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INTRODUCTION

A central theme of this thesis are random sequences {Xn : n ∈ N0} which

satisfy a linear recurrence relation of the form

Xn
d
= X ′

In + Zn, X0 := a ≥ 0, n ∈ N, (1)

where In is a random index with values in the set {0, 1, . . . , n}, the sequence
{X ′

n : n ∈ N0} is a distributional copy of {Xn : n ∈ N0}, the random vector

(In, Zn) is independent of {X ′
n : n ∈ N0}, and a is some constant. A solu-

tion to (1) is understood as a sequence of marginal probability distributions

for X0, X1, . . . , thus two random sequences {Xn}, {Yn} correspond to the

same solution if they satisfy Xn
d
= Yn for n ∈ N0. With this convention, a

unique solution exists under the assumption that In < n holds with positive

probability for all n > 0.

With recurrence relation (1) one naturally associates a nonincreasing

discrete-time Markov chain on N0, which jumps from the generic state n > 0

to a random state In ≤ n, and is eventually absorbed at 0. Then Xn is a

sum of some random number of random terms that are conditionally inde-

pendent given the path of the Markov chain starting at n. For instance, when

Zn ≡ 1 and a = 0, the variable Xn is the absorption time, i.e. the number of

jumps (possibly of zero size) which the Markov chain needs to approach the

absorbing state 0.

A well-known example of the latter kind is related to the cycle structure of

random permutations [2]. Consider the random permutation πn of {1, . . . , n}
under the uniform distribution, meaning that all n! possible realizations of πn

are equally likely. Then the number of elements In not included in the cycle

containing element 1 has uniform distribution on {0, . . . , n − 1}. Moreover,

if it turns that In = m > 0 then the permutation of the set of m elements is

a stochastic copy of πm, subject to the obvious re-labeling of these elements

by {1, . . . ,m}. Therefore (1) holds for the random variable Xn equal to the
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number of cycles in the random permutation of {1, . . . , n}. Exactly the same

distributional recurrence holds for the number of records in an i.i.d. sample

of size n from a continuous distribution, and for many functionals of random

combinatorial structures, notably for the number of nodes in the right-most

(or the left-most) branch in a random binary search tree on n nodes [13].

Recurrence relations (1) often appear in connection with analysis of

continuous-time Markov processes with complicated state-space. A range of

examples is suggested by functionals of exchangeable coalescent processes, in

which particles (or, depending on the context, masses, blocks, alleles etc) col-

lide to merge larger particles [115]. In particlular, the absorption time in the

coalescent starting with n particles satisfies (1), where Zn is an exponentially

distributed random time elapsed before the first collision event.

Distributional recurrences (1) are common in probability theory and many

its applications including random algorithms, insurance models, processes of

coalescence and fragmentation, random trees, combinatorial structures and

random walks, just to mention a few. The last five years have seen an outbreak

of activity around the random recurrence relations. Typically the analysis

involves finding large-n asymptotics of moments of the solutions and deriving

conditions which ensure weak convergence of Xn (properly normalized and

centered) to some nondegenerate probability law. To tackle these problems

several methods have been developed by various authors, of which we mention

(I) the method based on the singularity analysis of generating functions

(P. Flajolet, M. Drmota);

(II) the contraction method (R. Neininger, L. Rüschendorf, U. Rösler);

(III) the method of moments (L. Devroye, H. Mahmoud).

Neither of these approaches is universal. In particular, (I) requires knowing

the distribution of vector (In, Zn) explicitly, while an indispensable ingredi-

ent of applicability of (II) and (III) is the availability of at least two-term

asymptotic expansions of moments. Therefore, the analysis of each particular

recursion with random indices calls for developing some peculiar method.
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The present thesis establishes new limit results for several patterns of

recurrence relation (1) intrinsically associated with three types of stochastic

processes: random walks with a barrier, a sampling scheme which has become

known as Bernoulli sieve, and branching random walks. Specifically, we shall

study the absorption time and the number of zero increments for random

walks with a barrier, and some functionals of the ordered partition resulting

from the Bernoulli sieve. For branching random walks we shall study, in fact,

a more complicated type of recursion related to the intrinsic martingale.
The random walks with a barrier have been recently introduced by A. Ik-

sanov and M. Möhle, and earlier in somewhat different form by K. Hinderer

and H. Walk. It has been found recently that random walks with a bar-

rier offer powerful technical tools to treat the asymptotics in exchangeable

partition-valued processes known as beta-coalescents. The Bernoulli sieve

is Karlin’s occupancy scheme with infinitely many ‘boxes’ and a random

environment, which is given by a sequence of independent and identically

distributed random variables {ηn : n ∈ N}. The name Bernoulli sieve was

introduced into probability usage by A. Gnedin [55]. From the viewpoint of

applications in species sampling and Bayesian inference, the Bernoulli sieve

has a certain appeal, as it provides a tractable model of random partition

structures that lead to generalizations of both the Dirichlet process from non-

parametric statistics and Ewens’ sampling formula from population genetics.

A complex of models from the theoretical computer science, like the leader

election algorithm and search algorithms (as studied by A. Knopfmacher,

G. Louchard, H. Mahmoud, H. Prodinger, J. Fill, P. Hitczenko, W. Sz-

pankowski and many others) receive a natural extension in this new context.

Ewens’ sampling formula corresponds to the case where η1 has the beta law

with parameters θ > 0 and 1, but also for general η1 there is a deep connection

between the stick-breaking model, random permutations and more general

logarithmic combinatorial structures [2]. Branching random walks generalize

the classical Galton-Watson processes. J.F.C. Kingman and J. Biggins were

the first to investigate these processes in the 1970s. Since then branching ran-

dom walks have become a popular object of research. Fundamental results
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which shaped the modern understanding of branching random walks were ob-

tained by G. Alsmeyer, J. Biggins, A. Iksanov, A. Kyprianou, U. Rösler and

others. It is known that the intrinsic martingales {Wn : n ∈ N0} in branching

random walks satisfy certain recurrence relations which reflect the internal

recursive structure of these processes. This thesis will reveal the tail behavior

of the distribution of sup
n≥0

Wn and establish the asymptotics of E[Wn log
+Wn]

for {Wn} which is not uniformly integrable.

On the methodological side, we shall avoid direct assumptions on distri-

bution of the ingredients (Zn, In), rather relate the asymptotics of solutions

of the random recursion with some underlying stochastic process. From the

general viewpoint, the approach taken amounts to coupling the data Zn, In

with some more rich stochastic process. After this general introduction we

now describe the contents and key results in more details.

Chapter 1. Let ξ be a random variable with proper distribution

pk := P{ξ = k}, k ∈ N.

Denote by {Sn : n ∈ N0} a zero-delayed random walk with the generic step

distributed like ξ, i.e.,

S0 := 0, Sn := ξ1 + ξ2 + . . .+ ξn, n ∈ N,

where {ξk : k ∈ N} are independent copies of ξ.

We define a random walk with barrier n ∈ N as the random sequence

{R(n)
k : k ∈ N0} which satisfies the recursion

R
(n)
0 := 0, R

(n)
k := R

(n)
k−1 + ξk1{R(n)

k−1+ξk<n}
, k ∈ N.

Informally, this is a standard positive random walk modified by the condition

that a jump is canceled each time the random walk overshoots n− 1.

Throughout it will be assumed that p1 > 0. Introduce the quantities

Mn := #{k ∈ N : R
(n)
k−1 6= R

(n)
k } =

∞∑

l=0

1
{R

(n)
l

+ξl+1<n}
;
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Tn := inf{k ∈ N : R
(n)
k = n− 1} =

∞∑

l=1

1
{R

(n)
l

<n−1}
+ 1;

Vn := Tn −Mn = #{i ≤ Tn : R
(n)
i−1 = R

(n)
i } =

Tn−1∑

l=0

1
{R

(n)
l

+ξl+1≥n}

which correspond, respectively, to the number of positive jumps, the absorp-

tion time and the number of zero increments before the absorption for the

random walk with barrier n.

The aim of this chapter is deriving weak convergence results for {Tn} and

{Vn} which satisfy the distributional recurrence relations:

T1 = 1, Tn
d
= T ′

Yn
+Nn − 2 · 1{Yn=1}, n = 2, 3, . . . , (1.9)

V1 = 1, Vn
d
= V ′

Yn
+ 1− 2 · 1{Yn=1}, n = 2, 3, . . . , (1.10)

where

Nn := inf{k ∈ N : Sk ≥ n}, Yn := n− SNn−1, n ∈ N.

In both formulas random vector (Yn, Nn) is independent of both {T ′
k : k ∈ N},

which is a copy of {Tk : k ∈ N}, and {V ′
k : k ∈ N}, which is a copy of

{Vk : k ∈ N}, respectively.
Theorems 4, 5 and 6 provide conditions which ensure that Tn, properly

normalized and centered, weakly converges. Explicit formulas for normaliz-

ing constants and possible limiting laws are derived. For instance, Theorem

6 states that, under a regular variation assumption, Tn, properly normal-

ized with zero centering, weakly converges to the exponential functional of a

subordinator (increasing Lévy process).

Assuming that the law of ξ belongs to the domain of attraction of an α-

stable law, α ∈ (1, 2), Theorem 11 gives the two-term asymptotic expansions

of the first two moments of the absorption time Tn. As a consequence, the

asymptotics of VarTn is obtained.

For the case of finite mean Eξ, Theorem 12 establishes the weak conver-

gence (without normalization) of Vn, the number of zero increments before

the absorption. For the case Eξ = ∞, Theorem 13 establishes a weak law of

large numbers for Vn and provides the asymptotics of EVn.
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Chapter 2. Denote {Jn : n ∈ N0} a zero-delayed random walk with the

generic step distributed like | log η|, where a random variable η takes values in

the open interval (0, 1). Let E1, . . . , En be independent of {Jn} i.i.d. sample

from the standard exponential distribution. Denote E1,n ≤ E2,n ≤ . . . ≤ En,n

the corresponding exponential order statistics.

The random walk together with the exponential sample define a random

occupancy scheme, called the Bernoulli sieve, in which n ‘balls’ 1, 2, . . . , n

occupy an infinite array of ‘boxes’ indexed by the integers 1, 2, . . ., according

to the rule: ball i falls in box k iff the exponential point Ei hits the interval

(Jk−1, Jk). We say that the index of interval (Ji−1, Ji) is i, and we call this

interval occupied, if it contains at least one of n exponential points, and call

it empty, otherwise. Define the following functionals of the Bernoulli sieve:

Un = inf{k ∈ N : Jk > En,n}, i.e., Un is the index of the right-most

occupied interval;

Kn,0 = #{1 ≤ k ≤ Un − 1 : (Jk−1, Jk) is empty }, i.e., Kn,0 is the

number of empty intervals with indices not exceeding Un − 1;

Kn = #{k ∈ N : (Jk−1, Jk) is occupied}, i.e., Kn is the number of

occupied intervals;

Zn := #{1 ≤ k ≤ n : Ek,n ∈ (JUn−1, JUn
)}, i.e., Zn is the number of

points in the right-most occupied interval.

