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Abstract
In this paper it is shown that the category of sets and relations gives rise
to a model of weak second-order linear type theory. To describe the structure
of this model, categorical notions based on the concept of semi-functor [3] are
used. It is easy to transform the model into a A2-algebra [10], i.e. a categorical
model of the non-extensional A%-calculus. A slight extension of this A2-algebra.
yields a non-stable version of the coherence space model [1] of the A%-calculus.

1 Introduction

In [6] we have shown that the category Rel of sets and relations is a model of Linear
Type Theory (LTT). To describe the linear structure on Rel we used semi-notions
rather than ordinary categorical notions. These semi-notions are based on the con-
cept of semi-functor, which was introduced in [3]. A semi-functor is a “functor” that
does not preserve identities.

In this paper we shall extend Rel with second-order quantifiers. This new model
built out of Rel is a model of second-order Linear Type Theory (LTT?). Again the
structure of the model is described by semi-notions. For example, the second-order
quantifiers are semi-functors, and they form semi-adjunctions with appropriate sub-
stitution functors.

In the Rel-based model of LTT? several equalities hold. For example, the product
is equal to the coproduct, and the existential quantifier is equal to the universal
quantifier. By equipping the sets involved with unary or binary predicates, we find
models of LTT? in which less equalities hold. In particular, the model built out of
the category of sets with binary predicates may be considered as a non-stable version
of the coherence space model [1] of LTT2.

We describe two operations on models of LTT?2. Firstly, any model of LTT? can be
transformed into a A%-algebra, i.e. a model of the non-extensional A\?-calculus. Sec-
ondly, we show how the models of this paper can be “extensionalised” by equipping
the sets involved with a pre-order.



2 Semi-functors

In this section the categorical notions of adjunction and comonad are generalised to
semi-functors.

2.1 Semi-adjunctions

Let C, D be categories. A semi-functor F : C — D is defined just as a functor, except

that it need not preserve identities [3]. Hence, every functor is a semi-functor, but
not vice-versa.

Example 1 Let Rel be the category of sets and relations. Define the semi-functor
!': Rel — Rel on objects A as!A = {X C A|X finite }, and on arrows R: A — B
as X!(R)Y & Vb€ Y3a € X(aRb).

The natural transformation F(id) with components F(id4) : FA — FA plays an
important role. We write D(F A, B), for the set of arrows f € D(F A, B) that satisfy

foF(ida)=f
If F happens to be a functor, then D(FA, B), = D(FA, B). Analogously, the set
D(B, FA), is defined.

Various category-theoretic definitions which involve functors can be generalised to
semi-functors. For example, the notion of semi-adjunction is defined as follows.

Definition 2 Let C,D be categories. A semi-adjunction from C to D is a tuple
(F,G,a,B) where F: C — D and G : D — C are semi-functors, and a and B are

families of functions

D(FA, B) S4B

» C(A,GB
Ba,B ( )

natural in A, B, which cut down to isomorphisms

D(FA, B), = C(A,GB),

This definition of semi-adjunction is equivalent to the original definition of [3] (see
[7])!. We write F -, G iff F, G are components of a semi-adjunction.
In this paper we shall in particularly be interested in semi-adjunctions of which the

left-adjoint F is a functor. If both adjoints happen to be functors, the definitions of
adjunction and semi-adjunction coincide.

!We might simplify our definition of semi-adjunction by just requiring a natural isomorphism
between the restricted Hom-sets [7]



2.2 Semi-comonads

A further notion which may be generalised is that of a comonad [11].

Definition 3 Let C be a category. A semi-comonad on C is a tuple (T, n, u) where
T : C — C is a semi-functor, and n : T — Idc and p : T — TT are natural
transformations, satisfying

1. nraopa=T(na)opa=T(ida)
2. praopa=T(pa)o pa
3. KA OT(idA) = HA

If T happens to be a functor, then the definitions of comonad and semi-comonad
coincide.

Example 4 The semi-functor ! of example 1 is part of a semi-comonad structure
on Rel. Define Xnqa & a€ X and Xpax & Ux € X.

We also define an appropriate notion of morphism between semi-comonads.

Definition 5 A semi-comonad morphism (F,m) between semi-comonads (T : C —
C,n,p) and (T" : D — D, v/, i) consists of a semi-functor F : C — D and a natural
transformation m : T'F — FT such that

1. F(na)oma = npy 0 T'F(idy)
2. F(pa)oma=mraoT'(my)o try
3. maoT'F(ids) =my

Let CoMnd, be the category with as objects semi-comonads and as arrows semi-
comonad morphisms. The identity on (T, 7, u) is (Idc, Tid), and if (F,m) : (T, n, u) —
(T',n',u') and (G,n) : (T", 7', ') — (T",n", u") are semi-comonad morphisms, then
their composition is the arrow (GF,Gm - nF) : (T,n, u) — (T",n", u").

In analogy with the relation between comonads and adjunctions [11], there is a re-
lation between semi-comonads and semi-adjunctions. Part of this relation is the
construction of (semi-)Kleisli categories.

Definition 6 Let (T,7n, ) be a semi-comonad. The semi-Kleisli category KI(T) of
T is the category with as objects the objects of C, and as arrows f : A — B arrows
f € C(TA, B),. The identityids on an object A in KI(T) is the arrowna : TA — A,
and the composition g x f of arrows f : A — B and g : B — C in KI(T) is defined
byg*f=goT(f)opa.

If T is clear from the context, then we write KI(C) for KI(T). The operation Kl
can be extended to a functor on CoMnd,.
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Definition 7 Let K1 : CoMnd, — Cat, be the functor defined on objects by KI({T :
C— C,n,pu) = KU(T). If (F,m) : (T,n,u) = (T',n', ') is a semi-comonad mor-
phism, then KI((F,m)): KI(T) — KI(T") is the semi-functor defined on objects C
by KI((F,m))(C) = F(C) and on arrows f : C — C' by KI({F,m))(f) = F(f)ome.

In this definition Cat, is the category of categories and semi-functors. If m is clear
from the context, then we write KI(F') for KI((F,m)). Note that if F in (F,m) is
a functor, then KI({F, m)) is a functor.

3 Linear Decomposition of Typed Lambda Cal-
culus Models

First order Linear Type Theory (LTT) [2] may be viewed as a decomposition of the
usual type theory belonging to the typed lambda calculus. The main feature of this
decomposition is the decomposition of the exponential type => into two new type
constructors —o (linear implication) and ! (of-course). The type A = B may then
be written as !(A)—oB.
Further linear type constructors are the binary type operators x (direct product)
and ® (tensor product), and the constant types 1, I, 1.
The syntactical decomposition of type theory into LTT has a semantical counter-
part. It is well-known that Cartesian closed categories (CCC’s) are models of typed
lambda calculi. In [15] Girard categories (GC’s) have been defined as models for
LTT. Among other things, a GC C has finite products (1, x), it is monoidal closed
(where ®, I is the monoidal structure on C, and —o makes it closed), and there is
a comonad ! : C — C. Corresponding to the decomposition of type theory into
LTT, each GC C is a decomposition of a CCC, which may be regained by taking
the Kleisli category KI(C) of C.

