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Abstract. We discuss distributed algorithms for computing minimum hop distances in a
network from a general viewpoint and apply this to minimum hop routing. We show how
different models of computation lead to different algorithms known from the literature.,
We then discuss the effect of various network assumptions (static, dynamic) upon
minimum hop route maintenance. Using the Krogdahl-Knuth technique of system-wide
invariants, we prove the following distributed algorithms correct: the minimum hop route
determination algorithms of Gallager and Friedman for static networks and the route
maintenance algorithm of Chu for dynamic networks.

1. Introduction. A basic problem that must be addressed in any design of a distributed
network is the routing of messages. That is, if some node in the network decides it wants to
send a message to some other node in the network or receives a message destined for some
other node, a method is needed to enable this node to decide over which outgoing link it has to
send this message. Algorithms for this problem are called routing algorithms. In the sequel
we will only consider distributed routing algorithms which depend on the cooperative behavior
of the local routing protocols of the nodes to guarantee effective message handling and
delivery.

Desirable properties of routing algorithms are for example correctness, optimality, and
robustness. Correctness seems easy to achieve in a static network, but the problem is far less
trivial in case links and nodes are allowed to g0 down and come up like they tend to do in
practice. Optimality is concemed with finding the "quickest" routes. Ideally, a route should be
chosen for a message on which it will encounter the least delay but, as this depends on the
amount of traffic on the way, this is hardly to foresee and hence is actually difficult to achieve
as well. A frequent compromise is to minimize the number of hops, i.e., the number of links
over which the message travels from sender to destination. We will restrict our study to
minimum hop routing. Robustness is concerned with the ease with which the routing scheme
is adapted in case of topological changes.

Our aim in this paper is twofold. First we present a systematic development of a
number of distributed algorithms for minimum hop route determination and maintenance,
including a re-appraisal of several existing methods for the static case and a detailed analysis
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of some dynamic algorithms. Secondly, we present correctness proofs for these algorithms,
which tends to be hard for distributed algorithms and indeed was not presented before in most
cases that we consider. This applies in particular to the interesting distributed algorithm for
minimum hop route maintenance due to Chu [C] (see also [Ta] and [Sch]), for which we will
develop both a complete program skeleton and a correctness proof. In all cases we employ the
Krogdahl-Knuth method of system-wide invariants.

The paper is organized as follows. In section 2 we state the assumptions about the net-
works that we consider and define the concept of a program skeleton. Different models of
computation are then given. In the remainder we first concentrate on computing minimum hop
distances in a static network (section 3). We begin by deriving general properties of distri-
buted minimum hop algorithms, and then discuss different ways -related to different models of
computation- for deciding whether an estimate of a minimum hop distance is correct. We con-
Clude this section with the correctness proof of the minimum hop route determination algo-
rithms of Gallager and Friedman [Fr] (section 3.2).

In section 4 we consider the problem of maintaining routes in dynamic networks, i.e.,
networks with links going down and coming up. A global acquaintance with the contents of
sections 3.1 and 3.2.1 is assumed here. In section 4.1 we discuss some typical problems in
adapting distributed algorithms for static networks to distributed algorithms for dynamic net-
works, both in general and specifically for minimum hop route maintenance. We present the
well-known dynamic routing algorithm of Tajibnapis [Tj, La] for comparison, and in section
4.2 the dynamic routing algorithm of Chu [C]. The latter was presented as an improvement of
the algorithm of Tajibnapis by Tanenbaum [Ta] and Schwartz [Sch] but, while Tajibnapis’
algorithm has been proved correct by Lamport [La], it is not clear at all that the algorithm of
Chu is correct. Moreover, the presentation of Chu’s algorithm in the original report is very
imprecise. In section 4.2 we give a complete specification of Chu’s algorithm and a correct-
ness proof.,

2. Models of computation. We are interested in the relation between a distributed algo-
rithm and the model of computation that is used for its formulation, Generally speaking, a
model of computation can be viewed as a set of assumptions and restrictions about the nature
of the distributed computation in the network and the communication which takes place
between the network nodes.

These assumptions are not meant as a criterion for matching specific networks. Rather,
it is a way to focus attention on some aspects of distributed computing, while abstracting away
from others. For example, an assumption that is made in this paper is that a link between two
network nodes behaves like two FIFO queues of messages, one queue for each direction. This
does not mean that we restrict ourselves to networks where this is indeed the case, but that we
assume that this can be achieved by communication protocols present in the network, and that
the question how to achieve it is not our concem now.

The restrictions about the distributed computation and the communication between the
network nodes are restrictions in the order of events that are permitted in an actual execution.
Such a permissible order of events is stated by means of a program skeleton, which can be
refined to an algorithm. Thus a program skeleton stands for a class of algorithms, all of which
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can be obtained from that same skeleton by some refinement. The restriction in the order of
events specified in a program skeleton can add extra structure to the computation at hand, i.e.,
the computation of minimum hop distances in this case, from which extra information can be
derived that is exploited in actual algorithms. We investigate the interaction between the com-
putation per se and the model of computation used. We define some program skeletons
together with their assumptions in section 2.1. How these assumptions are modeled in the
communication network is discussed in section 2.2.

2.1. Program skeletons. For an appraisal of the general features of distributed programs
that compute minimum hop distances, we start by considering the essential building blocks and
only use complete programs as illustrations. We do this by means of so-called program skele-
tons, which are generic descriptions for classes of algorithms all of which have some underly-
ing structure in common. A program skeleton consists of a number of operations, each of
which consists of a piece of program. Operations can be carried out any number of times, by
any processor, and at any time. An operation is viewed as an atomic action, i.e., it is not inter-
ruptable. We do not specify anything about an assumed order in which the operations may
take place, but an operation can contain a so-called guard: a boolean expression between
braces { }. An operation may only be executed if its guard is true, otherwise nothing happens.
For example, a process may only execute the code for receiving a message if there is indeed a
message present to receive.

The most basic operations in a distributed program one can think of for a node i are:
send a message to j (S;), receive a message from j (R;), and do an internal (local) computa-
tion (I;), where j is any node connected to i by a link. Operations and variables are sub-
scripted by the identity of the node that performs and maintains them, respectively. This yields
the following program skeleton.

S; : begin send a message to some neighbor j end

R; : {a message has arrived from j }
begin receive the message from j end

I; : begin compute end

We can use these atomic operations as building blocks for bigger atomic operations,
thereby adding extra structure in the order of computation and/or the order of communication.
This can be done in different ways, and yields different program skeletons. Some ways are
more or less standard, and the resulting program skeletons together with the appropriate net-
work assumptions will be referred to as models of computation. Examples are the message-
driven model and the synchronous model of computation. Given a model of computation, an
idea what information a message should contain, and a way to compute the wanted information
from the received information, we have a general framework for an algorithm. For example,
the message-driven model of computation with messages which contain the name of a destina-
tion node together with the estimated distance of the sender of the message to that destination
node forms the basis of both the algorithms of Tajibnapis and Chu. (The basic computation is:
take the minimum of the local estimate of the distance to the destination node and 1+ the dis-
tance value in the received message.)
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As it is usually necessary to specify what the initial values of the node variables are, we
will do so for the variables used directly before the code of the atomic operations. In the
sequel we distinguish the following four program skeletons. We will give them for static net-
works now and discuss the extension to the case for dynamic networks in the next section.

2.1.1. Phasing. The idea of phasing is to divide all the work to be done over different
phases, and to allow a node to begin working on another phase only if all the work of the
current phase is completed. Thus phasing adds some structure to the order of events in a com-
putation, which was totally arbitrary up till now. We add a variable for the current phase at
each node i: phase;, and a new atomic operation is added for the transition to the next phase:
P;. The most general program skeleton which makes use of phasing (P) is as follows.

Initially Vi: phase; = 0.
Sf : begin send a message belonging to phase; to some neighbor j end

R : {a message has amrived from j }
begin receive the message from j and record it; compute end

P,-P : {all messages of phase = phase; are received from all neighbors }
begin phase; := phase; +1; compute end

Note that the internal computation operation I; is now divided over operation R/ where
the computation pertaining to the received message is done, and the operation P,-P , the internal
computation which effectuates the phase transition. Comparison of the operations S,-P and R,-P
reveals a problem introduced by phasing. While in operation S,-" a message belonging to
phase; is sent, nothing is mentioned about a phase number of a message in operation R,-P .
Ideally, the messages node i receives while phase; = P, would be the messages that i ’s neigh-
bors had sent while their phase number had the same value p. Now the problem is, what do
we want node i to do when a message belonging to a different phase has arrived? There are
several possibilities to deal with this problem.

First, it might be the case that the assumptions about communication on the links com-
bined with the properties of a more specific program skeleton suffice to prove that the arrival
of messages of the wrong phase cannot happen. Secondly, we could just refuse to receive the
message if it belongs to a different phase, and add a guard to that effect to the operation R’
We should take care not to introduce the possibility of deadlock then. Thirdly, the message
could be received but ignored, thus equaling the effect of the loss of a message. Fourth, if the
message belongs to a later phase, we could buffer it until the node reaches the right phase.
Fifth, we could just let the node receive the message and do the appropriate computation. It
will depend on the circumstances what choice we will make.

Another problem is the guard of operation P,-P : all messages of phase = phase; are
received. There must be some way for node i to decide this. One possibility, if the number
of messages per phase is not fixed, is to include the number of messages to expect in a phase
in the first message belonging to a phase, or to somehow mark the last message belonging to a
phase as such.
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2.1.2. Message-driven computation. The added structure in the order of computation in
this case is that messages may only be sent upon receipt of another message, and usually there
is some relation specified between the contents of the received message and that of the mes-
sages sent. We will use the term ’appropriate’ for this as long as we do not want to specify
the relation. Thus we do not have a separate, autonomous sending operation any more. But
now we need a way to start the sending of messages. Hence we introduce an operation A,M
(awaken) which can either be executed spontaneously (after initialization), or upon receipt of
the first message. Thus we include a test whether node i is awake yet in operation R¥, and if
not, we let i awaken first, i.c., execute operation A¥. A node is clearly supposed to awaken
only once, although this is only necessary for the termination of program skeleton M and not
for its partial correctness. The boolean awake; records whether i is awake or not.

Initially V i: awake; = false.

AM : [not awake;}
begin awake; = true;
forall neighbors j do send the appropriate messages to j od
end

RM : {a message has arrived from j }
begin if not awake; then do A fi; receive the message from j; compute;
forall neighbors & do send the appropriate messages to k od
end

Lemma 2.1. In a static network, all nodes eventually awaken iff in every connected com-
ponent of the network there is at least one node that awakens spontaneously, and messages are
not lost, garbled, duplicated, or delayed infinitely long.

Proof. Obvious from program skeleton M. W

Thus we will assume in the sequel that there is at least one node in each connected com-
ponent of the network that awakens spontaneously. In a dynamic network, some action com-
parable to awakening will be taken upon a change in link status (i.e., the going down or com-
ing up of a link). This will be discussed in the next section. We need the other assumption,
too, in this model, namely that messages do not get lost, garbled, duplicated, or delayed
infinitely long. This is because the sending of a message is now restricted and a node does not
have the possibility of sending a message repeatedly until it gets through. Hence we have the
following assumptions in this model.

Assumption 2.1. In a static network, at least one node in every connected component awak-
ens spontaneously.

Assumption 2.2. Messages do not get lost, garbled, duplicated, or delayed infinitely long.

This form of computation is called message-driven, i.e., something only happens if a
message is received. The situation that no more messages are around is of special interest in
this model, as nothing will happen any more when this situation arises. This situation is called
termination (TERM). Unless we make further assumptions about the network such as: all
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messages only have a bounded delay, it is sometimes necessary to add a so-called termination
detection algorithm to be able to detect this state (see e.g. [Tel]). Otherwise nodes might not
be able to conclude whether their computed values really reflect minimum hop distances or not,
as this can depend on whether all messages are received and processed.

2.1.3. Simulated synchronous computation. In this model which is frequently used to
simulate synchronous programs on an asynchronous network, we combine the added structure
of phasing and of the message-driven model of computation. Hence assumptions 2.1 and 2.2
apply here, too. Although we did not demand with phasing that the message received was of
the same phase as the receiver (because it was not necessary), we will do so now as it has the
advantage that a message can contain less information in this case. However, we then need a
way to ensure that no messages belonging to the next phase are received if they happen to
arrive early, as is possible in this model. Thus we add a new variable in each node i: rec;,
which is a boolean array which records for each neighbor j in rec;[j] whether all messages of
the current phase from neighbor j have already been received or not. Hence it is necessary
that the receiver of a message has some way to decide whether a message received is the last
message of the current phase or not.

There are several ways to implement this, for example: counting the number of messages
and sending the numbers, too, or combining all messages of one phase over one link into one
big message. Again we are not interested in an actual implementation, as long as a node can
decide the question. This leads to program skeleton SS .

Initially Vi: awake; = false, phase; = 0, and ¥ neighbors j: rec;[j] = faise.

A’ : {not awake;}
begin awake; = true;
forall neighbors j do send the appropriate messages of phase; to j od
end

R : {a message (of phase;) has arrived from j A not rec;[j] }
begin if not awake; then do A fi;
receive the message from j and record it; compute;
if this was the last message of phase; from j then rec;[j] := true fi;
if V neighbors &: rec;[k]
then phase; = phase; +1; compute;
forall neighbors k
do send the appropriate messages of phase; to k; rec;[k] := false od
fi
end

Note that operation P/ is now included in operation R{¥® to ensure that all operations
except awakening are only done upon receipt of a message. A link can contain in one direc-
tion messages of two different phases. Assuming that messages have to be received in the
order in which they arrive at a node, we now need the assumption that they arrive in the same
order as they were sent. Otherwise the guard of operation RS could cause deadlock. In
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section 3.1.3 we will prove for refinements of this program skeleton, that the phrase ’of
phase;’ is not necessary in the guard of operation RS,

Assumption 2.3. On any link, messages in any one direction are not reordered.

2.1.4. Synchronous computation. In synchronous computation it is usually assumed that
all nodes awaken simultaneously, and that messages are transmitted with a fixed delay. For
our purposes however, it is enough to make the assumption that all nodes awaken spontane-
ously in addition to assumptions 2.2 and 2.3.

Assumption 2.4. All nodes awaken spontaneously.

In synchronous computation not only all messages of one phase are sent "at the same
time", but all messages of one phase are also received "at the same time". It is usually not
assumed that more messages over one link can be received at the same time, hence the infor-
mation of all messages is assumed to be lumped together in one (bigger) message. Like in
program skeleton SS, the operation P! is included in the receive operation.

The variable rec; is not used any more, as the registration of which messages are
received in the program skeleton is replaced by a registration of which messages have arrived
outside the program skeleton, and thus not specified here. If this program skeleton is used in a
really synchronous environment, i.c., messages have a fixed delay, and there is a way to let all
nodes start (awaken) simultaneously, then the guard of R} becomes true automaticly each time
the fixed delay has elapsed. The program skeleton (S) is as follows.

Initially Vi: awake; = false and phase; = 0.

A,fg : {not awake;}
begin awake; = true,
forall neighbors j do send the message belonging to phase; to j od
end

R,-s : { from every neighbor the message belonging to phase; has arrived }
begin forall neighbors j do receive the message from j od;
phase; = phase; +1; compute;
forall neighbors j do send the message belonging to phase; to j od
end

These program skeletons together with the network assumptions stated in section 2.2
form the models of computation. In sections 3 and 4 we will further refine these program
skeletons. We first specify the actual computation of minimum hop distances and specify the
contents of a message. We then derive properties of the classes of algorithms that can be
described in this way. Finally, we refine these program skeletons further to arrive at concrete
algorithms.

The method used for the correctness proofs of these refined program skeletons is that of
assertional verification or system-wide invariants, first introduced by Krogdahl [Kr] and Knuth
[Kn]. The idea is that if a relation (between process variables for example) holds initially, and
is kept invariant by all possible operations, then it will hold always in the distributed system,



whatever order of operations takes place in an actual execution of the distributed algorithm.
This approach has a definite advantage over operational reasoning for correctness proofs
because it is almost impossible not to overlook some odd coincidence of events that can arise
in the execution of a distributed algorithm that might make the proof invalid, as it makes use
of checking all possible executions.

The advantage of the use of system-wide invariants for program skeletons is the follow-
ing. If we have a more elaborate program skeleton or an algorithm which can be viewed as a
special instance of some program skeleton, then any system-wide invariant which holds for the
program skeleton, will hold also for the more elaborate program skeleton or the algorithm.
This is the case simply because the invariant was proven correct for any order of operations in
the general case, and hence also for the special order of operations which will take place in the
more elaborate program skeleton or the algorithm. For example, as the simulated synchronous
program skeleton is a special case of the phasing program skeleton, invariants which hold in
the latter hold in the former, too. The approach was used successfully in e.g. [Tel] and [Scho].

System-wide invariants are very well suited to prove the partial correctness (or safety) of
a program skeleton, i.e., that all variables contain the correct values upon termination. In gen-
eral they are less suited to prove total correctness (or liveness), i.e., that there is termination in
finite time. That an execution cannot go on infinitely long is usually proven by means of some
counting argument. Although the freedom of deadlock for some program skeleton can be
stated in a system-wide invariant, this does not mean that the freedom of deadlock for this pro-
gram skeleton automaticly carries over to the freedom of deadlock for a refinement of that pro-
gram skeleton. As the order of operations in the latter might be more restricted because extra
guards were introduced, freedom of deadlock for the refined program skeleton will correspond
to a different system-wide invariant which will have to be proved separately.

2.2. The network. We assume we have a network consisting of nodes connected by
undirected communication links. We do not assume that the network is connected. Nodes can
send messages to their neighbors over links. Unless otherwise stated, we assume that nodes
know (the identity of) their neighbors.

As discussed in the previous section, we assume that messages sent are not lost, garbled,
duplicated, or delayed infinitely long. Thus a message sent always arrives in finite time at its
destination. We also assume that messages on one link for one direction are not reordered:
links have the FIFO property, i.e., a message sent first on a link, arrives first. We mean to say
that the underlying communication protocol(s) ensure those properties on this level. Hence
communication is modeled as follows. A link (i, ;) is represented by two FIFO queues of
messages Q[i,j] and Q[j,i]: the messages from i to j and from j to i, respectively. We
denote the fact that a message M is on its way from node i to node j over the link (i, j) as
<M>e Qli,jl.

We discuss algorithms for both static and dynamic networks, in sections 3 and 4, respec-
tively. In a static network, links are fixed and known to their neighbors. In a dynamic net-
work, links can go down and come up. We use the following model for communication in
dynamic networks. We assume that the assumptions stated above for links in a static network,
also apply to links in a dynamic network, whether they are up or down. To model the loss of
messages when a link is down, we do not change the assumptions, but add an extra atomic
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operation local to a link for going down which provides for the possible loss of messages.
Also the send procedure provides for possible loss of messages when a link is down. As a
counterpart for the operation for going down, we also add an operation for the coming up of a
link.

If the link (i, j) is up, then sending a message from i to j means: appending a message
to Q[i,j), and receiving by i of a message from j means: deleting the first message i.e., the
head of Q[j,i]. If the link is down, sending a message from i to j means: possibly append-
ing the message to Q[i,j]. This corresponds on the one hand to the message getting lost and
on the other hand to the situation that the message was still in i’s output buffer when the link
came up again. If the link is down and Q[j,i] not empty, receiving a message just means get-
ting the head of Q[j,i], corresponding to getting the next message in i’s input buffer. Thus
we get the following send and receive procedures.

proc send <M>to j by i = begin if linkstate(i, j) = up
then append <M>to Q[i,j]
else possibly append <M>to Q[i, /]
fi
end

proc receive <M> from j byi = {<M>headof Q[j,il}
begin delete <M > from Q[j,i] end

We will model nodes going down and coming up by the going down of all incident links
of a node that are still up, and the coming up of a node by the coming up of possibly only
some links incident to a node, respectively. It is of course necessary that nodes somehow
become aware of the changed status (up or down, respectively) of an incident link. We model
this by adding extra messages <up> and <down> which we call control messages. We
assume that when a link changes status, control messages are added to the message queues
corresponding to that link, and that the nodes incident to the link eventually become aware of
the changed link status when they receive the control message. Thus the status of the link can-
not be observed directly by the incident nodes.

When link (i, j) comes up, an <up> message is appended to both Q[i,j] and Q[j,i].
When link (i, j) goes down, a <down> message is appended to both Q[i,j] and Q[j,i], and
moreover, we allow that arbitrary noncontrol messages are deleted from Q[i,j] and Q[j,il,
corresponding to the situation that some or all messages are lost when the link goes down. It
is probably more realistic to only delete messages after the last <up> message, but it is not
necessary to make this assumption. We do not allow that control messages are deleted.

Thus we get the following atomic operations U (coming up) and D (going down) on
links.

U : {linkstate(i, j) = down}

begin append <up> to Q[i,j]; append <up>to Q[j,i];
linkstate (i, j) == up
end
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D;: {linkstate(i, j ) = up}
begin delete all, some or no non-control messages from Q[i, j];
delete all, some or no non-control messages from Q[j,i];
append <down> to Q[i,j]; append <down>to Q[j,il;
linkstate (i, j) == down
end

Here linkstate(i, j) is a ghost variable which can have values up and down. It is not a
variable which can be accessed by any node, but it is introduced to be able to formulate some
invariants more precisely.

Summarizing, the assumptions for a dynamic network are:

Assumption 2.2°. Messages do not get lost otherwise than by a D-operation or a send pro-
cedure. Messages that are not lost do not get garbled, duplicated, or delayed infinitely long.

Assumption 2.5. If a link (i, j) changes status, the appropriate control messages are appended
to Q[i,j] and @{j,i].

Assumption 2.6. Initially, all links are down and the initial topology of the network is defined
by the appropriate Uj; operations.

To the program skeletons from the previous section we now must add the new atomic
operations RU and RD : receive an <up> message and receive a <down> message, respec-
tively. Alternatively, we have to extend the code for the R operation with a test whether the
message received is a control message and the appropriate action to take in case it is. If the
computation on hand computes something which depends on the actual topology of the net-
work, such as for example minimum hop distances, part of the computation might have
become obsolete if there is a change in topology. There are two ways to deal with that: par-
tially recompute with the problem of deciding what part, or totally restarting the computation
with the problem of reinitializing. Thus in general, there will be several variables in the pro-
gram skeleton that have to be changed in an RU or an RD operation.

In the phasing program skeleton of the previous section, at least the phasing number will
have to be reset. In a message-driven computation we now must be aware that messages
might have become lost because of link failures, contrary to assumption 2.2. Furthermore we
need operations comparable to awakening which will take place upon changes in topology.
These will be incorporated of course in the operations RU and RD mentioned above.

There is a more philosophical difference between a dynamic network and a static net-
work, namely that in the latter case it is sufficient to do a computation once, while in a
dynamic network the computation might have to be redone for every change in topology. This
usually takes the form of a continuous computation which will only terminate when there are
no more changes in topology.

