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Catégorical Semantics as a Basis for Program Transformation

Nico Verwer

Abstract

Program transformation in the Bird-Meertens formalism is based on so-called laws,
which are equalities between expressions. It is shown how these laws can be derived
in a very general way, starting from equations which hold in a particular semantics,
namely cartesian closed categories.

We argue that datatypes correspond to strong functors, which means that their
action on functions can be expressed as a program. By proving that functors defined
by initial algebras are strong, we establish the validity of our approach for deriving
laws about abstract data types. We also derive very general formulations of the
factorization and promotion laws for homomorphisms.

1 Introduction

Since the beginning of the seventies, formal semantics has been used to define programming
languages in a precise and unambiguous way. In the Scott-Strachey approach, semantics is
a mapping form the syntactic domain, the phrases in the language itself, to some semantic
domain, which is a rigourously defined, well understood mathematical object. Scott’s
domain theory provides a mathematical object which is rich and powerful enough to serve
as a semantic domain.

In principle, the formal semantics of a language could be used as a guide for construct-
ing compilers and interpreters, and as a reference for programmers. In practice, however,
it is rarely used as such. This is partly because the formal semantics of a ‘real world’
programming language tends to become very large, and a great part of it is merely a list
of tedious clauses which state things that every computer scientist takes for granted.

In this paper, we intend to show that formal semantics can serve yet another purpose;
it can be used to derive laws which hold for programming constructions. These laws can be
used to transform an expression in the language into a semantically equivalent expression.
This implies that a semantics is needed to check the equivalence of expressions. The other
way round, semantics could be used as a guide, to find out exactly which expressions are
equivalent, as well.

Why would one want to transform an expression into a semantically equivalent expres-
sion?

For many years, software design has been a difficult task. The problem of program size
has partially been solved by the introduction of such constructs as modules, packages and
polymorphic functions, but it is still impossible to take in the meaning of a big program
at a glance. This is because program texts are full of necessary details which divert ones
mind from the essence, the intention of the program.



To alleviate this problem, various program specification techniques have been devel-
oped. The idea is that one starts with an abstract specification of a program, which
specifies what the program is supposed to solve, but not how. Thus one leaves out all
details like specific data structures, algorithms, etc. A specification does not even have
to be executable. Implementation is the process of filling in the details, chosing suitable
data structures, efficient algorithms, etc. This is the task of the programmer.

The specification is a phrase in some specification language. It has a certain semantics.
The final implementation is a phrase in (probably) a different implementation language.
It is considered to be correct if it has the same meaning as the specification, i.e. it is
semantically equivalent. This semantic equivalence is not necessarily an equality; it is
rather an inclusion. For instance, the specification may be nondeterministic, so that dif-
ferent implementations which are not mutually semantically equivalent may be considered
correct implementations.

The task of the programmer is to bridge the gap between the specification and an exe-
cutable, efficient implementation. This is done by stepwise refinement of the specification;
in every step, some detail is filled in, and a new program, somewhere between specification
and implementation, is obtained. Of course, the programmer must assert that the result of
every step is semantically equivalent to the specification. It is unfeasable to determine the
exact meaning of intermediate programs, using the semantics of the language in which they
are written, and compare this to the semantics of the specification. Therefore, techniques
have been developed to transform programs into semantically equivalent (but, hopefully,
more efficient, executable) programs. Thus the correctness of every step is guaranteed.

The Bird-Meertens formalism (BMF) [1, 4, 11, 16), also called Squigol because of the
squiggly symbols it uses, is a powerful method for transforming programs. Some algorithms
have been derived in a neat and systematic way, within this formalism, using simple but
powerful transformation rules, or laws. However, the number of laws has become very
large, and we feel that some unification and systemization of laws would be advantageous.

This paper shows how many programming laws in BMF can be derived rather than
postulated. Spivey has derived laws that hold for lists in a categorical framework [15].
We try to take a more abstract approach, and to derive more general programming laws.
In order to be able to do this, we start from one particular model (semantic domain) of
functional programming languages, namely Cartesian Closed Categories. The significance
of this is, that the laws arise purely from the semantics of our language, and contain no
implicit ‘extra’ assumptions. Also, our laws will be in their ‘most general’ form, because
we do not derive them within the context of some specific application.