It is also possible to decompose the type theory of non-eztensional typed lambda

CCC wCCC
Kleisli semi Kleisli
GC wGC

calculi, i.e. of typed lambda calculi which do not satisfy the 5-rule:
Az :o.(tz) =t

Models of these non-extensional calculi are weak Cartesian closed categories (wCCC’s)
(3, 6, 10]. A wCCC is defined as a CCC, except that the functionspace construc-
tor is a semi-functor rather than a functor, and hence it forms a semi-adjunction
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rather than an adjunction with the product-functor (see the appendix for an al-
gebraic description of a wCCC). In [6] weak Girard categories (wGC’s) have been
defined. Roughly, the difference between GC’s and wGC’s is that ! need only be a
semi-comonad on a wGC (see appendix for exact definition). Each wGC C is a de-
composition of a wCCC, which may be regained by taking the semi-Kleisli category
KI(C).

4 Linear Decomposition of A\2-Models

Linear Type Theory with second-order quantifiers (LTT?) may be viewed as a de-
composition of the type theory belonging to the second-order lambda calculus [1, 2].
In addition to the type structure of LTT, in LTT? there are linear type variables
a,f,... and if o is a linear type, we may abstract over o and form the type Ia.o.
The possibility to abstract over types carries over to the type theory constructed
out of LTT?, which is therefore the type theory belonging to A2-calculus.

In this section we will describe the categorical structure needed to interpret the
non-extensional second-order type calculi, and we will show how A2-models may

be constructed out of LTT?-models by means of an analogue to the (semi-) Kleisli
construction.

4.1 A2-models

In [14] PL-categories are defined which provide semantics for the A2-calculus. In [10]
(the second-order version of) PL-category is generalised to A\2-algebra. In A2-algebras

we can interpret the non-extensional A\?-calculus, i.e. the A?-calculus without the
two 5-rules:

Az :o.(tz) =t
Ma.(ta) =t
Definition 8 2 A A-algebra H consists of the following data:

® A category B,called the base category of H, with finite products and with a
distinguished object (.

e A functor H : B®? — WCCC into the category of wCCC'’s and (up to equality)
structure preserving functors.

® For each N € B a semi-functor Iy : H(N x Q) — HN.

satisfying the following requirements:

?Note that this definition slightly differs from [10] as we require the fibers to be wCCC’s instead
of semi-CCC'’s.



1. For each N € B we have B(N,Q) = Obj(HN), and for eachu: M — N in B
the functor u* = H(u) : HN — HM acts on objects by composition.

2. For each N € B we have 7} q -, IIn, where y,q : NXQ — N is the projection
in B.

3. Beck-Chevalley condition (omitting indices):
(a) IIo(u x td)* =u*oIl
(b) u*a = a(u x id)*
(c) (ux i)y g = pu

where o, 3 are the natural transformations belonging to the semi-adjunction

= -, II.

4.2 LTT2%models

In [15] the notion of indezed GC (iGC), the categorical structure belonging to LTT?2,
is roughly described. It is shown that an analogue of the Kleisli construction may
be applied to an iGC to obtain (the second order version of) a PL-category. In this

PL A-alg
ind. Kleisli ind. semi-Kleisli
1GC iwGC

section we define the corresponding decomposition of a A\2-algebra. An indezed wGC
(iwGC) is defined exactly as an A2-algebra except that the fibers H(N) are wGC'’s
instead of GC’s (and that the functors u* preserve the wGC-structure rather than
the wCCC-structure).

Definition 9 An indexed weak Girard category (iwGC) H consists of the following
data:

o A base category B with finite products and with a distinguished object Q.

e A functor H : B — WGC into the category of wGC'’s and structure preserving
functors.

o For each N € B a semi-functor Iy : H(N x Q) — HN.

satisfying the following requirements:



1. For each N € B we have B(N,§) = Obj(HN), and for eachu: M — N in B
the functor u* = H(u): HN — HM acts on objects by composition.

2. Foreach N € B we have 7y o 4, Iy, wheremyg : NxQ — N is the projection
in B.

3. Beck-Chevalley condition (omitting indices):
(a) Ilo(uxid)* =u*oll
(b) u*a = au x id)*
(c) (ux id)B = pu

where a, f are the natural transformations belonging to the semi-adjunction

-, II.

4.3 The Indexed Kleisli Construction

Just like the Kleisli category can be taken of ordinary semi-comonads, the indezed
Kleisli category construction may be applied to indered semi-comonads.

Definition 10 An indexed semi-comonad is a functor H : B’ — CoMnd, such that
if H(f) = (F,m), then F is a functor.

Definition 11 The indexed Kleisli category :K L(H) of an indexed semi-comonad
H is the indezed category Klo H : B — Cat.

Let I : WGC — CoMnd, be the inclusion functor defined by I(C) =!¢ on objects,
and if F € WGC(C, D), then I(F) = (F,!pFid). AniwGC H : B — WGC may be
considered as an indexed semi-comonad I o H : B®? — CoMnd,, hence the indexed
Kleisli category construction may be applied to indexed weak Girard categories. We
write i KI(H) for iKI(I o H). For each iwGC H iKI(H) is a A\*-algebra.

Lemma 12 Let (T : C — C,n,p) and (T' : D — D, 7', u') be semi-comonads, and
let F: C — D be a functor such that FT = T'F, Fn = o'F and Fu = u'F. If
F 4, G, then there is a natural transformationn : TG — GT' such that

e (G,n) : T' > T is a semi-comonad morphism.
o KI((F,T'Fid)) 4, KI({(G,n))

Proof: Suppose a, § are the natural transformations belonging to the semi-adjunction
F 4, G. Take n = o(T'(B(G(id)))), then (KI({F,T'Fid)), KI({G,n)),a,B) is a

semi-adjunction. [ ]



Theorem 13 If H is an iwGC, then iKI(H) is a \?-algebra.

Proof: We already know that each iKI(H)(N) = KI(HN) is a wCCC. It is easy to
check that the functors i KI(H)(u) preserve the wCCC-structure. By the previous
lemma, the functors : KI(H)(r) = Kl(r*) have semi-rightadjoints KI(II). It is easy
to check that i KI(H) satisfies the Beck-Chevalley conditions. [ |

5 Rel as iwGC

In [6] we have shown that the category Rel of sets and relations is a wGC. In this
section we will construct an iwGC out of Rel. Taking the indexed Kleisli category
of this iwGC gives a simple example of a A\?-algebra.

5.1 Inj

Define Inj as the category with as objects sets and as arrows injective functions.
This category has a number of (well-known) useful properties, which are similar to
the properties of algebraic dcpo’s. Firstly, it is directed complete.

Definition 14 Let C be a category. A directed diagram in C is a functor D : | —

C, where I is a directed poset (i.e. every two elements have an upperbound in I)
considered as a category.

