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Abstract

In this paper we consider the problem of randomly distributing balls over n holes. The weight of the
balls is given by a random variable. This problem models several problems from computer science, most
importantly randomized load balancing. We analyse the distribution of the sums of the weights of the balls
in the holes. We will carry out an analysis using the Chernoff bound and the Hoeftding inequality. Often
O(n - log n) balls are enough to assure good balancing of the weights. If the expected weight of the balls
is much smaller than their maximal weight, it is very useful to gather balls to super-balls. We also give an
analysis based on the moment-generating function of the ball weights. We derive the moment-generating
function of the probability-mass function of the sum of weights. From this moment-generating function it
is easy to derive moments and variance.
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1 Introduction

In this paper we analyse a problem from probability theory with several applications in computer science. The
problem concerns the random distribution of r balls over n holes. The weights of the balls are given by some
random variable X. The question is how large r must be in order to assure with high probability that all the
sums of the weights of the balls lie sufficiently close to the expected value and thus close to each other. This
minimal r depends on parameters of X, such as the size of its support, its expectation, and the allowed spread
of the sums. If X is a constant random variable, all the balls will have the same weight and the only thing
that matters is how many balls will end up in a hole. This problem is an instance of the coupon-collector-
problem, for which it is easy to show that n - logn balls are enough for bounding the sums of the weights of
the balls within a small constant factor. Allowing the weighs of the balls to be randomly distributed makes
the problem much more interesting from a mathematical point of view. However, the problem does not only
deserve mathematical interest: In this form it models a problem for both random graphs and randomized load
balancing. These problems are:

e What is the sum of the capacities of all edges leaving a vertex of a directed random graph?

*The work of the author was financially supported by the Foundation for Computer Science (SION) of the Netherlands
Organization for Scientific Research (NWO). This research was partially supported be the ESPRIT I Basic Research Actions
Project of the EC under contract No. 3075 (Project ALCOM). This paper was written during a stay of the author at the Hebrew
University in Jeruzalem.



e What is the sum of the lengths of the tasks scheduled to a PU in a parallel network with random
scheduling?

Of course, these questions cannot be answered. The question we will answer is how many balls (edges, tasks)
we need to assure that the sums under consideration differ by at most a constant factor.

The number of balls we need to assure good balancing of the sums of the weights depends on the distribution
of X. We will consider special cases (binomial, exponential and normal distribution); and the most general
case, that we only know the support of the distribution function of X. The more we know of X, the sharper we
can bound the required number of balls. For some applications, e.g., the second problem, it might be desirable
to reduce the number of balls that are actually distributed. This happens when there is overhead involved in
every distribution operation. This means that we would like to gather some balls to one super-ball. It turns
out that especially the technique of gathering balls until the sum of their weights exceeds a threshold value
is very good. Here we mentioned just two apparent applications but the problem of distributing balls with
weight according to a random variable may appear whenever a randomized algorithm is given for a problem
in which weights play a role.

In an earlier paper [7] we analysed a maxflow algorithm that combined some observations on the character
of random graphs, with a load-balancing algorithm. We used the Chernoff bound and the Hoeflding inequality
to give an estimate of the difference of the sum of all weights of the edges coming into a vertex and the sum
of the weights of all edges leaving a vertex (the first problem). This gave pretty sharp estimates with which
we could derive the desired results. These results were given in terms of: “With extremely high probability
the calculation will not take more time than ...”. This conforms with the usual way to express the results
of ana;yses of average-case algorithms. Typically in this kind of analysis, there is made only a distinction
between events that may occur and those that occur sufficiently rare to consider them as non-occurring. This
is rather coarse an approach. More informative, and much tougher to obtain, would be results like: “The
probability-mass function (pmf) of the calculation time t of the algorithm is given by f(t)”. It seems unlikely
that for any algorithm of interesting complexity this can be achieved. Nevertheless, it is at least informative,
and may even turn out to give better estimates, to carry out an analysis along these lines so far as possible.
Inspired by this we will try to give an alternative analysis of summing the weight of the balls that find their
way to a hole. We cannot give an expression for the pmf of the sum but it is not too difficult to give its
moment-generating function (mgf). In theory this gives an expression for the pmf of the sum but only in
terms of an unsolvable integral. This is no serious limitation however: From the mgf of the sum we can derive
expressions for the moments of the sum and in particular for the variance. This does not imply such strong
bounds as given by the Chernoff bound or the Hoeffding inequality but it gives much better real understanding
of what is happening.