The more general the laws are, the more useful they are in (semi-)automatic systems
for program transformation. Such systems are simpler to design and use if the fewer the
laws they implement. Some of the ideas put forward in this paper have been used in an
existing program transformation system [3, 19). '

Our contribution is that we show how programming laws can be derived from equalities
between arrows in a Cartesian Closed Category, via the internal language of a CCC.
Because we make a distinction between the language (BMF) and the model (CCC) it
is necessary to prove that type functors are strong. Once we have done this, we can
derive some very general programming laws. We also establish the strongness of Hagino
functors, which are used to model type constructors. Finally we derive the factorization
and promotion theorems of BMF in a categorical framework.

This paper is a revised version of the one that appeared in the proceedings of Comput-
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ing Science in the Netherlands 90. It clarifies some points and corrects some errors made
in the CSN 90 paper.

2 The categorical model

In this section, we define the categorical model that we shall use as the semantic domain
in later sections. Since this is standard theory, we review the concept of a Cartesian
Closed Category only briefly. In [17] we give an exposition which is more directed towards
those who are acquainted with functional programming. A general reference to elementary
category theory is {14].

Basically, the semantic domain we shall consider is a Cartesian Closed Category (CCC).
It is well known that CCC’s are models of typed A-calculi (see, for instance, [7]), which,

in turn, are ‘canonical’ functional programming languages. In the next section we shall
elaborate on this point.

Definition 1 A category C consists of
e a class C, of objects, which have no further structure of themselves;

e for every pair of objects A, B € C,, a class C(A, B) of arrows. We write f : A — B
for an arrow f € C(4, B);

o forevery triple 4, B, C € C,, a composition operator o: C(B, C),C(4, B) — C(4,0C),
which is associative,i.e. (h o g) o f=h o (g o f);

e for every object A € C, an arrow idy4, the identity on A. For f : A — B we have
idp o f=f=f oidy.

We shall model data types by objects and (typed) functions by arrows.

In order to be useful as a model of A-calculus, a category must be cartesian closed, i.e.
cartesian product and function spaces must exist.

Definition 2 A category C is cartesian closed if it has all finite products, i.e.

e there is a special object 1 € C,, the terminal object, such that for every object
A € C, there is a unique arrow !4 : A — 1;

o for every pair of objects 4,B € C, there is an object A x B € C,, the cartesian
product of A and B, and arrows 7 : AX B— A,n': A x B — B, the projections;

o forevery f: C — A,g: C — B there is a unique arrow (f,9): C— Ax B such
that

f=7r°(fag>7 g=7r’°(fag>;

We shall use the notation

fxg=<f07l',907r’)-



and if it is closed, i.e.

e for every B, B € C, there is an an object C — B, the exponential from B to C, and
an arrow € : (C — B) x B — C, the evaluation;

o for every f : A x B — C there is a unique arrow f: A — (C « B), such that
€ o (f xidp) = f, which is expressed by the following commuting diagram:

AX B
fxidB f

(C(——B)XB——»E o
a

We shall use (f, g) to model pairing, ¢ to model function application. The operation ~
corresponds to currying of functions. From the uniqueness of (f , g) it is easy to prove
that (f,g) o h=(f o h, g o h).

Two objects A, B € C are isomorphic if there are arrows f : A -~ Bandg: B — A
such that g o f =id4 and f o g = idg. We then write f: A & B :g. Examples are
unit, commutativity and associativity of the cartesian product:

Ti1X A= A:(ly,ids)
(v, 7T):AXB = BxA:(x', )
((mymom), 7 o)t AX(BXC) 2 (AXB)xC:(r om,(n' o7,

In the category of sets, the terminal object is a one-point set; the unique arrow from
a set A to 1 is the function which maps every element to the one point. A constant is
a function with no parameters, so the value of the constant may be seen as the image of
the one-point under this function. We model this by a constant arrow a : 1 — A, a term
which we shall use in any CCC.