It will be shown that the following recurrence relations hold:

U0 := 0, Un
d
= U ′

P
(n)
1

+ 1, n ∈ N, (2.9)

K0 = 0, Kn
d
= K ′

Q
(n)
1

+ 1, n ∈ N, (2.10)

K0, 0 := 0, Kn, 0
d
= K ′

P
(n)
1 , 0

+ 1
{P

(n)
1 =n}

, n ∈ N, (2.11)

where the random variable P
(n)
1 is independent of {U ′

j : j ∈ N0} and {K ′
j, 0 :

j ∈ N0}, copies of {U ′
j : j ∈ N0} and {K ′

j,0 : j ∈ N0}, respectively, and the

random variable Q
(n)
1 is independent of {K ′

j : j ∈ N}, a copy of {Kj : j ∈ N0}.
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The main results of this chapter are concerned with the weak convergence

of the just introduced functionals acting on the Bernoulli sieve under the

additional assumption that the law of | log η| is nonlattice. In particular,

Theorem 19 establishes an ultimate criterion for the existence of limiting law

for properly normalized and centered Un. Under a side condition, Theorem

21 proves an analogous result for Kn. Among other things, this condition

ensures a more delicate result given in Theorem 20: Kn, 0 weakly converges

without normalization. Finally, under natural assumptions on the law of η,

Theorem 22 investigates the weak convergence of Zn.

Chapter 3. Consider a population starting from one progenitor and

evolving like a generalized Galton-Watson process, in which individuals may

have infinitely many children. It is assumed that the structure of the branch-

ing process is enriched by the locations of individuals on the real line, so that

the progenitor is located at the origin, and the displacements of children rel-

ative to their mother are described by a point process Z =
∑N

i=1 δXi
on R.

Thus N := Z(R) is the total size of offspring of a particular member of the

population, and Xi is the displacement of the ith child. The displacement

processes of all population members are supposed to be independent copies of

Z. It is further assumed that Z({−∞}) = 0 and EN > 1 (supercriticality).

For n ∈ N0 let Zn be the point process that defines the positions on R of

the individuals of the n-th generation, with their total number being given

by Zn(R). The random process {Zn : n ∈ N0} is called the branching random

walk (BRW).

Suppose there exists γ > 0 such that

m(γ) := E

∫

R

eγxZ(dx) ∈ (0,∞). (2)

For n ∈ N, define Fn to be the σ-field containing all information about the

first n generations of the population, and let F0 be the trivial σ-field. Put

Wn := m(γ)−n

∫

R

eγxZn(dx). (3)

The sequence {(Wn,Fn) : n ∈ N0} forms a non-negative martingale with

mean one which is called intrinsic martingale of the branching random walk.
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Theorem 29 proves the power-like tail behavior of the law of sup
n≥0

Wn for

uniformly integrable (regular) martingales {Wn : n ∈ N0} under a Kesten-

like moment condition. Finally, Theorem 34 investigates the asymptotics of

E[Wn log
+Wn], as n→ ∞, for non-regular martingales {Wn : n ∈ N0}.
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Chapter 1

Random walks with barrier

1.1 Definition of the random walk with bar-

rier and some applications

Let ξ be a random variable with proper distribution

pk := P{ξ = k}, k ∈ N.

Denote by {Sn : n ∈ N0} a zero-delayed (i.e. starting at 0) random walk with

step distributed as ξ:

S0 := 0, Sn := ξ1 + ξ2 + . . .+ ξn, n ∈ N,

where {ξk : k ∈ N} are independent copies of ξ.

Definition 1. Call random walk with (fixed) barrier n ∈ N the sequence

R
(n)
0 := 0, R

(n)
k := R

(n)
k−1 + ξk1{R(n)

k−1+ξk<n}
, k ∈ N.

Plainly, {R(n)
k : k ∈ N0} is a non-decreasing Markov chain which cannot

reach the state n. Throughout the rest of this chapter we assume that p1 > 0.

Then the random walk with the barrier n will eventually get absorbed in the

state n− 1.
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We shall be interested in the quantities

Mn := #{k ∈ N : R
(n)
k−1 6= R

(n)
k } =

∞∑

l=0

1
{R

(n)
l

+ξl+1<n}
;

Tn := inf{k ∈ N : R
(n)
k = n− 1} =

∞∑

l=1

1
{R

(n)
l

<n−1}
+ 1;

Vn := Tn −Mn = #{i ≤ Tn : R
(n)
i−1 = R

(n)
i } =

Tn−1∑

l=0

1
{R

(n)
l

+ξl+1≥n}

which are, respectively, the number of jumps, the absorption time and the

number of zero increments before the absorption in the random walk with

barrier n.

The random walks with barrier appear in various contexts.

Example 1. Meir and Moon in [104] proposed a procedure of isolating the

root of random recursive tree with n vertices by using successive deletions

of some edges. After deleting (cutting) one edge chosen at random the tree

splits into two subtrees. At the next stage, only the subtree containing the

root is considered and another edge of this subtree is deleted randomly, etc.

This recursive process stops once the root has been isolated, i.e., the subtree

containing the root obtained after cutting an edge consists of one vertex.

Denote by Xn the (random) number of cuts required to isolate the root. It

was shown in [83] that Xn has the same law as the number of jumps Mn in

the random walk with barrier n provided the law of a step is

pk =
1

k(k + 1)
, k ∈ N.

Example 2. Exchangeable coalescent with multiple collisions (also known

as Λ-coalescent) is a Markov process that starts at t = 0 with n blocks and

evolves according to the following dynamics. When m blocks are present,

each k-tuple of them collides and merges to form a single block at rate

λmk =

∫

[0,1]

xk−2(1− x)m−kΛ(dx), 2 ≤ k ≤ m,

where Λ is a finite measure on [0, 1]. Denote by Xn the number of collisions

in Λ-coalescent which occur until there is just a single block.
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It was proved in [84] that when

Λ(dx) = const · xa−11(0,1)(x)(dx) (1.1)

for some a ∈ (0, 2), Xn has the same law as Mn provided

pk =
(2− a)Γ(a+ k − 1)

Γ(a)Γ(k + 2)
, k ∈ N. (1.2)

Comparing Example 1 with Example 2 for a = 1 reveals a known fact:

the number of collisions in the Bolthausen-Sznitman coalescent (which is the

Λ-coalescent with Λ the Lebesgue measure on [0,1]) has the same law as the

number of cuts required to isolate the root of a random recursive tree.

Example 3. One very general appearance of the random walks with

barrier is the following. Let {Zk : k ∈ N0} be a non-increasing Markov chain

with the state space N and transition probabilities πij for j < i, and πij = 0,

otherwise. Define a random variable

Xn := inf{k ≥ 1 : Zk = 1 given Z0 = n},

which is the absorption time of the Markov chain. It is clear that in case

when

πn,n−k =
P{ξ = k}

P{ξ < n− 1} ,

the distribution of Xn coincides with that of Mn.

Example 4. A class of one-dimensional online bin-packing problems is

naturally associated with random walks with barrier. Suppose there is a bin of

capacity n−1, in which some number of items of random integer sizes can be

packed. The items arrive sequentially. By the ‘greedy, on-line’ packing policy,

every item requiring some volume ξj is packed as it arrives, provided there

is enough free space in the bin. However, if the remaining space is smaller

than ξj, the item is rejected. Then Mn is the number of packed items, Tn is

the number of packing trials until the bin is filled, and Vn is the number of

rejected items that arrived until the bin is filled.
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1.2 Connection with linear random recur-

rences

For fixed m, i ∈ N define

R̂
(m)
0 (i) := 0, R̂

(m)
k (i) := R̂

(m)
k−1(i) + ξi+k1{R̂(m)

k−1(i)+ξi+k<m}
, k ∈ N,

and

T̂m(i) :=
∞∑

l=1

1
{R̂

(m)
l

(i)<m−1}
+ 1, V̂m(i) :=

T̂m(i)−1∑

l=0

1
{R̂

(m)
l

(i)+ξi+l+1≥m}
.

For fixed n ∈ N and any i ∈ N the distributions of the sequences {R(n)
k : k ∈

N0} and {R(n)
k (i) : k ∈ N0} are the same. Hence

T̂n(i)
d
= Tn and V̂n(i)

d
= Vn. (1.3)

Set T̂· := T̂·(1) and recall that the condition p1 > 0 is assumed to hold. The

following lemma holds, in fact, for arbitrary nondecreasing Markov chains

with a single absorbing state. Still, we present a proof for the special case in

order to exemplify the kind argument adopted here.

Lemma 2. For every fixed n ∈ N random variables Tn and Vn are almost

surely finite.

Proof. We prove the a.s. finiteness of Tn by induction on n. Clearly, T1 = 1

a.s. Assuming that Tk < ∞ a.s., k = 1, 2, . . . , n − 1, we will prove that

Tn <∞ a.s.

The sequence {R̂(n)
k (1) : k ∈ N} and, hence, T̂n do not depend on ξ1.

Furthermore, the following equality holds

Tn = (1 + T̂n−ξ1(1))1{ξ1≤n−2} + 1{ξ1=n−1} + (1 + T̂n(1))1{ξ1≥n} a.s.

By the induction assumption, T̂k <∞, k = 1, 2 . . . , n− 1 a.s. Therefore,

T̂n−ξ11{ξ1≤n−2} =
n−2∑

k=1

T̂n−k1{ξ1=k} <∞ a.s.
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Consequently,

P{Tn = ∞} = P{(1 + T̂n)1{ξ1≥n} = ∞} = P{Tn = ∞}P{ξ1 ≥ n},

which implies that

P{Tn = ∞} = 0, (1.4)

as P{ξ1 ≥ n} < 1.

Since M1 = 0 and Mn ≤ n − 1 a.s. for n = 2, 3, . . ., the a.s. finiteness of

Mn’s is obvious. Hence, rvs Vn = Tn −Mn are a.s. finite, as well. The proof

is complete.

We aim next to show that the sequences {Tn : n ∈ N} and {Vn : n ∈ N}
satisfy linear random recurrences of the kind describe in the Introduction.

Define

Nn := inf{k ≥ 1 : Sk ≥ n} and Yn := n− SNn−1, n ∈ N.

Recall that the rv Nn is the time of the first passage through the threshold

n−1 by a random walk {Sk : k ∈ N0}, and the rv Yn is called the undershoot

at level n for the random walk.

Proposition 3. For each n = 2, 3, . . . the identities hold almost surely:

Tn = (1 + T̂Yn
(Nn))1{Yn 6=1} +Nn − 1 (1.5)

= T̂Yn
(Nn) +Nn − 2 · 1{Yn=1}

and

Vn = (1 + V̂Yn
(Nn))1{Yn 6=1} (1.6)

= V̂Yn
(Nn) + 1− 2 · 1{Yn=1},

Proof. We have

Tn = Tn(1{Yn=1} + 1{Yn 6=1}) = (Nn − 1)1{Yn=1} + Tn1{Yn 6=1}

= (Nn − 1)1{Yn=1} +
Nn−1∑

k=1

1
{R

(n)
k

<n−1}
1{Yn 6=1} +

∞∑

k=Nn+1

1
{R

(n)
k

<n−1}
1{Yn 6=1}

+ 2 · 1{Yn 6=1} = Nn − 1 + 2 · 1{Yn 6=1} +
∞∑

k=Nn+1

1
{R

(n)
k

<n−1}
1{Yn 6=1}.
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On the event {Yn = 1, k ≥ Nn+1} the following equality holds R
(n)
k = n−1.

Hence
∞∑

k=Nn+1

1
{R

(n)
k

<n−1}
1{Yn 6=1} =

∞∑

k=Nn+1

1
{R

(n)
k

<n−1}
.

Therefore, we obtain

Tn = Nn − 1 + 2 · 1{Yn 6=1} +
∞∑

k=Nn+1

1
{R

(n)
k

<n−1}

= Nn − 1 + 2 · 1{Yn 6=1} +
∞∑

k=1

1
{R̂

(n−SNn−1)

k
(Nn)<n−SNn−1−1}

= Nn + T̂n−SNn−1
(Nn)− 2 · 1{Yn=1},

as required.