The remainder of this paper is organized as follows: Section 2 is devoted to a presentation of known
facts from probability theorem and arranging them in a suited form for application. We will give a little bit
forgotten form of the Hoeffding inequality involving the mean of the distribution X of the ball weights. For
distributions which are strongly asymmetric this gives much sharper estimates than the usual form of the
Hoefiding inequality, involving only the support of X. In section 3 we will analyse the sums of weights of edges
(balls) coming into a vertex (hole) using the Chernoff bound and the Hoeffding inequality. In particular we
will address the question “how many balls there must be to assure that the sums of the ball weights differ by
at most a given constant factor”. The analysis is essentially the same as in [7] but is carried out in more detail.
However, there is something new: The more involved version of the Hoeflding inequality can be applied here
to show that the minimal degree a graph must have to assure that the total capacity of the in-edges differs at
most a constant fraction from the capacity of the out-edges, is lower than previously estimated. Section 4 is
devoted to an analysis of the spread of the sum of the ball weights as a function of the number of balls. In
section 5 we will consider the use and problems of gathering balls to super-balls before distributing them. We
distinguish two principal techniques: Gathering a fixed number of balls; gathering balls until the sum of their
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weights exceeds a threshold. In section 6, we will carry out the alternative analysis of the problem involving
pmf and mgf of the weights of the balls and their sum, resulting in the calculation of the variance of the sum.

2 Hoeffding inequality

In this section we introduce the Chernoff bound and the Hoeffding inequality. These are well-known bounds
on the tail of the distribution of a sum of random variables. Both bounds can be found in many standard
works on probability theory. Our basic formulation of the Chernoff bounds were taken from Hagerup and Riib
(3]. The Hoeffding inequality we took from Hofri [6] and will be derived in appendix B. Often we will have a
pair of formulas of the form P(4 > f(1+¢)-B) < C, P(A< f(1—¢€) - B) < C, with A, B and C expressions
and f a (simple) function. Such a pair of formulas will be presented concisely with the following notation:
P(4% f(1+¢)-B)<C.

A random variable B is a Bernoulli trial with parameter p if P(B = 0) = 1 — p; P(B=1)=p We
consider n independent Bernoulli trials B; with parameter p; and their sum S, = > iBi. Let p= 3ipi/n.
The Chernoff bound gives

P(Sa2(1+¢)-n-p) < e “mP/3 0<e<], (1)
P(Sa<(1-€)-n-p) < e ™?2 0<e<. (2)

If the B; are equally distributed with parameter p, then S, = Sn,p, the binomial distribution with parameter
n and p. (1) and (2) are mostly used in this form.

More generally, we want to consider the sum Z, of n mutually independent random variables X; with mean
#i = E[X;]. Let u =Y, p;i/n. Sharp bounds on the tail probabilities are given by the Hoeffding inequalities.
First we give some results for the case that 0 < X; < 1 for all i. The strongest form of the Hoeffding inequality
is [6]

P(Zp2n-(u+1) < [(8/(e+ )" (1 - w)/(1 = p—t))t-s—t]" 3)
Using an estimate from [3], we find from (3)
1 l—pu HumQta] e
P(Zﬂt(l'i'c)n#) _<. (1+€)1+((1_(1+€)#)
< [(lTee)'ﬁ] < 12.e7mul g<e< 1. (4)

The generalizations of (4) to X; with arbitrary support [m;, M;] become particularly nice when the X; are
equally distributed. So, assume m < X; < M, for some m and M. In this case

P(Z" t(1+e)-n«p) = P(Z(X,—m)/(ﬂl—m)t ((1+f)‘l-‘—m)'n/(M_m))

P(ZX,{ =(14+€)-n-y),
where X{ = (Xi —m)/(M —m), ¢ = ¢ p/(p—m) and p’ = (u - m)/(M — m). Substituting in (4) gives
P(Zp = (14€) -n-p) <12 e~ mu/(2u-m)(M-m)) (5)
An important special case is m = 0. Then,
P(Zp= (1+¢)-p-n)<1.2. e~ nu/M) (6)

Noticing that u%/(u — m) has minimal value 4-m (for 4 = 2 - m), we can still use (5) in case y is an unknown
value of the interval [m, M]. The least we can say then, is

P(Zy = (14+¢€) -n-p)<12. g~ nm/(M=-m) (7)



We assumed that 0 ¢ [m, M]. Otherwise we cannot exclude u = 0 and there is no direct way to apply the
Hoeffding inequality in this form to Z,!.

The four types of relations we introduced in this section will turn out to be just what we need in the
derivations of the following sections.

3 Using Hoeffdings inequality

We consider the problem of distributing balls over holes. The weight of the balls is not fixed but is a random

variable. We will analyse the sum of the weights of the balls in every hole. The problem has the following
parameters:

e there are n holes;
e there are r = « - n balls;
o balls have weight according to a random variable X, with E[X] = u.

Define an event a to occur with very high probability (vhp) if P(-a) < n~¢, for some constant w > 0. The
goal of this section is to determine for every 0 < ¢ < 0.5 the smallest o that assures that the weights of the
balls in the holes differ by at most a factor (1 + ¢)?/(1 — €)? vhp.