We need a way to construct new data types from existing ones. The categorical concept
which models a type constructor is a functor. On objects (types), functors operate as type
constructors. In addition, functors operate on arrows. This extension of the usual notion
of type constructor proves to be very useful, and has, although not explicitly, long been
used in functional programming languages. '

Definition 3 A functor { : C — D consists of
°a mapping { from C, to D,;

e for every A, B € C, a mapping { from C(4, B) to D(4t, Bt);



and preserves identity and composition:
idat =idg, (90 f)f=g" o fh
Composition of functors is forward, i.e. A(tH = (A*)f. o

We have already seen one functor, namely the cartesian product x. Other functors are
the identity I

Al=4, fl=f
(note the use of the superscript-notation for functor application) and the ‘left’ functor <«
ALB=4, f<g=f

(we shall write A < f instead of id4 <« f). Since all our functors go from C to C (the are
so-called endofunctors), we just write { instead of t : C — C. For the binary functor x
the above properties become:

idA X idB = idAxB
(fof)x(gog)=(fxg)o(fxg)

The opposite of a category C is C°P. It is the same as C, except that C°P(A4,B) =
C(B, A) (all arrows are reversed).

Definition 4 If we define

C—B as in definition 2
for B,CeC
heg = (hoeo(idcpxg)):(C«B)— (D A)

forg:A—-B,h: C—-D
then « : C x C°? — C is a functor. (It is contravariant in its second argument.) a

Definition 5 Let { : C — D and f : C — D be functors. A natural transformation
T :1 — { assigns to every object A € C an arrow

T4: At > Af,
such that for every function f: A — B
5 0 fl=f1 o

(this is illustrated in the following commuting diagram).

At TA Af

ft st

Bt 5 Bt



Composition of natural transformations is defined as
(0 o T)A=04 o Ta.

Functors operate on arrows in the same way as they operate on natural transformations;
Let 7:1 — {, then

ot —th (ha= el
An example of a natural transformation is the identity

id:T-—1.

3 Categorical semantics and strong functors

The language used in the Bird-Meertens formalism is, essentially, first-order polymorphic
typed A-calculus. It uses a highly streamlined syntax, which makes it suitable for program
transformation by calculation [11]. For the moment, however, we are not interested in
notational issues; our aim is to derive programming laws from the underlying semantics,
which can later be transformed into an appropriate notation.

We shall use cartesian closed categories as semantic domains. It is well-known that a
first-order typed A-calculus with cartesian products is equivalent to a CCC, in the sense
that there is a functor L from the category of CCC’s to the category of typed A-calculi,
and a functor C in the opposite direction, such that L and C are inverses to eachother,
up to isomorphism [7]. The functor C gives a categorical semantics of a A-calculus. The
functor L gives the internal language of a CCC.

Our aim is to derive laws which hold in the BMF language, starting from equalities
which hold in CCC’s. Contrary to what one might expect, we do not use the semantic
functor C in order to do this, but the functor L. This functor translates (objects and
arrows in) a CCC to (types and expressions in) the internal language. In this way, two
arrows f and g, which are equal in a CCC, are translated into the law L(f) = L(g), where
L is the construction of terms out of arrows used by L. The fact that L and C are inverses
(up to isomorphism) guarantees that the laws derived by this method are sound w.r.t. the
interpretation of A-calculi in CCC’s.

The internal language is defined by the action of L on objects and arrows [7] (actually,
this is the object-part of L):

Definition 6 The objects in a category C become the types in L(C); 1 becomes the one-
point type Unit, A X B becomes the type A X B of pairs of A and B, and B — A becomes
A — B, the type of functions from A to B. There may be other, non-structured objects,
which become the basic types.

Terms of type A in L(C) are obtained from arrows in C(1, A), via a mapping L.
These terms may contain variables, which are the images under L of a specified set of
indeterminate arrows. If z : 1 — A is an indeterminate arrow, L(z : 1 — A) is the
variable z : A.

A constant arrow a : 1 — A, which is not a compound, is mapped to a basic constant
a:A. The term L(id, : 1 — 1) is the one-point unit : Unit.