Theorem 15 Inj is directed complete, i.e. each directed diagram in Inj has a col-
imait.

Furthermore, finite sets are ”compact” in Inj.

Theorem 16 If (p; : A; — Ali € I) is a directed colimit in Inj, and f € Inj(X, A)
where X is finite, then there exists k € I and f' € Inj(X, Ax) such that py o f' = f.

Let S be a set of finite sets such that each finite set is isomorphic to an element of

S, then S forms a basis for Inj in the sense that each object of Inj is the colimit of a
directed diagram of sets in S.

Theorem 17 Let A € Inj, and let I be the set {(X, f)|X € S, f € Inj(X, A)}. Order
I by (X, f) < (X', f') iff there ezist g € Inj(X, X") such that f' = f o g. Note that
g s unique if it exists, and that I is directed.

Define D : I — Inj by D({X, f)) = X and D({X, f) <(X", ') =g: X — X', then
A is a colimit of D.

Note that the n-fold products Inj" inherit these properties of In;.



5.2 The functor H

The base category B has as objects the categories Inj". We take Q = Inj. The arrows
of B are continuous functors.

Definition 18 Let C,D be directed complete categories. A functor F : C — D is
continuous iff it preserves directed colimits, i.e. if (p; : A; = Ali € I) is a directed
colimit in C, then (F(pi) : F(A;) = F(A)|: € I) is a directed colimit in D.

The fibre H, = H(Q") has as objects continuous functors Q" — . The arrows
R in H" between objects F,G : Q" — ) are continuous families of relations, i.e.
R = (R4 C F(A) x G(A)|A € Inj), and if (p; : A; = Ai € I) is a directed colimit in

Inj”, then
Ry = U{(F(p:)(a), G(p:)(b))|aRa;b}
i€l
Note that a continuous family of relations is monotone: for f : A — B one has

aR4b = F(f)(a)RpG(f)(b)

The identities in H,, are the families of identities, and composition is defined component-
wise: (S o R)4 = Sy o0 Rs. Given a continuous functor U : Q™ — Q" we define
U*: H, — H,, on objects F as U*(F) = FoU, and on arrows R as U*(R)4 = Ry(a).

5.3 The functors II,,

First we define the trace of a functor.

Definition 19 Let F : Inj — Inj be a continuous functor. The trace Tr(F) of F is
the set {{X,a)|X € S,a € F(X)}.

For each natural number n we define a semi-functor II,, : Hp4q = H(Q" x Q) — H,,.
Let F : Q"1 — Q be an object of Huyy, then II,(F) is an object of H,, i.e. a
continuous functor Q" — . On objects A € Q" we define

I.(F)(A) = Tr(F(4,-))

and on arrows f : A — B in Q" we define II.(F)(f) : Tr(F(A,-)) — Tr(F(B,-))
by

I.(F)(f)(X,a) = (X, F(f,idx)(a))

Let R: F — G be an arrow in Hyyy, then II,(R) : II,(F) — II,(G) is an arrow in
H,, defined by

(X, a)(TIn(R))a(Y,b) & 3f : X — Y(F(idy, f)(a)Rayb)
It is easy to see that in general II,, is only a semi-functor:

(X, a)(TL(:d)) a(Y b)
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Aad
3f: X = Y(F(ida, f)(a) = b)

+

(X,a) = (Y,b)
Let P, : Q™! — Q" be the projection in B.
Theorem 20 P; -, I,

Proof: The functor P is defined on objects F € Q" as P;(F) = Foll,. We
define natural transformations af : Hp1(F 0 Py, G) — Ho(F,I1,(G)) and ff :
H.(F,I1,(G)) = Hu41(F o P, G) as follows. Let R: Fo P, — G then

ac(R)a(Y,b) & aRsyb
Let R: F — II,.(G), then
af(R)aab e 3Y,f:Y — A,V € G(A,Y)(aRa(Y, b')&G(id4, f)(V') = b)

It can be checked that (P}, II,, a", ") is a semi-adjunction. u

5.4 The structure on the fibers

The wGC-structure on the fibers H,, is similar to the structure on Rel [6] We shall

give the definitions of the linear operators in H, on objects F, G. Let A be an object
of Q".

e 1,(A)=10
o I,(A) = {*}
o 1,(A)={x}

o (WF)(A4) = Ps(F(4))

o (F xn G)(A) = F(A) ¥ G(A)
¢ (F®aG)(4) = F(A) o G(4)
o (F—0,G)(A) = F(A) o G(A)

where AW B, Ao B are resp. the disjoint union and the cartesian product of two sets.
It is easy to define the linear operators on arrows, and to show that the functors U*
preserve the structure on the fibers.
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6 Some Related iwGC'’s

In this section we describe three iwGC’s which are related to the model of the
previous section.

6.1 PRel as iwGC

The objects A of the category PRel are pairs (Dom g, pa), where Dom 4 is a set, and
pa is a predicate on Domy, i.e. py is a subset of Dom 4. We write ps(a) iff a € py.
The arrows R : A — B of PRel are relations R C Domy x Domp which preserve
truth, i.e. pa(a)&aRb implies pp(b). It is clear that Rel is a full subcategory of PRel.
In [6] we have shown that PRel is, like Rel, a wGC. For example, a semi-comonad
structure on PRel may be defined® by Domiy = {X C Domy|X finite } and
pa(X) & Va € X(pa(a))

Analogous to the construction of an iwGC out of Rel we can build an iwGC out
of PRel. In fact, there are only three differences. Firstly, instead of Inj we use the
category Plnj. This category has as objects sets and as arrows f : A — B injective
functions f : Domy — Domgp satisfying

pa(a) & pa(f(b))

The category Plnj has properties similar to Inj. The second difference is that the
arrows in the categories H, are continuous families of truth preserving relations.

Finally, on the trace of a continuous functor F : Plnj* — Plnj a predicate PTr(F) 18
defined by '

pre(F)({X, a)) & pr(x)(a)

6.2 WCohl as iwGC

The category WCohl has as objects pairs A = (Domy,q,), where Domy is a set
and g4 is a binary, rather than an unary, predicate on Dom,. In fact, we shall
require that these predicates are symmetric. Arrows R : A — B are relations
R C Dom 4 x Domp which preserve the predicates (i.e. ga(a,a’)&arb&a’Rb implies
QB(b) b,))

It has been shown in [6] that WCohl can be equipped with the structure of a wGC.
By now it should be clear how to build an iwGC out of WCohl. We shall not give
details. The indexed semi-Kleisli category of this iwGC turns out to be the same
as the AZ-algebra that we get by dropping everywhere the word ”stable” in the
description of the coherence space model of the A\?-calculus [1].

3 Alternatively, we might take Domiq = {X C pa|X finite}.
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6.3 NRel as iwGC

A very simple iwGC can be defined by using only sets of natural numbers. Firstly,
we define the category NRel as the full subcategory of Rel with as objects elements
of Pw. Because there are encodings of finite subsets (—)* : F(w) = w and of
pairs (w X w = w of natural numbers as natural numbers, the category NRel can
be equipped with essentially the same wGC structure as Rel. For example, we may
define !z = {X*|X C z, X finite } for z C w.