We set ¢ = 1— p. Let k; be the discrete random variable giving the number of balls that end up in in hole
i. k; is binomially distributed? with parameters r,1/n. Applying (1) and (2) gives

Pk >2(14¢)-a) < 3“52'0/3’
P(ki < (1 - 2/3 . 6) . a) < e—fz-a/a.
By logn we will mean %log n. Then, €!°8® > nl4. Thus,

Lemma 1l Ifa > 3-logn /e, then

Pki>(1+€)-a) < n7'4,
Pki<(1-+/2/3-¢)-a) < n~14

Let Z, ; be random variable giving the sum of the weights of the balls of hole ¢. Define
Cmin = Cmin(€) = 3 - max{1, (4 = m) - (M — m)/u?} - logn /€. (8)
There are two special cases:
Qmin = 3-max{l,M/u} logn /e, if m=0,
Amin = 3-max{1l,(M —m)/(4-m)} -logn /e, if u is unknown. 9)

Putting an upper bound on Z, ; is rather easy: If & > amin, then by lemma 1 and (5)

ki
P(Zpi>(1+€?-a-p) = P(ij >(1+¢€? a-p)
i=1
(1+6)a
< ML PN X2+ (1+6)-a-p)
i=1
< n~l4419. =€ (1+e) a-u?/(2-(p—m)-(M~m)) <2 n-14 (10)

LGoing back to (3) there is a form that is useful if one is interested in the range of values of Z, and not the ratio between
smallest and largest value Z,, can assume.

2The random vector (k; ,..., ky) has as compound pmf the multinomial distribution function. For any i, the marginal pmf of
k; is then binomial 8, p 95}.



In order to derive a lower bound on Z, ; with the same values of a, we must be more precise. It is here that
we need € < 0.5:

k:
P(Zni<(1-€2-a-p) = PO _X;<(1-¢ a-p)
=1

J
(1-4/2/3-¢)-a

< 24P Y X <(1-115-0-(1-v2/3-9)-a-p)
j=1
< n-14 4 1.2. e~(115:9%(1=y/2/3)au?/(2(k=m)(M-m)) < 9.p-14

Resuming,

Lemma 2 If & 2 amin, then
P(Z,; = (1 +6)? a-p)<2- n-14,

The main result of this section follows easily from lemma 2:

Theorem 1 Ifr = o - n, with a > amin, then
(1-€% a p<Zn;<(l+€)? a-p, foralli at the same time, vhp.

Proof: We prove that the complementary case does not occur (vhp): P(Zni < (1—€)?-a-por Z,; >

(1+¢€)? a-pforsomei)<n-P(Zp;i<(1—€? a-p)+n-P(Zni>2(1+6)? a -p)<4-n70% o

The following corollary clearly expresses that the balancing, achieved by randomly distributing the balls,
is fairly good:

Corollary 1 If a > amin, then max;{Z,;}/ min;{Z,;} < (1 +¢€)*/(1 - €)?, vhp.

For ¢ = 0.5 the given factor is 9. For smaller ¢ we may approximate (1+¢)2/(1—€)?2 = 1+4-¢. In the case of
load balancing (section 5) we may be more interested in the performance ratio of our algorithm. This means

the value of max;{Z, i}/Zn, opt, Where Zy, op; is the maximum of the sums of the ball weights after optimally
distributing them. We have

Corollary 2 If @ > Qmin, then maxi{Z, i}/ Zn, ope < (1 + €)?, vhp.

Proof: Lemma 1 gives Z,,, op¢ > 3; Xj/n 2 (1—6)-a-p,forall § > 0, vhp. On the other hand, being a little
more careful in the derivation of (10) we find for a sufficiently small§ P(Z,; > (1+¢€)?/(1-6)-a-p) < 2-n~ 14
for all o > amin. o

Some remarks: Implicitly we everywhere assumed that pz # 0. One may think this is a restriction. However,
if u = 0, we cannot expect to find a constant ratio between max;{Z, ;} and min;{Zy, ;}. In practical cases one
often has (M — m)/u = O(1) in that case amin = O(logn /€?). Unbounded X are a problem for application
of theorem 1. Often, however, it is easy to indicate m, M such that m < min;{X;} < max;{X;} < M
vhp. A good example of this is X; = Exp(A) (appendix A). Although the X; are unbounded, we can take
M =logn /A. The corresponding value of apin = 3 - log2 n /e,

4 Spread of the sums

Until now we were satisfied if the sums of the ball weights differed by at most a constant fraction. Theorem 1
gives a lower bound on the number of balls that should be distributed to assure this. In this section we will



analyse how large the spread around the expected value is as a function of the number of balls. The results
of this section have practical importance: Often, the number of tasks, balls, etc., will be given (or can be
estimated) and we want to get an impression of the balancing.