On compositions, L is defined as L(f o e) = f(L(e)), where f : A — B is not a
composition of other arrows, and e : 1 — A. For arrowsa :1 — A, b:1 — B, we define
L({a, b)) = (L(a), L(b)). Application ¢ becomes application in BMF (which is written as
juxtaposition), projections become projections in BMF, etcetera.

Next, we should define L on curried arrows. If we look at definition 2, we see that
the only way to obtain an arrow h : 1 — (B« A) is to curry an arrow h : 1 X A — B.
For any f : A — B, we can make such an arrow, if we put A = f o T, 4. The arrow
(f o m 4) which we shall write as "f", is called the name, or the internalization of f.
This construction is used to make A-abstractions in L(C):

L('idg' )= Xz : Az

L('fY=f for a non-compound arrow f: A — B
L("g o f))=Xz: A.L("¢" ) L("f)z) for f:A—> B,g:B— C
L((f,9))=2z: A(L("f)z,L("g")x) forf:A—B,g:A—C

etcetera. If our language has a composition operator (.), we may write the term in the
right hand side of the third line as L("g").L("f"). a

Datatype constructors in BMF are modeled by functors. For instance, the type A x B
of pairs of A and B corresponds to the object A x B, which is obtained by applying the
functor — x — to the objects A and B. As we saw in the previous section, a functor operates
both on objects (types) and arrows (functions). In most programming languages, little
or no attention is paid to the functorial character of a datatype constructor. Experience
with BMF, however, shows that the part of a datatype constructor that operates on
functions is very useful indeed. For instance, the list constructor may be applied to a
type A, giving Ax (lists with elements of type A), but also to a function £ : A — B,
giving £+ : Ax — Bx, which maps £ to every element of its argument. In BMF, there is a
function * : (A — B) — (A* — Bx) for every A, B (the map function in ML) which maps
functions on lists.

With definition 6 in mind, we must have an arrow map : (B — A) — (B* — A*)
belonging to the functor *, which behaves like the part of *+ which operates on arrows.
The existence of such an arrow means that the function *, which is defined as L('map”)
can be expressed in our language. Generalizing to an arbitrary functor }, we would like
to have a ‘mapping’ arrow, corresponding to the operation of t on functions. Functors for
which there is such an arrow are called strong:

Definition 7 A endofunctor { : C — C is strong if the part that operates on arrows has
an internalization. This internalization assigns to every 4, B € C an arrow

dag, p: (B~ A)— (Bf <—A1)
such that for every arrow f: A — B

dagyp o 'f ="



Proposition 8 The functor x is strong.
Proof: The internalization is

prodggecp = (Eo(mom,Tox),co0(r om,n o))

(B—A)Xx(D~C)—> ((Bx D)—(Ax C))

Thus,
prodypcp o (', g)="fxg.
a
Proposition 9 The operation on arrows of the functor — : C x C°? — C is
(h=g) o f'="hofog
forg:A—- B, f:B—>C,h:C->D.
Proof: By writing out definition 4. a

Proposition 10 The functor « is strong.
Proof: The internalization is a function

fung,g,cp: (D C)x (B—A)— (D« A)—(C+ B))
such that
fungscep o (B, g)= "heg'.
A suitable definition is
funge,0 =(ep,c o (T om o w, 0B o (T om, €4 o (7' o1 o, W)
a

The CCC C is well-pointed if for all f,g : A — B, and all constants ¢ : 1 — A the
extensionality property holds:

(foa)=(goa) = f=g4

Sometimes this is expressed by saying that 1 is a generator. We shall use this property in
the next proposition.

Proposition 11 The internalization of a strong functor { is a natural transformation
dag: (- =) — (=t -1

Proof: We prove that dag satisfies the natural transformation property, using extension-
ality. Let g: A > B,h:C—> D, f: B— C, then

dag,p o (he=g) o 'f
dagyp o hofog
(Ao fog)l

‘At o ft o gt" = (proposition 9)
(ht—gt) o "f1 = (definition 7)
(htegt) o dagpc o 'f".