Let us turn now to Vn. If n−R
(n)
Nn−1 = n− SNn−1 = Yn = 1, then Vn = 0.

If Yn 6= 1, than the first zero increment of the random walk with the barrier

n equals R
(n)
Nn

−R
(n)
Nn−1, and Tn ≥ Nn + 1. Hence

Vn =

(
1 +

Tn−1∑

l=Nn

1
{R

(n)
l

+ξl+1≥n}

)
1{Yn 6=1}

=

(
1 +

Tn−Nn−1∑

l=0

1
{R

(n)
Nn+l

+ξNn+l+1≥n}

)
1{Yn 6=1}

(1.5)
=

(
1 +

T̂Yn (Nn)−1∑

l=0

1
{R̂

(Yn)
l

(Nn)+ξNn+l+1≥Yn}

)
1{Yn 6=1}

= (1 + V̂Yn
(Nn))1{Yn 6=1}.

The proof is complete.

Now we intend to show that equalities of distributions (1.3) remain still

hold if n is replaced by Yn and i is replaced by Nn. Indeed, for each fixed



20 CHAPTER 1. RANDOM WALKS WITH BARRIER

m ∈ N0,

P{T̂Yn
(Nn) = m} =

n∑

i=1

n−1∑

j=0

P{T̂n−j(i) = m,Nn = i, SNn−1 = j}

=
n∑

i=1

n−1∑

j=0

P{
∞∑

l=0

1
{R̂

(n−j)
l

(i)<n−j−1}
= m− 1, Nn = i, SNn−1 = j}

=
n∑

i=1

n−1∑

j=0

P{
∞∑

l=0

1
{R̂

(n−j)
l

(i)<n−j−1}
= m− 1}P{Nn = i, SNn−1 = j}

=
n∑

i=1

n−1∑

j=0

P{
∞∑

l=0

1
{R

(n−j)
l

<n−j−1}
= m− 1}P{Nn = i, SNn−1 = j}

=
n∑

i=1

n−1∑

j=0

P{Tn−j = m}P{Nn = i, SNn−1 = j}

= P{TYn
= m},

which proves the following distributional equality

T̂Yn
(Nn)

d
= TYn

, (1.7)

where on the right-hand side Yn is independent of {Tk : k ∈ N}.
The distributional equality

V̂Yn
(Nn)

d
= VYn

, (1.8)

where on the right-hand side Yn is independent of {Vk : k ∈ N}, follows along
the same lines.

From (1.7) and (1.5) it follows that

T1 = 1, Tn
d
= T ′

Yn
+Nn − 2 · 1{Yn=1}, n = 2, 3, . . . , (1.9)

where a random vector (Yn, Nn) is independent of {T ′
k : k ∈ N}, which in

turn is a distributional copy of {Tk : k ∈ N}.
Analogously, from (1.6) and (1.8) we deduce that

V1 = 1, Vn
d
= V ′

Yn
+ 1− 2 · 1{Yn=1}, n = 2, 3, . . . , (1.10)

where Yn is independent of {V ′
k : k ∈ N}, a copy of {Vk : k ∈ N}.
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1.3 Weak convergence of the absorption time

in random walk with barrier

1.3.1 Formulation of the main results and discussion

This subsection is concerned with the weak convergence of the sequence

{Tn : n ∈ N}, properly normalized and centered. Below we will prove that,

depending on the tail behavior of the distribution of rv ξ (a generic step of

the random walk {Sk : k ∈ N0}) several scalings for Tn and corresponding

limiting distributions come into play, among them are the stable distribu-

tions (including normal) and the distributions of the so-called exponential

functionals of subordinators.

Prior to giving a strict formulation of the results let us discuss the asymp-

totics informally. The renewal theory suggests that the limiting behaviors of

Tn and Nn must be similar, to the extent that the difference Tn −Nn is in a

suitable sense small. Specifically, the following will be shown.

(a) If Eξ < ∞, then Tn − Nn weakly converges. Therefore, Tn, properly

normalized and centered, possesses a weak limit if and only if the same

is true for Nn.

(b) Assuming that Eξ = ∞ we have further cases.

(b1) If
∑∞

k=n pk ∼ L(n)/n, where L slowly varies at ∞ and if (Nn −
bn)/an weakly converges to some measure µ then (Tn−Nn)/an

P→
0, which proves that also (Tn−bn)/an weakly converges to µ. Thus,

in this case and case (a) the weak behavior of Tn and Nn is the

same.

(b2) If, for some α ∈ (0, 1) and some L slowly varying at ∞,
∑∞

k=n pk ∼ n−αL(n), and Nn/an weakly converges to some ν1

then (Tn − Nn)/an weakly converges to some ν2. Although the

argument exploited above does not apply, it will be proved that

Tn/an weakly converges to some ν3 6= ν1. Thus, in case (b2) a

weak behavior of Tn is not completely determined by that of Nn,
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rather it is influenced by the weak behavior of both Nn and the

undershoot Yn = n − SNn−1 to, approximately, the same extent.

This observation can be explained as follows. The probability of

one big jump of {Sn : n ∈ N0} in comparison to cases (a) and (b1)

is higher and, therefore, the epoch Nn comes more quickly. As a

consequence, a contribution to Tn of the sequence {R(n)
k : k ∈ N0},

while R
(n)
k is proceeding from R

(n)
Nn−1 = SNn−1 to n − 1, becomes

significant.

We are ready to formulate our main results. In the sequel, we denote by

µα, α ∈ [1, 2) an α-stable law with characteristic function of the form

t 7→ exp{−|t|αΓ(1− α)(cos(πα/2) + i sin(πα/2) sgn(t))}, t ∈ R, α ∈ (1, 2);

(1.11)

t 7→ exp{−|t|(π/2− i log |t| sgn(t))}, t ∈ R, α = 1. (1.12)

Theorem 4 provides necessary and sufficient conditions which ensure that

Tn, properly normalized and centered, weakly converges.

Theorem 4. If m := Eξ <∞ then the following assertions are equivalent.

(i) There exist sequences of numbers {a(n), b(n) : n ∈ N} with a(n) > 0

and b(n) ∈ R such that, as n→ ∞, (Tn − b(n))/a(n) converges weakly

to a nondegenerate and proper probability law.

(ii) For some α ∈ [1, 2] and some L slowly varying at ∞,

n∑

k=1

k2pk ∼ n2−αL(n), n→ ∞. (1.13)

If σ2 := Var ξ <∞ then, with b(n) := n/m and a(n) := (m−3σ2n)1/2, the

limiting law is standard normal (with mean zero and variance one).

If σ2 = ∞ and (1.13) holds with α = 2 then, with b(n) := n/m and

a(n) := m−3/2c(n), where {c(n) : n ∈ N} is any positive sequence satisfying

lim
n→∞

nL(c(n))/c2(n) = 1, the limiting law is standard normal.



1.3. WEAK CONVERGENCE OF THE ABSORPTION TIME 23

If (1.13) holds with α ∈ (1, 2) then, with b(n) := n/m and a(n) :=

m−(α+1)/αc(n), where {c(n) : n ∈ N} is any positive sequence satisfying

lim
n→∞

nL(c(n))/cα(n) = 2−α
α

, the limiting law is µα.

Assume that (1.13) holds with α = 1. Let c : R+ → R
+ be any function

satisfying lim
t→∞

tL(c(t))/c(t) = 1, and set ψ(t) := t
∫ c(t)

0
P{ξ > y}dy. Let

b : R+ → R
+ be any function satisfying

b(ψ(t)) ∼ ψ(b(t)) ∼ t, t→ ∞,

and set a(t) := t−1b(t)c(b(t)). Then, with the so defined b(n) and a(n), the

limiting law is µ1.

In case α = 1 and m is infinite, Theorem 5 provides conditions under

which Tn, properly normalized and centered, weakly converges.

Theorem 5. Suppose Eξ = ∞ and

∞∑

k=n

pk ∼ L(n)/n, n→ ∞, (1.14)

for some L slowly varying at ∞. Then, with the same b(n) and a(n) as in

the case α = 1 of Theorem 4, as n → ∞, Tn−b(n)
a(n)

weakly converges to the

1-stable law µ1.

In the two previous assertions the weak asymptotic behavior of Tn was

the same as that of Nn, the time of the first exceedance of the threshold

n − 1 by the random walk. In the next result we will encounter a different

situation.

Theorem 6 addresses the case when Eξ is infinite, and specifies the con-

ditions under which Tn, properly normalized without centering, weakly con-

verges.

Theorem 6. Assume that for some α ∈ (0, 1) and some L slowly varying at

∞,

∞∑

k=n

pk ∼ n−αL(n), n→ ∞. (1.15)
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Then, as n→ ∞,

Tn
a(n)

d→
∫ ∞

0

e−U(t)dt,

where a(n) := nαL−1(n), and {U(t) : t ≥ 0} is a drift-free subordinator with

the Lévy measure

θ(dt) =
e−t/α

(1− e−t/α)α+1
dt, t > 0.

1.3.2 Auxiliary results. We start by showing that the sequences

{ET k
n : n ∈ N}, k ∈ N, satisfy certain recurrences like (1.5).

Proposition 7. For each n ∈ N and k ∈ N it holds that

ET k
n = rn

n−1∑

l=1

ET k
n−lpl + k · rnET k−1

n +Dk(ETn,ET
2
n , . . . ,ET

k−2
n ), (1.16)

where

rn :=
1

p1 + p2 + · · ·+ pn−1

, D·(x1, x2, . . . , xn) := υ(0)· +
n∑

i=1

υ(i)· xi,

and {υ(i)· : i = 0, 1, 2, . . . , n} are some real numbers.

In particular, for k = 1

ETn = rnP{ξ 6= n− 1}+ rn

n−1∑

k=1

ETn−kpk (1.17)

Proof. We have

P{Tn = i} =
∞∑

l=1

P{Tn = i, ξ1 = l}

=
n−2∑

l=1

P{Tn = i, ξ1 = l}

+ P{Tn = i, ξ1 = n− 1}+ P{Tn = i, ξ1 ≥ n}

=
n−1∑

l=1

P{Tn−l = i− 1}P{ξ1 = l}

− 1{i=2}P{ξ1 = n− 1}+ 1{i=1}P{ξ1 = n− 1}
+ P{Tn = i− 1}P{ξ1 ≥ n}.
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Therefore

ET k
n =

∞∑

i=0

ikP{Tn = i}

=
∞∑

i=0

ik
( n−1∑

l=1

P{Tn−l = i− 1}P{ξ1 = l} − 1{i=2}P{ξ1 = n− 1}

+ 1{i=1}P{ξ1 = n− 1}+ P{Tn = i− 1}P{ξ1 ≥ n}
)
.

Since

∞∑

i=0

(i− 1 + 1)k
n−1∑

l=1

P{Tn−l = i− 1}P{ξ1 = l}

=
n−1∑

l=1

ET k
n−lpl +

n−1∑

j=1

(
k

j

)
ET j

n−l + 1,

and

∞∑

i=0

ikP{Tn = k − 1}P{ξ1 ≥ n} =

(
ET k

n +
n−1∑

j=1

(
k

j

)
ET j

n + 1

) ∞∑

l=n

pl,

we conclude that

ET k
n = rn

n−1∑

l=1

ET k
n−lpl + k · rn ·

( n−1∑

l=1

ET k−1
n−l pl + ET k−1

n

∞∑

l=n

pl

)

+ Dk(ETn,ET
2
n , . . . ,ET

k−2
n ).