3. Minimum hop distances in a static network. We begin by applying the most gen-
eral program skeleton of section 2.1 to the computation of minimum hop distances. That is,
we specify the contents of a message, we define variables to record computed values, and we
specify the computation which has to be done. After investigating what we can derive about
estimated distances which are obtained in this way, we show in section 3.1 how to arrive at
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minimum hop distances if we refine the program skeletons P, M, SS, and S defined in section
2.1 in this way. In section 3.2 we then discuss some algorithms due to Gallager and Friedman
[Fr].

We assume that the contents of a message are the identity of some destination node
together with the estimated distance between the sender of the message and the destination. So
messages (denoted as <x,/>) consist of two fields: the destination is in the first field and the
(estimated) distance of the sender of the message to the destination is in the second field. We
assume each node maintains an array D with (estimated) distances to all nodes. If we want to
use the minimum hop distance for routing, we also need to remember the neighbor which sent
a node the estimated minimal distance. This will be maintained in dsn (for downstream
neighbor- the reason for this terminology will become clear later). We then get the following
program skeleton (B).

Initially Vi: Di[il=0 and Vx withx #i: D;[x] = oo.
S2 . begin send <x,D;[x]> to some neighbor j end

R2: {a message <x,!> has arrived from j}
begin receive <x, /> from j;
if I+1<D;[x] then D;[x] := I+]; dsm;[x) = j fi
end

Although it is not really necessary, we suppose for ease of notation that the set of all
nodes in the (static) network is known a priori to every node.

It might seem that we have not specified much about any program that contains these
atomic actions as building blocks. However, we can already derive some statements about the
relation between the values in D;[x] and the real (minimum hop) distance between i and x,
denoted by d(i,x).

Lemma 3.1. For all x and i the following holds invariantly.
(1) D;[x] is not increasing,

@ <x,l>eQlj,il = 12D[x},

(3) D;[x]1=2d(i,x).

Proof. (1), (2). Obvious from program skeleton B.

(3). This is initially true, as d(i,i) = D;[i] = 0 and d(i,x)<e for all x. If a message
<x,l> is sent by j, j sends its value D;[x] as I. Hence by statement (3) for j and x,
12d(j,x) for messages sent by j. In case i receives a message <x,/> from j and adjusts
D;[x], we know by the triangle inequality that d(i,x)<d(i,j)+d(j,x) = 1+d(j,x) and thus
1+4d(j,x)S1+!l = D;[x]. &

Lemma 3.2. Foralli and x withx #i
D;[x]= k <eo = there is a path of <k hops via dsn;[x] and Dy, ;[x1<k — 1.

Proof. Consider operation R, and let the message received be <x,/>. Then 12D;[x] by
lemma 3.1(2). If I = oo, i does not change D;[x] as 1+ & D;[x] always. Thus if i changes
D;[x] and sets dsn;[x] t0 j, I <e. We have two cases.

Case 1: 1 = 0.
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As 12d(j,x) we know d(j,x) = 0 and hence j = x. Thus x is neighbor of i and there is a
path of one hop to x. Then D;[x] is setto 1 and dsn;[x] = j while Dj[x]SI-l =0.

Case 2: 1>0.

As D;[j] = O initially and is never changed (lemma 3.1), ! >0 implies x # j. Hence we can
use the induction hypothesis for j and conclude that there is a path of <! hops to x from j.
We have I 2D;[x], dsm;[x] is set to j, and D;[x] to /+1 while there is a path of </ +1 hops
viajtox fromi. H

Baran’s perfect learning algorithm [Ba)] is essentially identical to the above program
skeleton. On messages sent for other reasons, a hop count of the distance traveled is pig-
gybacked. This hop count is used by the receiver of the message to adjust its distance table in
the manner described above. This distance table then is used in routing, without bothering
whether the distances recorded are minimum distances.

3.1. Structuring the program skeleton. From the preceding section we conclude that
any program which sends (estimates of) minimum hop distances to neighbors, and adjusts dis-
tances upon receipt of messages in this way, yields estimates which are upper bounds of the
real minimum distances, providing the initial values were upper bounds. In general however,
one would like to know when the upper bounds are equal to the minima. Clearly, one has to
send "enough" values around. Thus the problem reduces to deciding for each node when it
can stop sending values of distances because all nodes (including the node itself) have the
correct values. The way to achieve this is to add extra structure to the program skeleton. Both

with phasing and in the message-driven model we can decide when the distance tables are
correct.

3.1.1. Phasing. The idea of phasing was explained in section 2.1.1. In order to distinguish
messages of different phases, messages will now have a third field containing the current phase
of the sender. All the work of one phase in this case constitutes of sending around those mes-
sages which contain a distance field of ! = phase;, and receiving all those messages from all
neighbors, thus gathering all information about nodes which lie at a distance of phase; +1. We
refine program skeleton P to program skeleton P 1.

Initially Vi: D;[i]= O, phase; = 0, and Vx withx #i: D;[x] = oo,
i * . begin send <x, D;[x], phase;> to some neighbor j end

RF! : {a message <x,l,p> has arrived from j}
begin receive <x,!,p> from j; record it as received for phase = p ;
if I+1<D;[x] then D;[x] := I+1; dsm[x] = j fi
end

PP! : {all messages of phase = phase; from all neighbors are received}
begin phase; = phase; +1 end
The guard of operation P,-P ! still is rather informally stated. It depends on the actual

implementation how this statement should be formulated exactly. For example, the guard
could be "from all neighbors j and about all destinations x a message of phase; is received"”.
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We are not interested in how this could be implemented, we only assume that a node can
somehow decide this question.

Note that in operation R”! we did not test the phase number p of the received message
against the phase number phase; of the node i. Whether a message is buffered until i has
reached the corresponding phase or is processed directly, or even is thrown away, is immaterial
to the correctness, as we will see. Thus we did not pose an extra restriction on R} ..

As this program skeleton is also a refinement of program skeleton B, lemmas 3.1 and
3.2 still hold.

Lemma 3.3. For all i and x the following holds invariantly.
(1) phase; is not decreasing,
() d(i,x)>phase; v d(i,x)2D;[x].

Proof. (1). Obvious from program skeleton P 1.

(2). Initially d(i,x)>phase; =0 fori #x and d(i,i) = D;[i} = 0.

-Operation S7 ! does not change any variables.

-Operation R,-P 1 can only decrease D;[x], hence the statement remains valid.

-Consider operation P/'!. We only need to consider the case that phase; is increased to the
value that happens to be d(i,x). Thus assume d(i,x) = k=1. Hence there is a path of &
hops from i to x. Let j be the first node after i on this path. Thus d(j,x) = k- 1. As the
operation is enabled, i has received a message <x,l/,p> from j with p = k— 1. Together
with the induction hypothesis we have d(j,x)>p or d(j,x)2I. As d(j,x)= k-1, we
know k—121. In RF?! the result of receiving <x,!,p> is that D;[x]<I+1 whether or not
D;[x] is adjusted. As D;[x] is not increasing, this is still the case. Hence
D;[x]<l+1<k =d(i,x). &

Now it is clear from operation R/! that if two messages <x,l,p> and <x,l,p’> are
received from j, that the second one has no effect whatsoever. Hence it is not necessary for j
to send the second message, as long as i is able to conclude when it has received "all" mes-
sages of a phase. This could be implemented for example by letting j send the total number
of messages of each phase to be expected, or sending all messages over one link inside one
large message per phase. The proof of lemma 3.3 is easily adjusted for the set of atomic
operations where this different definition of "all messages per phase” is used in the guard of
operation P!, This will be discussed in more detail in section 3.1.3.

Theorem 3.4. For all i and x the following holds invariantly.
(1) d(i,x)s<phase; = D;[x]= d(i,x),
(2) D;[x)<phase; = D;[x]= d(i,x).

Proof. Follows directly from lemma 3.3 combined with lemma 3.1(2). ®

Thus we know on the one hand that of all nodes x lying at a distance less or equal the
current phase number the correct distance is known to i, and on the other hand, that if the
value that i has for the distance to x is less or equal the current phase number, then this value
is correct.
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Corollary 3.5. For all i the following holds invariantly.
phase; >max {D;[x] | D;[x]<e} = Vx:D;[x]= d(i,x).
x

Proof. With theorem 3.4 we have that for all x with d(i,x)<phase;, D;[x]>d(i,x). For
those x with d(i,x) = o we have with lemma 3.1 that D;[x] = d(i,x). Assume there is an
x with d(i,x) = k>phase;, and d(i,x)<e. Then there is a path of length k from i to x.
Thus on this path, there must be a node y with d(i,y) = phase;. With lemma 3.3 we know
d(i,y) = D;[y] < phase; which is in contradiction with the premise. Thus for all nodes x we
have D;[x} = d(i,x). &

Hence a node can decide when all its distance values are indeed correct. In an actual
algorithm for computing minimum hop distances this can be used for a stop criterion in the
algorithm. Note that the program skeleton as given here is too general for being able to prove
that it terminates and does not deadlock or goes on generating messages forever.

3.1.2. Message-driven computation. In this case the added structure in the order of
computation is that it is specified which messages are to be sent if a certain message is
received. If the receipt of a message leads to an adjustment in the distance table, this "news"
is sent to all other neighbors. We obtain the following program skeleton (M 1).

Initially V i: awake; = false, D;[i]1= 0, and V x withx #i. D;[x] = eo.

AM! :{not awake; }
begin awake; = true; forall neighbors j do send <i,0> to j od end

RM! :{a message <x,I> has arrived from j}
begin receive <x,I> from j; if not awake; then do A¥! fi;
if 1 +1<D;[x]
then D;[x] = I+1; dsm;[x] = j;
forall neighbors k with & # j do send <x,D;[x]>to k od
fi
end

As it is also true for this program skeleton that it is a refinement of skeleton B, lemmas
3.1 and 3.2 also hold now.

Lemma 3.6. For all links (i, j) and all nodes x the following holds invariantly.
awake; A D;[x]<ee = <x,D;[xl>e Qli,j] v Dj[x]SD,-[x]+1.

Proof. Initially the premise is false.

-Operation A¥!. When i awakens, only D;[i]<ee, but then <i,0> is sent to j, hence
<i,0>e Qli,jl

-Operation RM1. Only there is D;[x] changed. If it is, it is done upon receipt of some mes-
sage <x,I> from node k, where now D;[x] = I +1. We distinguish two cases.

Case 1: j = k. With lemma 3.1 we have I 2D;[x], thus D;[x]<! <D;[x]+1 holds.

Case 2: j # k. Then the message <x,D;[x]> is sent to j hence <x,D;[x]>e Qli, /] holds.
-Operation RM! can falsify the statement <x,D;[x]>e QI[i,j] by receiving that specific
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message, but then the result is D; [x1<D;[x]1+1. If this last statement holds, it can not be
invalidated by an R¥! operation because D;[x] is not increasing (lemma 3.1). H

Lemma 3.7. For all nodes i and x the following holds invariantly.

d(i,x)= D;[x] v

d(i,x)<D;[x1A3j withd(i,j)= 1Ad(i,x)=d(,x)+1 A
(d(j,x) = Djlx] A (<x,Djix]>e Q[j,i] v not awake; Ax = j)V
d(j.x) < Dj[x]).

Proof. In case d(i,x) < D;[x] it follows that i # x and d(i,x) <e. It is a property of
minimum hop distances that i has such a neighbor j on a path to x. By lemma 3.1 we have
d(j,x)SDj[x]). For the case of d(j,x) = Dj[x] use lemma 3.6. W

Lemma 3.8. The number of messages sent in program skeleton M 1 is finite.

Proof. First note that in any message <x,/> which is sent, 0</ <. Secondly, let N be the
total number of nodes in the network. Then [ < N (use lemma 3.2). Moreover, if two mes-
sages <x,I/> and <x’,l'> are sent in the same direction over a link, then either x # x’ or
1 # I'. This gives the desired result. W

Theorem 3.9. TERM = Vi, x: D;[x]= d(i,x).
Proof. Use lemmas 2.1, 3.6, and 3.7. W
Corollary 3.10. Program skeleton M 1 is (totally) correct.

Proof. As messages can always be received when they arrive, and delays are finite, this pro-
gram skeleton terminates in finite time. W

The only problem now left is that a node i cannot see from the values of its variables
whether there is termination or not, and hence whether its distance table is correct. Unless we
make further assumptions about the network such as: all messages have a bounded delay only,
we need to add a so-called termination detection algorithm to be able to detect this state (see
e.g. [Tel]).

3.1.3. Simulated synchronous computation. In this model, the feature of phasing is
incorporated in the message-driven model of computation, as was discussed in section 2.1.3.
We obtain program skeleton SS 1 if we refine program skeleton SS with the distance computa-
tion.
Initially V i: awake; = false, phase; = 0, D;[i]= 0, and
V x with x #i: D;[x] = e, V neighbors j: rec;[j] = false.

ASS!: {not awake;}
begin awake; = true;
forall neighbors j do forall nodes x do send <x,D;[x],phase;> 10 j od od
end
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R,-ssl : {a message <x,/,p> has arrived from j A not rec;[j]1}
begin receive <x,!,p> from j; if not awake; A p = 0 then do A fi;
if awake; A p = phase;
then if I +1<D;[x] then D;[x] = l+1; dsm;[x] == j §i;
if this was the last message from j belonging to phase;
then rec;[j] == true
fi;
if V neighbors k: rec;[k]
then phase; = phase; +1;
forall neighbors &
do rec;[k] = false;
forall nodes x do send <x,D;[x],phase;> to k od
od; if not 3x with D;[x] = phase; then awake; := false fi

end

In the above program skeleton a lot of information tums out to be redundant. Hence we
proceed to prove relations between the variables involved in order to arrive at a simpler pro-
gram skeleton whose correctness follows from the correctness of the skeleton above. Note that
the guard of operation RS! does not contain the test p = phase;, contrary to the situation in
RS, The next theorem states that this test is not necessary.

Lemma 3.11. For all links (i, j), all nodes x, and all integers k 20 the following holds invari-
antly.
(1) <x,l,p’ > behind <x,l,p>in Q[i,jl = p’ 2p,
2) 3<x,l,p>eQli,jlwithp = k = phase; 2k A
phase; <k v phase; = k A rec;[i] = false,
(3) (awake; A phase; = k = 0 v 0<k <phase;) nnot 3<x,l,p>e Q[i,jlwithp = k =
phasej>k Vv phase; = k A recjli] = true v not awake; A phase; 21,
(4) (not awake; A phase; = k = 0 v k >phase;) =
not <x,l,p>e Qli,jlwithp = k A
(phase; <k v phase; = k A recj[i] = false).

Proof. (1). Follows from the FIFO property of the message queues and lemma 3.3.
We prove the remaining statements simultaneously. Initially the premise of (2) and (3) is
false, and (4) holds for all k as all queues are empty. Consider the effects of the different
operations upon the statements.

-Operation A,-SSI. Then the premise of (2) holds for k = O and phase; = 0 and
rec;lil= false. The premise of (3) is false for k = 0. (4) continues to hold fork 21.

-Operation RSS! where phase; is increased. (2) continues to hold for phase; >k as
before, and for k = phase; messages <x,l/,p> with p = k are sent to j. As phase; Sphase;
before RSS!, we now have phase; <k. (3) continues to hold for phase; >k as before, and the
premise is false for k = phase;. (4). The premise holds for less values of .

-Operation A 5!, spontaneously or on receipt of a message which was not the last one of
this phase from i. Hence as a result, phase; = 0 and rec;[i] = false. If (2) held, it still
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holds. The premise of (3) is false. (4) continues to hold as before.

-Operation R55! on receipt of a message which was not the last one of this phase from
i. Then all statements remain valid as before.

-Operation R ! on receipt of a message <x,/,p> from i which was the last one of this
phase. Then before rec;[i] = false (statement (2)). We have two cases.

Case 1: phase; is not increased. Then rec;[i] = true and not 3<x,l,p>e Q[i,j] with
p = phase; holds. An exception is the case where awake; was false, since rec;[i] = false
then.

Case 2. phase; is increased. Then again rec;[i] = false and not d<x,l,p>e Qli,j] with
p = phase; holds. If (2) held before for values of k with phase; <k, then it now holds for
phase; <k as rec;[i] = false. (4) cannot have held before R*! for k = phase;, hence (4)
continues to hold now phase; is increased. If awake; is set to false, phase; must at least be 1
as phase; is increased first.

-Operation R on receipt of a message from another neighbor than i which results in
an increase in phase;. This can only happen if before sts ! rec;[i] = true already, and hence
not 3<x,l,p>e Qli,j] with p = phase; before R¥!. Afterwards, rec;[i] = false. The
premise of (2) only could hold for k > phase;, hence (2) holds afterwards. In (3), phase; = k
and rec;[i] = true held before, and now phase 5 >k holds. In (4), phase; = k' and
recj[i] = false did not hold, hence increasing phasej by 1 does not invalidate (4).

Hence these statements remain invariant under all possible operations. W

Theorem 3.12. For all links (i, j) and all nodes x the following holds invariantly.
<x,l,p>head of Q[i,j] =
p = phase; A recjli] = false v p >phase; A (rec;li] = true v awake; = false).

Proof. Follows directly from lemma 3.10 (1) and (4), lemma 3.10 (2) with ¥ = p and lemma
310 3) withk<p-1. 1

Hence we can conclude that the receiver of a message <x,/,p> has no need for the
information what in the third field. If the receiver is awake and the guard is enabled, the mes-
sage is of the current phase, if the receiver is not awake, it is clear from its own phase number
(=0 or >0) whether it should awaken and start participating in the algorithm or that it has
finished already. In the last case the (redundant) message can be thrown away. Thus we can
omit the third field from the messages. However, there is more information that is redundant.

Lemma 3.13. For all links (i, j) and all nodes x the following holds invariantly.
(1) D;[x]<e = D;[x]<phase;+1,

?) <x,l,p>e€Qli,jl 1l =ewvl=d(ix)<p,

3) <x.,l,p>eQli,jlAl<p = phase; = Dj[x]= d(j,x).

Proof. We prove the first two statements simultaneously. Initially both are true. If a node
awakens, it sends messages of the form <x,0,0> which agrees with the second statement. If in
an operation RSS! D;[x] is changed, it is done upon receipt of some message <x,l,p> from
say j. Then I #eo, p = phase;, and | = d(j,x)<phase;. As D;[x] is set to 1+1 =
d(j,x)+1<phase; +1. If in operation R¥! messages are sent, then phase; was increased,
t00. As for those x with D;[x]<es, D;[x]<phase;+1, we have that after the increase
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D;[x]1<phase; and thus /<p in the messages sent, or [ = co. With theorem 3.4(2)
D;[x)<phase; implies | = d(i,x). Hence (1) and (2) remain invariant.

Statement (3) follows from the triangle inequality d(j,x)<d(i,x)+1 together with (1) and
theorem 3.4(1). W

Thus the only messages <x,!,p> upon the receipt of which an entry D;[x] is changed,
are those with [/ = p = phase;, and hence D;[x] is always set to phase; +1. Necessarily
D;[x] was o beforehand. Thus the test whether to change D;[x] can be stated otherwise.
Only the name of the node x in a message <x,[,p> is information we need. Now it is possi-
ble to do two things: one is to just send messages which only contain the name of a node.
The problem with this is that the receiver now has no way of knowing when all messages of
one phase have been received, as the number of them is not fixed any more, and even might be
zero. The second way is to send only one message which contains a set of node names. Thus
we avoid the previous problem, introducing however messages which do not have a fixed
length.

We now give the simplified program skeleton for the second way in skeleton SS2, for
easy comparison to the synchronous program skeleton (see section 3.1.4). Now X denotes a
(possibly empty) set of node names.

Initially V i: awake; = false, phase; = 0, D;[i]1= 0, and
V x with x #i: D;[x] = oo, V neighbors j: rec;[j] = false.
A2 : {not awake;}
begin awake; = true; forall neighbors j do send <{i}>to j od end

RS2 : {a message <X> has arrived from j A not rec;[j1}
begin receive <X> from j ; if not awake; A phase; = 0 then do A2 fi;

if awake;
then rec;[j] = true;
forallx e X

do if D;[x] = o then D;[x] := phase; +1; dsn;[x] = j fiod;
if V neighbors k: rec;[k]
then phase; := phase; +1; X = {x | D;[x] = phase;};
forall neighbors k& do rec;[k] := false; send <X >to k od;
if X = O then awake; = false fi
fi fi
end

Even now there is some redundant information sent. This is exploited in the algorithms
of Gallager and Friedman [Fr]. We refer the reader to section 3.2 for more details.

We now proceed with the issue of correctness of this program skeleton, as this does not
follow directly from corollaries 3.5 and 3.10. Since we introduced extra guards it is not obvi-
ous that no deadlock can occur.

Lemma 3.14. For all links (i, j) the following holds invariantly.
awake; Arec;[j]1= false AQ[j.il= O =
phase; <phase; A awake; v phase; = phase; = 0 A not awake; A Qli,jl1# Q.
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Proof. Using lemma 3.11(3) with i and j interchanged and with k = phase;, we get a con-
tradiction. Hence we conclude that phase; <phase; or not awake; A phase; = phase; = 0. In
the case of phase; <phase;, let us assume that not awake; holds. It is clear from the program
skeleton that this implies not 3x with D;[x] = phase;. Hence there is no node x with
d(j,x) = phase; (theorem 3.4). On the other hand, awake; holds, so there is some node x
with D;[x]= d(i,x) = phase; >phasej. As d(j,x)2d(i,x)- 1 because i and j are neigh-
bors, this leads to a contradiction and j must be awake still. Upon awakening, i sends a mes-
sage to j, hence Q[i,j] # @. As long as j does not receive the message, rec;[i] = false and
j does not awake. On the other hand, if j awakens spontaneously, Q [j,i] = @ is invalidated.
Hence the statement holds. W

Theorem 3.15. The program skeletons SS 1 and SS2 are correct.

Proof. Lemma 3.14 implies that if at least one node in each connected component of the net-
work awakens spontaneously, there is always some node in that connected component which
can go on because its R operation is enabled. Thus no deadlock can occur. That the values in
the distance tables are correct follows from corollary 3.5. As the number of messages sent is
finite: at most the number of phases (bounded by the diameter of the connected component)
times the number of nodes, termination is in finite time. W

3.1.4. Synchronous computation. In synchronous computation not only all messages of
one phase are sent "at the same time", but all messages of one phase are also received "at the
same time". Refining program skeleton S from section 2.1.4 leads to program skeleton S 1.

Initially V i: awake; = false, phase; = 0, D;[i]= 0, and
Vx withx #2i: D;[x]= oo

Afl:as ASS2,

RS!: {awake; and from all neighbors a message has arrived }

begin forall neighbors j
do receive <X> from j ;
forallx e X

do if D;[x] = - then D;[x] = phase; +1; dsn;[x] = j fi od
od; phase; = phase; +1; X = {x | D;[x] = phase;};
forall neighbors j do send <X >to j od;
if X = @ then awake; = false fi
end

Lemma 3.16. For all links (i, j) the following holds invariantly.
awake; AQLj,il=0 =
phase; <phase; A awake; v phase; = phase; = 0 Anot awake; A Qli,j1#D.