(proposition 9)
(definition 7)

Il

(t preserves composition)



If our category is well-pointed, we may drop "f' at the end, and we have the natural
transformation property left. (m]

In quite a different context, Marti-Oliet and Meseguer [10] have proved the same, without
using extensionality. Their proof is much more complicated, but it shows that we do really
not have to require well-pointedness.

Why are we interested in natural transformations? Several authors (2, 13, 14] have
remarked that natural transformations can be used to model polymorphic functions. Al-
though there is no general agreement that this is the right characterization of polymor-
phism, it conforms to the kind of polymorphism that is present in BMF.

A polymorphic function £ is a family of functions, such that for every type A there is
an instance £{A] of £. Polymorphic functions must not depend on the type with which they
are instantiated. For example, the function reverse reverses the order of the elements of
a list, regardless of their type. This means that we may apply some function f to every
element, without affecting the effect of reverse. Then it makes no difference if we apply
£ before or after reverse is applied to the list. This property can be expressed by the
programming law

Forall A,B,f: A— B, reverse[B].(f+)= (f*).reverse[A].

Since the element type is not important, we say that reverse is a polymorphic function
from lists to lists, or

reverse ! x — ¥,

Generalizing this, we say that polymorphic functions are natural transformations from
one datatype (functor) to another. For a polymorphic function  : { — 1, the above
condition becomes precisely the natural transformation property

8 o fl=f1 ory (forall 4,B,f: 4 - B).

Identifying polymorphic functions and natural transformations gives a limited form
of polymorphism, since there is no type of ‘polymorphic functions from t to . This
would correspond to an object f «— t, which doesn’t exist 1. All we know is that there
is an instance of a polymorphic function for every type. This is much like the kind of
polymorphism in ML or, indeed, BMF. The implication for us is, that our laws will be
often of the form “for all (types) A, B, ...”; we need quantification at the metalevel.

4 Program transformation laws

As we have said already in the introduction, we want to derive laws which tell us how
to transform a program into a semantically equivalent program. In this section, we shall
derive some laws. The derivations start from equalities in the semantic domain, which is
a CCC. We believe that this is a fruitful approach, because such equalities arise from the
structure underlying the language, and they may not be very obvious syntactically. Most
of the work presented here has been described in an earlier report [17).

The natural transformation property (see definition 5) holds for polymorphic functions,
as we saw in the previous section. This leads to many useful laws in BMF. In the most
general form the law reads:

! This does exist in models of second order A-calculus, but these are much more complicated then CCC’s.



Proposition 12 If g : { — { is a polymorphic function, then for all £ : A — B,
g[B).£t = £t.g[A).

Proof: According to the previous section, g is modeled by a natural transformation g.
That implies for any f: A — B

‘g8 o 7 =" o g4’
Translating this into the internal language gives the required result. a

This proposition is used in [3, 19] to move functions to the left or to the right of an
expression, which in particular cases leads to more efficient programs.

Example 18 The function # : ¥+ — (N <) from lists to natural numbers counts the
number of elements in alist. Although we have not proved it, it is a natural transformation,
so if we have f: A — B,

#Bof' = (NKflo#a = no#a = #a
This allows us to eliminate f from the expression, to make it more efficient. m}

Of course, we need to prove that a function is polymorphic, and therefore may be described
by a natural transformation, before we can apply these laws. In many cases we know this,
for instance if a function corresponds to the internalization of a strong functor.

From proposition 10, we can determine the internalization of the functor — — A, which

is
liftA,B,c =
fung 48,c o (idcB, da’ o lcB):(C—B)— ((C—A)—(B < A)).

In BMF, we write h° instead of lift 4 g,ch, leaving the types (especially A) implicit. With
proposition 9 we derive

eo(liftypc o n, )=
eo(heidy’, "f1)=
(he=idg) o "f' =
hoo f

which translated into BMF becomes
(h°)f = h.£,

the lifting-law for unary functions, as it appears in e.g. [1].
Since — « A is a functor, it preserves composition. This leads to another law,

(g£)” =g°£°

which shows that lifting distributes over composition. If we interpret lifting as the curried
form of composition, we might say that composition distributes over itself. The fact that

10



functors preserve composition leads to many other ‘distributive’ laws like this, which are
often encountered in BMF program derivations.