Instead of starting with an ¢ and finding the minimal & that will assure that (1 — €2 - a-p<Zy; <
(14€)?-a-p, for all i at the same time, we will give here the ¢ corresponding to a given a. From (8) we get a
sharp bound: € = [3-max{1, (u—m) - (M —m)/u?} -logn [a]'/?. Forall¢, 1-2-¢ < (1—¢)? and for € < 0.5,
(1+€2<14+25-¢ Let h(a) =2.5-€¢-au:

h(a) = [19 - max{1, (4 = m) - (M — m)/u?} -logn]'/? - Va - . (11)

Lemma 3 If a > apmin(0.5), then
a-p—h(a)< Z,; <a-p+h(a), for alli at the same time, vhp.

Lemma 3 expresses clearly that the spread in the sum of the ball weights only grows with the square root of
a, while the expectation of this sum grows with o itself.

It should be stated that the bounds we derived in this section and previously hold with very high probability.
So, in exceptional cases, they may be violated. On the other hand, most sums will lie much closer to the
expected value than suggested by these bounds. This normal behavior is expressed better by the standard
deviation, o. In section 6 we will see that o is much smaller than the spread of lemma 3. That most sums lie
within O(c) from the expectation does not mean that there is a reasonable probability that all n sums will
lie that close to the expected value. Just to assure that all sums lie between a - 4 — b’ and « - u + A’ with
probability, say 1/2, requires an h’ of the same order as h. This is fundamental: The whole idea of using vhp
bounding arises because often a final result is obtained as a conjunction of a polynomial number of cases. So,
the individual cases must have had inverse polynomial probabilities. In such cases, it will not require much
extra to bound the probability on the conjunction to inverse polynomial. In some way, the vhp is got for free.

5 Combining balls

In this section we will analyse the use of combining balls before distributing them. Previously [7] the sum
of the weights of balls modeled the sum of the weights of the edges incident on a vertex in a random graph.
The sum of the weights of balls can also be seen as a model for the total task length a scheduler schedules
to every processing unit (PU) in a n PU parallel processing network. In the former case the randomness
comes from assumption. In the latter case the randomness has to be brought in by using a random generator
for allocating the tasks. In figure 1 we give a schematic representation of this random allocation of tasks to
PUs. Producing many random numbers may be time consuming. Furthermore, scheduling a task to a PU will
produce additional code and require the PU to interrupt its execution for accepting the task and storing it
in a convenient way. All this brings about a lot of over-head for every task scheduled. It seems desirable to
consider techniques to reduce this. Two natural strategies appear: The scheduler can

e gather k tasks before scheduling them as a block to a single PU;

e gather tasks together until the sum of their lengths exceeds a threshold m.
It will turn out that if the number of tasks to be scheduled is larger than the minimal number given by
theorem 1, both ideas are very useful for reducing the relative amount of time PUs spend on overhead.
5.1 Gathering a fixed number of tasks

Let the lengths of the tasks be given by the random variable X, with 4 = E[X]. Z, ; is the sum of the lengths
of the tasks that are allocated to PU i. The minimal number of tasks, that must be scheduled in order to assure
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Figure 1: Random allocation of tasks to PUs.

max;{Zn i}/ min;{Z, ;} < (1 +¢€)?/(1 — €)? is given by theorem 1. Suppose now, that the schedulers gather k
tasks to one super-task. For given k, how many super-tasks must be scheduled to assure an (1 + ¢)2/(1 — ¢€)?
ratio? What is a good choice of k?

Let X = 2};1 X; be the random variable giving the length of the super-tasks. We have ji = E[X] =k - u.
Lemma 2 gives that for k > amin(é), P(X; = (1+&)?%-a-u) <2-n~14 This implies

Lemma 4 Ifk > apin(€), then
1-8% k-u<Xi<(14&% k-p, foralli, vhp.
Thus, for the super-tasks we have the following parameters:
m=1-8%k-m =k-m M=(1+4&> M.

By theorem 1 this gives @&min(€) = 3-max{1,4-&2-(2— &)} -logn /€2, for the minimal number of super-tasks
divided by n that must be scheduled in order to get a ratio (1 + €)2/(1 — €)? of the loads of the PUs. This
number is minimal if € = 1 — \/3/2. We then have to schedule only 3 - n - logn /e? super-tasks. For the
corresponding k we can take k = amin(l — v/3/2) < 23 - (u — m) - (M — m)/u? -logn. We showed

Theorem 2 Ifr=a-n, witha > 23 -logn - amis, then gathering k = a - €2/(3 - logn) tasks to a super-task
before scheduling them, reduces the number of scheduling actions to 3-n -logn /€2 and gives

1-e? a-p<Zp;<(1+€? a-pu, foralli at the same time, vhp.