It is well-known that Pw ordered by inclusion is an algebraic lattice. The compact
elements of Pw are the finite sets. To convert NRel into an iwGC, we take base
category B with as objects (Pw)" for n € w and as arrows continuous functions (i.e.
functions that preserve directed joins). Furthermore; we take Q = Pw.

The objects in the category H, are continuous functions " — (), and the arrows
R : f — g are families (R, C f(z) x g(z)|z € (Pw)") such that if U C Pw is

directed, then

RUU = U Rz-

zelU

For every continuous function f : Q™ — Q" a functor f* : H, — H,, is defined by
f*(9) =go f and (f*(R)), = Ry(g), for z € Pw.
If f:Pw — Puw is a continuous function, then Tr(f) = {(X*,n)|X C w, X finite
»n € f(X)}. Functors II, : Hu4y — H, are defined on objects by II,(f)(z) =
Tr(f(z,—)), and on arrows by (X*,n)II,(R).(Y*,m) & X C Y&nR,ym.
In general, the II,, are only semi-functors:

(X, ) (ILa(id)) (X", n")

A4
X C X'&n(id), x '
&
XCX&n=n
#

(X,n) = (X',n")

Note that this iwGC is in fact a simplification of the iwGC constructed out of Rel
by requiring the arrows in Q to be inclusions rather than, more general, injections.

7 Preordered Sets

The Karoubi envelope construction may be used to transform various semi notions
to the corresponding ordinary notions [3, 6]. For example, the Karoubi envelope
K(C) of a category C is a CCC, resp. a GC if C is a wCCC, resp. a wGC. We do not
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know how to extend the Karoubi envelope construction to indexed categories such
that the (extended) Karoubi envelope of an iwGC is an iGC. However, in special
cases we can transform iwGC’s into iGC’s in a manner which is reminiscent of some
sort of Karoubi envelope construction. In this section we shall transform the iwGC
constructed out of NRel into a iGC. In a similar way the other iwGC’s defined in
this paper can be transformed into iGC’s.

In [6] we have seen that taking the Karoubi envelope of Rel is more or less the same
as equipping the objects A with a preorder * <, and requiring that the arrows
R : A — B satisfy

a <pqaRb<pgb' = o'RV

Hence, to transform the iwGC constructed out of NRel into a iGC, we shall equip
all sets with preorders.

Definition 21 PRw is the set of pairs u = (z,,<,), where , € Pw and <, is a
preorder on z,,.

The set PRw can be ordered by
uCv & (2, Cz,& <,C<L)

It is easy to check that (PRw,C) is an algebraic lattice and that the compact
elements are the finite preorders. The base category B has as objects (PRw)" for
n € w, and as arrows continuous functions. The categories H, are defined just
as in the NRel-model except that we require the families of relations to satisfy the
additional requirement

a <f(w) aR,b <o(u) b = d'R,bV

Note that the identity ¢d; on an object f in H, is given by the family (< Sy |u €
(PRw)").

The GC-structure on the categories H, is similar to the structure in the NRel-
model. For example, for each n a functor !, : H, — H, is defined on objects by
Tif(u) = {X+|X C .'L'f(u),X ﬁnite}, Xt ng(u) Yt VbeY3ae X(a Sf(u) b), and
on arrows by X*+!R, Y+ & Vb € Y3a C X(aRyb). Furthermore, there are natural
transformations 9™ :! — Idpy,, p" :! —!! defined by X*(n}),a ¢ Ja’ € X(a’ <t @
and X*(p})uxt ¢ Va' € Ux3a € X(a <4 a'). It is easy to see that (I, 7", u") is
a comonad on H,.

The functors f* are also as in the NRel-model.

Let f :PRw —PRw be a continuous function. The preorder Tr(f) has domain
{U*|U €PRw,U finite,n € z4v)} (where (—=)* :FRw = w) and (U%,n) <Te(s)

“In fact, the objects are equipped with transitive relations < having the interpolation property
a<c=3I(a<b<e).
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(V¥ ,m) & U C V&n <#(v) m. Next the functors II,, are defined as in the NRel-
model, but using this preordered trace.
It is easy to check that II, preserves identities:

(U*, n)(IIa(idy))u(V*, m)
&
U C V&n(idf)uym
A4
UCV&n <fuvym
-4
(U*, 1) <tr(s(u-) (VF,m)
A4
(U*,n) <manw (V*,m)
<
(U#, n)(idn, (5))u(VE, m)
As the categories H, are GC’s rather than wGC’s we have in fact built an iGC. Ap-

plying the indexed Kleisli category gives a (second-order version of a) PL-category.
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Appendix
A wCCC’s

Definition 22 A weak Cartesian closed category (wCCC) C [3, 6, 10, 12] is a

category C with a terminal object 1 and binary products Ax B, and with the following
data:

o For each pair of objects A,B € C an object A = B € C, and an arrow
eaB € C((A = B) x A, B). Furthermore, for each arrow f € C(D x A, B) an
arrow A(f) € C(D, A = B).

satisfying the following equations (omitting subscripts):
L.eo(A(f) xid)=f
2. A(fo(g xid) = A(f) og

14



B wGC’s

Definition 23 A linear category [6, 13, 15] (C,x,1,8,I,~0, 1) is a category C
such that:

1. The functor x : Cx C — C is a chosen product in C, and 1 is a terminal object

in C.

2. (C,®,1) is a symmetric monoidal category, i.e. ® is a functor C x C — C,
I is an object in C, and there are natural isomorphisms ppp : AQ B &
BRA M:ARI=Aandaspc: (A®B)QC = A® (B ® C) satisfying
certain commutative diagrams, the MacLane-Kelly coherence conditions (for
more details see [11]).

3. (C,®,1,—0) is a symmetric monoidal closed category, i.e. —o is a functor
C? x C — C and (—) ® B is a left adjoint of B—o(—) (i.e. there is a natural
isomorphism C(AQ® B,C) = C(A, B—C)).

4. L is a dualising object in C, i.e. for each object A the arrow 74 given by the
nezt derivation is an isomorphism:
(A—oLl) & (A—ol)
(Aol)@A— L
AR (A—ol)— L
A4 (A—ol)—oL

Definition 24 A wGC [6](C, x,1,®, 1,0, L,!,n, u,i,~) is a linear category (C, x,1,®, I, —o, .
such that

1. (n,p) is a semi comonad on C.
2. 1112 I is an isomorphism, such that:
o iol(idy) = §
3. ~4,B:!AQ!B =!(A x B) is a isomorphism natural in A, B, such that:
o !({pia,B),!(74,B))) © axB =~14,B o(pa ® pB)o N/—l,lB
where T4 : AX B — A and myp : A X B — B are projections, and (f,g) :

C — A X B is the unique arrow such that v o (f,g) = f and 7' o (f,g) = g.
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Abstract
In this paper it is shown that the category of sets and relations gives rise
to a model of weak second-order linear type theory. To describe the structure
of this model, categorical notions based on the concept of semi-functor [3] are
used. It is easy to transform the model into a A%-algebra [10],i.e. a categorical
model of the non-extensional A2-calculus. A slight extension of this A2-algebra
yields a non-stable version of the coherence space model [1] of the A2-calculus.