With proposition 9 we can derive lifting laws for functions of any arity. This is done
in [17] for constants and binary operators. As an example, we shall do this for constant
functions ¢ : 1 — C. This is a special case, since

c—idg: (1~ A4) > (C=A)

and there is only one function from A to 1, namely !4. Therefore ", is the only possible
argument to which lift4 , ¢ o ¢ can be applied, and we write

® = eoflift oc, y')

= coly 115 (CeA).

Applying this to an arrow a : 1 — A, we get

eo(coly ,a)=colpjoa=c
which becomes the lifting law for constants

ca=4c.

5 Abstract data types in a CCC

Although BMF started as a theory of programs for list-processing, it was soon realized that
it could equally well be used with other data structures, such as trees or matrices [4, 12, 16].
A large part of the theory is about homomorphisms on these data structures, and their
usage in program transformation. Malcolm showed in {8, 9] how Hagino’s categorical data
types [5] can be incorporated into BMF, to provide a general theory of homomorphisms
on abstract data types.

In this section, we first define initial algebras in a CCC (a full treatment would in-
corporate final coalgebras as well), introducing a notation which is more concise and less
forbidding than the one in [8, 9]. We show that under certain conditions the corresponding
functors are strong, so that their arrow-part can be internalized. This means that there
are map-like functions in BMF corresponding to these functors. Most of the material
(except the strongness proof) in this and the next section has been described in [18].

Definition 14 A Hagino type functor { : C — C is determined by its signature, which
consists of

e a binary components functor ) : C x C — C.

e a constructors arrow for every object A:
v4: AtDA — AL

The object At is defined as the least fixed point of the functor (~®A). This is equivalent
to saying that (AY,y,) is a free initial algebra, or that for every object B and arrow
f: BOA — B there is a unique arrow (f) : A' — B, which is a homomorphism:

(f) o va=f o ((f)Did4).

11



AtHA—24 At

(N®ids §m

B®A B

f
If f: A— B then ft: At — Bt the {-map of f, is defined as

Y=y o (idp:®F)).

A"(‘D A YA At
(18 o (idg®F))Dida (18 o (idp1®f) = f!
'
t t t
B®Aidm®fB®B T B
a
We can easily show that this defines a functor, with the help of the following
Proposition 15 (unique extension property).
h o Y4 = f ) (h@id,q) = h= (IfD
Proof: This follows from the unicity of (f)), given f, ® and A. |

The { defined above is really a functor: With the unique extension property we have

idgt = (va)
= (I’YA ° (idAt(DidA)I)
= id4t

where the last step follows from the definition of {. This proves that Hagino functors

preserve identities. With the unique extension property, it is easy to show that a Hagino
functor also preserves compositions.

The object At is a fixed point of —() A, because the arrow v4 : ATDA — At is an
isomorphism; its inverse is '

71l = (ra®id4) : At - AtDA.

The arrow 7;1 splits a At-term in its components. It is the ‘pattern matching function’
which is used (implicitly) in functional programming languages to do case-analysis on

the structure of a term. This gives a recursive definition of (f), which follows from the
homomorphism property:

() =1 o ((NHDida) o 75"

12



The fact that At is the least fixed point follows from the unicity of (f). Of course, a
fixed point does not always exist. In [13], in the section on recursive domain equations, a
categorical version is given of Smyth and Plotkin’s lemma which says that a fixed point
exists if C has an initial object and all finite colimits, and if —~() A is w-cocontinuous.