By using the latter relation for ET k−1
n we arrive at (1.16).

The next result will be used in the proof of Theorem 6.

Lemma 8. If condition (1.15) holds then

lim
n→∞

L(n)

nα
ETn =

Γ(1− α)Γ(1 + α)

Γ(1− α)Γ(1 + α)− 1
.

Proof. It is known (see, for instance, [84]) that

lim
n→∞

L(n)

nα
ENn =

1

Γ(1− α)Γ(1 + α)
=: β.
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We first prove that

lim sup
n→∞

ETn
ENn

≤ b :=
1

1− β
. (1.18)

Assume the contrary. Then, for any ε > 0, inequality

ETn > (b+ ε)ENn

holds for infinitely many n. Thus, we can pick ε in such a way that inequality

ETn > (b+ ε)ENn + c

holds infinitely often for each fixed c > 0. Define nc := inf{n ≥ 1 : ETn >

(b+ ε)ENn + c} and notice that lim
c→∞

nc = ∞. Then

ETn ≤ (b+ ε)ENn + c, n = 1, 2, . . . , nc − 1.

Therefore,

(b+ ε)ENnc
+ c < ETnc

(1.17)
= rnc

P{ξ1 6= nc − 1}+ rnc

nc−1∑

k=1

ETnc−kpk

≤ rnc
P{ξ1 6= nc − 1}+ c+ rnc

(b+ ε)
nc−1∑

k=1

ENnc−kpk.

By analyzing what happens with Nn after the first step of random walk one

can check that

ENn = 1 +
n−1∑

k=1

ENn−kpk. (1.19)

Hence

(b+ ε)ENnc
+ c < rnc

P{ξ1 6= nc − 1}+ c+ rnc
(b+ ε)(ENnc

− 1),

or, equivalently,

0 < rnc
P{ξ 6= nc − 1} − rnc

(b+ ε) + ENnc
(rnc

− 1)(b+ ε).

Since rn − 1 ∼ n−αL(n), n→ ∞ then letting in the last inequality c go to ∞
gives

ε

b
< b− 1 + 1− b = 0,

a contradiction. This proves (1.18). The same reasoning allows us to establish

the converse inequality for the lower limit. The proof is complete.
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The next result establishes a weak law of large numbers for the absorption

time.

Theorem 9. If

n∑

l=1

∞∑

k=l

pk ∼ L(n), n→ ∞, (1.20)

for some L slowly varying at ∞, then

Tn
ETn

P→ 1, n→ ∞.

Moreover, ETn ∼ n

L(n)
, n→ ∞.

Proof. It suffices to check that, for each k ∈ N,

lim
n→∞

ET k
n

ENk
n

= 1, (1.21)

as, according to [84, Proposition 2.2],

ENk
n ∼ nk

Lk(n)
, n→ ∞. (1.22)

We prove (1.21) by induction on k, and proceed along the same path as

in the proof of Lemma 8. Assume that (1.21) holds for k = 1, 2, . . . ,m − 1,

yet

lim sup
n→∞

ETm
n

ENm
n

> 1.

Then, for any ε > 0, inequality

ETm
n > (ε+ 1)ENm

n

holds for infinitely many n. Hence, one can pick ε in such a way that inequality

ETm
n > (ε+ 1)ENm

n + c

holds infinitely often for each fixed c > 0. Define nc := inf{n ≥ 1 : ETm
n >

(ε+ 1)ENm
n + c} and note that lim

c→∞
nc = ∞. Then

ETm
n ≤ (1 + ε)ENm

n + c, n = 1, 2, . . . , nc − 1. (1.23)
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The same argument which has led us to (1.19) allows one to show that

ENm
n = D∗

m(ENn, . . . ,EN
m−2
n ) +mENm−1

n +
n−1∑

i=1

ENm
n−ipi,

where D∗
· (x1, x2, . . . , xn) := υ

(0)
· +

∑n
i=1w

(i)
· xi, and {w(i)

· : i = 0, 1, 2, . . . , n}
are some real numbers.

Recalling the notation of Proposition 7, and writing for short-

hand Dm(ETnc
) for Dm(ETnc

,ET 2
nc
, . . . ,ETm−2

nc
), and D∗

m(ENnc
) for

D∗
m(ENnc

,EN2
nc
, . . . ,ENm−2

nc
) we have

(1 + ε)ENm
nc

+ c < ETm
nc

(1.16)
= rn

nc−1∑

l=1

ETm
nc−lpl

+ m · rnETm−1
nc

+Dm(ETnc
)

(1.23)

≤ rn(1 + ε)
nc−1∑

l=1

ENm
nc−lpl +m · rnETm−1

nc
+

+ Dm(ETnc
) + c

= (1 + ǫ)(rnc
− 1)(ENm

nc
−D∗

m(ENnc
)−mENm−1

nc
) +

+ (1 + ǫ)ENm
nc

− (1 + ǫ)(D∗
m(ENnc

) +mENm−1
nc

)

+ m · rnETm−1
nc

+Dm(ETnc
) + c,

Hence

0 < (1 + ǫ)(rnc
− 1)(ENm

nc
−D∗

m(ENnc
)−mENm−1

nc
) (1.24)

− (1 + ǫ)(D∗
m(ENnc

) +mENm−1
nc

) +m · rnETm−1
nc

+Dm(ETnc
).

By [32, Theorem 1.7.2] condition (1.20) implies that lim
n→∞

n
L(n)

(rn − 1) = 0.

By the induction assumption,

lim
c→∞

Dm(ETnc
, . . . ,ETm−2

nc
)

ENm−1
n

= 0 and lim
c→∞

ETm−1
nc

ENm−1
nc

= 1,

where for the first relation (1.22) has to be recalled. Dividing (1.24) by ENm−1
nc

and letting c tend to ∞ we arrive at

0 < m− (1 + ε)m = −εm,
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a contradiction which proves that

lim sup
n→∞

ET k
n

ENk
n

≤ 1.

A symmetric argument proves the converse inequality for the lower bound.

Thence (1.21) holds for every k ∈ N. The proof is complete.

Remark 10. Actually, Theorem 9 reveals that condition (1.20) ensures that

Tn
Nn

P→ 1, n→ ∞.

1.3.3 Proof of Theorem 4. A classical result of the renewal the-

ory states that if m = Eξ <∞ then

Yn
d→ Y, n→ ∞,

where the random variable Y has distribution

P{Y = k} = m−1
P{ξ ≥ k}, k ∈ N.

Now (1.3) and (1.5) together imply that

Tn −Nn
d→ T ′

Y − 2 · 1{Y=1}, n→ ∞.

Therefore for any sequence {d(n) : n ∈ N} such that lim
n→∞

d(n) = ∞,

Tn −Nn

d(n)

P→ 0, n→ ∞.

Assume that the law of ξ does not belong to the domain of attraction of

any α-stable law, α ∈ [1, 2]. Then there do not exist sequences {x(n), y(n) :
n ∈ N} with x(n) ∈ R and y(n) > 0, such that (Sn − x(n))/y(n) weakly

converges to a proper and non-degenerate probability law. In view of equality

P{Nn > m} = P{Sm ≤ n− 1},

the same is true for Nn.

In the reverse direction, assume that (1.13) holds.
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Case 1: α ∈ [1, 2). Since

∞∑

k=n

pk ∼
2− α

α
n−αL(n),

then, according to [30, Theorem 3b] and [7, Theorem 2], if α ∈ (1, 2) and

α = 1, respectively,
Nn − b(n)

a(n)
⇒ µα, n→ ∞,

with a(n) and b(n) as defined in the formulation of the theorem.

Case 2: α = 2. It is known (see, for instance, [48]) that there exists a

sequence {an : n ∈ N} such that na−2
n L(an) → 1 and

Sn − nm

an
⇒ µ2, n→ ∞,

where µ2 is the standard normal law. Then, by [73, Theorem 2]

Nn − b(n)

a(n)
⇒ µ2.

The proof is complete.

1.3.4 Proof of Theorem 5. Condition (1.14) ensures that

m(x) :=

∫ x

0

P{ξ > y}dy, x > 0

belongs de Haan’s class Π of regular varing functions [32], i.e.

lim
t→∞

m(λt)−m(t)

L(t)
= log λ.

Hence m(x) is slowly varying at ∞. Since
∑n

l=1

∑∞
k=l pk ∼ m(n) then, ac-

cording to Remark 10,

Tn
Nn − 1

P→ 1, n→ ∞.

By Theorem 3(c) and formula on p. 42 in [30] (see also [7, Theorem 2]),

Nn − b(n)− 1

a(n)
⇒ µ1.
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Therefore,
Tn − b(n)

a(n)
− Tn −Nn + 1

Nn − 1

b(n)

a(n)
⇒ µ1.

Thus, it remains to prove that

Tn −Nn + 1

Nn − 1

b(n)

a(n)

(1.5)
=

T̂Yn
+ 1− 2 · 1{Yn=1}

Yn/m(Yn)

m(n)

m(Yn)

b(n)Yn
na(n)

n

m(n)(Nn − 1)

=:
4∏

i=1

Ki(n)
P→ 0.

Theorem 9 implies that

m(n)Tn
n

P→ 1 n→ ∞.

Hence, by using equality of distributions (1.7) and the fact that

Yn
P→ ∞, n→ ∞,

we conclude that

K1(n)
P→ 1.

By [46, Theorem 6],

K2(n)
d→ 1/R, n→ ∞,

where R is an rv with the uniform law on [0, 1]. Finally, by Proposition 2.3

and Corollary 2.1 from [84], respectively,

K3(n)
P→ 0, K4(n)

P→ 1, n→ ∞.

The proof is complete.

1.3.5 Proof of Theorem 6. The Laplace exponent of {U(t) : t ≥
0} takes the form

Φ(x) =

∫ ∞

0

(1− e−xy)
e−y/α

(1− e−y/α)α+1
dy

=
Γ(1− α)Γ(αx+ 1)

Γ(α(x− 1) + 1)
− 1, x ≥ 0.
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Then, as is well-known (see, for instance, [17]),

ET k =
k!

Φ(1) · · ·Φ(k) , k ∈ N,

where T :=
∫∞

0
e−U(t)dt, and the moment sequence {ET k : k ∈ N} uniquely

determines the law of T .

Recall that an rv Xβ has the Mittag-Leffler law with parameter β ∈ [0, 1),

if

EXk
β =

k!

Γk(1− β)Γ(1 + kβ)
=: bk(β), k ∈ N.

By [84, Proposition 2.1],

lim
n→∞

Lk(n)

nαk
ENk

n = EXk
α = bk(α), k ∈ N, (1.25)

which, among other things, means that

L(n)

nα
Nn

d→ Xα, n→ ∞.

In view of Lemma 8,

lim
n→∞

L(n)

nα
ETn = ET.

By using the induction and arguments which are similar to those exploited

in the proof of Theorem 9, one can check that

lim
n→∞

ET k
n

ENk
n

= βk, k = 2, 3, . . . ,

where

βk :=
1

bk−1 − k−1bk

k−1∏

i=1

bi−1

bi−1 − i−1bi
, bk = bk(α), k = 2, 3, . . .

Thence, taking into account (1.25), we have

lim
n→∞

Lk(n)

nαk
ET k

n = ET k, k ∈ N,

which completes the proof.
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The method of moments used in the proof above does not shed any light

on the appearance in the limit of the law of exponential subordinator. Be-

low we provide necessary explanations, only assuming that Tn

a(n)
converges in

distribution to some rv T , but not assuming that the law of T is known.

