation symbols. Then
the following assertions are equivalent:

(1) R is simply terminating;
(2)  RUEmY(F) is simply terminating;
(3) RUEmb(F) is terminating.

Proof: By definition all rules | — r of Emb(F) satisfy l4 >4 r4 for any simple monotone
F-algebra (A, >). This proves (1)  (2).

The implication (2) => (3) is trivial. Finally, assume that (3) holds. Then according to
proposition 3 there is a non-empty well-founded monotone F -algebra (A, >) normalizing
RU Emb(F). Since it normalizes Emb(F) it is also a simple monotone F-algebra. This
implies (2). O

5 The hierarchy

Let (A, >) be a monotone algebra. Depending on its properties we propose a hierarchy of
types of termination. If A = IN and > is the ordinary order on IN and f, is a polynomial
for all f € F, we speak about polynomial termination. If A = IN and > is the ordinary
order on IN, we speak about w-termination. In these cases we may have {n € N | n > N}
instead of IN, which gives equivalent definitions due to linear transformation.

If the order > on A is total and well-founded, we speak about total termination. If
(A,>) is a simple monotone algebra, we speak about simple termination.

The following implications hold, and we shall prove that none of the implications holds
in the reverse direction:

polynomial termination
— w-termination
=> total termination
= simple termination
= termination.

The only non-trivial implication is the implication of simple termination from total
termination. This follows immediate from the following proposition.
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Proposition 7 Let (4,>) be a well-founded monotone F-algebra for which the order >
is total on A. Then (A,>) is a simple monotone F-algebra.

Proof: Assume it is not simple. Then there exist fE€F,a,...,an € Aandi € {1,... ,n}
such that

a; > fa(ay,...,a,).

Define g : A — A by g(z) = fa(ay,...,0i1,7,ai41,...,a,), then g is strictly monotone.
We obtain an infinite chain

a; > g(a:) > g(g9(a:)) > g(g(9(a:))) > - -,

contradicting the well-foundedness of (4,>). O

To prove that none of the implications holds in the reverse direction we prove properties
of particular examples.

Proposition 8 The term rewriting system
o(f(z),y) — f(a(z,a(z,y)))
is w-terminating but not polynomially terminating.
Proof: Define a(z,y) = y* and f(z) = 2®. Then
a(f(2),9) =y > y** = f(a(z,a(z,y)))

for all z,y > 3, so the system is w-terminating.
Assume the system is polynomially terminating. Then there exist polynomials a and
f, strictly monotone in all coordinates, such that

a(f(z),y) > f(a(z,a(z,y))) (1)
for all z,y € IN. There exist polynomials p, g, r such that
a(z,y) = p(z) + q(y) + 2y * r(z, y).

If r # 0 then the degree in z of the left hand side of (1) is smaller than the degree in z of
the right hand side of (1), contradiction, so r = 0. Now (1) yields

P(f(2)) +9(y) > f(p(2) + q(p(z) + g(y)))- (2)

Due to monotonicity f,p and ¢ all have degree > 1. Considering the degree in Yy now
yields that both f and g are linear. Due to monotonicity the leading coefficients of f and
q are both > 1, due to (2) they are not > 1. So

f(z)=z+c and g¢(z)=z+d
for constants c and d. Now (2) yields
p(z +¢) > 2p(z) +d +c,
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which is impossible considering degree and leading coefficient. O

Another approach for proving the non-equivalence of polynomial and w-termination is
the following. For a polynomially terminating term rewriting system R on finite F it is
easy to prove ([12]) that there is a constant C only depending on R such that the length of
a reduction of a term consisting of n operation symbols is bounded by exp(exp(Cn)). For
w-terminating term rewriting systems this property does not hold. However, an example
of this is expected to be more complicated than the system of proposition 8. In [12, 7] an

example is given that the bound of exp(exp(Cn)) is sharp for polynomial termination. A
smaller example with the same behaviour is

a(a(z,y),2) — a(z,a(y,z))
fla(z,y)) — a(y, f(¥));

polynomial termination is shown by the interpretation a(z,y) = 2z + y and f(z) = 22,

while for every n large enough the term f"(a(z, a(y, z))) allows a reduction of which the
length exceeds exp(exp(Cn)) for some C > 0.

Proposition 9 The term rewriting system
flg(=)) — g(f(f(2)))
is totally terminating but not w-terminating.
Proof: For proving total termination choose A = IN x IN with the lexicographic order
(n,n) > (m,m') <= n>mVn=mAan'> m').

Further define
f(n,n) = (n,n+n') and g(n,n') = (2n + 1,n’').

Monotonicity of f and g is easily verified; for the monotonicity of f it is essential to choose
this lexicographic order and not the reversed one. Now we have

Flg(n,n)) = (2n + 1,20 + 0 +1) > (20 + 1,20 + ') = g(f(f(n,n")))

for all (n,n’) € A, so the system is totally terminating.
On the other hand assume that the system is w-terminating. Then there exist strictly
monotonic f,g:IN — IN such that

Vn €N : f(g(n)) > g(f(f(n))). (3)

Using monotonicity one easily proves by induction on n that

Vn€IN: f(n) > nAg(n)>n. (4)

Since f is monotonic we have
Vn,m € N: (f(n) > f(m) = n > m). (5)
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Proposition 11 The term rewriting system

f(f(=)) — flg(f(=)))

is terminating but not simply terminating.

Proof: The proof of termination was given in example 2 of section 3. Assume it is simply
terminating. According to proposition 6 then the system extended by the rules f(z) — =
and g(z) — z is terminating, which is not true since there is an infinite cyclic reduction

f(f(z)) = fg(f(z))) = f(f(x)) — ---

6 Concluding remarks

We gave a classification of termination of term rewriting systems based upon types of
orderings. The strongest type of termination we consider is polynomial termination:
termination that can be proved by a polynomial interpretation. For the five proposed
levels of termination we showed by very small examples that they are all distinct.

One of the common tools for proving termination of term rewriting systems is the re-
cursive path order with status ([9, 3]). It can be shown that every TRS proved terminating
using this ordering is totally terminating as follows. Consider the equivalence relation on
terms generated by permuting arguments of operation symbols of multiset status. Now
the set of terms up to this equivalence is a total monotone algebra in a natural way.
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