Proposition 16 The constructors 74 of a Hagino functor are instances of a natural trans-
formation

Y AXXIDX — ¢t

(the A notation is used to show where the arguments of the functor go).
Proof: If we combine the two diagrams of definition 14, we get

ft o va = (def. of {, homomorphism property)
v8 o (idgt®f) o (f1Did4) = (functoriality of )
18 o (f1®f)
for any A, B. a

In order to define categorical data types with more than one constructor, we must
introduce disjoint unions. Malcolm [8, 9] does this at the metalevel, but here we shall
assume that our CCC has coproducts:

Definition 17 The category C has coproducts if

e for every pair of objects A,B € C, there is an object A + B € C,, and arrows
t:A—-A+B,/:B—- A+ B.

o forevery f: A — C and g : B — C there is a unique arrow [f,g]: A+ B — C,
such that

[f,g]°l’=f’ [fag]°1'1=g-

a

The object A + B models the type of the disjoint union of A and B, and [f, g] is a
‘case’-construction. The coproduct is a functor if we define

f+g=[ o f,/ og]

Example 18 An example of a Hagino type functor is the cons-list type constructor *. Its
signature is:

e components (functor) ®, defined as
X®A =1+ (4x X), g®f=id, +(f x g)

e constructors (arrow) [0, >+]4 : A*®A — A*. This defines two constructor func-
tions: ‘

O:1— A%, >:Ax A* - 4*

which are sometimes called nil and cons, respectively.

13



If we have arrows b:1 — B and @ : A x B — B, then ([b, ®]) : A* — B satisfies the
homomorphism property (which we have split in two equations):

(f6,®]) cO=d
([, o (a>+z)=ad (([b,8]) o z)
so it replaces O by b and >+ by @. In the case of
£ =@, >+ o (id, +(f x idp+)))

this becomes

froO=0f o (a>+2) = (fa) >+ (f*z)

which is the usual definition of f*.
The inverse of [0, >+] determines how a list is constructed, and, if it is a cons, splits

it into its head and tail. We can see this if we apply the recursive definition of (-} to f*,
giving

f*=100,>+] o (id, + (f xidB)) o (id, + (ida x f*)) o [@, >+]1
= f"o[D,>*-]=[D,>{-o(fo*)]

which is the usual definition again, although in a more concise form. This definition also
follows directly from the fact that the list constructors [0, >4] are a natural transforma-
tion

O, >]:AX 2+ (X X X*) — .
a

If we want to translate the results we obtained for Hagino type functors into laws in
the internal language, these functors must be strong (see section 3). We can then derive
programming laws in the same way as we did with the laws for lifting. Since the translation
of equalities in a CCC into laws in BMF is rather straightforward, we shall only prove
that Hagino functors are strong, provided that our category meets certain requirements.

In order to show that a Hagino functor } with signature ((,7) is strong, we should

define a corresponding arrow dag, g : (B — A) — (B'« A") for all objects A4, B, such
that

dag o l'f'l — rft1.

We shall do this in two stages. First we show how to internalize the construction of unique

homomorphisms { — ). Then we apply this to the construction of mapping functions from
homomorphisms (see definition 14).

This will be a rather complicated construction, so the reader may want to skip the
proofs and take the result of propositions 20 and 21 for granted. In the proofs we shall omit
most of the subscripts on natural transformations (which indicate their instance type), to
improve readability, and because they can be easily inferred from the context.
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Definition 19 An object A has fixpoints if for all arrows f : A — A there exists an arrow
Ysf:1— A, such that

[ o Yaf =Yaf.
A category C has all fixpoints, if every A € C, which has at least one constant arrow
a:1 — A which does not contain Y4, has fixpoints. 0

The condition that there is at least one ‘normal’ constant arrow avoids inconsistencies
such as described in [6]. If we wouldn’t require this, we could construct ‘constants’ like

Y4(id4), which can even be made for empty types! Fixpoints allow us to ‘encode’ recursive
arrows like (f).