By virtue of (1.9), we obtain

Tn
a(n)

d
=

T ′
Yn

a(Yn)

a(Yn)

a(n)
+
Nn − 2 · 1{Yn=1}

a(n)
, n = 2, 3, . . . , (1.26)

where a random vector (Yn, Nn) is independent of {T ′
k : k ∈ N}, a copy of

{Tk : k ∈ N}. Since
Yn

P→ ∞, n→ ∞, (1.27)

then

T ′
Yn

a(Yn)

p→ T ′, n→ ∞, (1.28)

where T ′ has the same law as T . [84, Proposition 2.5] implies that

(
a(Yn)

a(n)
,
Nn

a(n)

)
d→
(
e−U(V ),

∫ V

0

e−U(t)dt

)
, n→ ∞, (1.29)

where V is a rv with the standard exponential law which is independent of

{U(t) : t ≥ 0}. Set M := e−U(V ), Q :=
∫ V

0
e−U(t)dt and notice that Q has the

Mittag-Leffler law with parameter α. As the left-hand side of (1.26) weakly

converges,

ρn :=

(
T ′
Yn

a(Yn)
,
a(Yn)

a(n)
,
Nn − 2 · 1{Yn=1}

a(n)

)
,

weakly converges, as well. Recalling (1.26) and (1.29)

ρn
d→ (T ′,M,Q) .

Consequently, letting n→ ∞ we obtain a distributional identity

T
d
=MT ′ +Q, (1.30)

where T ′ is independent of (M,Q).



34 CHAPTER 1. RANDOM WALKS WITH BARRIER

To establish the stated independence, it suffices to show that

lim
n→∞

∣∣∣∣Ee
i(t

T ′
Yn

a(Yn)
+v

aYn
a(n)

+u
Nn−2·1{Yn=1}

a(n)
) − EeitT

′

Eei(vM+uQ)

∣∣∣∣ = 0,

for all real t, u, v.

From (1.28), (1.29) and (1.27) it follows that for any ε > 0 there exist

Ni = Ni(ε), i = 1, 2, 3 such that

∣∣∣∣Ee
it

T ′
Yn

a(Yn) − EeitT
′

∣∣∣∣ < ε, t ∈ R, n > N1, (1.31)

∣∣∣∣Ee
i(v

aYn
a(n)

+u
Nn−2·1{Yn=1}

a(n)
) − Eei(vM+uQ)

∣∣∣∣ < ε, u, v ∈ R, n > N2, (1.32)

P{Yn ≤ N} < ε, n > N3,

where N := max{N1, N2}.
Therefore,

∣∣∣∣Ee
i(t

T ′
Yn

a(Yn)
+v

aYn
a(n)

+u
Nn−2·1{Yn=1}

a(n)
) − EeitT

′

Eei(vM+uQ)

∣∣∣∣

=

∣∣∣∣
n−1∑

s=0

s+1∑

l=1

(
Eei(t

T ′
n−s

a(n−s)
+v

an−s
a(n)

+u
l−2·1{n−s=1}

a(n)
) − EeitT

′

Eei(vM+uQ)

)

· P{Sl−1 = s,Nn = l}
∣∣∣∣ ≤

∣∣∣∣∣

n−N∑

s=0

s+1∑

l=1

...

∣∣∣∣∣+
∣∣∣∣∣

n−1∑

s=n−N+1

s+1∑

l=1

...

∣∣∣∣∣ .

For all t, u, v ∈ R and n > max(N,N3) the second summand can be estimated

as follows:

∣∣∣∣
n−1∑

s=n−N+1

s+1∑

l=1

(
Eei(t

T ′
n−s

a(n−s)
+v

an−k
a(n)

+u
l−2·1{n−s=1}

a(n)
) − EeitT

′

Eei(vM+uQ)

)

· P{Sl−1 = s,Nn = l}
∣∣∣∣ ≤ 2P{Yn ≤ N} ≤ 2ε.
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As for the first summand, we obtain

∣∣∣∣
n−N∑

s=0

s+1∑

l=1

(
Eei(t

T ′
n−s

a(n−s)
+v

an−s
a(n)

+u
l−2·1{n−s=1}

a(n)
) − EeitT

′

Eei(vM+uQ)

)

· P{Sl−1 = s,Nn = l}
∣∣∣∣

≤
n−N∑

s=0

s+1∑

l=1

∣∣∣∣(Ee
it

T ′
n−s

a(n−s) − EeitT
′

)Eei(vM+uQ)

∣∣∣∣P{Sl−1 = s,Nn = l}

+
n−N∑

s=0

s+1∑

l=1

∣∣∣∣Ee
i

T ′
n−s

a(n−s)

(
Eei(v

an−s
a(n)

+u
Nn−2·1{n−s=1}

a(n)
) − Eei(vM+uQ)

)∣∣∣∣

· P{Sl−1 = s,Nn = l}
(1.31)(1.32)

≤ 2ε.

According to [36, Lemma 6.2], the law of
∫∞

0
e−U(t) dt is a solution to (1.30).

From the results of [126] it follows that this solution is unique.

1.4 Asymptotics of moments of the absorp-

tion time

Assuming that the law of ξ belongs to the domain of attraction of an α-stable

law, α ∈ (1, 2), below we will find two-term asymptotic expansions of the first

two moments of the absorption time. As a consequence, we will derive the

asymptotics of the variance.

Theorem 11. Assume that, for some α ∈ (1, 2) and some L slowly varying

at ∞,
n∑

k=1

k2pk ∼ n2−αL(n), n→ ∞. (1.33)

Then, as n→ ∞,

ETn =
n

m
+

1

(α− 1)m2
n2−αL(n) + o(n2−αL(n)), (1.34)

ET 2
n =

n2

m2
+

5− α

(3− α)(α− 1)m3
n3−αL(n) + o(n3−αL(n)), (1.35)
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VarTn ∼ 1

(3− α)m3
n3−αL(n),

where m = Eξ <∞.

Proof. By a renewal theorem,

un :=
n∑

i=0

P{Si = n} → m−1, n→ ∞.

In view of Theorem 9 and its proof we have

ETn ∼ n

m
, ET 2

n ∼ n2

m2
, n→ ∞. (1.36)

Integrating by parts and using [32, Theorem 1.5.11(ii)] allows us to conclude

that condition (1.33) implies the following:

P{ξ > n} ∼ 2− α

α
n−αL(n), n→ ∞.

Hence

ETnP{ξ ≥ n} ∼ 2− α

αm
n1−αL(n), n→ ∞.

Thus, as n→ ∞,

ETYn
=

n−1∑

k=0

ETn−kP{SNn−1 = k}

=
n−1∑

k=0

ETn−k

k∑

j=0

P{Sj = k, Nn = j + 1}

=
n−1∑

k=0

ETn−k

k∑

j=0

P{Sj = k, ξj+1 ≥ n− k}

=
n−1∑

k=0

ETn−kP{ξ ≥ n− k}uk ∼
1

αm2
n2−αL(n).

Analogously

ET 2
n−SNn−1

∼ (2− α)

α(3− α)m3
n3−αL(n), n→ ∞.
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Further
n−1∑

l=1

l+1∑

k=2

kP{Sk−1 = l} =
n∑

k=1

kP{Nn ≥ k} − 1

= (1/2)(EN2
n + ENn)− 1 ∼ n2

2m2
, n→ ∞.

Hence, according to [32, Corollary 1.7.3],

n+1∑

k=2

kP{Sk−1 = l} ∼ n

m2
, n→ ∞.

All these relations altogether imply that

ETn−SNn−1
Nn = ETnP{ξ ≥ n}

+
n−1∑

l=1

ETn−lP{ξ ≥ n− l}
l+1∑

k=2

kP{Sk−1 = l}

∼ 1

α(3− α)m3
n3−αL(n), n→ ∞.

From (1.9) we obtain

ETn = ENn + ETYn
− 2 P{Yn = 1};

ET 2
n = ET 2

Yn
+ E(Nn − 2 · 1{Yn=1})

2 + 2ETYn
Nn − 4ETYn

1{Yn=1}.

By [47, Theorem 10(a)]) (see also Remark 1 on p. 866 and Theorem 2.4 in

[105], respectively),

ENn =
n

m
+

1

α(α− 1)m2
n2−αL(n) + o(n2−αL(n))

and

EN2
n =

n2

m2
+

4

α(α− 1)(3− α)m3
n3−αL(n) + o(n3−αL(n)).

Recalling the asymptotics of ETYn
and using the following relation

P{Yn = 1} =
n−1∑

k=0

P{Sk = n− 1, Nn = k + 1}

=
n−1∑

k=0

P{Sk = n− 1, ξk+1 ≥ 1}

=
n−1∑

k=0

P{Sk = n− 1} → m−1, n→ ∞
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leads to

ETn = ENn + ETYn
− 2 P{Yn = 1}

=
n

m
+

1

α(α− 1)m2
n2−αL(n) +

1

αm2
n2−αL(n) + o(n2−αL(n)) =

=
n

m
+

1

(α− 1)m2
n2−αL(n) + o(n2−αL(n)),

which proves (1.34). Since

ET 2
n = ET 2

Yn
+ EN2

n + 2ETYn
Nn + o(n3−αL(n))

then utilizing the principal terms asymptotics we arrive at (1.35). The proof

is complete.

1.5 Weak convergence and a weak law of

large numbers for the number of zero in-

crements

Recall that by the number of zero increments (before the absorption) of a

random walk with barrier n is meant a rv

Vn := Tn −Mn = #{i ≤ Tn : R
(n)
i−1 = R

(n)
i } =

Tn−1∑

l=0

1
{R

(n)
l

+ξl+1≥n}
.

Our results given below prove the weak convergence of Vn (without nor-

malization) in case of finite mean Eξ and establish a weak law of large num-

bers in case when Eξ = ∞. Although the asymptotic behavior of both Mn

and Tn is known, it gives no clue about the asymptotics of Vn in view of

strong dependence of these rvs.

Theorem 12. If m = Eξ <∞ then, as n→ ∞,

Vn
d→ V.

A random variable V has the same law as

VY + 1− 2 · 1{Y=1},
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where a random variable Y with law

P{Y = k} = m−1
P{ξ ≥ k}, k ∈ N

is independent of {Vn : n ∈ N}. In particular, P{V = 0} = m−1.

In the next result ψ(x) := Γ′(x)/Γ(x) denotes the logarithmic derivative

of the gamma function. Set also

m(x) :=

∫ x

0

P{ξ > y}dy, x > 0.

Theorem 13. Assume that, for some α ∈ (0, 1] and some L slowly varying

at ∞,
∞∑

k=n

pk ∼ n−αL(n), n→ ∞, (1.37)

and

sup
n≥0

npn∑∞
k=n+1 pk

<∞ for α ∈ [0, 1/2], (1.38)

Then, as n→ ∞,
Vn
EVn

P→ 1, (1.39)

and EVn ∼ (ψ(1) − ψ(1 − α))−1 log n, if α ∈ (0, 1), and EVn ∼ logm(n), if

α = 1.

Letting in (1.10) n→ ∞ and recalling the convergence Yn
d→ Y immedi-

ately proves Theorem 12.

The proof of Theorem 13 relies upon the following auxiliary result.