Proof. Initially the relation is true.

-Operation Af! sets awake; and Q1i, j] # @.

-Operation A7 falsifies the premise.

-Operation RS! is only enabled if Q[j,i] # @. If afterwards Q[j,i] = @, then it contained
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exactly one message. With a reformulation of lemma 3.11 and theorem 3.12 for this program
skeleton we know that before R, phase; = phase; held. As phase; is increased, the result is
phase; <phase;. The argument that awake; holds in the first part of the conclusion is the same
as in the proof of lemma 3.14.

-Operation R}'! falsifies the premise. W

Theorem 3.17. Program skeleton S1 is correct.

Proof. Consider the differences with program skeleton SS2. In operation R there is no pos-
sibility for awakening upon receipt of a message. This is not necessary because of assumption
2.4: all nodes awaken spontaneously. The partial correctness follows because this is a
refinement of program skeleton SS2. Lemma 3.16 implies that there is always a node with a
minimal phase number for which some operation is enabled: either awakening or receiving
messages over all links. Hence deadlock cannot occur. As the total number of messages sent

is finite, this algorithm terminates in finite time (assuming that all nodes awaken in finite time.)
|

Although program skeleton S1 is the straightforward refinement of program skeleton
$S2, it should be noted that the problem we consider, namely computing minimum hop dis-
tances, is not wholly suited for a really synchronous computation. Ideally, one would not only
want all nodes to start simultaneously, but also to finish simultaneously. However, it is
inherent to this problem that some nodes have more work to do than others, possibly twice as
much. For example, for nodes on a path, the ones at the ends of the path go on twice as long
as the one(s) in the middle. Moreover, in the present formulation, there are (redundant) mes-
sages left in the queues after termination of the algorithm which is not elegant. It is no prob-
lem of course to add some code to receive and throw away the remaining messages.

3.2. Concrete algorithms. Friedman [Fr] discussed two algorithms for finding the
minimum hop distances in a static network, which can be viewed more or less as special cases
of program skeleton S 1 from the previous section. The first of these algorithms is attributed to
Gallager.

3.2.1. The algorithm of Gallager. Gallager noted that in program skeleton S1 for the
computation of minimum hop distances, there is still redundant information sent in messages.
Consider the case that node i hears about a node x first from its neighbor j. Thus a shortest
path from i to x leads via j. However, in the next phase i sends the newly learned identity of
x to j too, which clearly is redundant information for j.

Lemma 3.18. For all links (i, j) and all nodes x the following holds invariantly.
dsn;[x]1= j = Djlx]= d(j.x).

Proof. Initially the premise is false. If dsn;[x] is set to some value j in operation R}, then
x was included in a message from j. When j sent this message, D;[x] = d(j,x), and D; [x]
is not changed any more. W

Thus it is not necessary to include node x in the set X sent to j if dsn;[x]= j. How-
ever, from the program skeleton it is not clear which neighbor will be chosen as downstream
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neighbor in case there are more possibilities, as the order of opefation in "forall neighbors
j do..." is not specified. For every possibility j, i.e., every neighbor j with minimal distance
to x, it is not necessary to include x in X to j. Thus the array of single values dsn; is
changed to an array of sets of neighbors all of which lie at a minimal distance.

We now rewrite the program in these terms which results (almost) in the algorithm of
Gallager as stated by Fricdman [Fr].

Initially Vi:  awake; = false, phase; = 0, D;[i]1= 0, dsn;[i]l= &, and

Vxwithx #i: D;[x]= o and dsn;[x]= D.

Af: as AL

RE : {awake; A from all neighbors a message has arrived}
begin forall neighbors j
do receive <X> from j;
forall x e X
do if D;[x]2phase; +1
then D;[x] = phase;+1; dsn;[x] = dsm;{x]J U {j}

fi
od od; phase; := phase;+1;
forall neighbors j

dolet X = {x| D;[x] = phase; A je dsn;[x]}; send<X>toj od;
if not x with D;[x] = phase; then awake; = false fi
end

Corollary 3.19. The algorithm of Gallager is correct.
Proof. Follows from lemma 3.18 and theorem 3.17. W

Note that there is one difference with the algorithm of Gallager: where we have: "forall
neighbors j do receive <X > from j", Gallager has "receive transmissions from all active
neighbors”. However, we showed in lemma 3.14 that all neighbors are awake or active long
enough and hence that this test is unnecessary.

As Friedman already noted (without any arguments however) this algorithm can easily
be adapted for use in an asynchronous environment. It is now a straightforward exercise to
incorporate the idea of the sets of downstream neighbors dsn;[x] in program skeleton SS2
which makes use of messages about sets of nodes.

3.2.2. The algorithm of Friedman. Friedman [Fr] observed that there is still some
redundant information sent around in the previous algorithm, in the case that the network is not
a bipartite graph. This means that the graph contains cycles of odd length. Consider two
neighbors i and j on a cycle of odd length. This means there are nodes (at least one, say x)
with the same distance to i and j: d(i,x) = d(j,x). Thus in phase d(i,x) i and j send the
name of node x to each other, while this is no new information for them. Friedman tried to
adapt the previous algorithm in such a way that this is avoided.

The way he did that, is by ensuring that information is not sent in in both directions over
a link simultaneously. For each link, a HI and a LO end is defined, the number of phases is
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doubled, and nodes altemately send and receive from HI and LO ends. To be able to discuss
the relation between the phases in the previous program skeleton and the phases in Friedman’s
algorithm, we will give the latter variables a new name: Fphase. In the program skeleton we
will write in comment what would have happened to the variable phase, thus simplifying the
formulation of invariants. Note that we cannot choose HI and LO ends such that nodes have
only HI or only LO ends, because that would mean that the network is bipartite and the prob-
lem we want to avoid does not occur.

Hence we distinguish two sets hi; and lo; which contain those links for which i is HI
and LO end, respectively. It is arbitrary how we choose HI and LO ends, as long as both ends
of a link decide consistently. We assume node names are distinct and can be ordered in some

way, (lexicographically for example), and we take as HI end the end with the highest node
name.

Furthermore, we need some way to remember which node identities were received by
LO ends while they were candidates to be sent in the next phase, as those are the identities we
want to avoid to send twice. Note that they are not remembered in Gallager’s algorithm,
because they have a shorter path via another neighbor. We will maintain an array nnn; (for
next nearest neighbor) of sets, where neighbor j € nnn;[x] if d(i,x) = d(j,x). If we incor-
porate these ideas in Gallager’s algorithm we get the following program skeleton. Lines
differing from the algorithm as stated by Friedman himself are marked with an asterisk (*) at
the beginning of the line.

The atomic operation R,-G is now split into three different atomic operations: R?, R?4,
and Rf*", as the guards of these operations now differ. In R?, messages must have arrived
over all links to receive all of them and decide the HI and LO ends of the links. In R the
Fphase number is odd and messages from LO link ends must be awaited before they can be
received. If the Fphase number is even, messages from HI link ends are awaited in Rf". In
order to be able to state invariants about messages of a certain phase, we add in comment mes-
sages with a second field containing the current Fphase number.

Initially V i: awake; = false, Fphase; = 0, D;[i]l= 0, dsn;[i] = O,
hi; = @, lo; = O, and co phase; = 0 co
V x withx #i: D;[x]= o, dsn;[x]= O, and nnn;[x] = D.

AF: as AP co send <{i},0> co

R : {awake; A Fphase; = 0 A over all links a message has arrived}
begin forall links
do receive < {j} > over the link; D;[j]:= 1; dsm;[jl:= {j};
if j <i then hi; :== hi; U {j} elselo; == lo; U {j} fi

od; Fphase; = 1; ¢o phase; .= 1 co
forall j € hi;

* doletX = {x|D;[x]= %(thase,-+1) Ajédsn;x]}; send <X >toj
od; co send <X, Fphase; > to j co

if not 3x with D;[x] = 1 (Fphase;+1) then awake; = false fi
end
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R :{ awake; A odd ( Fphase;) A from all j e lo; a message has arrived }
begin forall j € lo;
do receive <X > from j ;
forallx e X
do ifD, [x]Z%(thase, +3)
then D;[x] = 1(Fphase;+3); dsm;[x] = dsm;ix] L {j}

* elif D;[x] = 1(Fphase;+1)
* then nnn;(x] = nnn;[x]1 L {j}
fi

od od; Fphase; := Fphase; +1;
forall j € lo;
* do letX = {x|D;[x]= 1Fphase; A j & dsn[x] A jé nnn;[x]1 )
send <X > to j co send <X, Fphase; > to j co
od

end

Rf™" . {awake; A even(Fphi) A Fphase; >0 A from all j € hi; a message has arrived}
begin forall j € hi; '
do receive <X > from j;
forall x € X
do if D;(x]24Fphase; +1
then D;[x] = %thase,-+l ;dsmi[x] = dsm;[x]U{j}

fi
od od; Fphase; = Fphase; +1; €0 phase; = phase; +1 co
forall j € hi;
* doletX = {x| D;[x]= %(thaseﬁl) Ajédsnx]};, send <X >toj
od; co send <X, Fphase; > to j co

if not 3x with D;[x] = 1 (Fphase;+1)
then forall j e lo; do send < @ > 1o j od;
Fphase; = Fphase; +1, awake; = false
fi
end

Note that the algorithm of Friedman is not a special case of the synchronous or simu-
lated synchronous program skeleton because in R messages of phase; are received while
other messages of phase; are sent afterwards in the same operation.

Lemma 3.20. For all links (i, j) and all nodes x with x # i the following holds invariantly.
(1) Fphase; >0 = hi; L lo; = {all links incident to i} A hi; N lo; = J,

(2) Fphase; >0 A Fphase;j>0 = jelo; ni€hijv jehi; nielo;,

B) <X,f>eQli,jl = f=0vodd(f)Ajehiveven(f)ajelo;,

4 <X,f>tailof Qli,j1 = Fphase; = f v Fphase; = f +1,
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5) <X,f'>behind<X,f>inQli,jl = f=0Af=1vf =f+2,

(6) <X.f>headof Q[i,j1 = f = Fphase; v f = Fphase;+1,

(7) phase; = [1Fphase; ],

@ <X,f>e@li,jlaxeX = d(i.x)=Di[x]=|—§f-|,

©) Jjedsnix]vjenmmx] = Djlx]=d(,x),

(10) not 3<X,f>e Qi,jlwithf = k A(k = 0 veven(k) A je lo; vodd(k) A j € hi;)
= not awake; A Fphase; = 0 v Fphase; <k v Fphasej>k.

Proof. (1), (2), and (3) follow directly from the program skeleton.
(4). Note that R?* and R*" can only become enabled alternately. If Fphase; is increased to

f +2 and hence to a value with the same parity as f, a new last message is sent so the rela-
tion holds for the new message.

(5). Use statements (3) and (4).

(6) follows from program skeleton F and statements (4) and (5).

(7) is clear from program skeleton F.

(8). Although this is not a refinement of program skeleton SS, we claim that it is a special
case of program skeleton P 1: Messages of phase; (i.e., about nodes x with d(i,x) = phase; )
are sent when phase; = 1Fphase; and when phase; = 1(Fphase;+1). As phase; =
%thase,--l, messages of phase; are indeed sent in phase phase;. Furthermore we have to
show that the guard of operation P! in program skeleton P1 is true when phase; is increased
in this program skeleton. In operation R phase; is increased. With statements (2), (3), (4)
and (6) we have that <X,f> is received when f = Fphase;. As the messages of phase; are
those with f = 2.phase; and f = 2.phase; — 1 they have all been received when all messages
on the HI links are received in operation Rf"". Thus we can use theorem 3.4.

(9). A node j is added to a set dsn;{x] or nnn;[x] only upon receipt of a message <X, f >
from j where x € X. With (8) we have the desired result.

(10). Initially not awake; A Fphase; = 0 holds. Operation A,-F falsifies the premise for k = 0
and for the other values of k Fphase; <k now holds. In general, Fphase; <k is falsified

together with the premise. If the premise is validated by the receipt of a message <X, k> by

j, then afterwards Fphase; >k holds, which cannot be invalidated any more. W

Hence the second field in messages containing the Fphase number can indeed be
deleted.

Lemma 3.21. For all links (i, j) the following holds invariantly.

(1) awake; A Fphase; = 0 AQ[j,il= @ = not awake; A Fphase; = 0 A Q[i, j1# D,
(2) awake; A odd (Fphase;) A je lo; AQ[j,il= @ = awake; A Fphase; <Fphase;,
(3) awake; Aeven(Fphase;) A je€ hi; AQ[j,il= @D = awake; A Fphasej <Fphase;.
Proof. (1) follows from lemma 3.20(10).

Except for the statement awake; in the conclusion, (2) and (3) also follow from lemma
3.20(10). Let odd (Fphase;) hold. Then awake; implies that there is some node x with
d(i,x)= %(thase,-+l) and hence also a (possibly different) node x with
d(j,x)= 1(Fphase;—1). As Fphase; < Fphase; we have awakej. On the other hand, let
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even (Fphase;) hold. Then awake; implies that there is some node x with d(i,x) = 1 Fphase;
and hence also a (possibly different) node x with d(j,x) = %(thase,- — 2). Hence awake;
holds for Fphase; <Fphase;— 2, and as becoming not awake is only done in even phases,
awake; also holds for Fphase; = Fphase;— 1. W

Theorem 3.22. The algorithm of Friedman is correct.

Proof. That the second field in messages <X, f > can be deleted follows from lemma 3.20(6).

The partial correctness follows from lemma 3.20. The freedom of deadlock follows from
lemma 3.21. W

Although this is the direct translation of the ideas of Friedman for his algorithm, it is by
no means the same as the algorithm he stated for this purpose, which we cite now:

Step O: Node pairs exchange identities and choose HI and LO.
Step I: All HI nodes broadcast to their corresponding LO neighbors,

l odd as in Gallager’s algorithm, new identities learned at Step [-1.
Step /: All LO nodes broadcast to their corresponding HI neighbors
l even new identities learned at Step I-2.

Termination is as in Gallager’s algorithm.

It is immediately clear that this cannot be correct, as only new identities learned in even
steps are sent through. Hence information received in LO link ends will never be sent through.
Moreover, as the algorithm is stated now, information is still sent twice over a link, as trying
out the algorithm on a cycle of length 3 shows.

4. Minimum hop distances in a dynamic network. In a dynamic network, links can
go down and come up, as can the nodes themselves. Hence the minimum hop distance
between two nodes can change in time. We have specified what we exactly mean by "going
down" and "coming up" in section 2.2. The precise formulation of the assumptions is impor-
tant, as people tend to make slightly different assumptions and it does make a difference for the
correctness proofs.

In the next section we discuss some different problems one encounters in algorithm
design for dynamic networks. We then give the algorithm of Tajibnapis [Tj] for comparison
and in section 4.2 we give a complete correctness proof of the algorithm of Chu [C].

4.1. Comparison with the static case. As a dynamic network is inherently asynchro-
nous according to our assumptions, we only have the message-driven model of computation,
and the simulated synchronous model of computation, the latter being a message-driven model
of computation which incorporates the idea of phasing. In both models, the partial correctness
relies heavily on the facts that the D;[x] are decreasing and approximate d(i,x) from above
(lemma 3.1). A consequence of this is lemma 3.2, which states that a finite entry in D;[x]
reflects the existence of a path from x to i. As the minimum hop distance of two nodes can
increase if a link goes down the relation D;[x]12d(i,x) cannot be an invariant. In fact, in all
algorithms that we have seen, it is the case that, as soon as a node receives information that
this relation might not hold any more, it sets D;[x] to oo.
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There are basicly two extremes in adapting static algorithms for use in a dynamic net-
work, both with their own advantages and disadvantages. One extreme is to process all new
information as it comes in, discarding the old information, and sending it on immediately.
Simple though this might seem, it leads to inconsistent information between network nodes,
due to the asynchronicity of the network. In the case of minimum hop routing, it is easy to
construct examples such that node i has node j as its downstream neighbor for routing
towards x, while node j has node i as its downstream neighbor. This problem is referred to
as "not loop free" in the literature. The algorithm of Tajibnapis is an example of this. The
algorithm of Chu, called the predecessor algorithm by Schwartz [Sch], is an adaptation of this
which avoids some loops (those of length two).

The other extreme is, to first discard all old information in the whole network, and reset
all nodes to an initial state before restarting the static algorithm anew. Clearly this makes rout-
ing in the whole network impossible for some time, even in those parts of the network that are
not affected. However, in combination with a minimum hop algorithm such as that of Gal-
lager, routing is loop free. Of course, any algorithm that defers all routing until lemma 3.2
holds again, is loop free. Resetting all nodes before restarting could be done by a resynch
algorithm such as Finn’s [Fi], but usually deferring all routing until the whole network is reset
and all routing tables refilled, is too high a price to pay. Therefore people have tried to
economize on this aspect while retaining loop freedom.

One approach, suitable for algorithms which work independently for all destinations, is
to restrict the resetting of the network and deferring the routing for the affected destinations
only. The algorithm of Merlin and Segall [MeSe] makes use of this. Another approach is to
economize on complete resynchronization and only partially resynchronize, i.e., we do not
demand that before restarting the minimum hop algorithm all nodes are reset as with complete
resynchronization, but only the the neighbors of the node restarting. This is done in the fail-
safe version of Gallager's algorithm by Toueg [To). Due to the very special order in which
routing tables are filled, it is known during the execution of the algorithm which information is
new and which is old.

A basic problem with running different versions of the same algorithm in an asynchro-
nous environment is keeping them apart. One solution which usually is not choosen, is to wait
with restarting a new version of the algorithm until the previous one has terminated. A reset
algorithm by Afek et al. [AAG] could be used to force termination of the minimum hop algo-
rithm together with resetting the subnetwork where the minimum hop algorithm was still in
progress. This reset algorithm was proven correct in [DrS]. The usual solution is to number
the different versions of the algorithm in some way, see for example Finn [Fi]. Toueg [To], in
his adaptation of Gallager’s algorithm, uses Lamport’s concept of logical clocks [Lall. Both
numberings use numbers which are not bounded. Note that algorithms such as an extension of
the Merlin-Segall algorithm [Se] which rely on Finn's [Fi] idea of sending (bounded)
differences of version numbers are probably not correct. As Soloway and Humblett [SoHu]
showed, this algorithm of Finn is not correct as it can generate an infinite number of restarts
after all topological changes have ceased. Soloway and Humblett introduced however a new
algorithm to be able to use bounded sequence numbers, based on Gallager’s minimum hop
algorithm. As there is an essential difference in the assumptions about the network, we do not
yet know if this works in our model, too.
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Finally, Jaffe and Moss [JaMo] presented an algorithm based upon both the algorithm of
Merlin and Segall and the algorithm of Tajibnapis, that is still loop free. They realized that the
problem of looping only occurs when distances increase. Thus they use the algorithm of
Tajibnapis for distance decreases, and the algorithm of Merlin-Segall for increases. It was
recently repaired and proved correct by van Haaften and van Leeuwen.

4.2. Concrete algorithms. In the sequel we give a general introduction to the Tajibnapis’
algorithm, together with the program skeleton and the most important invariants for comparison

with program skeleton M 1 (section 3.1.2) and the algorithm of Chu. The latter is an extension
of the former and is proven correct in sections 4.2.2 and 4.2.3.

4.2.1. The algorithm of Tajibnapis. In program skeleton M1, if a message <x,I> is
received by node i from node j, we can recompute D;[x] as the minimum of the old value of
D;[x] and ! +1. This is due to the fact that we know that the estimate / of D;[x] is decreas-
ing, hence we can simply take the minimum. In the case that links can go down however, this
I might be larger than the previous estimate which i received from j. Thus node i now can-
not recompute the new minimum, unless it has stored the latest estimates from its other neigh-
bors to use for the computation. Hence nodes keep track of which distance information was
received from which neighbor.

The algorithm of Tajibnapis contains one other new feature, which requires another
assumption. It is necessary that the total number of nodes in the network, or at least an upper
bound of this number, is known beforehand.

Assumption 4.1. All nodes in the network know an upper bound of the total number of nodes
in the network.

We will denote this number known by N. The reason that we need this number is that
in the case that the network becomes disconnected, the distances between nodes become
infinity. As the algorithm tends to increase the estimates of distances with one hop at a time,
we need a way to "jump to the conclusion” that the distance is infinity to prevent that the pro-
gram will never terminate. What is used here is the observation that if the total number of
nodes is N, the largest possible finite distance between nodes is N—1. Thus the number N
can be interpreted as e in this context.

Apart from the atomic operations U; and D;; from section 2.2, which reflect link (i, /)
coming up or going down, respectively, we add as extra atomic actions RU[: node i receives
the message <up> and RD]: node i receives the message <down>. Nodes maintain a table
Dtab, in which Dtab;[x, j] contains for every destination x # i and every (current) neighbor
j, the last distance information it received from j. Since the set of neighbors is not fixed any
more, this set is maintained in nbrs;. Program skeleton T is as follows.

Initially V i: nbrs; = @, D;lil= 0,
Vjwithi #j: linkstate(i,j)= down, Q[i,jl= O,
D;[j1= N, dsn;[j] = none,
V x with x #i: Dtab;[x,j] = oe.



RU/ :{an <up> has arrived from j}
begin receive <up> from j; add j to nbrs;;
Dtab;[j,j1:=0; D;[jl1:=1; dsm[jl:=j;
forall x € nbrs; with x # j do send <j,1>to x od;

if lnbrs; 1 = 1
then forall x withx #i Ax # j do D;[x] :== N; dsm;[x] = j od
fi;

forall x withx #i Ax #j
do Dtab;[x,j]l .= N; send <x,D;[x]>1t0 j od
end

RD/ :{a <down> has arrived from j}
begin receive <down> from j ; delete j from nbrs; ;

forall x with x #i

do Dtab;x,j] = oo;
if nbrs; # @ A dsn;[x] = j
then olddist .= D;[x];

choose ndsn € nbrs; such that
Dtab;[x,ndsn] = aznin Dtab;[x,al;

nbrs;

dsn;[x] := ndsn; D;[x]:= min (N, 1+Dtab;[x,ndsn]);
if olddist # D;[x]
then forall a € nbrs; do send <x,D;[x]>to a od
fi

elif nbrs; = @ then D;[x] := N ; dsn;[x] = none

fi

od
end

R,-T : {a message <x,I> has arrived from j }
begin receive <x,/> from j ;
ifx #i Ajenbrs;
then Dtab;[x,jl = 1;
ifdsm;[x]= j viI+1<D;[x]
then olddist .= D;{x];
choose ndsn € nbrs; such that
Dtab;[x,ndsn] = min Dutab;[x,a];
a € nbrs;

dsn;[x] .= ndsn; D;[x]:= min (N, 1+Dtab;[x,ndsn});
if D;[x] # olddist
then forall a € nbrs; do send <x,D;[x]>to a od
fi fi fi
end
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We used the symbol o as well as the symbol N for infinite distances. This is to reflect
the difference between "throw all information away", e.g. delete column j from the array
Dtab;, and "set the value to N", e.g. as initialization for an added column j of the array Dtab;.
However, we are not interested in an actual implementation. It also depends on the implemen-
tation whether all variables mentioned actually have to be maintained or can be deduced from
other values of variables. For example, if obsolete columns of the array Dtab; are actually
thrown away, nbrs; corresponds to the columns actually present in Dtab;. On the other hand,
if the entire column is set to the value N, j € nbrs; if and only if Dtab;[j,j] = 0.