Proposition 20 In a category which has all fixpoints, the homomorphism construction
( - ) for a type functor { which has a strong components functor (), can be internalized,
i.e. for every A, B there is an arrow

hmfy,s : (B —(BOA)) — (B — A1)
such that
hmfyp o f ="(f)".
Proof: We shall define an arrow
b (((B—4Y) (B —(BDA))) x (B ~(BDA))) x A' > B
such that
Yi:1 o (B A (B —(BDA))
is the internalization of hmfy g, which can then be defined as
hmfsp =€ o (YA o !, id).
The arrow h is the ‘encoding’ of the recursive definition of { — ):
h=¢co(r' om,c o (odag o (e om, id o!),77! o x')).
Here odag is the internalization of (P;
odag o ("f', "¢y = "fDg’.
The following diagram illustrates how h is constructed:

(((B = 41 ~(B ~(B®A))) x (B ~(B®A))) x 4t

id x y~1

(((B = 4h —(B —~(BD4))) x (B —(BOA))) x (A'DA)

(n' o 7, (odag o (¢ o m, "id" o !), 7))
(B —(BOA)) x (BOA) —(4'D4)) x (A1DA))

idxe

(B—(B®A)) x (BOA)

[

B

15
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Proposition 21 In a category which has all fixpoints, a Hagino functor }, with strong
components functor (), is itself strong.
Proof: The internalization of t is

dagy p =

hmfyp o (65,8105 © (18" o ! Xidpipp)) —idspa) o odag o (id" o !, id).

If we compose this with an arrow "f', we obtain

dag o 'f’ = (definition of dag)
hmf o ((¢ o (7" o ! xid)) «~id) o odag o (id", "f’) = (definition of odag)
hmf o ((¢ o (" o ! xid)) «~id) o "dDS = (proposition 9)
hmfo e o (7" o ! xid) o ({dDS) o id" = (definition 2)
hmf o "y o ([d®f) = (definition of hmf)
v o (ADH)’ = (definition 14)
g

a

6 Factorization and promotion laws

In this section we show how to derive some of the most important laws in BMF. We shall
do this by deriving equations between arrows in CCC’s. The translation to BMF is then
a trivial exercise, because of proposition 21.

Definition 22 A homomorphism (f) : A' — C is factorable if its underlying arrow
f:C®A — C can be decomposed into

f=& o (idc@y)
for some @ : C®B — C and g: A — B. m

In [18] we compare this notion of factorability with the more restricted one given in [9].
As its name already indicates, a factorable homomorphism can be factored:

Proposition 23 If (f]) : A' —» C is factorable as in the above definition, then

(ND=(o) - g"

Proof:
(®) o g' 074 = (definition 14 on g)
(®) o 78 o (IdgiDg) o (¢'Did4) = (definition 14 on (& ))
® o ((®)Dids) o (idpiDg) o ('Dids) = (functoriality of D)
@ o (ide®g) o ((®) o gHNDidy) = (decomposition of f)

fo(l(®) o g"Dida)
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By proposition 15, the proposition holds. o

The following diagram may be helpful in understanding the factorization of homomor-
phisms.

AtDA Y4 At
g"l
(I Did4 Bt (N
(o D[
cpa-idc®s cpBL. ¢
N\ - J

The literature on BMF is full of applications of the factorization of homomorphisms. If
®: COC — C, the homomorphism (@ ) is called a reduction 2, and (f) can be factored
into a map followed by a reduction. For examples, the reader should consult [1, 4, 9, 15, 16]
or other publications on program transformation in BMF.

The following proposition is also often used in program transformation. It is called the
promotion theorem.

Proposition 24 Let f, g,k be arrows between objects as indicated in the following dia-
gram:

AtHa—14 At

(prmmj m[
B®A 7 B |9
h(DidAl hl
cOHA c
If his f — g promotable, i.e.
hof=g o (h®ida)
then
(9) =h o (5]

Proof: -
hoo(f) ova = (definition 14 on (f))
hof o ((fl®ida) = (his f — g promotable)
g9 o (h@id4) o ((/)Dida) =
g o ((h o (f))Dida)

With proposition 15, the proposition follows. a

*In BMF, the reduction (&) would be written as @/

17



Again, we have no room to give more than one example, but there are many in the
references we gave earlier.

Example 25 Let ¢: —- A — L. If we define

(#)s = (48)

for every object B, then this is a natural transformation (@) : (A <) — L
Proof: The naturality of ¢ means that any function h: B — C is ¢p — ¢¢ promotable.
According to proposition 24,

(@dc=h o (¢)s
which is the naturality for {(¢). O
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