1 Introduction

In [6] we have shown that the category Rel of sets and relations is a model of Linear
Type Theory (LTT). To describe the linear structure on Rel we used semi-notions
rather than ordinary categorical notions. These semi-notions are based on the con-
cept of semi-functor, which was introduced in [3]. A semi-functor is a “functor” that
does not preserve identities.

In this paper we shall extend Rel with second-order quantifiers. This new model
built out of Rel is a model of second-order Linear Type Theory (LTT?). Again the
structure of the model is described by semi-notions. For example, the second-order

quantifiers are semi-functors, and they form semi-adjunctions with appropriate sub-
stitution functors.

In the Rel-based model of LTT? several equalities hold. For example, the product
is equal to the coproduct, and the existential quantifier is equal to the universal
quantifier. By equipping the sets involved with unary or binary predicates, we find
models of LTT? in which less equalities hold. In particular, the model built out of
the category of sets with binary predicates may be considered as a non-stable version
of the coherence space model [1] of LTT?2.

We describe two operations on models of LTT?. Firstly, any model of LTT? can be
transformed into a A2-algebra, i.e. a model of the non-extensional A?-calculus. Sec-
ondly, we show how the models of this paper can be “extensionalised” by equipping
the sets involved with a pre-order.



2 Semi-functors

In this section the categorical notions of adjunction and comonad are generalised to
semi-functors.

2.1 Semi-adjunctions

Let C, D be categories. A semi-functor F : C — D is defined just as a functor, except
that it need not preserve identities [3]. Hence, every functor is a semi-functor, but
not vice-versa.

Example 1 Let Rel be the category of sets and relations. Define the semi-functor
!': Rel — Rel on objects A as !A = {X C A|X finite }, and on arrows R: A — B
as XY(R)Y & Vbe Y3a € X(aRb).

The natural transformation F(id) with components F(id4) : FA — FA plays an
important role. We write D(F A, B), for the set of arrows f € D(F A, B) that satisfy

foF(ida) = f

If F happens to be a functor, then D(FA, B), = D(FA, B). Analogously, the set
D(B,FA), is defined.

Various category-theoretic definitions which involve functors can be generalised to
semi-functors. For example, the notion of semi-adjunction is defined as follows.

Definition 2 Let C,D be categories. A semi-adjunction from C to D is a tuple
(F,G,a,8) where F : C — D and G : D — C are semi-functors, and o and B are
families of functions

D(FA,B) ——22 . ((A,GB)
Ba.B

natural in A, B, which cut down to isomorphisms

D(FA, B), = C(4,GB),

This definition of semi-adjunction is equivalent to the original definition of [3] (see
[7])'. We write F -, G iff F, G are components of a semi-adjunction.

In this paper we shall in particularly be interested in semi-adjunctions of which the
left-adjoint F is a functor. If both adjoints happen to be functors, the definitions of
adjunction and semi-adjunction coincide.

!We might simplify our definition of semi-adjunction by just requiring a natural isomorphism
between the restricted Hom-sets [7]



2.2 Semi-comonads

A further notion which may be generalised is that of a comonad [11].

Definition 3 Let C be a category. A semi-comonad on C is a tuple (T,n, n) where
T :C — Cisa semi-functor, and p : T — Idc and p : T — TT are natural
transformations, satisfying

1. nraopa =T(na)o pa = T(ida)
2. pta o pa = T(pa)o pa
3. 1A © T(sz) = UA

If T happens to be a functor, then the definitions of comonad and semi-comonad
coincide.

Example 4 The semi-functor | of example 1 is part of a semi-comonad structure
on Rel. Define Xnaa & a€ X and Xpax & Ux C X.

We also define an appropriate notion of morphism between semi-comonads.

Definition 5 A semi-comonad morphism (F,m) between semi-comonads (T : C —
C,n,u) and (T' : D — D, 9/, i) consists of a semi-functor F : C = D and a natural
transformation m : T'F — FT such that

1. F(na)oma = nf, 0 T'F(id,)
2. F(pa)oma = mrgoT'(my)o ppy
8. maoT'F(ids) = my

Let CoMnd, be the category with as objects semi-comonads and as arrows semi-
comonad morphisms. The identity on (T, u) is (Idc, Td), and if (F,m) : (T, n, p) —
(T",n', ') and (G,n) : (T", 7', u') = (T",n", 4"} are semi-comonad morphisms, then
their composition is the arrow (GF,Gm - nF) : (T,n, u) — (T", 7", u").

In analogy with the relation between comonads and adjunctions [11], there is a re-
lation between semi-comonads and semi-adjunctions. Part of this relation is the
construction of (semi-)Kleisli categories.

Definition 6 Let (T,n, p) be a semi-comonad. The semi-Kleisli category KI(T) of
T is the category with as objects the objects of C, and as arrows f : A — B arrows
f € C(TA, B),. The identityid4 on an object A in KI(T) is the arrown, : TA — A,
and the composition g * f of arrows f : A — B and g: B — C in KI(T) is defined
bygxf=goT(f)opa.

If T is clear from the context, then we write KI(C) for KI(T). The operation Kl
can be extended to a functor on CoMnd,.

3



Definition 7 Let K1: CoMnd, — Cat, be the functor defined on objects by KI({T :
C = Cyn,u) = KI(T). If (F,m) : (T,n,u) — (T',n',u') is a semi-comonad mor-
phism, then KI((F,m)) : KI(T) — KI(T') is the semi-functor defined on objects C
by KI((F,m}))(C) = F(C) and on arrows f : C — C' by KI({F,m))(f) = F(f)omc.

In this definition Cat, is the category of categories and semi-functors. If m is clear
from the context, then we write KI(F) for KI((F,m)). Note that if F in (F,m) is
a functor, then KI({F,m)) is a functor.

3 Linear Decomposition of Typed Lambda Cal-
culus Models

First order Linear Type Theory (LTT) [2] may be viewed as a decomposition of the
usual type theory belonging to the typed lambda calculus. The main feature of this
decomposition is the decomposition of the exponential type = into two new type
constructors —o (linear implication) and ! (of-course). The type A = B may then
be written as !(A4)—oB.

Further linear type constructors are the binary type operators x (direct product)
and ® (tensor product), and the constant types 1, I, L.

The syntactical decomposition of type theory into LTT has a semantical counter-
part. It is well-known that Cartesian closed categories (CCC’s) are models of typed
lambda calculi. In [15] Girard categories (GC’s) have been defined as models for
LTT. Among other things, a GC C has finite products (1, x), it is monoidal closed
(where ®, I is the monoidal structure on C, and —o makes it closed), and there is
a comonad ! : C — C. Corresponding to the decomposition of type theory into
LTT, each GC C is a decomposition of a CCC, which may be regained by taking
the Kleisli category KI1(C) of C.