Note that the operation AM! "awaken" of section 3.1.2 is divided as it were over all
links and incorporated in RUJ for one link. Part of the work done in RU] corresponds to
what would be done in operation R7 if the message received from j would be <j,0>. In fact
operations RUY and RDJ could be incorporated in R if <up> is coded as <j,0> and
<down> as <j,s>, and the extra code added for the extra work to be done in those special
cases. We feel that this formulation would obscure the special status of these messages.

We will now state but not prove the basic invariants that lead to the partial correctness
of this algorithm, for comparison with lemma 3.6 and the invariants of the algorithm of Chu.

Theorem 4.1. (Lamport [La]) For all i, j, and x withi # j, x # i, and x # j the following
holds invariantly.
(1) linkstate(i,j) = down = <down> last control message in O[j,i] v
Dtab;[x,j] = o A Dtab;[j,j] = oo,

) linkstate(i,j)=up =

<up > last control message in Q[j,i] v

Dtab;[j,j1= 0 A (Dtab;[x,j]l = D;lx] v

<x,D;ix}> after any control message in Q[j,i]).

4.2.2. The algorithm of Chu. The problem with the previous algorithm is that if a node
i receives information from its neighbor j that it is ! hops away from x, i has no way to
know whether this route goes through i itself. This leads to a slow propagation of distance
updates in case a link has gone down. The algorithm due to Chu [C] maintains this extra
information, thus maintaining a sink tree for every destination.

In the algorithm of Tajibnapis dsn;[x] is maintained, the downstream neighbor to which
i should route messages for x. Now we say that j is upstream from i for destination x if { is
downstream from j. If i’s downstream link for x happens to go down, it is clear that we
should not choose an upstream neighbor as i's new downstream neighbor, but some other
neighbor. If there is no non-upstream neighbor, i sends a message <x,N, 1> upstream saying
"help, my route to destination x is blocked" and waits until a route to x is found via another
node.

Node i maintains its sink tree information in a table T;, where T;[x, j] = d or u means:
neighbor j is downstream or upstream for destination x, respectively, and T;[x, j] = n means:
neighbor j is neither downstream nor upstream for destination x.

To the messages that are sent an extra field is added to convey this extra information:
node i sends messages <x,D;[x],1> to j if T;[x,jl= d (j is downstream neighbor) and
messages <x,D;[x],0> to j if T;[x,jl# d. We also have to send messages in a situation
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where we did not do so in the previous algorithm, namely in the case that the minimum hop
distance to a node x stays the same but the downstream neighbor is changed, we have to
inform the old and new downstream neighbor of this change.

We now give the text of the algorithm of Chu (program skeleton C). Apart from notat-
ing it in our own way for comparison to the other program skeletons, we had to make some
slight changes to be able to prove the algorithm correct. These are marked with an asterisk (*)
at the beginning of the line. The assumptions concerning the model of communication are still
the same, hence these operations are to be augmented with operations D;; and U;; for all i and
j # i from section 2.2.

Initially V i: nbrs; = @, D;li]l= 0,
Vj withi # j: linkstate(i,j) = down, Q[i,j1= @, D;ljl= N,
V x withx 2i: Dtab;[x,j]= o, T;[x,j]1= n.

RDE : {a <down> has arrived from j}
begin receive <down> from j; delete j from nbrs; ;
forall x with x #i
do Dtab;[x,j] = oo;
if nbrs; # O AT;[x,jl=d
then olddist .= D;[x];
if 3 a € nbrs; with T;[x,a] # u
then choose ndsn € nbrs; such that Dtab;[x,ndsn] =

min Dtab;[x,a];
a € nbrs; with T;[x,al # u

T;[x,ndsn] := d; D;[x] = min (N, 1+ Dtab;[x,ndsn]),;
else choose ndsn € nbrs; ; Dtab;[x,ndsn] = N ;
T;[x,ndsn] = d; D;[x] = N;
forall a € nbrs; with a # ndsn
do Dtab;[x,a] = N; T;[x,a}l:= n od
fi; send <x,D;[x],1> to ndsn ;
if olddist # D;[x]
then forall a € nbrs; with a # ndsn
do send <x,D;[x],0>to a od

fi
* elif nbrs; = @ then D;[x] = N
fi; T;[x,jl=n

od
end
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RE : {a message <x,l,t> has arrived from j}
begin receive <x,/,t> from j ;

* ifx #i A je nbrs;
then olddist := D;[x]; let odsn such that T;[x,odsn] = d ;
ift=1

then Dtab;(x,jl=1; T;[x,jl=u;
if olddist <N A odsn = j
then if 3 a € nbrs; with T;[x,a] # u
then choose ndsn € nbrs; such that Dtab;[x,ndsn] =

min Dtab;[x,a]l;
a € nbrs; with T;[x,a] 2 u

T;[x,ndsn] := d; D;[x]:= min (N, 1+ Dtab;[x,ndsn})
elif 1nbrs; 1>1
then choose ndsn € nbrs; with ndsn # j; D;[x] = N;
Dtab;[x,ndsn] == N; T;[x,ndsn] = d;
forall a € nbrs; with a # ndsn
do Dtab;[x,a) = N; T;[x,a]l = n od
else Dtab;[x,jl = N; Tilx,jl=4d;
D;[x] =N, ndsn = j
fi; send <x,D;[x]},1> to ndsn ;
if D;[x] # olddist
then forall a € nbrs; with a # ndsn
do send <x,D;[x],0>t0 a od
elif j # ndsn then send <x,D;[x],0> to j
fi
* elif odsn = j then T;[x,j] = d; Dtab;[x,jl =N
fi
else Dtab;[x,jl=1; T;[x,jl=n;
choose ndsn € nbrs; such that Dtab;[x,ndsn} =

min Dtab;[x.,a];
a € nbrs; with T;[x,a} 2 u

* if Dtab;[x,ndsn] = Dtab;(x,odsn) then ndsn = odsn fi;
T;{x,ndsn] = d; D;[x]:= min (N, 1+Dtab;{x,ndsn});
if odsn # ndsn
then T;[x,odsn] = n; send <x,D;[x],1>to ndsn
fi;
if D;[x] # olddist
then forall a e nbrs; with a # ndsn do send <x,D;[x],0> to a od
elif odsn # ndsn then send <x,D;[x],0> to odsn

fi fi fi
end
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RUf : {an <up> has arrived from j}
begin receive <up> from j; add j to nbrs;;
* if 1nbrs; | >1 then let odsn such that T;[j,odsn] = d; T;[j,odsn] =
T;[j,jl = d; Dtb;[j,jl = 0; D;[j1=1;
forall x e nbrs; with x # j do send <j,1,0>to x od;
forall x withx #i Ax #j
do Dtwab;[x,jl=N
iflnbrs; 1 = 1
then T;[x,j] = d; D;[x]:= N; send <x,D;[x],1>10 j
else T;[x,j] .= n; send <x,D;[x],0>to0 j
fi
od
end

4.2.2.1. Partial correctness. For the partial correctness we begin with proving some
technical lemmas.

Lemma 4.2. For all i and j with i # j the following holds invariantly.
(1) linkstate(i,j) = up <> j € nbrs; v <up> last control message in Q[j.i],
(2) linkstate(i,j) = down <> j ¢ nbrs; v <down> last control message in Q[j,i].

Proof. Obvious from operations Uj;, Dy, RUS, and RDf.

Lemma 4.3. Foralli, j, and x with j #i and x # i, the following holds invariantly.
(1) T;lx,jl=d vT;x,jl=u = jenbrs;,
@ 3'j with T;[x,jl1= u < nbrs; # D,
(3) jenbrs; < Dtab;[j,j1=0
@4 T;ix,jl=d =
D;[x] = min(N,1+Dtab;[x,j]) A Dtab;[x,j] = min Dtab;[x,al,

a € nbrs; with T;[x,al # u
(5) D;lil= 0AD;[x]>0,
®) <x,l,t>eQlj,i] =2 1>0Ax=#]j,
(7) x#j = Dtab;[x,j]1>0.

Proof. (1) and (2) are obvious from operations RUF, RDF, and Rf.

(3). Use statement (6) with operation Rf.

(4). Obvious from operations RUE, RDE, and RE.

(5). D;li]1= O initially and is never changed anymore. For nbrs; = @ we have D;[x]= N
otherwise statement (4) can be used together with statement (7).

(6). As <x,l,t>e Q[j,i] is only validated when j sends a message to i and j only sends
messages with x # j and I = Dj[x], we have [ >0 with statement (5).

(7). For x # j, Dtab;[x,j) entnes are only set to oo, N, or to some value / from a received
message <x,l,t>. With statement (6) we have / >0. H
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Lemma 44. Foralli, j, and x with i # j the following holds invariantly.

linkstate(i, j) = down v D
<up > last control message in Q[i,j] v 3]
<x,l,t>e Q[j,i] = 3)
the last message <a,b,c>e Q[j,i]l witha = x has b = D;[x] A
(c=1 & Tjx,i]= d) A <a,b,c> after any control message in Q[j,i]. )

Proof. Initially (1) holds. If (1) holds, it can be invalidated by operation Uj;, but then (2) will
hold. If (2) holds, it can be invalidated by D;;, but then (1) will hold. (2) can also be invali-
dated by operation RU € but then for those x that (3) is validated, (4) is validated for the same
message. If (4) holds and is invalidated by operation R,-C, then (3) is also invalidated. If (4)
holds and is invalidated because j changes D;[x] or T;[x, i], we have the following cases.
Case 1. i ¢ nbrs;. Then (1) or (2) holds (lemma 4.1).

Case 2. i € nbrs;. Then a message is sent such that (4) holds. If (4) is invalidated because a
control message is placed in Q[j,i], then (1) or (2) now holds. If neither (1), (2) nor (3)

holds for some x and a message is sent such that (3) is validated, this message is such that (4)
holds for this message. W

Lemma 4.5. Foralli, j, and x withi # j and i # x the following holds invariantly.
linkstate(i,j) = down =

Dtab;[x,j]= ° A no control message in Q[j,i] v

<down> last control message in Q[j,i].

Proof. -Operation D;; validates the premiss and places a <down> in Q[j,i] as last control
message.

-Operation Uj; invalidates the premiss.

-Operation RU,-C can only occur if <down>e Q[j,i] as last control message, if the premiss is
true.

-If RD,C receives the last <down> left in Q[j,i], there will be no control message left and
Dtab;[x, j] is set to oo,

Other operations do not influence the variables involved. W

Lemma 4.6. Foralli, j,and x withi # j, i # x and j # x, the following holds invariantly.
linkstate(i,j)= uwp =
<up> last control message in Q[i,j] v )
<x,Djlx},t> after any control message in Q[j,i]with (1 =1 & Tj[x,i] = d) \(2)
Duwab;[x,j1= N ATjlx,i]=d A no control message in Q[j,i] A

<x,N,t> after any control message in Q[i,j] v 3
Dtab;[x,j1= Dj[x] A no control message in Q[j,i] A
(Tilx,j1= u = Tjlx,il= d). ()

Proof. -Operation D;; invalidates the premiss.

-Operation U,-j validates the premiss and (1).

-Operation RUf can only be performed if (1) held. Afterwards (1) can still hold, or otherwise
i is added to mbrs; and <x,D;[x],t> is sent to i. As Q[j,i] is a queue, the message is
placed after any control message. Hence (2) holds now.
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-Operation RU;C. If (1) holds, it will still hold afterwards. If (2) holds, it will still hold after-
wards, since the <up> received occurred before the message under consideration. (3) nor (4)
could hold beforehand.

-Operation RDJ-C. Either the premiss is not true or (1) continues to hold.

-Operation RD,C (3) nor (4) could hold beforehand. (1) and (2) remain to hold.

-Operation R,~C with a message from j. If (1) held, it still holds. If (2) held, it either still
holds, or the message received is <x,D;[x),t> with t = 1 ¢ T;[x,i]=d. In the latter
case we know that there can be no control message in Q[j,i]. R; sets Dwab;[x,j] = D;[x]
and T;[x,jl= u < Tj[x,i]= d, so (4) holds now, except in the very special case that
t = 1 (hence Tj[x,i] = d), olddist <N, odsn = j, and Va € nbrs; T;[x,a] = u, in which
case Dtab;[x,j]l is set to N, T;[x,jl to n or d, and D;[x] to N, and <x,N,t> is sent to j.
Hence (3) holds now. The other exception is the case that D;[x]<N, ¢ = 1, olddist = N, and
odsn = j, where no messages are sent but Drab;[x, j] is reset to N and T;[x,j] to d. (Other-
wise there would be no downstream neighbor left for x.) For this case, we not only assume
that lemma 4.5 held before operation RE, but also that lemma 4.5 held with i and j inter-
changed. Let the statements (1) to (4) with i and j interchanged be statements (1°) to (4°),
respectively. We then know that (1) cannot hold, as Q[j,i] contains no control messages.
As olddist = N, D;[x]= N, and odsn = j, we have T;[x,j]= d. The message received
was <x,D;[x],1> with D;[x]<N and T;[x,i] = d, hence Dtab;[x,i]<N. Thus neither (3”)
nor (4’) can hold, and (2’) must hold. Thus <x,N,t>e Q[i,j]. Since operation R,-C cannot
invalidate this, (3) holds now. If (3) or (4) held, we know with lemma 4.3 that (2) holds also.
-Operation R,-C with a message from k£ # j. (1), (2), and (3) remain to hold. If (4) held, it
either remains to hold or Dtab;[x,j] can be set to N and T;[x,j] to n or d in the case that
T;[x,al = u Va € nbrs;, olddist <N and odsn = k. Hence we can conclude T;[x,i]= d
and <x,N,t> is sent to j. Thus (3) holds now.

-Operation ch with a message from i. (1) remains to hold. If (2) holds, and D;[x] and/or
T;[x,i] change, a new message is sent which reflects these changes. Thus (2) now holds for
this new message. If (3) holds, we have the following two cases.

Case 1: only T;[x,i] changes, then a message to reflect this change is sent to i and (2) holds
now.,

Case 2: the message <x,N,t> is received. If (4) did not hold, we had D;[x]<N and
Ti[x,i]= d. Dtab;[x,j] is set to N. Thus either D;[x] or T;[x,i] changes so a message is
sent to i to this effect and (2) now holds.

If (4) holds, it continues to hold unless D;[x] or T;[x,i] is changed. In this case a message is
sent to i so (2) holds.

-Operation ch with a message from k # i. (1) remains to hold. (2) remains to hold unless
D; [x] or T;[x, i] are changed, in which case (2) will hold for the new message sent. In case
(3) holds, only T;[x,i] could be changed, but then a message will be sent such that (2) holds.
If (4) holds, it will continue to hold unless (2) holds with changed D;[x] or T;[x,i]. H

Lemma 4.7. For all i and j with i # j the following holds invariantly.
linkstate(i,j) = up = <up> last control message in Q[j,i] v
Dtab;{j,j1= 0 AT;lj,jl1= d A D;[j]1= 1 A no control message in Q[j,i].
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Proof. If the last <up> is received in RU,-C, the variables specified are set to the right values.
With lemma 4.2(7) we have that Dtab;[j, k] for k # j is > 0, hence T;[j, j] does not change.
Node j does not send any message about destination j (lemma 4.2(6)), hence Dtab;lj,j] is
not changed. As T;[j,j] # u, Dtab;[j, j] cannot be set to N either. ®

Lemma 4.8. Forall i, j, and x withi # j and i # x the following holds invariantly.
Ti[x,j1= u AQli,jl= D@ AQlj,il= @ = Dtab;[x,j]= min(N, D;[x]+1).

Proof. Use lemma 4.2(1), lemma 4.1, lemma 4.5 and lemma 4.2 (4). ®

Lemma 4.9.

TERM = Vi,j withi # j: linkstate(i,j)= up & je nbrs; A
jenbrs; = Vx #i Dtab;[x,j]l= D;lx] A
jé nbrs; = Vx #i Dtab;[x,j]= o A
Vx #i D;[x]= min(N, 1+‘%;i:1iDtab;[x,j]).

Proof. TERM is equivalent with all queues are empty. Use lemmas 4.1, 4.2(4), 4.4, 4.5, 4.6
and 4.7. 1

Theorem 4.10. TERM = Vi, x: D;[x]= min(N, d(i,x)).

Proof. We prove this by first proving that D;[x]<d(i,x) and secondly proving that
D;[x]2min(N, d(i,x)).
(1). Let d(i,x) = o. Then for all possible values of D;[x], we have D;[x]<d(i,x). Let
d(i,x)= k<eo. k= 0 implies i = x and D;[x] = 0. For k>0 there is some path x = x,,
X1s o X =i from x to i of length k. Thus all links (x;,x;_,) for 1<j<k are up and
Xj_1€ nbrs,j. Thus Dtab,j[x,xj_ = D,j_l[x] and D,j[x]Smin(N . 1+D,j_l[x]). Hence D;[x]
= D,‘ [x1<D, o[Jc]+k = D,[x]+k = k. Note that this is not necessarily the path designated by
the downstream neighbors.
(2). We use induction over k for the hypothesis d (i, j)2k = D;[j12min(N,k). Fork =0
we have d(i,j)=0 and D;[j120. Assume d(u,v)2k+1. For all neighbors a € nbrs, we
have d(u,a) = 1 and thus d(v,a)2k (triangle inequality). Hence D,[v]1Zmin(N,k). d,[v]
=min(N,1+ min Dtab,[v,a]) =min(N,1+ min D,[v]) 2min(N,k+1). &

a € nbrs, a € nbrs,

Corollary 4.11. If we interpret N as oo, then TERM implies D;[x] = d (i,x)foralli and x.

Proof. The longest finite distance between two nodes is at most N—1. Hence d (i,x)2N
implies d(i,x)= . W

This completes the proof of the partial correctness of the algorithm of Chu.
4.2.2.2. Total correctness. For the total correctness, we still have to prove that if there
are no more topological changes, the algorithm indeed terminates in finite time.
Theorem 4.12. The algorithm cannot deadlock.

Proof. If there is a queue which contains a message, then there is always an operation which

can receive that message: either RUS, RDE, or RS for Q[j,i], depending on the nature of the
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message. If all queues are empty, there is termination by definition.

Thus we have to show that the algorithm cannot go on generating messages forever, in
the case that there are no more topological changes afier some time. For this purpose we
define a function F of the system state to the st W of N+1 tuples of nonnegative integers.
We define the following total ordering <y on W :

(ao, [7 TN aN) <w (bo, bl' ceey bN) if

Ji with 0<i<N : (q;<b; AVj with 0<j <i : a; = b;).

As the a; and b; are nonnegative integers, this order relation on W is well-founded (i.e., there
is no infinite decreasing chain). Thus, in order to prove the total correctness, it is sufficient to
find a function F from the system state to W which is decreased by every operation if there
are no more topological changes. We define F as follows:

F=(m,m1)+2d(1), .., m(N-1)+2d(N-1), 2m(N)+d(N)),
where
cm = the total number of control messages (<up> or <down>) in all message queues,

mk) =Y, m.(k),
dk) =3 d(k),

m, (k)= the total number of messages <y,/,t> with x = y and [ = k in all message queues,
d(k)=Y, [ 1+| {j|j € nbrs; AD;[x] = k A Dtab;[x,j]= Dtab;[x,dsn]} | ] .

dsn = downstream neighbor, i.e., T;[x,dsn] = d.
Theorem 4.13. For all i, F is strictly decreased by operations RU,~C, RDE, and R,-C.

Proof. RUf decreases cm by one, as does RDE.

Consider operation RE. Let the received message be <x,/,t>. cm cannot be changed, nor
my, (k) or d,(k) with y # x. Note that R,-C cannot change the set nbrs;. As it depends on the
old and new values of D;[x] and the old and new downstream neighbor of i for x how F
changes, we define for the moment olddist as the value of D;[x] before operation RE, newdist
as the value of D;[x] after operation RE, and odsn and ndsn as the neighbor j of i with
T;[x,j] = d before and after operation R,-C, respectively. We distinguish the following cases.
Case 1. olddist <newdist. Then d(olddist) decreases, and d(newdist) and m(newdist)
increase. Hence F decreases.

Case 2: olddist > newdist. This is only possible if in the received message <x,!,t>t = 0 and
I = newdist—1. Thus m(newdist— 1) decreases, while m (newdist) and d (newdist) increase.
Case 3: olddist = newdist.

Case 3.1: olddist = newdist <N .

Case 3.1.1: odsn = ndsn. Then m(newdist) is not increased because no new messages are
sent. However, d(newdist) could increase, if there is now one more neighbor with minimal
distance to x. This can only happen if the received message had I = newdist—1. Hence
m(newdist—1) is decreased and F decreases. If d(newdist) does not change, F decreases
because m (1) decreases.

Case 3.1.2: odsn # ndsn. Then m(newdist) is increased by 2. If d(newdist) increases, we
have | = newdist—1 as above, and m (newdist— 1) decreases. If d(newdist) does not change,
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it must be the case that Dtab;[x,ndsn} = Dtab;[x,odsn], as RE can only change one value of
Dtab; (unless newdist = N) at the time, hence this case cannot occur. Thus d (newdist)

decreases by one. Hence 2d(newdist)+m (newdist) does not change, and as m(l) decreases,
so does F.

Case 3.2: olddist = newdist = N.

Case 32.1: odsn = ndsn. Thus no new messages are sent. However, d(newdist) could
change. If t = 1 in the received message, then d(newdist) can only decrease. d(newdist) can
increase by one if the message received from j was <x,N,0> and T;[x,j]= u before R,~C.
Then m (newdist) decreases by one and F is decreased because 2m, (N )+d, (N) is decreased.
Case 3.22: odsn #ndsn. If olddist = N and t =1, nothing happens in RE, so
odsn = ndsn. Hence t = 0. If /<N, then we would have newdist <N, thus / = N. So
d(newdist) cannot decrease, which implies Dtab;[x,odsn] remains N. Hence the downstream
neighbor is not changed, and we conclude that this case cannot occur. W

Corollary 4.14. If topological changes cease then the algorithm of Chu terminates in finite
time.
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MINIMUM HOP ROUTE MAINTENANCE*
IN STATIC AND DYNAMIC NETWORKS

Anneke A. Schoone
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P.O.Box 80.089, 3508 TB Utrecht, the Netherlands.