Theorem 2 assumes that the total number of tasks to schedule r is known. It is more realistical to assume that it
is known that r is large enough but not how large. In that case one could take k = 23-(u—m)-(M —m)/u?-logn.
This kills the bad effect of very unbalanced distributions X without requiring much more tasks to schedule.

5.2 Gathering until a threshold is exceeded

In section 5.1 we gathered a fixed number of tasks to a super-task. It seems better to gather tasks until the
sum of their lengths exceeds a threshold value m. This approach can only be carried out if the scheduler can
obtain in O(1) time a reliable bound on on the calculation time of every task. This seems to require that this
information is determined by the task generators and attached to the tasks. A smaller disadvantage over the
approach of packing a fixed number of tasks before scheduling them, is that the scheduler must sum integers



instead of just counting until k. As it turned out that the simpler approach of gathering a fixed number of
tasks gives almost everything we could hope to find (theorem 2), it does not seem worth to spend time on the
analysis of a second gathering technique. However, there is a small gap that could be bridged still: theorem 2
gives a lower bound on r that is a factor 23 - logn higher than the lower bound on r given by theorem 1. In
this section we will show that this gap can be bridged except for a constant. Without loss of generality we
will assume that ¢ = E{X] > 0.

Tasks are taken together until the sum of their schedule lengths reaches or exceeds . The random
variable giving the length of the super tasks is denoted X. We suppose m = - M, for some § > 0. Obviously,
m=8-M< X< (B+1) M = M. We will determine a suitable value for 3. We do not know the value of
i = E[X] but, as explained at (7), we may assume3 ji = 2 - 7. Altogether,

m=8-M,p=2-8-M,M=(B+1)-M.

&min(€), the minimal number of super-tasks that must be scheduled in order to assure maz;{X;}/ min{X;} <
(14¢€)2/(1—¢)? vhp, is given by (9): &min = 3-max{1, (M —1m)/4-m}-logn [/e* = 3-max{1,1/(4-8)} -logn /€.
Now, we get

Lemma 5 For 8> 1/4, Gmin = 3 -logn /€%

We find it surprising that for such small values of 3 the super-tasks are already so well balanced. How many
tasks there must be to assure that there are # = & - n super-tasks? One expects this to be something like

7. (M + p)/up. 1t is difficult to give a precise expression. However, a good estimate is easy:
Lemma 6 (1—-6)-r-pu/M <7< (1+8)-r-p/m, for any constant 6 > 0, vhp.

Proof: No super-task has weight larger than M. Thus, using (5), P(F < (1~ 8)-r- u/M) < P(i_ Xi <
(1—-6)-r-p) < 1.2.e~8"rw?/(2(u=m)(M=-m)) 1> nis much larger than needed. Analogously: No super-task
has weight smaller than 7. Thus P(F > (14 ¢)-r-pu/m) < P(Xi_1 Xi > (1+¢€) -7 - p). For the rest we get
the same derivation. a

Lemma 5 and lemma 6 are combined to prove

Theorem 3 Ifr = a-n, with a > 6 -logn - M/(p - €2), then gathering tasks to super-tasks until the sum of

their weights exceeds - M, with 3=a - p-€2/(3-logn - M) — 1, reduces the number of scheduling actions to
6.01-n-logn /€2, and gives

(1-6% a-u<Z,i<(+6€? a-p, foralli at the same time, vhp.

Proof: This choice of 3 gives M = (8+1)-M = a-u-€2/(3-logn). Thus, by lemma 6, & > (1-68)-a-u/M =
(1—6)-3-logn /€2, for any 6 > 0. This is slightly smaller than Gmin, of lemma 5. Going back to lemma 1 we
see that this is no problem. Lemma 6 also gives & < (1 +6) -6 - logn /€2 a

Theorem 3 gives us the optimal reduction of actual scheduling operations without a requirement for more
tasks to schedule. This in contrast to the technique of gathering a fixed number of tasks to a super-task.
Reduction of the number of tasks to distribute to O(n - logn) can only be realized in the ideal situation that
the total number of tasks to schedule is known. If we do not know r in advance, then the best thing we can

do is to take some 8 = ©(1). E.g., simply 8 = 1. This eliminates all small tasks and reduces the number of
times a scheduler is used by a factor M/pu.

3Forf>1,2-m=2-8-M2(1+8)-M= M. So, if 8 > 1, the worst possible value for u. € [, M] is M. It is clear that
this is not the true value of i (which will lie close to 3 - M + ), but we can work with it.



6 Calculating the variance

In this section we analyse almost the same problem as in section 3. We consider the problem of shooting balis
at a target. Not all balls hit the target and they do not all havea fixed weight. We will analyse the distribution
of the sum of the weights of the balls that hit the target. The problem has the following parameters:

o r balls are shot at a target;
¢ hitting probability is p;
e balls have weight according to a random variable X.