Lemma 14. If (1.37) holds for α ∈ [0, 1) and (1.38) holds for α ∈ [0, 1/2]

then, as n→ ∞,

E log Yn = log n− (ψ(1)− ψ(1− α)) + o(1) and (1.40)

E log2 Yn = log2 n− 2(ψ(1)− ψ(1− α)) log n+ o(log n). (1.41)

If (1.37) holds for α = 1 then, as n→ ∞,

E logm(Yn) = logm(n)− 1 + o(1) and

E log2m(Yn) = log2m(n)− 2 logm(n) + o(logm(n)).
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Proof. If (1.37) holds for α ∈ [0, 1) then, according, for instance, [32, Theo-

rem 8.6.5]

log n− log Yn
d→ (− log ηα),

where an rv ηα, α ∈ (0, 1) has the beta law with parameters 1 − α and α,

i.e.,

P{ηα ∈ dx} =
sin πα

π
x−α(1− x)α−11(0,1)(x)dx,

and P{η0 = 1} = 1.

If we proved that, for each δ ∈ (0, 1− α),

sup
n≥1

E(n/Yn)
δ = sup

n≥1
Efk(log

k(n/Yn)) <∞, k ∈ N, (1.42)

where fk(x) := exp(δx1/k), then by Vallée-Poussin theorem [104, Theorem

T22], for each k ∈ N, the sequence {(log n − log Yn)
k : n ∈ N} would be

uniformly integrable. If this were so then we would have

lim
n→∞

(log n− E log Yn) = E(− log ηα) = ψ(1)− ψ(1− α) <∞,

which would prove (1.40), and

lim
n→∞

E(log n−log Yn)
2 = E log2 ηα = (ψ(1−α)−ψ(1))2+ψ′(1−α)−ψ′(1) <∞,

which together with (1.40) would prove (1.41).

Now we have to check (1.42). For j ∈ N0, set uj :=
∑j

k=0 P{Sk = j}.
Then

EY −δ
n =

n−1∑

k=0

(n− k)−δ
P{ξ ≥ n− k}uk. (1.43)

It is known (see Theorem 1.1 [52]), that if α ∈ (1/2, 1) then

un ∼ sin πα

π
nα−1/L(n).

Under additional condition (1.38) the same holds for α ∈ [0, 1/2] (see [41]).

Thus from (1.43)

EY −δ
n ∼ n−δΓ(1− α− δ)Γ(α) sin πα

Γ(1− δ)π
,
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which proves (1.42).

Assume now that (1.37) holds for α = 1. By [46, Theorem 6] and its

proof,

logm(n)− logm(Yn)
d→ (− logR),

where R is an rv with the uniform law on [0, 1]. The wanted result will follow

if, for example, we can show that the sequence {(logm(n)− logm(Yn))
k : n ∈

N}, k = 1, 2, is uniformly integrable. The latter will follow from the relation:

for each ǫ ∈ (0, 1)

sup
n≥1

E

(
m(n)

m(Yn)

)ǫ

<∞. (1.44)

The subsequent part of the proof is similar to the previous one. In the case

α = 1 we have un ∼ 1
m(n)

and
∑n

k=0 uk ∼ n/m(n) (see formula (2,4) and

p. 266 [46]). Fix any ǫ ∈ (0, 1), then

Em(Yn)
−ε =

n−1∑

k=0

m(n− k)−ε
P{ξ ≥ n− k}uk ≤

[∆n]∑

k=0

+
n−1∑

k=[∆n]

=: I1(n) + I2(n).

Next

I1(n) ≤
P{ξ ≥ n− [∆n]}
mε(n− [∆n])

[∆n]∑

k=0

uk ∼
P{ξ ≥ n− [∆n]}
mε(n− [∆n])

[∆n]

m([∆n])
.

Since
P{ξ > x}x
m(x)

=
xm‘(x)

m(x)
→ 0, n→ ∞,

We have

mε(n)I1(n) → 0 n→ ∞.

For I2(n) (since m(k)uk ≤ C for big k)

I2(n) =
n−1∑

k=[∆n]

m(n− k)−ε
P{ξ ≥ n− k}m(k)uk

m(k)
≤

C

m(∆n)

n−[∆n]∑

k=1

m(k)−ε
P{ξ ≥ k}.
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The function

rǫ(x) :=

∫ x

0

m−ǫ(y)P{ξ ≥ y}dy

slowly varies at ∞, and
∑n

k=1m
−ǫ(k)P{ξ ≥ k} ∼ rǫ(n). By de l’ Hôpital’s

rule, rǫ(n)/m(n) ∼ (1− ǫ)−1m−ǫ(n). Then

lim
n→∞

mε(n)I2(n) ≤ C lim
n→∞

m(n)

m(∆n)
= C. (1.45)

Now (1.44) follows (1.45).

Proof of Theorem 13. Assume that (1.37) holds for α ∈ (0, 1). Set an :=

EVn and bn := EV 2
n . From (1.10) we have a1 = 1,

an =
1

1− P{Yn = n}

(
n−1∑

k=1

akP{Yn = k}+ 1− 2P{Yn = 1}
)
, n = 2, 3, . . . ,

(1.46)

and b1 = 1,

bn =
1

1− P{Yn = n}

(
n−1∑

k=1

bkP{Yn = k}+ 2an − 1

)
. (1.47)

We are going to check that

bn ∼ a2n ∼ k2α log
2 n, (1.48)

where kα := (ψ(1)− ψ(1− α))−1. Assume that the relation

lim sup
n→∞

an
log n

≤ kα (1.49)

does not hold. Then we can pick ǫ > 0 such that inequality

an > (kα + ǫ) log n+ c

holds infinitely often for every fixed positive c. Define

nc := inf{n ≥ 1 : an > (kα + ǫ) log n+ c}.

Then

an ≤ (kα + ǫ) log n+ c, n = 1, 2, . . . , nc − 1.
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It follows from (1.46) that

(kα + ǫ) log nc + c <
1

1− P{Ync
= nc}

·
(

nc−1∑

i=1

((kα + ǫ) log i+ c)P{Ync
= i}+ 1− 2P{Ync

= 1}
)

= c+ (kα + ǫ)

(
E log Ync

+
P{Ync

= nc}
1− P{Ync

= nc}
(E log Ync

− log nc))

)

+
1

1− P{Ync
= nc}

(1− 2P{Ync
= 1})

(since nc → ∞ as c → ∞ then by using (1.40), equality P{Yn = 1} = un−1

and the fact that, by a renewal theorem, lim
n→∞

un = 0, we can continue as

follows)

= c+ (kα + ǫ) log nc − (kα + ǫ)k−1
α + 1 + o(1).

Sending c to ∞ gives ǫ ≤ 0, a contradiction. Thus, we have proved (1.49).

Analogously, one can establish the converse inequality for the lower bound.

Thence

an ∼ kα log n.

Asymptotic relation (1.48) for bn can be established similarly with the

aid of (1.47). Thus, EV 2
n ∼ (EVn)

2. Therefore, by Chebyshev’s inequality, for

each δ > 0,

P{|Vn/EVn − 1| > δ} ≤ VarVn
(δEVn)2

→ 0,

which proves (1.39).

In case when (1.37) holds for α = 1 the proof of relation EV 2
n ∼ (EVn)

2 ∼
(logm(n))2 goes along the same route as that of the previous case. It suffices

to exploit the second part of Lemma 14. The proof is complete.

1.6 Another linear recurrence relation

1.6.1 Definition and examples. In this Section we investigate

another pattern of the linear recurrence (1) of the form:

Xn
d
= X ′

n−Jn + Zn, X1 := 0, n = 2, 3 . . . , (1.50)



44 CHAPTER 1. RANDOM WALKS WITH BARRIER

where random variables {Zk : k ∈ N} and Jn are independent and indepen-

dent of {X ′
j , j ∈ N}, and Jn has the same distribution as ξ conditioned on

ξ < n, that is

P{Jn = k} =
pk

p1 + · · ·+ pn−1

, k, n ∈ N, k < n,

for some proper and non-degenerate random variable ξ with probability law

pk := P{ξ = k}, k ∈ N, p1 > 0.

We start by giving two examples of the recurrences (1.50).

Example. As was observed in [84], the number of jumps Mn in the ran-

dom walk with barrier n satisfies (1.50) with Zk ≡ 1, k ∈ N.

Example. Extending Example 2 in Section 1.1, consider the beta (a, 1)

coalescent, a ∈ (0, 2), which is the Λ-coalescent with Λ defined by (1.1). Let

X
(1)
n be the total branch length of the coalescent, i.e., the sum of the lengths

of all branches of the coalescent tree, and X
(2)
n be the absorption time of the

coalescent. Provided (pk)’s are given by (1.2), X
(1)
n satisfies (1.50) with Zn

having the exponential distribution with mean n/gn (see [43, formula (2)]

and [84, Section 7]), and X
(2)
n satisfies (1.50) with Zn having the exponential

distribution with mean 1/gn (see [115, formula (33)] and [84, Section 7]),

where

gn :=
a

2− a

(
Γ(a)Γ(n+ 1)

Γ(a+ n− 1)
− 1

)
.

The results to be presented below extend to some extent those obtained

in [84] under the assumption Zk ≡ 1, k ∈ N.

1.6.2 A coupling. For fixed m, i ∈ N, define the events A0,m(i) = Ω

and

Aj,m(i) := {{R(m)
k (i) : k ∈ N0} visits j}, j ∈ N

with {R(m)
k (i) : k ∈ N0} as defined in Section 1.2. Notice that

1Aj,m(i) =
∞∑

k=0

1
{R

(m)
k

(i) 6=j, R
(m)
k+1(i)=j}

, j ∈ N.

Write Aj,m for Aj,m(0).

The following result is a variation on the theme of Lemma 1 [83].
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Lemma 15. Set X∗
1 := 0 and

X∗
n :=

n−2∑

j=0

Zn−j1Aj,n
, n = 2, 3, . . . . (1.51)

The sequence of marginal distributions for {X∗
n : n ∈ N0} is a unique solution

to (1.50).

Proof. Let I := inf{k ≥ 1 : R
(n)
k > 0} and Bn := X∗

n − Zn. For fixed i ∈ N

define X∗
1 (i) := 0 and

X∗
n(i) :=

n−1∑

j=0

Zn−j1Aj,n(i), n = 2, 3, . . .

Then the sequence {X∗
n(i) : n ∈ N0} has the same distribution as {X∗

n : n ∈
N0} and is independent of {ξ1, . . . , ξi}. For x ∈ R, we have

P{Bn ≤ x} =
∞∑

i=1

n−1∑

k=1

P{I = i, R
(n)
I = k,Bn ≤ x}

=
∞∑

i=1

n−1∑

k=1

P{ξ1 ≥ n, . . . , ξi−1 ≥ n, ξi = k,Bn ≤ x}.

Let Di,k,n := {ξ1 ≥ n, . . . , ξi−1 ≥ n, ξi = k}. Then 1Aj,n
1Di,k,n

= 0, for k > j;

= 1Di,k,n
, for k = j, and = 1Aj−k,n(i)1Di,k,n

, for k < j. Therefore,

Bn1Di,k,n
=

(
n−k−2∑

j=0

Zn−k−j1Aj,n−k(i)

)
1Di,k,n

= X∗
n−k(i)1Di,k,n

,

and

P{Bn ≤ x} =
∞∑

i=1

n−1∑

k=1

P{ξ1 ≥ n, . . . , ξi−1 ≥ n, ξi = k,X∗
n−k(i) ≤ x}

=
∞∑

i=1

n−1∑

k=1

P{ξ ≥ n}pkP{X∗
n−k ≤ x}

=
n−1∑

k=1

P{Ik = n}P{X∗
n−k ≤ x}.
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Therefore,

P{X∗
n ≤ x} =

∫

R

P{Bn ≤ x− y}P{Zn ∈ dy}

=

∫

R

n−1∑

k=1

P{Ik = n}P{X∗
n−k ≤ x− y}P{Zn ∈ dy},

which is the same as (1.50).