Abstract. We discuss distributed algorithms for computing minimum hop distances in a
network from a general viewpoint and apply this to minimum hop routing. We show how
different models of computation lead to different algorithms known from the literature.
We then discuss the effect of various network assumptions (static, dynamic) upon
minimum hop route maintenance. Using the Krogdahl-Knuth technique of system-wide
invariants, we prove the following distributed algorithms correct: the minimum hop route
determination algorithms of Gallager and Friedman for static networks and the route
maintenance algorithm of Chu for dynamic networks.

1. Introduction. A basic problem that must be addressed in any design of a distributed
network is the routing of messages. That is, if some node in the network decides it wants to
send a message to some other node in the network or receives a message destined for some
other node, a method is needed to enable this node to decide over which outgoing link it has to
send this message. Algorithms for this problem are called routing algorithms. In the sequel
we will only consider distributed routing algorithms which depend on the cooperative behavior
of the local routing protocols of the nodes to guarantee effective message handling and
delivery.

Desirable properties of routing algorithms are for example correctness, optimality, and
robustness. Correctness seems easy to achieve in a static network, but the problem is far less
trivial in case links and nodes are allowed to go down and come up like they tend to do in
practice. Optimality is concemed with finding the "quickest" routes. Ideally, a route should be
chosen for a message on which it will encounter the least delay but, as this depends on the
amount of traffic on the way, this is hardly to foresee and hence is actually difficult to achieve
as well. A frequent compromise is to minimize the number of hops, i.e., the number of links
over which the message travels from sender to destination. We will restrict our study to
minimum hop routing. Robustness is concerned with the ease with which the routing scheme
is adapted in case of topological changes.

Our aim in this paper is twofold. First we present a systematic development of a
number of distributed algorithms for minimum hop route determination and maintenance,
including a re-appraisal of several existing methods for the static case and a detailed analysis

*This research was supported by the ESPRIT II Basic Research Actions Program of the EC under contract No. 3075 (Pro-
ject ALCOM).
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of some dynamic algorithms. Secondly, we present correctness proofs for these algorithms,
which tends to be hard for distributed algorithms and indeed was not presented before in most
cases that we consider. This applies in particular to the interesting distributed algorithm for
minimum hop route maintenance due to Chu [C] (see also [Ta} and [Sch]), for which we will
develop both a complete program skeleton and a correctness proof. In all cases we employ the
Krogdahl-Knuth method of system-wide invariants.

The paper is organized as follows. In section 2 we state the assumptions about the net-
works that we consider and define the concept of a program skeleton. Different models of
computation are then given. In the remainder we first concentrate on computing minimum hop
distances in a static network (section 3). We begin by deriving general properties of distri-
buted minimum hop algorithms, and then discuss different ways -related to different models of
computation- for deciding whether an estimate of a minimum hop distance is correct. We con-
clude this section with the correctness proof of the minimum hop route determination algo-
rithms of Gallager and Friedman [Fr] (section 3.2).

In section 4 we consider the problem of maintaining routes in dynamic networks, i.e.,
networks with links going down and coming up. A global acquaintance with the contents of
sections 3.1 and 3.2.1 is assumed here. In section 4.1 we discuss some typical problems in
adapting distributed algorithms for static networks to distributed algorithms for dynamic net-
works, both in general and specifically for minimum hop route maintenance. We present the
well-known dynamic routing algorithm of Tajibnapis [Tj, La} for comparison, and in section
4.2 the dynamic routing algorithm of Chu [C]. The latter was presented as an improvement of
the algorithm of Tajibnapis by Tanenbaum [Ta] and Schwartz [Sch] but, while Tajibnapis’
algorithm has been proved correct by Lamport [La], it is not clear at all that the algorithm of
Chu is correct. Moreover, the presentation of Chu’s algorithm in the original report is very
imprecise. In section 4.2 we give a complete specification of Chu’s algorithm and a correct-
ness proof.

2. Models of computation. We are interested in the relation between a distributed algo-
rithm and the model of computation that is used for its formulation. Generally speaking, a
model of computation can be viewed as a set of assumptions and restrictions about the nature
of the distributed computation in the network and the communication which takes place
between the network nodes.

These assumptions are not meant as a criterion for matching specific networks. Rather,
it is a way to focus attention on some aspects of distributed computing, while abstracting away
from others. For example, an assumption that is made in this paper is that a link between two
network nodes behaves like two FIFO queues of messages, one queue for each direction. This
does not mean that we restrict ourselves to networks where this is indeed the case, but that we
assume that this can be achieved by communication protocols present in the network, and that
the question how to achieve it is not our concern now.

The restrictions about the distributed computation and the communication between the
network nodes are restrictions in the order of events that are permitted in an actual execution.
Such a permissible order of events is stated by means of a program skeleton, which can be
refined to an algorithm. Thus a program skeleton stands for a class of algorithms, all of which
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can be obtained from that same skeleton by some refinement. The restriction in the order of
events specified in a program skeleton can add extra structure to the computation at hand, i.e.,
the computation of minimum hop distances in this case, from which extra information can be
derived that is exploited in actual algorithms. We investigate the interaction between the com-
putation per se and the model of computation used. We define some program skeletons
together with their assumptions in section 2.1. How these assumptions are modeled in the
communication network is discussed in section 2.2.

2.1. Program skeletons. For an appraisal of the general features of distributed programs
that compute minimum hop distances, we start by considering the essential building blocks and
only use complete programs as illustrations. We do this by means of so-called program skele-
tons, which are generic descriptions for classes of algorithms all of which have some underly-
ing structure in common. A program skeleton consists of a number of operations, each of
which consists of a piece of program. Operations can be carried out any number of times, by
any processor, and at any time. An operation is viewed as an atomic action, i.e., it is not inter-
ruptable. We do not specify anything about an assumed order in which the operations may
take place, but an operation can contain a so-called guard: a boolean expression between
braces { }. An operation may only be executed if its guard is true, otherwise nothing happens.
For example, a process may only execute the code for receiving a message if there is indeed a
message present to receive.

The most basic operations in a distributed program one can think of for a node i are:
send a message to j (S;), receive a message from j (R;), and do an internal (local) computa-
tion (I;), where j is any node connected to i by a link. Operations and variables are sub-
scripted by the identity of the node that performs and maintains them, respectively. This yields
the following program skeleton.

S; : begin send a message to some neighbor Jj end

R; : {a message has arrived from j }
begin receive the message from j end

I; : begin compute end

We can use these atomic operations as building blocks for bigger atomic operations,
thereby adding extra structure in the order of computation and/or the order of communication.
This can be done in different ways, and yields different program skeletons. Some ways are
more or less standard, and the resulting program skeletons together with the appropriate net-
work assumptions will be referred to as models of computation. Examples are the message-
driven model and the synchronous model of computation. Given a model of computation, an
idea what information a message should contain, and a way to compute the wanted information
from the received information, we have a general framework for an algorithm. For example,
the message-driven model of computation with messages which contain the name of a destina-
tion node together with the estimated distance of the sender of the message to that destination
node forms the basis of both the algorithms of Tajibnapis and Chu. (The basic computation is:
take the minimum of the local estimate of the distance to the destination node and 1+the dis-
tance value in the received message.)
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As it is usually necessary to specify what the initial values of the node variables are, we
will do so for the variables used directly before the code of the atomic operations. In the
sequel we distinguish the following four program skeletons. We will give them for static net-
works now and discuss the extension to the case for dynamic networks in the next section.

2.1.1. Phasing. The idea of phasing is to divide all the work to be done over different
phases, and to allow a node to begin working on another phase only if all the work of the
current phase is completed. Thus phasing adds some structure to the order of events in a com-
putation, which was totally arbitrary up till now. We add a variable for the current phase at
each node i: phase;, and a new atomic operation is added for the transition to the next phase:
P;. The most general program skeleton which makes use of phasing (P) is as follows.

Initially Vi: phase; = 0.
S,-P : begin send a message belonging to phase; to some neighbor j end

R/ : {a message has arrived from j }
begin receive the message from j and record it; compute end

P,-P . {all messages of phase = phase; are received from all neighbors }
begin phase; := phase; +1; compute end

Note that the internal computation operation I; is now divided over operation R{’ where
the computation pertaining to the received message is done, and the operation P/, the internal
computation which effectuates the phase transition. Comparison of the operations S/ and Rf
reveals a problem introduced by phasing. While in operation S,-P a message belonging to
phase; is sent, nothing is mentioned about a phase number of a message in operation R/
Ideally, the messages node i receives while phase; = p, would be the messages that i ’s neigh-
bors had sent while their phase number had the same value p. Now the problem is, what do
we want node i to do when a message belonging to a different phase has arrived? There are
several possibilities to deal with this problem.

First, it might be the case that the assumptions about communication on the links com-
bined with the properties of a more specific program skeleton suffice to prove that the arrival
of messages of the wrong phase cannot happen. Secondly, we could just refuse to receive the
message if it belongs to a different phase, and add a guard to that effect to the operation R,-P .
We should take care not to introduce the possibility of deadlock then. Thirdly, the message
could be received but ignored, thus equaling the effect of the loss of a message. Fourth, if the
message belongs to a later phase, we could buffer it until the node reaches the right phase.
Fifth, we could just let the node receive the message and do the appropriate computation. It
will depend on the circumstances what choice we will make.

Another problem is the guard of operation P,-P : all messages of phase = phase; are
received. There must be some way for node i to decide this. One possibility, if the number
of messages per phase is not fixed, is to include the number of messages to expect in a phase
in the first message belonging to a phase, or to somehow mark the last message belonging to a
phase as such.
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2.1.2. Message-driven computation. The added structure in the order of computation in
this case is that messages may only be sent upon receipt of another message, and usually there
is some relation specified between the contents of the received message and that of the mes-
sages sent. We will use the term ’appropriate’ for this as long as we do not want to specify
the relation. Thus we do not have a separate, autonomous sending operation any more. But
now we need a way to start the sending of messages. Hence we introduce an operation AM
(awaken) which can either be executed spontaneously (after initialization), or upon receipt of
the first message. Thus we include a test whether node i is awake yet in operation R}, and if
not, we let i awaken first, i.e., execute operation A,-M. A node is clearly supposed to awaken
only once, although this is only necessary for the termination of program skeleton M and not
for its partial correctness. The boolean awake; records whether i is awake or not.

Initially Vi: awake; = false.

A,M : {not awake;}
begin awake; = true;
forall neighbors j do send the appropriate messages to j od
end

RY : {a message has arrived from j }
begin if not awake; then do A,«M fi; receive the message from j; compute;

forall neighbors k do send the appropriate messages to k od
end

Lemma 2.1. In a static network, all nodes eventually awaken iff in every connected com-
ponent of the network there is at least one node that awakens spontaneously, and messages are
not lost, garbled, duplicated, or delayed infinitely long.

Proof. Obvious from program skeleton M. W

Thus we will assume in the sequel that there is at least one node in each connected com-
ponent of the network that awakens spontaneously. In a dynamic network, some action com-
parable to awakening will be taken upon a change in link status (i.e., the going down or com-
ing up of a link). This will be discussed in the next section. We need the other assumption,
too, in this model, namely that messages do not get lost, garbled, duplicated, or delayed
infinitely long. This is because the sending of a message is now restricted and a node does not

have the possibility of sending a message repeatedly until it gets through. Hence we have the
following assumptions in this model.

Assumption 2.1. In a static network, at least one node in every connected component awak-
ens spontaneously.

Assumption 2.2. Messages do not get lost, garbled, duplicated, or delayed infinitely long.

This form of computation is called message-driven, i.e., something only happens if a
message is received. The situation that no more messages are around is of special interest in
this model, as nothing will happen any more when this situation arises. This situation is called
termination (TERM). Unless we make further assumptions about the network such as: all
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messages only have a bounded delay, it is sometimes necessary to add a so-called termination
detection algorithm to be able to detect this state (see e.g. [Tel]). Otherwise nodes might not
be able to conclude whether their computed values really reflect minimum hop distances or not,
as this can depend on whether all messages are received and processed.

2.1.3. Simulated synchronous computation. In this model which is frequently used to
simulate synchronous programs on an asynchronous network, we combine the added structure
of phasing and of the message-driven model of computation. Hence assumptions 2.1 and 2.2
apply here, too. Although we did not demand with phasing that the message received was of
the same phase as the receiver (because it was not necessary), we will do so now as it has the
advantage that a message can contain less information in this case. However, we then need a
way to ensure that no messages belonging to the next phase are received if they happen to
arrive early, as is possible in this model. Thus we add a new variable in each node i: rec;,
which is a boolean array which records for each neighbor j in rec;[j] whether all messages of
the current phase from neighbor j have already been received or not. Hence it is necessary
that the receiver of a message has some way to decide whether a message received is the last
message of the current phase or not.

There are several ways to implement this, for example: counting the number of messages
and sending the numbers, too, or combining all messages of one phase over one link into one
big message. Again we are not interested in an actual implementation, as long as a node can
decide the question. This leads to program skeleton SS .

Initially V' i: awake; = false, phase; = 0, and V neighbors j: rec;[j] = false.

A : {not awake;}
begin awake; = true;
forall neighbors j do send the appropriate messages of phase; t0 j od
end

R : {a message (of phase;) has arrived from j A not rec;(j]1}
begin if not awake; then do ASS fi;
receive the message from j and record it; compute;
if this was the last message of phase; from j then rec;[j] := true fi:
if V neighbors &: rec;[k]
then phase; = phase; +1; compute;
forall neighbors &
do send the appropriate messages of Phase; to k; rec;[k] = false od
fi
end

Note that operation P is now included in operation RS to ensure that all operations
except awakening are only done upon receipt of a message. A link can contain in one direc-
tion messages of two different phases. Assuming that messages have to be received in the
order in which they arrive at a node, we now need the assumption that they arrive in the same
order as they were sent. Otherwise the guard of operation RS could cause deadlock. In
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section 3.1.3 we will prove for refinements of this program skeleton, that the phrase ’of
Pphase;’ is not necessary in the guard of operation RSS.

Assumption 2.3. On any link, messages in any one direction are not reordered.

2.1.4. Synchronous computation. In synchronous computation it is usually assumed that
all nodes awaken simultaneously, and that messages are transmitted with a fixed delay. For
our purposes however, it is enough to make the assumption that all nodes awaken spontane-
ously in addition to assumptions 2.2 and 2.3.

Assumption 2.4. All nodes awaken spontaneously.

In synchronous computation not only all messages of one phase are sent "at the same
time", but all messages of one phase are also received "at the same time". It is usually not
assumed that more messages over one link can be received at the same time, hence the infor-
mation of all messages is assumed to be lumped together in one (bigger) message. Like in
program skeleton SS, the operation P/ is included in the receive operation.

The variable rec; is not used any more, as the registration of which messages are
received in the program skeleton is replaced by a registration of which messages have arrived
outside the program skeleton, and thus not specified here. If this program skeleton is used in a
really synchronous environment, i.e., messages have a fixed delay, and there is a way to let all
nodes start (awaken) simultaneously, then the guard of R,-s becomes true automaticly each time
the fixed delay has elapsed. The program skeleton (S) is as follows.

Initially Vi: awake; = false and phase; = 0.

A,fg : {not awake;}
begin awake; = true;
forall neighbors j do send the message belonging to phase; to j od
end

R : { from every neighbor the message belonging to phase; has arrived }
begin forall neighbors j do receive the message from j od;
phase; = phase; +1; compute;
forall neighbors j do send the message belonging to phase; to j od
end

These program skeletons together with the network assumptions stated in section 2.2
form the models of computation. In sections 3 and 4 we will further refine these program
skeletons. We first specify the actual computation of minimum hop distances and specify the
contents of a message. We then derive properties of the classes of algorithms that can be
described in this way. Finally, we refine these program skeletons further to arrive at concrete
algorithms.

The method used for the correctness proofs of these refined program skeletons is that of
assertional verification or system-wide invariants, first introduced by Krogdahl [Kr] and Knuth
[Kn]. The idea is that if a relation (between process variables for example) holds initially, and
is kept invariant by all possible operations, then it will hold always in the distributed system,



whatever order of operations takes place in an actual execution of the distributed algorithm.
This approach has a definite advantage over operational reasoning for correctness proofs
because it is almost impossible not to overlook some odd coincidence of events that can arise
in the execution of a distributed algorithm that might make the proof invalid, as it makes use
of checking all possible executions.

The advantage of the use of system-wide invariants for program skeletons is the follow-
ing. If we have a more elaborate program skeleton or an algorithm which can be viewed as a
special instance of some program skeleton, then any system-wide invariant which holds for the
program skeleton, will hold also for the more elaborate program skeleton or the algorithm.
This is the case simply because the invariant was proven correct for any order of operations in
the general case, and hence also for the special order of operations which will take place in the
more elaborate program skeleton or the algorithm. For example, as the simulated synchronous
program skeleton is a special case of the phasing program skeleton, invariants which hold in
the latter hold in the former, too. The approach was used successfully in e.g. [Tel] and [Scho).

System-wide invariants are very well suited to prove the partial correctness (or safety) of
a program skeleton, i.e., that all variables contain the cormrect values upon termination. In gen-
eral they are less suited to prove total correctness (or liveness), i.e., that there is termination in
finite time. That an execution cannot go on infinitely long is usually proven by means of some
counting argument. Although the freedom of deadlock for some program skeleton can be
stated in a system-wide invariant, this does not mean that the freedom of deadlock for this pro-
gram skeleton automaticly carries over to the freedom of deadlock for a refinement of that pro-
gram skeleton. As the order of operations in the latter might be more restricted because extra
guards were introduced, freedom of deadlock for the refined program skeleton will correspond
to a different system-wide invariant which will have to be proved separately.

2.2, The network. We assume we have a network consisting of nodes connected by
undirected communication links. We do not assume that the network is connected. Nodes can
send messages to their neighbors over links. Unless otherwise stated, we assume that nodes
know (the identity of) their neighbors.

As discussed in the previous section, we assume that messages sent are not lost, garbled,
duplicated, or delayed infinitely long. Thus a message sent always arrives in finite time at its
destination. We also assume that messages on one link for one direction are not reordered:
links have the FIFO property, i.., a message sent first on a link, arrives first. We mean to say
that the underlying communication protocol(s) ensure those properties on this level. Hence
communication is modeled as follows. A link (i, Jj) is represented by two FIFO queues of
messages Q[i,j] and Q[j,i]: the messages from i to J and from j to i, respectively. We
denote the fact that a message M is on its way from node i to node j over the link (i, j) as
<M>eQli,j]l.

We discuss algorithms for both static and dynamic networks, in sections 3 and 4, respec-
tively. In a static network, links are fixed and known to their neighbors. In a dynamic net-
work, links can go down and come up. We use the following model for communication in
dynamic networks. We assume that the assumptions stated above for links in a static network,
also apply to links in a dynamic network, whether they are up or down. To model the loss of
messages when a link is down, we do not change the assumptions, but add an extra atomic
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operation local to a link for going down which provides for the possible loss of messages.
Also the send procedure provides for possible loss of messages when a link is down. As a
counterpart for the operation for going down, we also add an operation for the coming up of a
link.

If the link (i, j) is up, then sending a message from i to j means: appending a message
to Qi,j], and receiving by i of a message from j means: deleting the first message i.c., the
head of Q[j,i). If the link is down, sending a message from i to j means: possibly append-
ing the message to Q[i,j]. This corresponds on the one hand to the message getting lost and
on the other hand to the situation that the message was still in i’s output buffer when the link
came up again. If the link is down and Q[j,i] not empty, receiving a message just means get-
ting the head of Q[j,i], corresponding to getting the next message in i’s input buffer. Thus
we get the following send and receive procedures.

proc send <M>to j by i = begin if linkstate (i, j) = up
then append <M > to Q[i, j)
else possibly append <M> to Q[i, j]
fi
end

proc receive <M> from j byi = {<M> head of O[/,il}
begin delete <M > from Q[j,i] end

We will model nodes going down and coming up by the going down of all incident links
of a node that are still up, and the coming up of a node by the coming up of possibly only
some links incident to a node, respectively. It is of course necessary that nodes somehow
become aware of the changed status (up or down, respectively) of an incident link. We model
this by adding extra messages <up> and <down> which we call control messages. We
assume that when a link changes status, control messages are added to the message queues
corresponding to that link, and that the nodes incident to the link eventually become aware of
the changed link status when they receive the control message. Thus the status of the link can-
not be observed directly by the incident nodes.

When link (i, j) comes up, an <up> message is appended to both Q[i,j] and Q[/,i].
When link (i, j) goes down, a <down> message is appended to both Q[i,j] and Q[j,i], and
moreover, we allow that arbitrary noncontrol messages are deleted from Qli,j]l and Q[j,i],
corresponding to the situation that some or all messages are lost when the link goes down. It
is probably more realistic to only delete messages after the last <up> message, but it is not
necessary to make this assumption. We do not allow that control messages are deleted.

Thus we get the following atomic operations U (coming up) and D (going down) on
links.

U; . {linkstate(i, j) = down}

begin append <up>to Q[i,j]; append <up>to Q[},i];
linkstate (i, j) .= up
end
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D; . {linkstate(i, j) = up}
begin delete all, some or no non-control messages from Q[i, j];
delete all, some or no non-control messages from Q{j,il;
append <down>to0 Q[i, j1; append <down>to Q[j,i];
linkstate (i, j) := down
end

Here linkstate(i, j) is a ghost variable which can have values up and down. It is not a
variable which can be accessed by any node, but it is introduced to be able to formulate some
invariants more precisely.

Summarizing, the assumptions for a dynamic network are:

Assumption 2.2°. Messages do not get lost otherwise than by a D-operation or a send pro-
cedure. Messages that are not lost do not get garbled, duplicated, or delayed infinitely long.

Assumption 2.5. If a link (i, j) changes status, the appropriate control messages are appended
to Q[i,jland Q[j,i].

Assumption 2.6. Initially, all links are down and the initial topology of the network is defined
by the appropriate Uj; operations.

To the program skeletons from the previous section we now must add the new atomic
operations RU and RD : receive an <up> message and receive a <down> message, respec-
tively. Alternatively, we have to extend the code for the R operation with a test whether the
message received is a control message and the appropriate action to take in case it is. If the
computation on hand computes something which depends on the actual topology of the net-
work, such as for example minimum hop distances, part of the computation might have
become obsolete if there is a change in topology. There are two ways to deal with that: par-
tially recompute with the problem of deciding what part, or totally restarting the computation
with the problem of reinitializing. Thus in general, there will be several variables in the pro-
gram skeleton that have to be changed in an RU or an RD operation.

In the phasing program skeleton of the previous section, at least the phasing number will
have to be reset. In a message-driven computation we now must be aware that messages
might have become lost because of link failures, contrary to assumption 2.2. Furthermore we
need operations comparable to awakening which will take place upon changes in topology.
These will be incorporated of course in the operations RU and RD mentioned above.