In our earlier setting we had p = 1/n. In addition we assume that the distribution of X and its mgf Mx(s)
is known. Knowing more we can also derive more precise results on 2, = X1 + X2 + --- + Xu, the random
sum. E.g., we can calculate Var[Z,]. In notation and ideas we follow [8]. Let pn (k) be the probability that
the discrete random variable N, giving the number of balls that hit the target, has value k. Generally one
assumes that py (k) is known. In our case, shooting r times at a target with hitting probability p, clearly N
is binomial with parameter p. Analogously to [8, p 261] we get

Mz.(s) = 3" (Mx()* - pa(E) = 3 (Mx(s)* - ( : ) = (Mx(e) ) (12)
k=0 k=0

This is very general. The only thing we have used is that the probability that the target is hit k times is given
by the binomial distribution. Putting ¢t = i - s (where i = V=1), we get the Fourier transform expression for
Zn:

Nz, (t) = Mz,(i-s) = (Nx() -p+4q)"

In theory we could calculate from this the pmf of Zj:

fz.(2) = 5— / et Ny, (t)dt = o— / e™ . (Nx(t)-p+q) dt.
—00 < —-o00

However, this relation does not seem to be practical. (12) is more useful:

ElZ)) = S Mz.(5)limo
= r-(Mx(S)-p+q)"1-p~disMx(s)l,=o,
2
BIZL = 4Mz(5)lemo
= r(r-1)-(Mx(s) P+ " ’-(iM (s) e (Mx(s) ey pe oM
= x(s) P+ P | T Mx(s x(s) P+a)7" P g7 Mx(s) ls=o-

Using Mx(0) = E[X%] =1, d’ Mx(s) |s=0 = E[X] and éi%ﬂlx(s) |s=0, these relations reduce to

E[Z,] = r-p-E[X], (13)
E(z}) = r-(r=1)p" E*X]+r p E[X?].

Now we get a nice relation for the variance of Z,:
Var[Z,] = E[2%] — E*[Z,)=r-p-E[X?] - .p?- E[X* =r-p-(Var[X] + ¢ - E}[X]), (14)

where ¢ = p—1. We find that E[Z,] and Var[Z,] are given in terms of E{X] and Var[X ]. So, the assumption at
the beginning of this section that we know the distribution and mgf of X turns out to be superfluous. That both



E[X] and Var[X] appear in the expression for Var(Z,] is logical: There are two contributions to the uncertainty
of the value of Z,, the uncertainty in the number of contribuants and the uncertainty in the contribution of
each of them. This fact is also reflected in our two step approach of the derivation of theorem 1. Both terms of
(14) may dominate, depending on the value of ¢, E[X ], and Var[X]. An important consequence of (14) is that
the standard deviation of Zj, \/V—aTZT] , only grows with /7, whereas E[Z,] grows with r. Random variables
with a well behaving distribution assume with high probability values within ©(c) from their expectation.
Often Z, will be well behaved. This means that often the spread of Z, divided by the expectation of Z,
decreases with /7. This same fact appeared from lemma 3. Substituting p = 1/n in (14), we can compare
h(c) of (11) with \/Var[Z,] ~ /a - E[X?]. Except for pathological X, (u—m)- (M — m)/p? < E[X?]. For
such well behaving X we have h(a) = ©(log!/?n) - /Var[Z,]. This is a good result. In fact, the best possible:
For large a, the Z, ; converge to normal distributions (appendix C). To bound a normally distributed random
variable with mean p and standard deviation ¢ between u — h’ and  + h vhp, requires b’ = o(y/logn) - o
(corollary 4).

6.1 Examples

As examples we consider the exponential and the normal distribution. Basic properties of these distribution
are derived in appendix A. Zy, is denoted Z, x, Zn 4,0 Tespectively. Substituting in 13 and (14) gives

E(Z,)] = r-p/A Var[Zaa] = r-p-(1+9)/3%,
E{Znyusl = 7p/A Var{Zn o] = r-p(o?+q-4?).

What do these relations imply in case Z, » and Z, , , describe the sum of the lengths of the tasks scheduled
to a PU? For Z, ) it is rather easy: Var[Z, )] <2-r-p/ A2. The variance is only a constant factor larger than
when we would have known that exactly r - p balls would hit the target. This means that for the exponential
distribution (and other distributions X with E?[X] = O(Var[X])), randomly distributing the tasks does not
perform less good than first collecting all tasks in one scheduler and then giving equal numbers of tasks to all
PUs. For Z, .0, the situation is quite different: It seems that every relation between the two contribuants
to R, o is possible, depending on p and ¢. This is not true: N(u, o) can only give a good description of the
task lengths if N(u,o) > 0 vhp. As, for 4 > 0, P(N(u,0) <0) = ©(e—#*/9"), this implies u = Q(c - /Togn).
Together with ¢ = 1— 1/n, this gives Var(Z, ,, o] = r-p-¢- p*: the variance is complete due to the uncertainty
in the number of tasks a PU receives.