Remark 16. Assume that the marginal distributions of a random sequence

{Qn : n ∈ N} of scalar random variables are defined recursively as follows:

Qn
d
= Qn−ξ1{ξ<n} + Zn, n ∈ N, (1.52)

where {Zk : k ∈ N} are independent (not necessarily identically distributed)

random variables, which are independent of ξ.

Recall that {Sn : n ∈ N0} is a zero-delayed random walk with a step

distributed like ξ, which is independent of {Zk : k ∈ N}, and that

Nn := inf{k ∈ N : Sk ≥ n}, n ∈ N.

Define the events

Ak := {{Sn : n ∈ N0} ever enters state k}, k ∈ N0.

Then 1A0 = 1 and

1Ak
=

k∑

i=1

1{Si=k}, k ∈ N.

Set

Q∗
n :=

n−1∑

j=0

Zn−j1Aj
, n ∈ N. (1.53)

In a similar, but simpler way as above, it can be checked that the marginal

distributions of {Q∗
n : n ∈ N} is a unique solution to (1.52).

Using the identity
n−1∑

k=0

1Ak
= Nn, n ∈ N,
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lying in the core of the renewal theory, we conclude that in the case Zn ≡ b,

where b ∈ R is non-random, Q∗
n = bNn, the observation previously remarked

in [84]. If {Zk : k ∈ N} are identically distributed then

Q∗
n = Z1 + Z2 + . . .+ ZNn

.

Thus, in the latter case, the weak limiting behavior of Qn can be obtained

by a suitable combining known results on the weak convergence of random

walks and first-passage time sequences.

Rearranging terms in (1.53) we obtain a representation

Q∗
n :=

n−1∑

j=0

Zn−Sj
1{Sj<n} =

Nn−1∑

j=0

Zn−Sj
, n ∈ N. (1.54)

which is more suitable for asymptotic analysis in the case when Zk’s are not

identically distributed.

Recall that a shot-noise process is a random process of the form

Q(t) :=
∞∑

k=0

U(t− τk), t ≥ 0,

where {U(s) : s ∈ R} is some random process and {τj : j ∈ N0} is an

independent zero-delayed random walk with positive steps. If Us ≡ 0 for

s ≤ 0 then

Z(t) :=

M(t)∑

k=0

U(t− τk), t ≥ 0, (1.55)

whereM(t) := sup{k ∈ N0 : τk ≤ t}. Now, by analogy with (1.55), {Q∗
n : n ∈

N} can be called a shot-noise sequence. Indeed, making in (1.55) the time

discrete (n = 1, 2, . . .) and setting U(n) = Zn for n ∈ N and U(n) = 0 for

non-positive integer n, and replacing M(n) by M(n− 1) = Nn − 1 we arrive

at (1.54).

Now we are ready to point out a basic coupling construction.

Lemma 17. For X∗
n defined in (1.51) we have X∗

1 := 0 and

X∗
n =

Yn−2∑

k=0

ZYn−k1Ak,Yn (Nn) +
n−2∑

k=0

Zn−k1Ak
− ZYn

1{Yn≥2}, n = 2, 3, . . . a.s.,
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where Yn := n− SNn−1. In particular,

X∗
n

d
= X∗

Yn
+

n−2∑

k=0

Zn−k1Ak
− ZYn

1{Yn≥2} n = 2, 3, . . . ,

where {X∗
n : n ∈ N0} is independent of (Nn, n− SNn−1).

Proof. Let us first prove that

Nn−1∑

i=1

1{Si=k} = 1Ak
, k ∈ {1, 2, . . . , n− 2}. (1.56)

Indeed, on the event {Nn = 1} the right-hand side of (1.56) equals 0. Also,

we have (
Nn−1∑

i=1

1{Si=k}

)
1{Nn≥k+1} = 1Ak

1{Nn≥k+1}.

Now fix j ∈ {2, 3, . . . , k}. Then 1{Sl=k,Nn=j} = 0 for all l ∈ {j, . . . , k}. There-
fore,

(
Nn−1∑

i=1

1{Si=k}

)
1{Nn=j} =

j−1∑

i=1

1{Si=k,Nn=j}

=
k∑

i=1

1{Si=k,Nn=j} = 1Ak
1{Nn=j}.

Combining these arguments leads to (1.56).

Further it is important that for i ∈ {0, 1, . . . , Nn − 1}

R
(n)
i = Si and R

(n)
Nn

= SNn−1.

The latter implies that, for k ∈ N,

1
{R

(n)
Nn−1 6=k,R

(n)
Nn

=k}
= 1{SNn−1 6=k, SNn=k} = 0 a.s. (1.57)

Also it can be checked that, for l ∈ N0 and k ∈ {1, 2, . . . , n− 2},

1
{R

(n)
Nn+l

6=k,R
(n)
Nn+l+1=k}

= 1
{R

(n−SNn−1)

l
(Nn) 6=k−SNn−1,R

(n−SNn−1)

l+1 (Nn)=k−SNn−1}
1{SNn−1<k} (1.58)
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almost surely. In what follows, it is tacitly assumed that empty sums equal

zero. For fixed k ∈ {1, 2, . . . , n− 2}, we have

1Ak,n
=

∞∑

i=1

1
{R

(n)
i−1 6=k,R

(n)
i =k}

=
Nn−1∑

i=1

· · ·+
∞∑

i=Nn

· · ·

(1.57)
=

Nn−1∑

i=1

1{Si=k} +
∞∑

i=Nn+1

1
{R

(n)
i−1 6=k,R

(n)
i =k}

(1.56),(1.58)
= 1Ak

+ 1Ak−SNn−1,n−SNn−1
(Nn)1{SNn−1<k}.

By using the obtained representation for 1Ak,n
, we can write

Q∗
n =

n−2∑

k=0

Zn−k1Ak
+

n−2∑

k=1

Zn−k1Ak−SNn−1,n−SNn−1
(Nn)1{SNn−1<k}

=
n−2∑

k=0

Zn−k1Ak
+

n−SNn−1−2∑

i=1

Zn−SNn−1−i1Ai,n−SNn−1
(Nn)

=
Yn−2∑

i=0

ZYn−i1Ai,Yn (Nn) +
n−2∑

k=0

Zn−k1Ak
− ZYn

1{Yn≥2}.

1.6.3 A weak convergence result. Below is given a weak con-

vergence result under a regular variation assumption.

Theorem 18. Suppose that for some α ∈ (0, 1), β > −1 and some functions

L1 and L2 slowly varying at ∞

P{ξ ≥ n} =
∞∑

k=n

pk ∼ L1(n)

nα
, n→ ∞,

Zn = bn is non-random and

bn ∼ nβL2(n), n→ ∞.
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Then, as n→ ∞,

L1(n)

L2(n)

Xn

nα+β

d→
∫ T

0

e−Ut dt,

where {Ut : t ≥ 0} is a drift-free subordinator with the Lévy measure

ν(dt) =
α

α + β

e−t/(α+β)

(1− e−t/(α+β))α+1
dt, t > 0, (1.59)

and T is a random variable with the standard exponential law which is inde-

pendent of the subordinator.

Proof. The proof has much in common with the proof of [84, Theorem 1.3].

We thus only give a sketch.

For k, n ∈ N, set ak(n) := EXk
n. For x ≥ 0, define

Φ(x) :=
Γ(1− α)Γ((α + β)x+ 1)

Γ((α + β)x− α + 1)
− 1.

Since Φ(x) =
∫∞

0
(1− e−xy)ν(dy), where ν is given in (1.59), Φ is the Laplace

exponent of a drift-free subordinator with the Lévy measure ν.

It can be checked that

lim
n→∞

Lk
1(n)

Lk
2(n)

ak(n)

nk(α+β)
=

k!
∏k

i=0(1 + Φ(i))
=: ak, k ∈ N. (1.60)

This implies (see, for example, [84]) that (i) ak = E(ηk), k ∈ N, where

η
d
=
∫ T

0
e−Utdt, and that (ii) the moments a1, a2, . . . uniquely determine the

law of η, and the result follows.

1.7 Bibliographic comments

By using a complicated technique based on the singularity analysis of gen-

erating functions, it was proved in [43] that the number of cuts Xn needed

to isolate the root of a random recursive tree with n vertices with the aid

of Meir-Moon’s procedure [103], weakly converges, after normalization and

centering, to the 1-stable law µ1. In [83] an alternative, purely probabilistic
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proof of this result was given, in which random walks with barrier have nat-

urally arisen. In particular, it was checked that the Xn has the same law as

the number of jumps Mn in the random walk with the barrier n in case

P{ξ = k} =
1

k(k + 1)
, k ∈ N,

and proved that

log2 n

n
Mn − log n− log log n⇒ µ1, n→ ∞.

In this thesis we use the same definition of the random walk with barrier

as in [83] and [84] (the name was coined in [84]). Notice that earlier similar

sequences were investigated in [72], but the problems addressed in the cited

work were different from ours.

While Section 2.1 contains several examples of applications of the random

walks with barrier, some others can be found in [72, 83, 84].

Λ-coalescents were introduced independently in [115] and [122]. Recently

there have appeared a number of papers (see, for instance, [40, 43, 44, 51,

57, 83, 84, 81, 106]) which investigated the weak convergence of several func-

tionals acting on the Λ-coalescents, most notably, the number of collisions,

the absorpton time and the total branch length.

Based on the results derived in [107] and [86], in Section 2.2 it is shown

that the sequences {Tn : n ∈ N} and {Vn : n ∈ N}, where Tn and Vn are

the absorption time and the number of zero increments before the absorp-

tion, respectively, in the random walk with barrier n, are the linear random

recurrences. General linear random recurrences is a popular object of re-

search in Applied Probability. They arise in random regenerative structures

[16, 55, 58, 62, 63], random trees [43, 42, 83, 113, 114], the theory of ex-

changeable coalescents [44, 57, 64, 81]. Also such recurrences are common

in studies of the absorption times of non-increasing Markov chains [38, 88],

recursive algorithms [111, 117, 118] and many other fields. A lot of diverse

applications of a particular linear recurrence, where Yn ≡ 1 and In has the

uniform distribution on {0, 1, . . . , n− 1}, can be found in [13].
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Although the asymptotic analysis of random recurrences is a hard ana-

lytic problem, some more or less effective methods have been elaborated to

date. Evidently the most popular existing approach is the method of singular

analysis of generating functions [42, 50]. For instance, provided the distri-

butions of all input data of a recurrence are known explicitly this purely

analytic method can allow one to obtain high order asymptotic expansions

of moments. The contraction method [111, 117, 119] is another popular ap-

proach which is more probabilistic. It performs especially well whenever a

normalized and centered recurrence weakly converges to a probability law

which is a fixed point of appropriate transformation. On the other hand, un-

der quite strong moment restrictions this method may lead to establishing

a central limit theorem [111]. Finally, we mention a method [118] which is

based on the harmonic analysis and potential theory.

In [83] it was remarked that the linear random recurrence generated by

the number of jumps in the random walks with barrier can be successfully

investigated by using a probabilistic method alone. An essence of that ap-

proach is a coupling of a random walk with barrier with the corresponding

standard random walk and subsequent use of known methods of the renewal

theory. In Section 2.3 we extend this technique to two other linear random

recurrences arising in the random walks with barrier.