There is a more philosophical difference between a dynamic network and a static net-
work, namely that in the latter case it is sufficient to do a computation once, while in a
dynamic network the computation might have to be redone for every change in topology. This
usually takes the form of a continuous computation which will only terminate when there are
no more changes in topology.

3. Minimum hop distances in a static network. We begin by applying the most gen-
eral program skeleton of section 2.1 to the computation of minimum hop distances. That is,
we specify the contents of a message, we define variables to record computed values, and we
specify the computation which has to be done. After investigating what we can derive about
estimated distances which are obtained in this way, we show in section 3.1 how to arrive at
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minimum hop distances if we refine the program skeletons P, M, SS, and S defined in section
2.1 in this way. In section 3.2 we then discuss some algorithms due to Gallager and Friedman
[Fr].

We assume that the contents of a message are the identity of some destination node
together with the estimated distance between the sender of the message and the destination. So
messages (denoted as <x,/>) consist of two fields: the destination is in the first field and the
(estimated) distance of the sender of the message to the destination is in the second field. We
assume each node maintains an array D with (estimated) distances to all nodes. If we want to
use the minimum hop distance for routing, we also need to remember the neighbor which sent
a node the estimated minimal distance. This will be maintained in dsn (for downstream
neighbor- the reason for this terminology will become clear later). We then get the following
program skeleton (B ).

Initially Vi: D;[i]=0 and Vx withx #i: D;[x] = oo,
S# : begin send <x,D;[x]> to some neighbor j end

R?: {amessage <x,I> has arrived from j}
begin receive <x,/> from j;
if I+1<D;[x] then D;[x] = I4+1; dsm[x] = j fi
end

Although it is not really necessary, we suppose for ease of notation that the set of all
nodes in the (static) network is known a priori to every node.

It might seem that we have not specified much about any program that contains these
atomic actions as building blocks. However, we can already derive some statements about the
relation between the values in D;[x] and the real (minimum hop) distance between i and x,
denoted by d (i, x).

Lemma 3.1. For all x and i the following holds invariantly.
(1) D;[x]is not increasing,

@ <x,l>eQlj,i] = IZDj[x],

(3) D;[x)=2d(i,x).

Proof. (1), (2). Obvious from program skeleton B .

(3). This is initially true, as d(i,i) = Di[i] = 0 and d(i,x)<oe for all x. If a message
<x,l> is sent by j, j sends its value Dj;[x] as I. Hence by statement (3) for j and x,
l2d(j,x) for messages sent by j. In case i receives a message <x,/> from j and adjusts
D;[x], we know by the triangle inequality that d(i,x)<d(@,j)+d(j,x) = 1+d(j,x) and thus
1+d(j,x)<1+! = D;[x]. m

Lemma 3.2. Forall i and x with x # i
D;[x] = k <eo => there is a path of <k hops via dsn;[x] and Dgon1x)lx1<k - 1.

Proof. Consider operation R?, and let the message received be <x,/>. Then I2D;[x] by
lemma 3.1(2). If I = o, i does not change D;[x] as 1+ & D;[x] always. Thus if i changes
D;[x] and sets dsn;[x] to J» 1 <o, We have two cases.

Case 1: 1 = 0.
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As 12d(j,x) we know d(j,x) = 0 and hence J = x. Thus x is neighbor of i and there is a
path of one hop to x. Then D;[x] is set to 1 and dsn;[x] = j while D;[x]<1-1=0.

Case 2: 1 >0.

As D;[j] = 0 initially and is never changed (lemma 3.1), 1>0 implies x # j. Hence we can
use the induction hypothesis for j and conclude that there is a path of </ hops to x from j.
We have [ 2D;[x], dsn;[x] is set to j, and D;[x] to I+1 while there is a path of </ +1 hops
viajtox fromi. M

Baran’s perfect learning algorithm [Ba] is essentially identical to the above program
skeleton. On messages sent for other reasons, a hop count of the distance traveled is pig-
gybacked. This hop count is used by the receiver of the message to adjust its distance table in
the manner described above. This distance table then is used in routing, without bothering
whether the distances recorded are minimum distances.

3.1. Structuring the program skeleton. From the preceding section we conclude that
any program which sends (estimates of) minimum hop distances to neighbors, and adjusts dis-
tances upon receipt of messages in this way, yields estimates which are upper bounds of the
real minimum distances, providing the initial values were upper bounds. In general however,
one would like to know when the upper bounds are equal to the minima. Clearly, one has to
send "enough" values around. Thus the problem reduces to deciding for each node when it
can stop sending values of distances because all nodes (including the node itself) have the
correct values. The way to achieve this is to add extra structure to the program skeleton. Both

with phasing and in the message-driven model we can decide when the distance tables are
correct.

3.1.1. Phasing. The idea of phasing was explained in section 2.1.1. In order to distinguish
messages of different phases, messages will now have a third field containing the current phase
of the sender. All the work of one phase in this case constitutes of sending around those mes-
sages which contain a distance field of / = phase;, and receiving all those messages from all
neighbors, thus gathering all information about nodes which lie at a distance of phase; +1. We
refine program skeleton P to program skeleton P 1.

Initially Vi: D;[i]= 0, phase; = 0, and V x with x # i: D;[x] = oo,
SF!: begin send <x, D;[x), phase;> to some neighbor j end

R/ : {a message <x,!,p> has arrived from i}
begin receive <x,l,p> from j; record it as received for phase = p ;
if I+1<D;[x] then D;[x] := [+1; dsn;[x] = j fi
end

P/ : {all messages of phase = phase; from all neighbors are received}
begin phase; := phase; +1 end

The guard of operation P/! still is rather informally stated. It depends on the actual
implementation how this statement should be formulated exactly. For example, the guard
could be "from all neighbors j and about all destinations x a message of phase; is received".
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We are not interested in how this could be implemented, we only assume that a node can
somehow decide this question.

Note that in operation R/ we did not test the phase number p of the received message
against the phase number phase; of the node i. Whether a message is buffered until i has
reached the corresponding phase or is processed directly, or even is thrown away, is immaterial
to the correctness, as we will see. Thus we did not pose an extra restriction on R” !,

As this program skeleton is also a refinement of program skeleton B, lemmas 3.1 and
3.2 still hold.

Lemma 3.3. Forall i and x the following holds invariantly.
(1)  phase; is not decreasing,
(2) d(i,x)>phase; vd(i,x)2D;[x].

Proof. (1). Obvious from program skeleton P 1.

(2). Initially d(i,x)>phase; =0 fori # x and d@i,i)= D;[i]=0.

-Operation S{! does not change any variables.

-Operation R}! can only decrease D;[x], hence the statement remains valid.

-Consider operation P,-P 1 we only need to consider the case that Phase; is increased to the
value that happens to be d(i,x). Thus assume d(i,x) = k21. Hence there is a path of k
hops from i to x. Let j be the first node after i on this path. Thus d(j,x) = k- 1. As the
operation is enabled, i has received a message <x,/,p> from j with p = k- 1. Together
with the induction hypothesis we have d(j.,x)>p or d(j,x)2l. As d(j,x)= k- 1, we
know k—121. In R}! the result of receiving <x,l,p> is that D;[x]<I+1 whether or not
D;[x] is adjusted. As D;[x] is not increasing, this is still the case. Hence
Di[x]<I+1<k = d(i,x). m

Now it is clear from operation R/! that if two messages <x,l,p> and <x,l,p’> are
received from j, that the second one has no effect whatsoever. Hence it is not necessary for j
to send the second message, as long as i is able to conclude when it has received "all" mes-
sages of a phase. This could be implemented for example by letting j send the total number
of messages of each phase to be expected, or sending all messages over one link inside one
large message per phase. The proof of lemma 3.3 is easily adjusted for the set of atomic
operations where this different definition of "all messages per phase” is used in the guard of
operation Pf'!, This will be discussed in more detail in section 3.1.3,

Theorem 3.4. For all i and x the following holds invariantly.
(1) d(i,x)<phase; = D;[x]= d(i,x),
(2) D;[x]1<phase; = D;[x] = d(i,x).

Proof. Follows directly from lemma 3.3 combined with lemma 3.1(2). B

Thus we know on the one hand that of all nodes x lying at a distance less or equal the
current phase number the correct distance is known to i, and on the other hand, that if the
value that i has for the distance to x is less or equal the current phase number, then this value
is correct.



-14 -

Corollary 3.5. For all i the following holds invariantly.
phase; >max {D;[x] ID;[x]<o0} = Vx: D;[x]= d(i,x).
X

Proof. With theorem 3.4 we have that for all x with d(i,x)<phase;, D;[x1>d(i,x). For
those x with d(i,x) = - we have with lemma 3.1 that D;[x] = d(i,x). Assume there is an
x with d(i,x) = k >phase;, and d(i,x)<os. Then there is a path of length k£ from i to x.
Thus on this path, there must be a node y with d(i,y) = phase;. With lemma 3.3 we know
d(i,y) = D;[y] < phase; which is in contradiction with the premise. Thus for all nodes x we
have D;[x] = d(i,x). &

Hence a node can decide when all its distance values are indeed correct. In an actual
algorithm for computing minimum hop distances this can be used for a stop criterion in the
algorithm. Note that the program skeleton as given here is too general for being able to prove
that it terminates and does not deadlock or £0es on generating messages forever.

3.1.2. Message-driven computation. In this case the added structure in the order of
computation is that it is specified which messages are t0 be sent if a certain message is
received. If the receipt of a message leads to an adjustment in the distance table, this "news"
is sent to all other neighbors. We obtain the following program skeleton (M 1).

Initially Vi awake; = false, D;[i1= 0, and V x with x #i: D;[x] = oo,

A,-M 1 :{not awake;}
begin awake; = true; forall neighbors J do send <i,0> to j od end

R¥! :{a message <x,!> has arrived from i}
begin receive <x,/> from j; if not awake; then do AM! fi;
if | +1<D;[x]
then D;[x] = [+1; dsmi[x] = j;
forall neighbors k with £ # j do send <x,D;[x]>to k od
fi
end

As it is also true for this program skeleton that it is a refinement of skeleton B, lemmas
3.1 and 3.2 also hold now.

Lemma 3.6. For all links (i, j) and all nodes x the following holds invariantly.
awake; A D;[x]<oc0 = <x,Di[x1>e Qli,j] v D;[x]<D;[x]+1.

Proof. Initially the premise is false.

-Operation A,M . When i awakens, only D;[i]<ee, but then <i,0> is sent to J» hence
<i,0>e Qli,j].

-Operation R¥'. Only there is D;[x] changed. If it is, it is done upon receipt of some mes-
sage <x,!> from node k, where now D;[x]= [ +1. We distinguish two cases.

Case 1: j = k. With lemma 3.1 we have 1 2D,;[x], thus Dj[x]Sl <D;[x]+1 holds.

Case 2: j # k. Then the message <x,D;[x]>is sent to j hence <x,D;[x]>¢ Qli,j] holds.
-Operation Rf" I can falsify the statement <x,D;i[x]>e Qli,j] by receiving that specific
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message, but then the result is D;[x]<D;[x]+1. If this last statement holds, it can not be
invalidated by an RM! operation because D;[x] is not increasing (lemma 3.1). W

Lemma 3.7. For all nodes i and x the following holds invariantly.

d(i,x)= D;[x] v

d(i,x) < D;[x]1 A3j withd(i,j)= 1 Ad(i,x)= d(j,x)+1 A
(d(j,x) = Di[x] A (<x,Dj[x]>e Qlj.il v not awake; Ax = j)v
d(j,x) < Dj[x]).

Proof. In case d(i,x) < D;[x] it follows that i # x and d(i,x)<ee. Itis a property of
minimum hop distances that i has such a neighbor j on a path to x. By lemma 3.1 we have
d(j,x)SDj[x]. For the case of d(j,x) = D;[x] use lemma 3.6. W

Lemma 3.8. The number of messages sent in program skeleton M 1 is finite.

Proof. First note that in any message <x, /> which is sent, 0</ <o, Secondly, let N be the
total number of nodes in the network. Then ! < N (use lemma 3.2). Moreover, if two mes-
sages <x,l> and <x’,I'> are sent in the same direction over a link, then either x # x’ or
I #1'. This gives the desired result. W

Theorem 39. TERM = Vi, x: D;[x]= d(i,x).
Proof. Use lemmas 2.1, 3.6, and 3.7. ®
Corollary 3.10. Program skeleton M 1 is (totally) correct.

Proof. As messages can always be received when they arrive, and delays are finite, this pro-
gram skeleton terminates in finite time. W

The only problem now left is that a node i cannot see from the values of its variables
whether there is termination or not, and hence whether its distance table is correct. Unless we
make further assumptions about the network such as: all messages have a bounded delay only,
we need to add a so-called termination detection algorithm to be able to detect this state (see
e.g. [Tel)).

3.1.3. Simulated synchronous computation. In this model, the feature of phasing is
incorporated in the message-driven model of computation, as was discussed in section 2.1.3.
We obtain program skeleton SS 1 if we refine program skeleton SS with the distance computa-
tion.
Initially V i: awake; = false, phase; = 0, D;[i]= 0, and
Vx withx #i: D;[x] = oo, V neighbors j: rec;[j]= false.

A1 : [not awake;}
begin awake; = true;
forall neighbors j do forall nodes x do send <x,D;[x],phase;> to j od od
end
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R : {a message <x,1,p> has amived from j A not rec;[j]}

begin receive <x,l,p> from j; if not awake; A p = 0 then do ASS! fi;
if awake; A p = phase;
then if / +1<D;[x] then Di[x] == 1+1; dsn;[x] = j fi;
if this was the last message from j belonging to phase;
then rec;[j] := true
fi;
if V neighbors k: rec;[k]
then phase; := phase; +1;
forall neighbors &k
do rec;[k] = false;
forall nodes x do send <x, D; [x], phase;> to k od
od; if not 3x with D;[x] = phase; then awake; = false fi

end

In the above program skeleton a lot of information tums out to be redundant. Hence we
proceed to prove relations between the variables involved in order to arrive at a simpler pro-
gram skeleton whose correctness follows from the correctness of the skeleton above. Note that
the guard of operation R*! does not contain the test p = phase;, contrary to the situation in
R®. The next theorem states that this test is not necessary.

Lemma 3.11. For all links (i, j), all nodes x, and all integers k 20 the following holds invari-
antly.
(1) <X,I'.,p’>behind <x,l,p> in Qli,jl = p’ 2p,
(2 3<x,l,p>eQli,jlwithp = k = phase; 2k A
phasej<k vphasej =k A rec;[i] = false,
(3) (awake; A phase; = k = 0v 0<k Sphase;) aAnot 3<x,l,p>e Q[i,j]l withp = k =
phase; >k V phase; = k Arecj[i] = true v not awake; A phase; 21,
(4) (not awake; A phase; = k = 0 v k >phase;) =
not 3<x,l,p>e Q[i,jlwithp = k A
(phasej <k Vv phase; = k A rec;[i] = false).

Proof. (1). Follows from the FIFO property of the message queues and lemma 3.3.
We prove the remaining statements simultaneously. Initially the premise of (2) and (3) is
false, and (4) holds for all k as all queues are empty. Consider the effects of the different
operations upon the statements.

-Operation AS!. Then the premise of (2) holds for k = 0 and phase; = 0 and
rec;[i] = false. The premise of (3) is false for k = 0. (4) continues to hold for k > 1.

-Operation RSS! where phase; is increased. (2) continues to hold for phase; >k as
before, and for k = phase; messages <x, 1, p>withp = k are sent to j. As Pphase; <phase;
before R*!, we now have phase; <k. (3) continues to hold for phase; >k as before, and the
premise is false for k = phase;. (4). The premise holds for less values of k.

-Operation A fs L spontaneously or on receipt of a message which was not the last one of
this phase from i. Hence as a result, phasej = 0 and rec;[i] = false. If (2) held, it still
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holds. The premise of (3) is Jalse. (4) continues to hold as before.

-Operation R;*! on receipt of a message which was not the last one of this phase from
i. Then all statements remain valid as before.

-Operation R on receipt of a message <x,/,p> from i which was the last one of this
phase. Then before recili] = false (statement (2)). We have two cases.

Case 1: Phase; is not increased. Then recj[i] = true and not 3<x,l,p>e Qli,j] with
P = phase; holds. An exception is the case where awake; was false, since recili] = false
then.

Case 2: phase; is increased. Then again recj[i] = false and not I<x,l,p>e Q[i, Jj1 with
P = phase; holds. If (2) held before for values of k¥ with phase; <k, then it now holds for
phasej <k as rec;[i] = false. (4) cannot have held before R®! for k = phase;, hence (4)
continues to hold now Phase; is increased. If awake; is set to false, phase; must at least be 1
as phase; is increased first.

-Operation RS! on receipt of a message from another neighbor than i which results in
an increase in phase;. This can only happen if before R rec;[i]1 = true already, and hence
not 3<x,l,p>e Q[i,j] with p = phase; before R¥! Afterwards, rec;[i] = false. The
premise of (2) only could hold for & > Phase;, hence (2) holds afterwards. In 3), phase; = k
and reci[i] = true held before, and now phasej >k holds. In (4), phasej =k and
rec;[i] = false did not hold, hence increasing Pphase; by 1 does not invalidate (4).

Hence these statements remain invariant under all possible operations. W

Theorem 3.12. For all links (i, Jj) and all nodes x the following holds invariantly.
<x,l,p>head of Q[i,j] =

P = phase; A rec;jli] = false v p >phase; A (rec;lil= true v awake; = false).

Proof. Follows directly from lemma 3.10 (1) and (4), lemma 3.10 (2) with k = p and lemma
310 3) withk<p-1. m

Hence we can conclude that the receiver of a message <x,/,p> has no need for the
information what in the third field. If the recciver is awake and the guard is enabled, the mes-
sage is of the current phase, if the receiver is not awake, it is clear from its own phase number
(=0 or >0) whether it should awaken and start participating in the algorithm or that it has
finished already. In the last case the (redundant) message can be thrown away. Thus we can
omit the third field from the messages. However, there is more information that is redundant.

Lemma 3.13. For all links (i, j) and all nodes x the following holds invariantly.
(1) Dix]l<ee = D;[x]<phase; +1,

@ <x,l,p>€Qli,j] > l=ocvl= d(i,x)<p,

3 <=x,l,p>e Qli,jlal<p =phasej = Djlx]= d(j,x).

Proof. We prove the first two statements simultaneously. Initially both are true. If a node
awakens, it sends messages of the form < x,0,0> which agrees with the second statement. If in
an operation R{*! D;[x] is changed, it is done upon receipt of some message <x,/,p> from
say j. Then I #, p = phase;, and | = d(j,x)<phase;. As D;[x] is set to I+1 =
d(j,x)+1<phase; +1. If in operation R’! messages are sent, then phase; was increased,
t00. As for those x with D;[x]< oo, D;[x]<phase; +1, we have that after the increase
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D;[x]1<phase; and thus /<p in the messages sent, or [ = o, With theorem 3.4(2)
D;[x]1<phase; implies I = d(i,x). Hence (1) and (2) remain invariant.

Statement (3) follows from the triangle inequality d(j,x)<d(i,x)+1 together with (1) and
theorem 3.4(1). W

Thus the only messages <x,!,p> upon the receipt of which an entry D;[x] is changed,
are those with / = p = phase;, and hence D;[x] is always set to phase; +1. Necessarily
D;[x] was e beforehand. Thus the test whether to change D;[x] can be stated otherwise.
Only the name of the node x in a message <x,/,p> is information we need. Now it is possi-
ble to do two things: one is to just send messages which only contain the name of a node.
The problem with this is that the receiver now has no way of knowing when all messages of
one phase have been received, as the number of them is not fixed any more, and even might be
zero. The second way is to send only one message which contains a set of node names. Thus
we avoid the previous problem, introducing however messages which do not have a fixed
length.,

We now give the simplified program skeleton for the second way in skeleton SS2, for
€asy comparison to the synchronous program skeleton (see section 3.1.4). Now X denotes a
(possibly empty) set of node names.

Initially V i: awake; = false, phase; = 0, D;[i]= 0, and
Vx withx #i: D;[x]= e, V neighbors j: rec;[j] = false.
A2 {not awake;}
begin awake; = true; forall neighbors j do send <{i}> to J od end

RS2 : {a message <X> has arrived from J A~ notrec[j1}
begin receive <X> from j ; if not awake; A phase; = 0 then do ASS? fi;

if awake;
then rec;(j] = true;
forall x e X

do if D;[x] = oo then D;[x] := phase; +1; dsn;[x] == j fi od;
if V neighbors k: rec;[k]
then phase; .= phase;+1; X = {x | D;[x] = phase;};
forall neighbors k do rec;[k] = false; send <X >1t0 k od;
if X = @ then awake; = false fi

end

Even now there is some redundant information sent. This is exploited in the algorithms
of Gallager and Friedman [Fr]. We refer the reader to section 3.2 for more details.

We now proceed with the issue of correctness of this program skeleton, as this does not
follow directly from corollaries 3.5 and 3.10. Since we introduced extra guards it is not obvi-
ous that no deadlock can occur.

Lemma 3.14. For all links (i, j) the following holds invariantly.
awake; Arec;[jl= false AQlj,i]l= Q@ =
phasej <phase; A awake; v phase; = phase; = 0 A not awake; A Qli,jl#D.
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Proof. Using lemma 3.11(3) with i and j interchanged and with k = phase;, we get a con-
tradiction. Hence we conclude that Pphase; <phase; or not awake; A phase; = phase; = 0. In
the case of Phase; <phase;, let us assume that not awake; holds. It is clear from the program
skeleton that this implies not Ix with Dj[x] = Phase;. Hence there is no node x with
d(j,x) = phase; (theorem 3.4). On the other hand, awake; holds, so there is some node x
with D;[x] = d(i,x) = phase; >phase;. As d(j,x)2d(i,x)— 1 because i and j are neigh-
bors, this leads to a contradiction and j must be awake still. Upon awakening, i sends a mes-
sage to j, hence Q[i,j] # Q. Aslong as j does not receive the message, rec;[i] = false and
J does not awake. On the other hand, if j awakens spontaneously, Q[j,i] = @ is invalidated.
Hence the statement holds. W

Theorem 3.15. The program skeletons SS 1 and SS2 are correct.

Proof. Lemma 3.14 implies that if at least one node in each connected component of the net-
work awakens spontaneously, there is always some node in that connected component which
can go on because its R operation is enabled. Thus no deadlock can occur. That the values in
the distance tables are correct follows from corollary 3.5. As the number of messages sent is
finite: at most the number of phases (bounded by the diameter of the connected component)
times the number of nodes, termination is in finite time. W

3.1.4. Synchronous computation. In synchronous computation not only all messages of
one phase are sent "at the same time", but all messages of one phase are also received "at the
same time". Refining program skeleton S from section 2.1.4 leads to program skeleton S 1.
Initially V i: awake; = false, phase; = 0, D;[i]= 0, and
Vxwithx #£i: D;[x] = e

AFYias ASS2

R : {awake; and from all neighbors a message has arrived }
begin forall neighbors j
do receive <X> from j ;
forallx e X
do if D;[x] = <o then D;[x] := phase; +1; dsn;[x] = j fiod
od; phase; = phase;+1; X = {x | D;[x] = phase; } ;
forall neighbors j do send <X > to j od;
if X = O then awake; = false fi
end

Lemma 3.16. For all links (i, j) the following holds invariantly.
awake; AQ[j,i]l= Q0 =
phase; <phase; A awake; v phase; = phase; = 0 A not awake; A Q[i,jl#D.