If we consider again the techniques of gathering tasks to super-tasks (cf. section 5), then it appears
that gathering until a threshold focuses more strongly on getting super-tasks with small variance than the
technique of gathering a fixed number of tasks. It is attractive to speculate that gathering until a threshold
will in particular perform well when Var{Z,] is dominated by Var[X], i.e. when E?%[X] = o(Var[X]). On the
other hand, the techniques may be just as good when Var[Z,] is mainly a result of the uncertainty in the
number of tasks a PU gets, i.e. when Var[X] = o( E2[X]).
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7 Conclusion

In this paper we analysed the behavior of the sum of N identical and mutually independent random variables
X, for the case that the number of summands N is a random variable. This analysis may be a first step in
the analysis of load-balancing algorithms.
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A Exponential and normal distribution

In this section we derive some of the relevant properties of the exponential and normal distribution. More
details can be found in any introductory text on probability theory [2, 8]. Both distributions are of utmost im-
portance. The normal distribution because of the central limit theorem; the exponential distribution because
it is a continuous version of the Poisson distribution and because it is an easy but non-trivial positive distri-
bution. As such it might model the length of tasks that are scheduled to PUs. This is even more true for the
hypo-exponential distribution, which is a generalization of the exponential distribution with more parameters.
All results for the exponential distribution can be generalized to results for the hypo-exponential distribution.
The exponential distribution with parameter A, Exp(}), has the following pdf f:

f(:c):{ 0 for £ €0,

A-em*®  forxz>0.
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Elementary integration gives all the results we need:

P(Exp(A)>t) = [FTA-er"dz = —e 7|7 = e
E[Exp())] = [ z-e*"dz = —z.e"*T—e M A = 1/},
E[Exp’(\)] = [ z-e*Tdz = —z2.erT_2.z.eME A2 M N = 2/A,
Var[Exp(\)] = E[Exp*(\)] — E2[Exp(})] = 2/X* -1/ = 1/A2,

Corollary 3 If the X; are exponentially distributed, then X; <2-logn/A, for n? trials at the same time, vhp.

Proof: The first inequality gives P(X; > 2-logn /)) < e"21°8" < 1/n?®. Thus, P(V;';1 X; >2-logn/A) <
=038, m]

The other distribution function we consider in this section is the normal distribution with parameters u
and o. The pdf f of N(u,0) is given by

1 3 2
= —(z=u)?/(2:¢%)

z -e .
f( ) oc-\V2-7

Basic results are

]

00 —(z-p)?/(2-07 00 1 —z? —
f_oonl;.;.e (z—n) /(')o)dz’ f_oom'e .‘L‘/?dz = 1,

E[N(#,G')] = ffooo ;._\71'2._1 . e'(t—l‘)’/(Zaz) dz = ffooo ;%’.2% . e—z’/(2.03) dz = p.
The calculation that E[N2(u,o)] = 02 + u2, and thus that Var[N(u, )] = o2, is more involved ([8, 203}).

Lemma 7 Forallh > 1,
P(N(u,0)> pu+0-h)= P(N(g,0) < p—o-h) <e /22,

Proof: By symmetry of the normal distribution only one inequality has to be checked: P(N(p,0) >

p+a-h)=P(N(©0,1)>h) = [P e = /2de/VT 7 < Tiege~ P+ 12[(k-V2-7) < 7;__;2'/; R ehilk <
e-u’/: 1 c-h’/z

Ve B ey ey = =% < e=1*/2/2. The first “<” holds for all k > 0, the last “<” for k>3. O

This result can be improved but for most purposes it is sharp enough, easy to derive and easy to remem-
ber. Using lemma 7, we find an analogue of corollary 3:

Corollary 4 Letm=p—0-2-\/logn and M = p+o0-2- Viogn. If the X; are normally distributed, then
m < X; < M, for n? trials at the same time, vhp.

B Proof of the Hoeffding inequality

In this section we will show how the general form of the Hoefding inequality (3) can be derived using only the
Markov inequality abd elementary manipulations. This is illustrative in its own right, but also it makes clear
how one could incorporate the variance of X in relations expressing the minimal r. In the derivation we will
assume that the X; are identically distributed with E[X] = u. The case that the average of the E[X;] is u

gives the same relation but is more difficult to derive and does not show interesting new techniques.
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Let Z, = ¥, X;. Then,

P(Zp2(p+t)-n) (for all A > 0)

P(e*Z» > XMt m) < (Markov inequality [2])
E[e*Z»]fer(#+)n = (independency of the X;)
[E[e’\‘x]/e'\'(““)]n = (independency of the X;) . (15)
For X <1 we can develop the numerator as follows:
pY ; A
AX) — A i Z. = A1) -p 16
E[e*X] §i! E[X]51+;i! EX] = 1+(*-1)-p (16)

Substituting this in (15) gives
P(Zp > (u+1)-n) < inf{ [1 +(e* - 1) -u/e“"*"]"}.