It is also possible to decompose the type theory of non-extensional typed lambda

CCC wCCC
Kleisli semi Kleisli
GC wGC

calculi, i.e. of typed lambda calculi which do not satisfy the y-rule:
Az :o.(tr) =t

Models of these non-extensional calculi are weak Cartesian closed categories (wCCC’s)
(3, 6, 10]. A wCCC is defined as a CCC, except that the functionspace construc-
tor is a semi-functor rather than a functor, and hence it forms a semi-adjunction
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rather than an adjunction with the product-functor (see the appendix for an al-
gebraic description of a wCCC). In [6] weak Girard categories (wGC’s) have been
defined. Roughly, the difference between GC’s and wGC’s is that ! need only be a
semi-comonad on a wGC (see appendix for exact definition). Each wGC C is a de-

composition of a wCCC, which may be regained by taking the semi-Kleisli category
K1(C).

4 Linear Decomposition of A\2-Models

Linear Type Theory with second-order quantifiers (LTT?) may be viewed as a de-
composition of the type theory belonging to the second-order lambda calculus (1, 2].
In addition to the type structure of LTT, in LTT? there are linear type variables
a,f3,... and if o is a linear type, we may abstract over a and form the type Ila.o.
The possibility to abstract over types carries over to the type theory constructed
out of LTT?, which is therefore the type theory belonging to A?-calculus.

In this section we will describe the categorical structure needed to interpret the
non-extensional second-order type calculi, and we will show how A%-models may
be constructed out of LTT?-models by means of an analogue to the (semi-) Kleisli
construction.

4.1 A’-models

In [14] PL-categories are defined which provide semantics for the A?-calculus. In [10]
(the second-order version of) PL-category is generalised to A2-algebra. In A2-algebras

we can interpret the non-eztensional A%-calculus, i.e. the A2?-calculus without the
two p-rules:

Az :o.(tz) =t
Mo.(ta) =t
Definition 8 2 A \-algebra H consists of the following data:

o A category B,called the base category of H, with finite products and with a
distinguished object .

o A functor H : B?® — WCCC into the category of wCCC’s and (up to equality)
structure preserving functors.

o For each N € B a semi-functor Iy : H(N x Q) — HN.

satisfying the following requirements:

ZNote that this definition slightly differs from [10] as we require the fibers to be wCCC’s instead
of semi-CCC’s.



1. For each N € B we have B(N,Q) = Obj(HN), and for eachu: M — N in B
the functor u* = H(u) : HN — HM acts on objects by composition.

2. For each N € B we have 7} g -, Iy, wherewn g : NxQ — N is the projection
in B.

3. Beck-Chevalley condition (omitting indices):
(a) o (uxid)*=u*oll
(b) v*a = a(u x id)*
(¢) (uxid)*f = Bu*
where o, 3 are the natural transformations belonging to the semi-adjunction
o -, I
4.2 LTT?models

In [15] the notion of indezed GC (iGC), the categorical structure belonging to LTT?,
is roughly described. It is shown that an analogue of the Kleisli construction may
be applied to an iGC to obtain (the second order version of) a PL-category. In this

PL A-alg
ind. Kleisli ind. semi-Kleisli
1GC iwGC

section we define the corresponding decomposition of a A%-algebra. An indezed wGC
(twGC) is defined exactly as an A?-algebra except that the fibers H(N) are wGC’s
instead of GC’s (and that the functors u* preserve the wGC-structure rather than
the wCCC-structure).

Definition 9 An indexed weak Girard category (iwGC) H conststs of the following
data:

o A base category B with finite products and with a distinguished object Q.

o A functor H : B°» — WGC into the category of wGC’s and structure preserving
functors.

e For each N € B a semi-functor Iy : H(N x Q) — HN.

satisfying the following requirements:



1. For each N € B we have B(N, Q) = Obj(HN), and for eachu: M — N in B
the functor u* = H(u) : HN — HM acts on objects by composition.

2. For each N € B we have 7}, o 1, IIn, where mn,g : NXQ — N is the projection
in B.

3. Beck-Chevalley condition (omitting indices):
(a) o (u xid)* =u*oll
(b) v*a = a(u x id)*
() (ux id) = fu"

where o, f are the natural transformations belonging to the semi-adjunction
x> 4, II.

4.3 The Indexed Kleisli Construction

Just like the Kleisli category can be taken of ordinary semi-comonads, the indezed
Kleisli category construction may be applied to indezed semi-comonads.

Definition 10 An indexed semi-comonad is a functor H : B? — CoMnd, such that
if H(f) = (F,m), then F is a functor.

Definition 11 The indexed Kleisli category :K L(H) of an indexzed semi-comonad
H is the indexed category Klo H : B — Cat.

Let I : WGC — CoMnd, be the inclusion functor defined by I(C) =!c on objects,
and if F € WGC(C, D), then I(F) = (F,!pFid). AniwGC H : B® — WGC may be
considered as an indexed semi-comonad I o H : B®? — CoMnd,, hence the indexed

Kleisli category construction may be applied to indexed weak Girard categories. We
write i KI(H) for iKl(I o H). For each iwGC H iKI(H) is a A2-algebra.

Lemma 12 Let (T : C — C,n,u) and (T' : D — D, 7', u’) be semi-comonads, and
let F:C — D be a functor such that FT = T'F, Fnp = 'F and Fu = y'F. If
F 4, G, then there is a natural transformation n : TG — GT' such that

¢ (G,n): T — T is a semi-comonad morphism.
o KI((F,T'Fid)) 4, KI((G,n))
Proof: Suppose a, (3 are the natural transformations belonging to the semi-adjunction

F 4, G. Take n = a(T'(8(G(id)))), then (KI({(F,T'Fid)), KI({G,n)),a, () is a

semi-adjunction. |



Theorem 13 If H is an 1wGC, then iKI(H) is a A?-algebra.

Proof: We already know that each iKI(H)(N) = KI(HN) is a wCCC. It is easy to
check that the functors i KI(H)(u) preserve the wCCC-structure. By the previous
lemma, the functors i KI(H)(x) = Kl(=*) have semi-rightadjoints KI(II). It is easy
to check that :KI(H) satisfies the Beck-Chevalley conditions. |

5 Rel as iwGC

In [6] we have shown that the category Rel of sets and relations is a wGC. In this
section we will construct an iwGC out of Rel. Taking the indexed Kleisli category
of this iwGC gives a simple example of a A2-algebra.

5.1 Inj

Define Inj as the category with as objects sets and as arrows injective functions.
This category has a number of (well-known) useful properties, which are similar to
the properties of algebraic dcpo’s. Firstly, it is directed complete.

Definition 14 Let C be a category. A directed diagram in C is a functor D : I —

C, where I is a directed poset (i.e. every two elements have an upperbound in I)
considered as a category.