Proof. Initially the relation is true.

-Operation A;'! sets awake; and Q1[i, j] # 2.

-Operation A ! falsifies the premise.

-Operation R,-s1 is only enabled if Q[j,i] # @. If afterwards Ql[j,i] = O, then it contained
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exactly one message. With a reformulation of lemma 3.11 and theorem 3.12 for this program
skeleton we know that before R!, phase; = phase; held. As phase; is increased, the result is
phase; <phase;. The argument that awake; holds in the first part of the conclusion is the same
as in the proof of lemma 3.14.

-Operation R?! falsifies the premise. W

Theorem 3.17. Program skeleton S1 is correct.

Proof. Consider the differences with program skeleton SS2. In operation RS there is no pos-
sibility for awakening upon receipt of a message. This is not necessary because of assumption
2.4 all nodes awaken spontaneously. The partial correctness follows because this is a
refinement of program skeleton SS2. Lemma 3.16 implies that there is always a node with a
minimal phase number for which some operation is enabled: either awakening or receiving
messages over all links. Hence deadlock cannot occur. As the total number of messages sent

is finite, this algorithm terminates in finite time (assuming that all nodes awaken in finite time.)
|

Although program skeleton S1 is the straightforward refinement of program skeleton
8§82, it should be noted that the problem we consider, namely computing minimum hop dis-
tances, is not wholly suited for a really synchronous computation. Ideally, one would not only
want all nodes to start simultaneously, but also to finish simultaneously. However, it is
inherent to this problem that some nodes have more work to do than others, possibly twice as
much. For example, for nodes on a path, the ones at the ends of the path go on twice as long
as the one(s) in the middle. Moreover, in the present formulation, there are (redundant) mes-
sages left in the queues after termination of the algorithm which is not elegant. It is no prob-
lem of course to add some code to receive and throw away the remaining messages.

3.2. Concrete algorithms. Friedman [Fr] discussed two algorithms for finding the
minimum hop distances in a static network, which can be viewed more or less as special cases
of program skeleton S1 from the previous section. The first of these algorithms is attributed to
Gallager.

3.2.1. The algorithm of Gallager. Gallager noted that in program skeleton S1 for the
computation of minimum hop distances, there is still redundant information sent in messages.
Consider the case that node i hears about a node x first from its neighbor j. Thus a shortest
path from i to x leads via j. However, in the next phase i sends the newly learned identity of
x to j too, which clearly is redundant information for j.

Lemma 3.18. For all links (i, j) and all nodes x the following holds invariantly.
dsm;[x]1= j = Djix]= d(j,x).

Proof. Initially the premise is false. If dsn;{x] is set to some value j in operation R;g 1 then
x was included in a message from j. When j sent this message, D i[x]1=d(j,x), and D;[x]
is not changed any more. W

Thus it is not necessary to include node x in the set X sent to j if dsn;[x] = j. How-
ever, from the program skeleton it is not clear which neighbor will be chosen as downstream
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neighbor in case there are more possibilities, as the order of operation in "forall neighbors
Jj do.." is not specified. For every possibility j, i.e., every neighbor j with minimal distance
to x, it is not necessary to include x in X to j. Thus the array of single values dsn; is
changed to an array of sets of neighbors all of which lie at a minimal distance.

We now rewrite the program in these terms which results (almost) in the algorithm of
Gallager as stated by Friedman [Fr].

Initially Vi: awake; = false, phase; = 0, D;[i]= 0, dsn;[i] = @, and
Vx withx £i: D;[x]= o and dsn;[x]= .

A,’G: asA,s‘

RE : {awake; A from all neighbors a message has arrived}
begin forall neighbors j
do receive <X> from j ;
forallx e X
do if D;[x]2phase; +1
then D;[x] := phase; +1; dsm;[x] := dsm;[x] U {j}

fi
od od; phase; = phase;+1;
forall neighbors j

doletX = {x|D;[x]= phase; A j & dsn;[x]}; send <X >to j od;
if not 3x with D;[x] = phase; then awake; = false fi
end

Corollary 3.19. The algorithm of Gallager is correct.
Proof. Follows from lemma 3.18 and theorem 3.17. W

Note that there is one difference with the algorithm of Gallager: where we have: "forall
neighbors j do receive <X > from j", Gallager has "receive transmissions from all active
neighbors". However, we showed in lemma 3.14 that all neighbors are awake or active long
enough and hence that this test is unnecessary.

As Friedman already noted (without any arguments however) this algorithm can easily
be adapted for use in an asynchronous environment. It is now a straightforward exercise to
incorporate the idea of the sets of downstream neighbors dsn;[x] in program skeleton SS2
which makes use of messages about sets of nodes.

3.2.2. The algorithm of Friedman. Friedman [Fr] observed that there is still some
redundant information sent around in the previous algorithm, in the case that the network is not
a bipartite graph. This means that the graph contains cycles of odd length. Consider two
neighbors i and j on a cycle of odd length. This means there are nodes (at least one, say x)
with the same distance to i and j: d(i,x) = d(j,x). Thus in phase d(i,x) i and j send the
name of node x to each other, while this is no new information for them. Friedman tried to
adapt the previous algorithm in such a way that this is avoided.

The way he did that, is by ensuring that information is not sent in in both directions over
a link simultaneously. For each link, a HI and a LO end is defined, the number of phases is
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doubled, and nodes alternately send and receive from HI and LO ends. To be able to discuss
the relation between the phases in the previous program skeleton and the phases in Friedman’s
algorithm, we will give the latter variables a new name: Fphase. In the program skeleton we
will write in comment what would have happened to the variable phase, thus simplifying the
formulation of invariants. Note that we cannot choose HI and LO ends such that nodes have
only HI or only LO ends, because that would mean that the network is bipartite and the prob-
lem we want to avoid does not occur.

Hence we distinguish two sets hi; and lo; which contain those links for which i is HI
and LO end, respectively. It is arbitrary how we choose HI and LO ends, as long as both ends
of a link decide consistently. We assume node names are distinct and can be ordered in some
way, (lexicographically for example), and we take as HI end the end with the highest node
name.

Furthermore, we need some way to remember which node identities were received by
LO ends while they were candidates to be sent in the next phase, as those are the identities we
want to avoid to send twice. Note that they are not remembered in Gallager’s algorithm,
because they have a shorter path via another neighbor. We will maintain an array nnn; (for
next nearest neighbor) of sets, where neighbor j € nnn;[x] if d(i,x) = d(j,x). If we incor-
porate these ideas in Gallager’s algorithm we get the following program skeleton. Lines

differing from the algorithm as stated by Friedman himself are marked with an asterisk (*) at
the beginning of the line.

The atomic operation RE is now split into three different atomic operations: R?, R?%,
and R™", as the guards of these operations now differ. In R?, messages must have arrived
over all links to receive all of them and decide the HI and LO ends of the links. In R,-""d the
Fphase number is odd and messages from LO link ends must be awaited before they can be
received. If the Fphase number is even, messages from HI link ends are awaited in R, In
order to be able to state invariants about messages of a certain phase, we add in comment mes-
sages with a second field containing the current Fphase number.

Initially V i: awake; = false, Fphase; = 0, D;[i] = 0, dsn;[i] = O,

hi; = @, lo; = @, and co phase; = 0 co
Vx withx £i: D;[x]= o, dsn;[x] = O, and nnn;[x] = O.

AF: as Al co send <{i},0> co

R?: {awake; A Fphase; = 0 A over all links a message has arrived}
begin forall links
do receive < {j} > over the link; D;[j] = 1; dsm;[j]1:= {j};
if j <i then hi; .= hi; U {j} elselo; .= lo; U {j} fi

od; Fphase; = 1; co phase; = 1 co
forall j e hi;

* doletX = {x|D;[x]= L(Fphase;+1) A j ¢ dsn;[x] }; send <X > to j
od; co send <X, Fphase; > to j co

if not 3x with D;(x] = 1 (Fphase;+1) then awake; = false fi
end
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Rp4 :{ awake; A odd (Fphase;) A from all j € lo; a message has arrived }
begin forall j € lo;
do receive <X > from j ;
forallx e X
do ifD; [x]Z%(thase,- +3)

then D;[x] = 1(Fphase;+3); dsn;[x] = dsm;[x] L {j}

* elif D;[x] = 1(Fphase;+1)
* then nnn;[x] = nan;[(x] L {j}
fi

od od; Fphase; = Fphase; +1,
forall j € lo;
* do letX = {x|D;[x] = %thase,- Ajedsn[x]Ajéennnix]}
send <X > to j co send <X, Fphase; > t0 j co
od
end

Rf™" : { awake; A even(Fphi) A Fphase; >0 A from all j € hi; a message has arrived}
begin forall j € hi;
do receive <X > from j ;
forallx e X
do if D;[x]21Fphase; +1

then D;(x] := LFphase; +1; dsn;[x] = dsm;[x] U {j}

fi
od od; Fphase; .= Fphase; +1; €0 phase; = phase; +1 co
forall j € hi;
* doletX = {x|D;[x]= 1(Fphase;+1) A j ¢ dsn;[x] }; send <X >to j
od; co send <X, Fphase; > to j co

if not 3x with D;[x] = 1(Fphase;+1)
then forall j € lo; do send < @ >10 j od;
Fphase; = Fphase; +1; awake; = false
fi
end

Note that the algorithm of Friedman is not a special case of the synchronous or simu-
lated synchronous program skeleton because in R messages of phase; are received while
other messages of phase; are sent afterwards in the same operation.

Lemma 3.20. For all links (i, j) and all nodes x with x # i the following holds invariantly.
(1) Fphase;>0 = hi; U lo; = {all links incident to i} A hi; N lo; = O,

(2) Fphase; >0 A Fphase; >0 = jelo, niehijvjehinie lo;,

3 <X,f>eQl[i,jl = f=0vodd(f)Ajehi; veven(f) A jelo,

4 <X,f>tailof Q[i,j]l = Fphase; = f v Fphase; = f +1,
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(5) <X,f'>behind <X,f>inQ[i,jl] = f=0Af=1vf =f+2,

(6) <X,f>headof Q[i,j1 = f = Fphase; v f = Fphase;+1,

(7)  phase; = [1Fphase; ],

®) <X,f>eQli,jlaxeX = d(i,x)=D;lx]=[1f],

9 Jjedsnix]lvjennnix] = Djlx]= d(,x),

(10) not 3<X,f>e Q[i,jlwithf = k A(k = O0veven(k) A je lo; vodd(k) A j € hi;)
=> not awake; A Fphase; = 0 v Fphase; <k v Fphase; > k.

Proof. (1), (2), and (3) follow directly from the program skeleton.

(4). Note that R?% and R*" can only become enabled alternately. If Fphase; is increased to

f +2 and hence to a value with the same parity as f, a new last message is sent so the rela-

tion holds for the new message.

(5). Use statements (3) and (4).

(6) follows from program skeleton F and statements (4) and (5).

(7) is clear from program skeleton F.

(8). Although this is not a refinement of program skeleton SS, we claim that it is a special

case of program skeleton P 1: Messages of phase; (i.e., about nodes x with d(i,x) = phase; )

are sent when phase; = 1Fphase; and when phase; = 1(Fphase;+1). As phase; =
%thase,--l, messages of phase; are indeed sent in phase phase;. Furthermore we have to

show that the guard of operation P,-P Lin program skeleton P 1 is true when phase; is increased
in this program skeleton. In operation R/"" phase; is increased. With statements (2), (3), (4)
and (6) we have that <X, f> is received when f = Fphase;. As the messages of phase; are
those with f = 2.phase; and f = 2.phase; — 1 they have all been received when all messages
on the HI links are received in operation R{*". Thus we can use theorem 3.4.

(9). A node j is added to a set dsn;[x] or nnn;[x] only upon receipt of a message <X, f>
from j where x € X. With (8) we have the desired result.

(10). Initially not awake; A Fphase; = 0 holds. Operation Af falsifies the premise for k = 0
and for the other values of & Fphase; <k now holds. In general, Fphase; <k is falsified
together with the premise. If the premise is validated by the receipt of a message <X,k> by
J, then afterwards Fphase; >k holds, which cannot be invalidated any more. W

Hence the second field in messages containing the Fphase number can indeed be
deleted.

Lemma 3.21. For all links (i, j) the following holds invariantly.

(1) awake; A Fphase; = 0 A Q[j,il=© = not awakej A Fphase; = 0 A Q[i,j] # O,
(2) awake; A odd (Fphase;) A jelo; A Qlj,il= D = awake; A Fphase; <Fphase;,
(3) awake; A even(Fphase;) A je hi; AQ[j,il= @ = awake; A Fphase; < Fphase;.

Proof. (1) follows from lemma 3.20(10).

Except for the statement awake; in the conclusion, (2) and (3) also follow from lemma
3.20(10). Let odd (Fphase;) hold. Then awake; implies that there is some node x with
d(i,x) = L(Fphase;+1) and hence also a (possibly different) node x with
d(j,x) = L(Fphase;— 1). As Fphase; <Fphase; we have awake;. On the other hand, let
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even(Fphase;) hold. Then awake; implies that there is some node x with d(i,x) = J Fphase;
and hence also a (possibly different) node x with d(j,x) = 1 (Fphase; — 2). Hence awake;

holds for Fphase; <Fphase; - 2, and as becoming not awake is only done in even phases,
awake; also holds for Fphase; = Fphase;— 1. W

Theorem 3.22. The algorithm of Friedman is correct.

Proof. That the second field in messages <X, f> can be deleted follows from lemma 3.20(6).

The partial correctness follows from lemma 3.20. The freedom of deadlock follows from
lemma 3.21. W

Although this is the direct translation of the ideas of Friedman for his algorithm, it is by
no means the same as the algorithm he stated for this purpose, which we cite now:

Step 0: Node pairs exchange identities and choose HI and LO.
Step I: All HI nodes broadcast to their corresponding LO neighbors,

I odd as in Gallager’s algorithm, new identities learned at Step /-1.
Step [: All LO nodes broadcast to their corresponding HI neighbors
! even new identities leamed at Step /-2.

Termination is as in Gallager’s algorithm.

It is immediately clear that this cannot be correct, as only new identities learned in even
steps are sent through. Hence information received in LO link ends will never be sent through.
Moreover, as the algorithm is stated now, information is still sent twice over a link, as trying
out the algorithm on a cycle of length 3 shows.

4. Minimum hop distances in a dynamic network. In a dynamic network, links can
go down and come up, as can the nodes themselves. Hence the minimum hop distance
between two nodes can change in time. We have specified what we exactly mean by "going
down" and "coming up” in section 2.2. The precise formulation of the assumptions is impor-
tant, as people tend to make slightly different assumptions and it does make a difference for the
correctness proofs.

In the next section we discuss some different problems one encounters in algorithm
design for dynamic networks. We then give the algorithm of Tajibnapis [Tj] for comparison
and in section 4.2 we give a complete correctness proof of the algorithm of Chu [C].

4.1. Comparison with the static case. As a dynamic network is inherently asynchro-
nous according to our assumptions, we only have the message-driven model of computation,
and the simulated synchronous model of computation, the latter being a message-driven model
of computation which incorporates the idea of phasing. In both models, the partial correctness
relies heavily on the facts that the D;{x] are decreasing and approximate d(i,x) from above
(lemma 3.1). A consequence of this is lemma 3.2, which states that a finite entry in D;[x]
reflects the existence of a path from x to0 i. As the minimum hop distance of two nodes can
increase if a link goes down the relation D;[x]2d(i,x) cannot be an invariant. In fact, in all
algorithms that we have seen, it is the case that, as soon as a node receives information that
this relation might not hold any more, it sets D;{x] t0 oo.
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There are basicly two extremes in adapting static algorithms for use in a dynamic net-
work, both with their own advantages and disadvantages. One extreme is to process all new
information as it comes in, discarding the old information, and sending it on immediately.
Simple though this might seem, it leads to inconsistent information between network nodes,
due to the asynchronicity of the network. In the case of minimum hop routing, it is easy to
construct examples such that node i has node j as its downsiream neighbor for routing
towards x, while node j has node i as its downstream neighbor. This problem is referred to
as "not loop free" in the literature. The algorithm of Tajibnapis is an example of this. The
algorithm of Chu, called the predecessor algorithm by Schwartz [Sch], is an adaptation of this
which avoids some loops (those of length two).

The other extreme is, to first discard all old information in the whole network, and reset
all nodes to an initial state before restarting the static algorithm anew. Clearly this makes rout-
ing in the whole network impossible for some time, even in those parts of the network that are
not affected. However, in combination with a minimum hop algorithm such as that of Gal-
lager, routing is loop free. Of course, any algorithm that defers all routing until lemma 3.2
holds again, is loop free. Resetting all nodes before restarting could be done by a resynch
algorithm such as Finn’s [Fi], but usually deferring all routing until the whole network is reset
and all routing tables refilled, is too high a price to pay. Therefore people have tried to
economize on this aspect while retaining loop freedom.

One approach, suitable for algorithms which work independently for all destinations, is
to restrict the resetting of the network and deferring the routing for the affected destinations
only. The algorithm of Merlin and Segall [MeSe] makes use of this. Another approach is to
economize on complete resynchronization and only partially resynchronize, i.c., we do not
demand that before restarting the minimum hop algorithm all nodes are reset as with complete
resynchronization, but only the the neighbors of the node restarting. This is done in the fail-
safe version of Gallager’s algorithm by Toueg [To]. Due to the very special order in which
routing tables are filled, it is known during the execution of the algorithm which information is
new and which is old.

A basic problem with running different versions of the same algorithm in an asynchro-
nous environment is keeping them apart. One solution which usually is not choosen, is to wait
with restarting a new version of the algorithm until the previous one has terminated. A reset
algorithm by Afek et al. [AAG] could be used to force termination of the minimum hop algo-
rithm together with resetting the subnetwork where the minimum hop algorithm was still in
progress. This reset algorithm was proven correct in [DrS]. The usual solution is to number
the different versions of the algorithm in some way, see for example Finn [Fi]. Toueg [To], in
his adaptation of Gallager's algorithm, uses Lamport’s concept of logical clocks [Lal]. Both
numberings use numbers which are not bounded. Note that algorithms such as an extension of
the Merlin-Segall algorithm [Se] which rely on Finn’s [Fi] idea of sending (bounded)
differences of version numbers are probably not correct. As Soloway and Humblett [SoHu]
showed, this algorithm of Finn is not correct as it can generate an infinite number of restarts
after all topological changes have ceased. Soloway and Humblett introduced however a new
algorithm to be able to use bounded sequence numbers, based on Gallager’s minimum hop
algorithm. As there is an essential difference in the assumptions about the network, we do not
yet know if this works in our model, too.
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Finally, Jaffe and Moss [JaMo] presented an algorithm based upon both the algorithm of
Merlin and Segall and the algorithm of Tajibnapis, that is still loop free. They realized that the
problem of looping only occurs when distances increase. Thus they use the algorithm of
Tajibnapis for distance decreases, and the algorithm of Merlin-Segall for increases. It was
recently repaired and proved correct by van Haaften and van Lecuwen.

4.2. Concrete algorithms. In the sequel we give a general introduction to the Tajibnapis’
algorithm, together with the program skeleton and the most important invariants for comparison
with program skeleton M 1 (section 3.1.2) and the algorithm of Chu. The latter is an extension
of the former and is proven correct in sections 4.2.2 and 4.2.3.

4.2.1. The algorithm of Tajibnapis. In program skeleton M 1, if a message <x,I> is
received by node i from node j, we can recompute D;[x] as the minimum of the old value of
D;[x] and ! +1. This is due to the fact that we know that the estimate / of D;[x] is decreas-
ing, hence we can simply take the minimum. In the case that links can go down however, this
I might be larger than the previous estimate which i received from j. Thus node i now can-
not recompute the new minimum, unless it has stored the latest estimates from its other neigh-
bors to use for the computation. Hence nodes keep track of which distance information was
received from which neighbor.

The algorithm of Tajibnapis contains one other new feature, which requires another
assumption. It is necessary that the total number of nodes in the network, or at least an upper
bound of this number, is known beforehand.

Assumption 4.1. All nodes in the network know an upper bound of the total number of nodes
in the network.

We will denote this number known by N. The reason that we need this number is that
in the case that the network becomes disconnected, the distances between nodes become
infinity. As the algorithm tends to increase the estimates of distances with one hop at a time,
we need a way to "jump to the conclusion” that the distance is infinity to prevent that the pro-
gram will never terminate. What is used here is the observation that if the total number of
nodes is N, the largest possible finite distance between nodes is N—1. Thus the number N
can be interpreted as oo in this context.

Apart from the atomic operations U; and D;; from section 2.2, which reflect link ()]
coming up or going down, respectively, we add as extra atomic actions RU,-T : node i receives
the message <up> and RD/: node i reccives the message <down>. Nodes maintain a table
Dtab, in which Dtab;[x,j] contains for every destination x # i and every (current) neighbor
j, the last distance information it received from j. Since the set of neighbors is not fixed any
more, this set is maintained in nbrs;. Program skeleton T is as follows.

Initially V i: nbrs; = @, D;[i]= 0,
V j withi #j: linkstate(i,j)= down, QI[i,jl= O,
D;[j1= N, dsn;[j]1= none,
V x with x #i: Dtab;[x,j] = oo.



RU/ :{an <up> has arrived from j}
begin receive <up> from j; add j to nbrs; ;
Dtab;[j,j1 = 0; D;[jl=1; dsm;[jl=j;
forall x e nbrs; with x # j do send <j, 1> to x od;

iflnbrs; | = 1
then forall x with x #i Ax # j do D;[x] = N; dsn;[x] = j od
fi;

forall x withx #i Ax % j
do Dtab;[x,j] = N; send <x,D;[x]>to j od
end

RD/ :{a <down> has arrived from j}
begin receive <down> from j; delete j from nbrs; ;

forall x with x #i

do Dtab;[x,j] = oo,
ifnbrs,- XN dsn;[x] = J
then olddist .= D;[x];

choose ndsn € nbrs; such that
Dtab;[x,ndsn] = min Dtab;[x,a];

a € nbrs;

dsn;[x] := ndsn; D;[x]:= min (N, 1+Dtab;[x,ndsn]);
if olddist # D;[x]
then forall a € nbrs; do send <x,D;[x]>to a od
fi

elif nbrs; =  then D;[x] .= N; dsn;[x] ;= none

fi

od
end

RT : {amessage <x,I/> has arrived from j}
begin receive <x,/> from j ;

ifx #£i A j € nbrs;

then Diab;[x,jl = 1;
ifdsn;[x]= j vi+1<D;[x]
then olddist .= D;(x];

choose ndsn € nbrs; such that
Dtab;[x,ndsn] = aglin Dtab;{x,al;

nbrs;
dsn;[x) := ndsn; D;[x]:= min (N,1+Dtab;[x,ndsn]);
if D;[x] # olddist
then forall a € nbrs; do send <x,D;[x]>t0o a od
fi fi fi
end
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We used the symbol o as well as the symbol N for infinite distances. This is to reflect
the difference between "throw all information away", e.g. delete column j from the array
Dtab;, and "set the value to N", e.g. as initialization for an added column j of the array Dtab;.
However, we are not interested in an actual implementation. It also depends on the implemen-
tation whether all variables mentioned actually have to be maintained or can be deduced from
other values of variables. For example, if obsolete columns of the array Dtab; are actually
thrown away, nbrs; corresponds to the columns actually present in Dtab;. On the other hand,
if the entire column is set to the value N, j e nbrs; if and only if Dtab;(j,j] = O.