For which A the infimum is assumed? After taking the derivative we have to solve 0 = p - e* . eM(#+%) — (1 4

(e*—1)-p)- (u+1t) X+ This gives e* = (1 — p) - (u +t)/(4 - (1 — u — t)). Thus, by rearranging factors,
we find

I+(1—p)-(u+t)/—p=t)=p 1" _ [ & 1" [1-p—e*t?
Pz erm < [OEeRtr sk - ] e

This is (3). When we would like to introduce the second moment of X as well, we could have used instead of
(16) a more refined relation:

Ai
E[*X] < 14X\ E[X]+) % E[X] = 14+ X-p+(e - 1-))- E[X?].
5
Going on in the same way, we will not find a nice expression for e* that can be substituted. By numerical
techniques a value of A can be calculated by equating the derivative to 0.

C Convergency to the normal distribution

Satisfaction of the Lindeberg condition [1, ch 9.1] is necessary and sufficient for a sum of random variables to
converge to normal. For independent identically distributed random variables, the case we consider, the only
requirement to the Lindeberg condition is that the variance of the random variables is bounded. This seems
very promising. However, in addition to convergency to normal, we also need sufficiently fast convergency. The
Berry-Esseen theorem [1, ch 9.1} quantifies this convergency speed. For values around the mean it gives sharp
results, but not for the values far away from the mean in which we are interested. We could not find a theorem
that quantifies nicely the convergency of the tail of the sum of random variables to normal. Nevertheless, for
special distributions, it may be reasonable to assume that even the tails converge sufficiently fast. Under this
assumption, which will be made throughout this section, most results of this paper can be improved.

Let u = E[X], 0 = \/Var[X]. If Z, = Y i=1 Xi converges to a normal distribution, then this must be to the

normal distribution with parameters n-u and* \/n-o. This is equivalent to saying that Z!, = (Z,—n-u)/(v/n-0)
converges to the standard normal distribution N (0, 1).

Lemma 8 For sufficiently large n,

P(Zn t (1 + €) -n - ”‘) S e—n~((-u/a)2/2.

%1t is a well-known fact that the variance of a sum of independent random variables is the sum of their variances. This is also
a special case (p = 1) of (14).
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Proof: For sufficiently large n, P(Z, = (1+¢)-n-p) <2-P(N(n-p, Vi-0) = (1+¢€)-n-p). Lemma 7 with
h = ¢-+/n-plo gives the result. O

Now, we consider again the problem of section 3. Z, i is the random variable giving the sum of the weights
of the balls that fall in hole i. Define

o' in = 3-max{1,02/pu?} -logn [e*. (17)
Using lemma 1 and lemma 8, we can derive analogously to lemma 2:

Lemma 9 If a > a,;,, then
P(Zn; = (1462 a-p)<2-n7H4

This gives
Theorem 4 Ifr = a-n, with a > oy, then
1= a-p<Zp; <(1+ €)?-a-u, for alli at the same time, vhp.

Going on in this way it turns out that we can replace all occurrencies of (4 — m) - (M — m)/u? in section 4
and section 5.1 by 2/u?. The results of section 5.2 are not improved if we may assume that the Z,; are
(almost) normally distributed: Under the technique of gathering until a threshold is exceeded, there is almost
no relation between the distribution function of the super-tasks and the distribution function of the Xj;.

It may happen in a practical situation that we have only limited knowledge of the X;. E.g., we only know
their support. In that case we will use the amiq of (9). The lack of knowledge prevents us from using (8) or
even (17). It is interesting to investigate whether this matters a lot or not. The following examples show that
for some X; (8), (9) and (17), give large differences and that for some X; they give the same value:

B 2.m(1/2) N(p,0) Exp(})
m m u—2-+/logn 0
M 2-m p+2-logn 2.logn /A
u 3.-m/2 m 1/A
o m/f2 a /X
(M —m)/(4-m) 1/4 o-logn/(u~2-0-/logn) 00
(= m)- (M —m)/u? 2/9 8-logn - 0%/u? 2-logn
o?/u? 1/9 o%/u? 1

B m(p) is a generalized Bernoulli trial with parameter P: P(Bm m(p) =m) =1—p, P(Bnm(p) = M) =p.
Exp(}) is the exponential distribution with parameter A. The basic properties of Exp(\) and N(u,0) are
given in appendix A. If the X; are normally distributed, then the Z, ; are normal as well [8, th 3.6.] and we
are sure that the relations based on (17) can be used. We see that this gives a gain of a factor 8 - logn over
using (8).
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