Theorem 15 Inj is directed complete, i.e. each directed diagram in Inj has a col-
tmat.

Furthermore, finite sets are ”compact” in Inj.

Theorem 16 If (p; : Ai — Ali € I) is a directed colimit in Inj, and f € Inj(X, A)
where X s finite, then there ezists k € I and f' € Inj(X, Ai) such that pro f' = f.

Let S be a set of finite sets such that each finite set is isomorphic to an element of
S, then S forms a basis for Inj in the sense that each object of Inj is the colimit of a
directed diagram of sets in S.

Theorem 17 Let A € Inj, and let I be the set {(X, f)|X €S, f € Inj(X,A)}. Order
Iby (X, f) <A{X',f') iff there exist g € Inj(X, X') such that f' = f o g. Note that
g s unique if it exists, and that I is directed.

Define D : I — Inj by D({X, f)) = X and D({X, f) < (X', f'))=¢g: X — X', then
A s a colimit of D.

Note that the n-fold products Inj” inherit these properties of Inj.



5.2 The functor H

The base category B has as objects the categories Inj”. We take 0 = Inj. The arrows
of B are continuous functors.

Definition 18 Let C,D be directed complete categories. A functor F : C — D is
continuous iff it preserves directed colimits, i.e. if (p; : A; — Ali € I) is a directed
colimit in C, then (F(p;) : F(A;) = F(A)|i € I) is a directed colimit in D.

The fibre H, = H(Q") has as objects continuous functors Q" — Q. The arrows
R in H"™ between objects F,G : Q" — Q are continuous families of relations, i.e.
R = (R4 C F(A) x G(A)|A € Inj), and if (p; : A; — Ali € I) is a directed colimit in

Inj”, then
Ra = J{(F(pi)(a), G(pi)())|aR b}
i€l
Note that a continuous family of relations is monotone: for f : A — B one has

aR4b = F(f)(a)RpG(f)(b)

The identities in H,, are the families of identities, and composition is defined component-
wise: (S o R)4 = Sq0 R4. Given a continuous functor U : Q™ — Q" we define

U*: H, > H,, on objects F as U*(F) = FoU, and on arrows R as U*(R)4 = Ry(a).

5.3 The functors II,

First we define the trace of a functor.

Definition 19 Let F : Inj — Inj be a continuous functor. The trace Tr(F') of F is
the set {(X,a)|X € S,a € F(X)}.

For each natural number n we define a semi-functor Il, : Hyyy = H(Q" X Q) — H,.
Let F : Q™1 — Q be an object of H,41, then II,(F) is an object of H,, i.e. a
continuous functor Q" — . On objects A € Q" we define

I.(F)(A) = Tr(F(A, -))

and on arrows f : A — B in Q" we define II.(F)(f) : Tr(F(A,-)) — Tr(F(B,-))
by

IL(F)(F)(X,a) = (X, F(f,idx)(a))

Let R: F — G be an arrow in H,4q, then II,(R) : Il (F) — II,(G) is an arrow in
H,, defined by

(X, a)(IIn(R))a(Y,b) ¢ 3f : X — Y(F(idy, f)(a)Rayb)
It is easy to see that in general II, is only a semi-functor:

(X, a)(Ia(¢d)) a(Y; b)

9



=4
Af : X — Y(F(ida, f)(a) = b)

yid
(X,a) = (¥, b)
Let P, : Q™! — Q" be the projection in B.

Theorem 20 P; 4, 11,

Proof: The functor P is defined on objects F € Q" as Pi(F) = Foll,. We
define natural transformations af : Hny1(F 0 Py, G) — Hyo(F,I1,(G)) and Bpg :
H,(F,I1,(G)) = Hp41(F o P,,G) as follows. Let R: Fo P, — G then

ac(R)a(Y,b) & aRayb
Let R: F — II,,(G), then
aB(R)anb & 3,1 1Y - ALY € G(A,Y)(aRa(Y, ¥)&Glidas, F)(V) = b

It can be checked that (Pr,II,, "™, f") is a semi-adjunction. [ |

5.4 The structure on the fibers

The wGC-structure on the fibers H, is similar to the structure on Rel [6] We shall

give the definitions of the linear operators in H,, on objects F, G. Let A be an object
of OQn.

e 1,(4)=190
o I,(A) = {x}
o Lo(4) = {x}

(InF)(A4) = Ps(F(A))

o (F xn G)(A) = F(A) ¥ G(A)
o (F ®n G)(A) = F(A) 0 G(A)
o (F—0,G)(A) = F(A) 0 G(A)

where AW B, Ao B are resp. the disjoint union and the cartesian product of two sets.
It is easy to define the linear operators on arrows, and to show that the functors U*
preserve the structure on the fibers.
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6 Some Related iwGC'’s

In this section we describe three iwGC’s which are related to the model of the
previous section.

6.1 PRel as iwGC

The objects A of the category PRel are pairs (Dom,p4), where Dom is a set, and
pa is a predicate on Domy, i.e. p4 is a subset of Domy. We write p4(a) iff a € p4.
The arrows R : A — B of PRel are relations B C Dom,y X Domp which preserve
truth, i.e. ps(a)&aRb implies pg(b). It is clear that Rel is a full subcategory of PRel.
In [6] we have shown that PRel is, like Rel, a wGC. For example, a semi-comonad
structure on PRel may be defined® by Domiy = {X C Dom,|X finite } and
pa(X) & Va € X(pa(a))

Analogous to the construction of an iwGC out of Rel we can build an iwGC out
of PRel. In fact, there are only three differences. Firstly, instead of Inj we use the
category Plnj. This category has as objects sets and as arrows f : A — B injective
functions f : Domys — Domp satisfying

pa(a) & pa(f(b))

The category Plnj has properties similar to Inj. The second difference is that the
arrows in the categories H, are continuous families of truth preserving relations.
Finally, on the trace of a continuous functor F' : Pinj" — Plnj a predicate pr,(r) is

defined by
pre(r)((X,a)) & pr(x)(a)

6.2 WCohl as iwGC

The category WCohl has as objects pairs A = (Doma,q4), where Domy is a set
and g4 is a binary, rather than an unary, predicate on Domy. In fact, we shall
require that these predicates are symmetric. Arrows R : A — B are relations
R C Dom 4 x Domp which preserve the predicates (i.e. qa(a, a’)&arb&a’'RY implies
QB(b, b’))'

It has been shown in [6] that WCohl can be equipped with the structure of a wGC.
By now it should be clear how to build an iwGC out of WCohl. We shall not give
details. The indexed semi-Kleisli category of this iwGC turns out to be the same
as the A\2-algebra that we get by dropping everywhere the word ”stable” in the
description of the coherence space model of the A?-calculus [1].

3 Alternatively, we might take Domig = {X C pa}X finite}.
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6.3 NRel as iwGC

A very simple iwGC can be defined by using only sets of natural numbers. Firstly,
we define the category NRel as the full subcategory of Rel with as objects elements
of Pw. Because there are encodings of finite subsets (—)* : F(w) 2 w and of
pairs (w X w = w of natural numbers as natural numbers, the category NRel can
be equipped with essentially the same wGC structure as Rel. For example, we may
define !z = {X*+|X C z, X finite } for z C w.