Note that the operation AM! "awaken" of section 3.1.2 is divided as it were over all
links and incorporated in RUJ for one link. Part of the work done in RU/ corresponds to
what would be done in operation R/ if the message received from j would be <j,0>. In fact
operations RUY and RDJ could be incorporated in R if <up> is coded as <j,0> and
<down> as <j,e>, and the extra code added for the extra work to be done in those special
cases. We feel that this formulation would obscure the special status of these messages.

We will now state but not prove the basic invariants that lead to the partial correctness
of this algorithm, for comparison with lemma 3.6 and the invariants of the algorithm of Chu.

Theorem 4.1. (Lamport [La]) For all i, j, and x with i # j, x #i, and x # j the following
holds invariantly.
(1) linkstate(i,j) = down = <down> last control message in Q[j,i] v
Dtabi[xvj] = oo ADtabiU’j] = o9

(2) linkstate(i,j)=up =

<up > last control message in Q[j,i] v

Dtab;[j,j1= 0 A (Dtab;[x,j]l = D;[x]v

<x,Dj[x]> after any control message in Q[j,i].

4.2.2. The algorithm of Chu. The problem with the previous algorithm is that if a node
i receives information from its neighbor j that it is / hops away from x, i has no way to
know whether this route goes through i itself. This leads to a slow propagation of distance
updates in case a link has gone down. The algorithm due to Chu [C] maintains this extra
information, thus maintaining a sink tree for every destination.

In the algorithm of Tajibnapis dsn;[x] is maintained, the downstream neighbor to which
i should route messages for x. Now we say that j is upstream from i for destination x if i is
downstream from j. If i’s downstream link for x happens to go down, it is clear that we
should not choose an upstream neighbor as i’s new downstream neighbor, but some other
neighbor. If there is no non-upstream neighbor, i sends a message <x,N, 1> upstream saying
"help, my route to destination x is blocked" and waits until a route to x is found via another
node.

Node i maintains its sink tree information in a table T;, where T;[x,j] = d or u means:
neighbor j is downstream or upstream for destination x, respectively, and T;[x, j1= n means:
neighbor j is neither downstream nor upstream for destination x.

To the messages that are sent an extra field is added to convey this extra information:
node i sends messages <x,D;[x},1> to j if T;[x,jl= d (j is downstream neighbor) and
messages <x,D;[x],0> to j if T;[x,j]#d. We also have to send messages in a situation
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where we did not do so in the previous algorithm, namely in the case that the minimum hop
distance to a node x stays the same but the downstream neighbor is changed, we have to
inform the old and new downstream neighbor of this change.

We now give the text of the algorithm of Chu (program skeleton C). Apart from notat-
ing it in our own way for comparison to the other program skeletons, we had to make some
slight changes to be able to prove the algorithm correct. These are marked with an asterisk (*)
at the beginning of the line. The assumptions concerning the model of communication are still
the same, hence these operations are to be augmented with operations D;; and Uj; for all i and
j # i from section 2.2.

Initially V i: nbrs; = @, D;li1= 0,
V jwithi #j: linkstate(i,j)= down, Qli,j1= 9, D;[j1=N,
V x withx #i: Ditab;[x,j]= o, T;[x,jl= n.

RD : {a <down> has arrived from j}
begin receive <down> from j ; delete j from nbrs; ;
forall x with x # i
do Dtab;[x,j] = o,
if nbrs; # @ AT;Ix,jl=d
then olddist = D;[x];
if 3a e nbrs; with T;[x,a]l # u
then choose ndsn € nbrs; such that Dtab;[x, ndsn] =

min Dtab;[x,al;
a € nbrs; with T;[x,a]l # u

T;[x,ndsn) = d ; D;[x]:= min (N,1+Dtab;[x,ndsn]);
else choose ndsn € nbrs; ; Dtab;[x,ndsn] = N ;
T;[x,ndsn]l = d; D;[x] = N;
forall a € nbrs; with a # ndsn
do Dtab;[x,a]l .= N; T;[x,a] = n od
fi; send <x,D;[x],1> to ndsn ;
if olddist # D;[x]
then forall a € nbrs; with a # ndsn
do send <x,D;[x].0>to a od

fi
* elif nbrs; = @ then D;[x] = N
fi; T;[x,jl=n

od
end
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RE: {amessage <x,l,t> has arrived from j}
begin receive <x,l,t> from j ;

* ifx £i A je nbrs;
then olddist .= D;[x]; let odsn such that T; [x,odsn]= d;
ift=1

then Dtab;ix,jl = 1; T;[x,jl=u;
if olddist <N A odsn = j
then if 3 a e nbrs; with T;[x,a]l # u
then choose ndsn € nbrs; such that Dtab;[x,ndsn] =

min Dtab;[x,al;
a € nbrs; with T;[x,a] # u

T;[x,ndsn] :== d; D;[x] = min (N,1+Dtab;[x,ndsn])
elif | nbrs; 1 >1
then choose ndsn € nbrs; with ndsn # j; D;[x] = N;
Dtab;[x,ndsn] .= N; T;[x,ndsn] = d;
forall a € nbrs; with a # ndsn
do Dtab;[x,a) = N; T;[x,al:=n od
else Dtab;[x,jl = N; T;lx,jl=d;
D;[x] =N, ndsn = j
fi; send <x,D;[x],1> to ndsn ;
if D;(x] # olddist
then forall a € nbrs; with a # ndsn
do send <x,D;[x],0>to a od
elif j # ndsn then send <x,D;[x],0>to j
fi
* elif odsn = j then T;[x,j] = d; Dtab;[x,jl:= N
fi
else Dtab;[x,jl =1, T;[x,j]l = n;
choose ndsn € nbrs; such that Dtab;[x, ndsn] =

min Dtab;[x,al;
a e nbrs; with T;[x,a] # u

* if Dtab;[x,ndsn] = Dtab;[x,odsn] then ndsn = odsn fi;
T;[x,ndsn] = d; D;[x] = min (N, 1+ Dtab;[x,ndsn});
if odsn # ndsn
then T;[x,odsn) = n; send <x,D;[x], 1> to ndsn
fi;
if D;[x] # olddist
then forall a e nbrs; with a # ndsn do send <x,D;[x],0>t0 a od
elif odsn # ndsn then send <x,D;[x],0> to odsn

fi fi fi
end
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RUY : {an <up> has arrived from j}
begin receive <up> from j; add j to nbrs;;
* if Inbrs; | >1 then let odsn such that T;[j,odsn] = d; T:[j,odsn]l = n fi;
T;[j,jl1 = d; Dtab;[j,jl1=0; D;ljl=1;
forall x € nbrs; with x # j do send <j,1,0> to x od;
forall x withx 2i AXx #j
do Dtab;[x,jl = N;
* if lnbrs; 1 = 1
* then T;[x,j] = d; D;[x]:= N; send <x,D;[x],1> 10 j
else T;[x,j] = n; send <x,D;[x],0> 10 j
fi
od
end

4.2.2.1. Partial correctness. For the partial correctness we begin with proving some
technical lemmas.

Lemma 4.2. For all i and j with i # j the following holds invariantly.
(1) linkstate(i,j) = up <> j e nbrs; v <up> last control message inQf[j,i],
() linkstate(i,j) = down <& j ¢ nbrs; v <down> last control message in Q[j,i].

Proof. Obvious from operations U;, D;;, RUF, and RDf. W

Lemma 4.3. Forall i, j, and x with j # i and x # i, the following holds invariantly.
Q) T;lx,jl=d vTilx,jl=u = jenbrs;,
(2) 3!j with T;[x,jl=u <« nbrs; # 0,
3 jenbrs,- <> Duab;lj, jl1= 0,
@ Tix,jl=d =
D;[x] = min(N, 1+Dtab;[x, j1) A Dtab;[x,j] = min Dtab;[x,al,

a € nbrs; with T;[x,a] # u
(5) D;lil= 0 AD;[x]>0,
©6) <x,l,t>eQ[j,il =1>0Ax#],
(7 x#j = Dtab;[x,j1>0.

Proof. (1) and (2) are obvious from operations RUS, RDf, and Rf.

(3). Use statement (6) with operation Rf.

(4). Obvious from operations RU, RDF, and RE.

(5). D;li] = O initially and is never changed anymore. For nbrs; = & we have D;[x]= N,
otherwise statement (4) can be used together with statement (7).

(6). As <x,l,t>e Q[j,i] is only validated when j sends a message to i and j only sends
messages with x # j and I = Dj[x], we have [ >0 with statement (5).

(7). For x # j, Dtab;[x,j] entries are only set to e, N, or to some value ! from a received
message <x,l,t>. With statement (6) we have /I >0. B
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Lemma 4.4. Forall i, j, and x with i # j the following holds invariantly.

linkstate(i, j) = down v 4))
<up> last control message in Q[i,j]v ?
<x,l,t>e Qlj,i] = €))
the last message <a,b,c>e Q[j,i] witha = x has b = Dj[x] A
c=1 & Tjkxil= d) A <a,b,c> after any control message in Q[j,i]. (CY)

Proof. Initially (1) holds. If (1) holds, it can be invalidated by operation Uj;, but then (2) will
hold. If (2) holds, it can be invalidated by D;;, but then (1) will hold. (2) can also be invali-
dated by operation RU C but then for those x that (3) is validated, (4) is validated for the same
message. If (4) holds and is invalidated by operation R,-C, then (3) is also invalidated. If (4)
holds and is invalidated because j changes D;[x] or Ti[x,i], we have the following cases.
Case 1: i ¢ nbrs;. Then (1) or (2) holds (lemma 4.1).

Case 2: i € nbrs;. Then a message is sent such that (4) holds. If (4) is invalidated because a
control message is placed in Q[j,i], then (1) or (2) now holds. If neither (1), (2) nor (3)

holds for some x and a message is sent such that (3) is validated, this message is such that (4)
holds for this message. W

Lemma 4.5. Foralli, j, and x withi # j and i # x the following holds invariantly.
linkstate(i,j) = down =

Dtab;[x,j] = = A no control message in Q[j,i] v

<down> last control message in Q[j,i].

Proof. -Operation Dj; validates the premiss and places a <down> in Q[j,i] as last control
message.

-Operation Uj; invalidates the premiss.

-Operation RU,-C can only occur if <down>e Q[j,i] as last control message, if the premiss is
true.

-If RDF receives the last <down> left in Q[j,i], there will be no control message left and
Dtab;[x, j] is set to oo,

Other operations do not influence the variables involved. W

Lemma 4.6. Foralli, j,and x withi # j, i #x and j # x, the following holds invariantly.
linkstate(i,j)= up =
<up> last control message in Q[i,j] Vv )
<x,Djix],t> after any control message in Q[j,ilwith(r=1 & Ti[x,il= 4d) V2)
Dtab;[x,jl1= N ATj[x,i]= d A no control message in Q[j,i] A

<x,N,t> after any control message in Qfi,j] v 3)
Dtab;[x,j]l1= Dj[x] A no control message in Q[j,il A
(Tilx,jl=u = Tjlx,il= d). 4

Proof. -Operation D;; invalidates the premiss.

-Operation Uj; validates the premiss and (1).

-Operation RU jc can only be performed if (1) held. Afterwards (1) can still hold, or otherwise
i is added to nbrsj and <x,Dj[x],t> is sent to i. As QI[j,i] is a queue, the message is
placed after any control message. Hence (2) holds now.
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-Operation RUiC. If (1) holds, it will still hold afterwards. If (2) holds, it will still hold after-
wards, since the <up> received occurred before the message under consideration. (3) nor (4)
could hold beforchand.

-Operation RDJC Either the premiss is not true or (1) continues to hold.

-Operation RD,c (3) nor (4) could hold beforehand. (1) and (2) remain to hold.

-Operation R,-C with a message from j. If (1) held, it still holds. If (2) held, it either still
holds, or the message received is <x,Dj[x],t> with t=1 & Tj[x,i] = d. In the latter
case we know that there can be no control message in Q[j,i]. R; sets Dtab;[x, j1= Djlx]
and Ti[x,j1=u <« Tjlx,il=d, so (4) holds now, except in the very special case that
t = 1 (hence T;[x,i]= d), olddist <N, odsn = j, and Va € nbrs; T;[x,a] = u, in which
case Dtab;[x,j] is set to N, T;[x,j] to n or d, and D;[x] to N, and <x,N,t> is sent to j.
Hence (3) holds now. The other exception is the case that D; [x]<N, t = 1, olddist = N, and
odsn = j, where no messages are sent but Dtab;[x, j] is reset to N and T;[x,j] to d. (Other-
wise there would be no downstream neighbor left for x.) For this case, we not only assume
that lemma 4.5 held before operation R,-C , but also that lemma 4.5 held with i and j inter-
changed. Let the statements (1) to (4) with i and j interchanged be statements (1°) to @),
respectively. We then know that (1°) cannot hold, as Q[j,i] contains no control messages.
As olddist = N, D;[x] = N, and odsn = j, we have T;[x,j1= d. The message received
was <x,D;[x], 1> with Dj[x]<N and T;[x,i] = d, hence Dtabj[x,i]<N. Thus neither (3°)
nor (4°) can hold, and (2’) must hold. Thus <x,N,t>e Qli,j]. Since operation R,-C cannot
invalidate this, (3) holds now. If (3) or (4) held, we know with lemma 4 3 that (2) holds also.
-Operation R,-C with a message from k # j. (1), (2), and (3) remain to hold. If (4) held, it
either remains to hold or Dtab;[x,j] can be set to N and T;[x,j]l o n or d in the case that
T;[x,al = u Va e nbrs;, olddist <N and odsn = k. Hence we can conclude T;[x,i]l=d
and <x,N,t> is sent to j. Thus (3) holds now.

-Operation ch with a message from i. (1) remains to hold. If (2) holds, and D;{x] and/or
T;[x,i} change, a new message is sent which reflects these changes. Thus (2) now holds for
this new message. If (3) holds, we have the following two cases.

Case 1: only T;[x,i] changes, then a message to reflect this change is sent to i and (2) holds
now.

Case 2: the message <x,N,t> is received. If (4) did not hold, we had D;[x]<N and
Tj[x,i] = d. Dtab;[x,j] is set to N. Thus either Dj[x] or Tj[x,i] changes so a message is
sent to i to this effect and (2) now holds.

If (4) holds, it continues to hold unless D;[x] or T;lx, i] is changed. In this case a message is
sent to i so (2) holds.

-Operation ch with a message from k£ #i. (1) remains to hold. (2) remains to hold unless
D; [x] or Tj [x,i] are changed, in which case (2) will hold for the new message sent. In case
(3) holds, only T;[x,i] could be changed, but then a message will be sent such that (2) holds.
If (4) holds, it will continue to hold unless (2) holds with changed D;[x] or T; [x,i]. W

Lemma 4.7. For all i and j with i # j the following holds invariantly.
linkstate(i,j) = up = <up> last control message in Q[j,i] v
Dtab;[j,j1= 0 ATi[j,j1= d AD;[j1= 1 A no control message inQf[j,il
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Proof. If the last <up> is received in RUF, the variables specified are set to the right values.
With lemma 4.2(7) we have that Dtab;[j, k] for k # j is > 0, hence T;[j, j] does not change.
Node j does not send any message about destination j (lemma 4.2(6)), hence Dtab;[j, j] is
not changed. As T;[j,jl # u, Dtab;[j,j] cannot be set to N either. B

Lemma 4.8. Foralli, j,and x withi # j and i # x the following holds invariantly.
T;[x,j1= u A Qli,j1= @ AQlj,il= @ = Dtab;{x,j]l= min(N, D;[x]+1).

Proof. Use lemma 4.2(1), lemma 4.1, lemma 4.5 and lemma 4.2 @. n

Lemma 4.9.
TERM = Vi,j withi # j: linkstate(i,j)=up & j € nbrs; A
je nbrs,- = Vx #i Dtab,-[x,j] = Dj[x] A
j & nbrs; = Vx #i Dtab[x,j]1= o A
Vx #i D;[x]= min(N, 1+%_1i:1iDtab,-[x,j]).

Proof. TERM is equivalent with all queues are empty. Use lemmas 4.1,4.2(4),44,45,46
and4.7. W

Theorem 4.10. TERM = Vi, x: D;[x]= min(N, d(i,x)).

Proof. We prove this by first proving that D;[x]<d (i,x) and secondly proving that
D;[x12min(N, d(i,x)).
(1). Let d(i,x)= . Then for all possible values of D;[x], we have D;[x)<d(i,x). Let
d(i,x) = k<o, k= 0 implies i = x and D;[x] = 0. For k >0 there is some path x = xq,
Xy, - X = i from x to i of length k. Thus all links (x;,x;_;) for 1<j <k are up and
Xj_1€ nbrs,j. Thus Dtabxj[x,xj_ll = D,j_l[x] and D,j[x]Smin(N,l+D,j_l[x]). Hence D;[x]
= D, [x] <D, [x]+k =D, [x]+k = k. Note that this is not necessarily the path designated by
the downstream neighbors.
(2). We use induction over k for the hypothesis d (i, j)2k = D;[j12min(N,k). Fork =0
we have d(i,j)=0 and D;[j120. Assume d(u,v)2k+1. For all neighbors a € nbrs, we
have d(u,a) = 1 and thus d(v,a)2k (triangle inequality). Hence D,[v1Zmin(N,k). d,[v]
=min(N,1+ min Dtab,[v,al)=min(N,1+ min D,[v]) >2min(N,k+1). &

a

a € nbrs, € nbrs,

Corollary 4.11. If we interpret N as oo, then TERM implies D;[x] = d(i,x) for all i and x.

Proof. The longest finite distance between two nodes is at most N—1. Hence d(i,x)2N
implies d(i,x) = . N

This completes the proof of the partial correctness of the algorithm of Chu.
4.2.2.2. Total correctness. For the total correctness, we still have to prove that if there
are no more topological changes, the algorithm indeed terminates in finite time.
Theorem 4.12. The algorithm cannot deadlock.

Proof. If there is a queue which contains a message, then there is always an operation which
can receive that message: either RUS, RDE, or Rf for @ (j,i], depending on the nature of the
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message. If all queues are empty, there is termination by definition. B

Thus we have to show that the algorithm cannot go on generating messages forever, in
the case that there are no more topological changes after some time. For this purpose we
define a function F of the system state to the set W of N+1 tuples of nonnegative integers.
We define the following total ordering <y on W :

(@g @ys - ay) <w (bo» by, ..o by) if

3i with0<i<N : (a; <b,~ AV] with 05j<i a4 = bj).

As the a; and b; are nonnegative integers, this order relation on W is well-founded (i.e., there
is no infinite decreasing chain). Thus, in order to prove the total correctness, it is sufficient to
find a function F from the system state to W which is decreased by every operation if there
are no more topological changes. We define F as follows:

F = (cm, m()+2dQ), .., m(N-1)+2d(N—-1), 2m(N)+d(N)),
where

cm = the total number of control messages (<up> or <down>) in all message queues,
m(k) = 3, my(k),

dk) =% dy(k),

m, (k)= the total number of messages <y, [,t> with x = y and / = k in all message queues,
d(k)=Y | 1+1{jlje nbrs; nD;[x] =k ADiab;[x,j]= Dtab;[x,dsn]} | | »

dsn = downstream neighbor, i.e., T;[x,dsn] = d.
Theorem 4.13. For all i, F is strictly decreased by operations RUf, RD;C, and R,—C.

Proof. RUE decreases cm by one, as does RDF.

Consider operation RE. Let the received message be <x,[,t>. cm cannot be changed, nor
my (k) or d, (k) with y # x. Note that RE cannot change the set nbrs;. As it depends on the
old and new values of D;[x] and the old and new downstream neighbor of i for x how F
changes, we define for the moment olddist as the value of D;[x] before operation RE, newdist
as the value of D;[x] after operation RE, and odsn and ndsn as the neighbor j of i with
T;[x,j] = d before and after operation RE, respectively. We distinguish the following cases.

Case 1: olddist <newdist. Then d(olddist) decreases, and d(newdist) and m(newdist)
increase. Hence F decreases.

Case 2: olddist >newdist. This is only possible if in the received message <x,[,t>t = 0 and
I = newdist—1. Thus m(newdist— 1) decreases, while m (newdist) and d (newdist) increase.
Case 3: olddist = newdist.

Case 3.1: olddist = newdist <N .

Case 3.1.1: odsn = ndsn. Then m(newdist) is not increased because no new messages are
sent. However, d(newdist) could increase, if there is now one more neighbor with minimal
distance to x. This can only happen if the received message had [ = newdist—1. Hence
m (newdist—1) is decreased and F decreases. If d(newdist) does not change, F decreases
because m ({) decreases.

Case 3.1.2: odsn # ndsn. Then m(newdist) is increased by 2. If d (newdist) increases, we
have | = newdist—1 as above, and m (newdist— 1) decreases. If d (newdist) does not change,
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it must be the case that Dtab;[x,ndsn] = Dtab;[x,odsn], as RE can only change one value of
Dtab; (unless newdist = N) at the time, hence this case cannot occur. Thus d (newdist)

decreases by one. Hence 2d (newdist)+m (newdist) does not change, and as m(l) decreases,
so does F.

Case 3.2: olddist = newdist = N.

Case 32.1: odsn = ndsn. Thus no new messages are sent. However, d(newdist) could
change. If t = 1 in the received message, then d(newdist) can only decrease. d (newdist) can
increase by one if the message received from j was <x,N,0> and T;[x,j]= u before RE.
Then m (newdist) decreases by one and F is decreased because 2m, (N)+d,(N) is decreased.
Case 3.22: odsn #ndsn. If olddist =N and t= 1, nothing happens in RE, so
odsn = ndsn. Hence t = 0. If I <N, then we would have newdist <N, thus [ = N. So
d(newdist) cannot decrease, which implies Dtab;[x,0dsn] remains N. Hence the downstream
neighbor is not changed, and we conclude that this case cannot occur. W

Corollary 4.14. If topological changes cease then the algorithm of Chu terminates in finite
time.
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