It is well-known that Pw ordered by inclusion is an algebraic lattice. The compact
elements of Pw are the finite sets. To convert NRel into an iwGC, we take base
category B with as objects (Pw)" for n € w and as arrows continuous functions (i.e.
functions that preserve directed joins). Furthermore, we take Q = Pw.

The objects in the category H, are continuous functions Q" — (2, and the arrows

R : f — g are families (R, C f(z) X g(z)|z € (Pw)") such that if U C Puw is

directed, then

RUU = U Rz

z€U

For every continuous function f : Q™ — Q" a functor f* : H, — H,, is defined by
f*(9) = go f and (f*(R))s = Ry(s), for z € Pw.
If f:Pw — Pw is a continuous function, then Tr(f) = {(X+,n)|X C w, X finite
,n € f(X)}. Functors Il : H,y;y — H, are defined on objects by II,(f)(z) =
Tr(f(z,—)), and on arrows by (X*,n)II,(R).(Y*,m) & X C Y&nR,ym.
In general, the I, are only semi-functors:

(X, n)(I1a(2d))=(X", )

4
X C X'&n(id), xn'
<
XCX&n=n

#
(X,n) = (X',n)

Note that this iwGC is in fact a simplification of the iwGC constructed out of Rel
by requiring the arrows in ) to be inclusions rather than, more general, injections.

7 Preordered Sets

The Karoubt envelope construction may be used to transform various semi notions
to the corresponding ordinary notions 3, 6]. For example, the Karoubi envelope
K(C) of a category Cis a CCC, resp. a GC if C is a wCCC, resp. a wGC. We do not
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know how to extend the Karoubi envelope construction to indexed categories such
that the (extended) Karoubi envelope of an iwGC is an iGC. However, in special
cases we can transform iwGC’s into iGC’s in a manner which is reminiscent of some
sort of Karoubi envelope construction. In this section we shall transform the iwGC
constructed out of NRel into a iGC. In a similar way the other iwGC’s defined in
this paper can be transformed into iGC’s.

In [6] we have seen that taking the Karoubi envelope of Rel is more or less the same
as equipping the objects A with a preorder * <, and requiring that the arrows
R : A — B satisfy

a <4 aRb<pl = a'RV

Hence, to transform the iwGC constructed out of NRel into a iGC, we shall equip
all sets with preorders.

Definition 21 PRw is the set of pairs u = (24, <), where z, € Pw and <, is a
preorder on .

The set PRw can be ordered by
uC v & (24 C2,& <,CS)

It is easy to check that (PRw,C) is an algebraic lattice and that the compact
elements are the finite preorders. The base category B has as objects (PRw)" for
n € w, and as arrows continuous functions. The categories H, are defined just
as in the NRel-model except that we require the families of relations to satisfy the
additional requirement

a Sf(u) aRub Sg(u) b= a'Rub'

Note that the identity ids on an object f in H, is given by the family (<, |u €
(PRw)").

The GC-structure on the categories H, is similar to the structure in the NRel-
model. For example, for each n a functor !, : H, — H, is defined on objects by
Tigw) = {XH|X C 24u), X finite}, X+ <yp) Y+ 6 Vb € Ya € X(a <fu) b), and
on arrows by X+!R,Y* & Vb € Y3da C X(aRub). Furthermore, there are natural
transformations n" :! — Idy,, p" :! —!! defined by X*(n})ua ¢ 3a’ € X(a’ <y a
and X+(u})uxt ¢ Va' € UxJa € X(a <j) @'). It is easy to see that (1,,7", p") is
a comonad on H,,.

The functors f* are also as in the NRel-model.

Let f :PRw —PRw be a continuous function. The preorder Tr(f) has domain
{U%|U €PRw,U finite,n € zsp)} (where (—)* :FRw = w) and (U%,n) <7

“In fact, the objects are equipped with transitive relations < having the interpolation property
a<c=>Wa<b<eo).
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(V£ ,m) & U C V&n <pv) m. Next the functors II, are defined as in the NRel-
model, but using this preordered trace.
It is easy to check that II,, preserves identities:

(U*,n)(Ia(3dy))u(VE, m)
=
U E V&m(idf).,,vm
<
U E V&n Sf(u,V) m
4
(U*,n) <1o(su-y (VE,m)
<
(U*,n) <nu(n)w (VEm)
&
(U, n)(idn,5))u{V*, m)
As the categories H,, are GC’s rather than wGC’s we have in fact built an iGC. Ap-

plying the indexed Kleisli category gives a (second-order version of a) PL-category.
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Appendix
A wCCC’s

~Definition 22 4 weak Cartesian closed category (wCCC) C [8, 6, 10, 12] is a

category C with a terminal object 1 and binary products Ax B, and with the following
data:

e For each pair of objects A,B € C an object A = B € C, and an arrow
ea € C((A = B) x A, B). Furthermore, for each arrow f € C(D x A, B) an
arrow A(f) € C(D,A = B).

satisfying the following equations (omitting subscripts):
l.eo(A(fyxid)=f
2 A(folgxid) = A(f)og
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B wGC’s

Definition 23 A linear category [6, 13, 15] (C,x,1,8,I,—0, 1) is a category C
such that:

1. The functor x : Cx C — C is a chosen product in C, and 1 is a terminal object
in C.

2. (C,®,1) is a symmetric monoidal category, i.e. ® is a functor C x C — C,
I is an object in C, and there are natural isomorphisms pap : AQ B =
BA M :AQ@I=ZAandaspec: (A®B)®C = AQ (B ® C) satisfying
certain commutative diagrams, the MacLane-Kelly coherence conditions (for
more details see [11]).

3. (C,®,I,-0) is a symmetric monoidal closed category, i.e. —o is a functor
C? x C— C and (—) ® B is a left adjoint of B—o(—) (i.e. there is a natural
isomorphism C(A® B,C) = C(A4, B—oC)).

4. L is a dualising object in C, i.e. for each object A the arrow 74 given by the
next derivation is an isomorphism:
(A—ol) 4 (A—ol)
(Aol)®A— 1
AR® (A-—o_L) — 1
A4 (A—ol)—oL

Definition 24 A wGC [6](C, x,1,®,I,—0, L,!,n, u,%,~) is a linear category (C, x,1,®,1, -0, |
such that

1. {n,p) is a semi comonad on C.
2. 111 = I is an isomorphism, such that:
o tol(idy) =1
3. ~4p:!AQ®!B =!(A x B) is a isomorphism natural in A, B, such that:

o ((pia,B), (74 5))) © paxB =~1448 o(pa ® pB)o ~3'g

where TaB: AX B — A and 7)y g : A X B — B are projections, and (f,g) :
C — A x B is the unique arrow such that mo (f,g) = f and ©’ o (f,g) = ¢.
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