Section 2.3 is based on the results obtained in [107]. Our Theorems 4,

5 and 6 are analogues of the results given in [84] for the number of jumps

in the random walks with barrier. Although our statements on the weak

convergence of the absorption times do not follow from the results of [84]

on the number of jumps, our proofs rely heavily on the arguments worked

out in the cited paper. It is worth mentioning that recently a new, more

probabilistic proof of [84, Theorem 1.3] was given in [70]. One may wonder

whether that new approach can be used to prove our Theorem 6.

The results of Section 2.4 which are based on [108] are closely related to

two-term asymptotic expansions of the renewal functions. Although numer-

ous results of this kind have already been developed [14, 47, 54, 105, 123, 124],
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the latter topic is relevant and still popular in the renewal theory.

Section 2.5 is based on the results obtained in [86].
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Chapter 2

The Bernoulli sieve

2.1 Definition and interpretation

Let {ηk : k ∈ N} be independent copies of an rv η taking values in (0, 1).

We start with a ‘game’ interpretation followed by a rigorous description of

the model to be discussed. Assume that n persons play the following game.

In the first round of the game each of the players tosses once a coin with

probability η1 for tails, then those who threw heads (call them losers) are

eliminated, while those who threw tails proceed in the second round in which

a coin is tossed with probability η2 for tails, and so on (with probability ηi

for tails in the ith round) until there are no players left. If in some round,

say jth, all players threw tails, then all of them proceed in the (j + 1)st

round. It is assumed that given ηk the results of players in the kth round are

conditionally independent.

In this Section we investigate the asymptotic behavior of the following

characteristics of the game:

• Un– duration of the game;

• Kn,0– the number of rounds with no losers;

• Kn = Un −Kn,0–the number of rounds with some losers;
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• Zn– the number of players in the last round.

In what follows we always assume that

the law of | log η| is non-arithmetic.

Denote by {Jk : k ∈ N0} a zero-delayed random walk with a step distributed

like | log η|. Let E1, . . . , En be i.i.d. sample from the standard exponential law

which is independent of the random walk. Denote by E1,n ≤ E2,n ≤ . . . ≤ En,n

the corresponding order statistics.

The random walk together with the sample from the standard exponential

distgribution define a random occupancy scheme, called the Bernoulli sieve,

in which n balls 1, 2, . . . , n are thrown into an infinite array of boxes indexed

by the integers 1, 2, . . ., according to the rule: ball i falls in box k iff the

exponential point Ei falls into the interval (Jk−1, Jk).

We say that the index of interval (Ji−1, Ji) is i and call this interval

occupied, if it contains at least one exponential points, and empty, otherwise.

Now the characteristics of the game introduced above can be interpreted as

follows:

• Un = inf{k ∈ N : Jk > En,n}, i.e., Un is the index of the right-most

occupied interval;

• Kn,0 = #{1 ≤ k ≤ Un − 1 : (Jk−1, Jk) is empty }, i.e., Kn,0 is the

number of empty intervals with indices not exceeding Un − 1;

• Kn = #{k ∈ N : (Jk−1, Jk) is occupied}, i.e., Kn is the number of

occupied intervals;

• Zn := #{1 ≤ k ≤ n : Ek,n ∈ (JUn−1, JUn
)}, i.e., Zn is the number of

points in the right-most occupied interval.

The model just described is additive. Sometimes it is more convenient to

work with its multiplicative counterpart obtained by an exponential trans-

formation. More precisely, the exponential sample E1, . . . , En is replaced by
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e−E1 , . . . , e−En which is an i.i.d. sample from the uniform [0, 1] law, and the

(additive) random walk {Jk : k ∈ N0} is replaced by a multiplicative one

{e−Jk : k ∈ N0}.
One of the most prominent applications of the Bernoulli sieve is that it

provides a model of random compositions. Recall that a random combinato-

rial structure which captures the occupancy of boxes is the weak composition

C∗
n comprised of nonnegative integer parts summing up to n. One speaks

of weak composition meaning that zero parts are allowed, for instance the

sequence (2, 3, 0, 1, 0, 0, 1, 0, 0, 0, . . .) (padded by infinitely many 0’s) is a pos-

sible value of C∗
7 . There is a number of ways to produce a composition as

any allocation of n balls into infinitely many boxes leads to a composition

of n. However, the set of all models of random compositions contains more

or less adequate representatives. The weak compositions C∗
n arising in the

Bernoulli sieve verify two distinguished consistency properties which secures

their attractiveness and adequateness.

(SC) Sampling consistency: if one of n points is chosen uniformly at random

and removed from the interval it occupies, the resulting weak compo-

sition has the same probability law as C∗
n−1.

(DP) Deletion property: if the first interval is inspected and it turns out

that it contains k points, then deleting the first interval yields a weak

composition with the same probability law as C∗
n−k.

The main results of this Section are concerned with the weak convergence

of the functionals acting on the Bernoulli sieve. In particular, Theorem 19

establishes an ultimate criterion for the existence of limiting law for, properly

normalized and centered, Un. Under a side condition, Theorem 21 proves

an analogous result for Kn. Among other things, this condition ensures a

more delicate result given in Theorem 20: Kn, 0 weakly converges without

normalization. Finally, under natural assumptions on the law of η, Theorem

22 investigates the weak convergence of Zn.

Theorem 19. The following assertions are equivalent.
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(i) There exist sequences of numbers {an, bn : n ∈ N} with an > 0 and

bn ∈ R such that, as n → ∞, (Un − bn)/an converges weakly to a

nondegenerate and proper probability law.

(ii) The law of | log η| either belongs to the domain of attraction of a stable

law, or P{| log η| > x} slowly varies at ∞.

Set µ := E| log η| and σ2 := Var (log η).

(1) If σ2 < ∞ then, with bn := µ−1 log n and an := (µ−3σ2 log n)1/2, the

limiting law is standard normal.

(2) If σ2 = ∞ and

∫ 1

x

log2 yP{η ∈ dy} ∼ L(| log x|), x→ 0,

for some L slowly varying at ∞ then, with bn := µ−1 log n and an :=

µ−3/2c[logn], where {cn : n ∈ N} is any non-decreasing sequence of positive

numbers satisfying limn→∞ nL(cn)/c
2
n = 1, the limiting law is standard nor-

mal.

(3) Assume that the relation

P{η ≤ x} ∼ | log x|−αL(| log x|), x→ 0 (2.1)

holds with α ∈ (1, 2) and some L slowly varying at ∞. Then, with bn :=

µ−1 log n and an := µ−(α+1)/αc[logn], where {cn : n ∈ N} is any non-decreasing

sequence of positive numbers satisfying limn→∞ nL(cn)/c
α
n = 1, the limiting

law is α-stable with characteristic function

t 7→ exp{−|t|αΓ(1− α)(cos(πα/2) + i sin(πα/2) sgn(t))}, t ∈ R. (2.2)

(4) Assume that the relation (2.1) holds for α = 1. Let c : R+ → R
+ be any

function satisfying limx→∞ xL(c(x))/c(x) = 1, and set

ψ(x) := x

∫ c(x)

0

P{| log η| > y}dy.

Let b : R
+ → R

+ be any function satisfying b(ψ(x)) ∼ ψ(b(x)) ∼ x, as

x → ∞. Then, with bn := b(log n) and an := b(log n)c(b(log n))/ log n, the
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limiting law is 1-stable with characteristic function

t 7→ exp{−|t|(π/2− i log |t| sgn(t))}, t ∈ R. (2.3)

(5) If (2.1) holds for α ∈ [0, 1) then, with bn = 0 and an := logα n/L(log n),

the limiting law is the Mittag-Leffler law θα (exponential, if α = 0) with

moments ∫ ∞

0

xnθα(dx) =
n!

Γn(1− α)Γ(1 + nα)
, n ∈ N.

An outline of the proof of Theorem 19 is as follows. As Un = NEn,n
, where

Nt := inf{k ∈ N : Jk > t}, t ≥ 0, (2.4)

and

En,n − log n
d→ ̺, n→ ∞, (2.5)

where ̺ is an rv with distribution function F (x) = exp(−e−x), x ∈ R, one

can anticipate that Un−bn
an

converges weakly to a proper and nondegenerate

probability law if and only if the same is true for
Nlogn−bn

an
. On the other hand,

this equivalence is not automatic and it does require a proof.

Theorem 20. (a) If ν := E| log(1−η)| <∞ then, as n→ ∞, Kn,0 converges

in distribution to a random variable K0.

If µ = E| ln η| <∞ then

P{K0 = 0} = 1− 1

µ

∞∑

j=1

Eηj

j
P{Kj,0 = 0},

P{K0 = i} =
1

µ

∞∑

j=1

Eηj

j

(
P{Kj,0 = i− 1} − P{Kj,0 = i}

)
, i ∈ N,

and EK0 = ν/µ.

If µ = ∞ then P{K0 = 0} = 1.

(b) If µν < ∞ then Kn,0 converges to K0 in Lp for every p ≥ 1. If ν = ∞
and µ <∞ then lim

n→∞
EKn,0 = ∞.
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Taking into account equality Kn = Un − Kn,0 along with the result of

Theorem 19, we conclude that the boundedness of Kn,0 in probability would

suffice for the implication: if (Un − bn)/an converges weakly to some proba-

bility law then (Kn − bn)/an converges weakly to the same law. According

to Theorem 20, condition ν <∞ ensures that Kn,0 converges in distribution

which is even more than we need.

Theorem 21. If ν <∞ then all the assertions of Theorem 19 remain valid

on replacing Un by Kn.

Theorem 22. Assume that µ = E| log η| < ∞. Then, as n → ∞, Zn con-

verges in distribution to a random variable Z with distribution

P{Z = k} =
E(1− η)k

µk
, k ∈ N.

If (2.1) holds for some α ∈ [0, 1) then

logZn

log n

d→ Ẑα.

If (2.1) holds for α = 1 and if µ = ∞ then

m(logZn)

m(log n)

d→ Ẑ1,

where m(x) :=
∫ x

0
P{| log η| > y}dy, and the law of a random variable Ẑ0 is

degenerate at 1, for α ∈ (0, 1), Ẑα has the beta law with parameters (1−α, α),
i.e.,

P{Ẑα ∈ dx} =
sin πα

π
x−α(1− x)α−11(0,1)(x)dx,

and Ẑ1 has the uniform law on [0, 1].

Examples 23 and 24 illustrate our main results. Example 25 gives an

explicit form of the law of η for which Theorem 21 does not apply. Let Xn

stand for any of the variables Kn or Un.

Example 23. Assume that η has the beta law with parameters (a, b), a, b > 0,

i.e.,

P{η ∈ dx} =
xa−1(1− x)b−1

B(a, b)
1(0,1)(x)dx,
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where B(·, ·) is the beta function. In this case,

µ = E| log η| = Ψ(a+ b)−Ψ(a) <∞,

ν = E| log(1− η)| = Ψ(a+ b)−Ψ(b) <∞,

σ2 = Var (log η) = Ψ′(a)−Ψ′(a+ b) <∞,

where Ψ denotes the logarithmic derivative of the gamma function, i.e.,

Ψ(x) = Γ′(x)/Γ(x), x > 0. Therefore, as n→ ∞,

Xn − µ−1 log n

(µ−3σ2 log n)1/2
d→ normal (0, 1).

Further Zn
d→ Z with Z having distribution

P{Z = k} =
Γ(a+ b)

µΓ(b)

Γ(k + b)

kΓ(k + b+ a)
, k ∈ N.

The number of empty boxes Kn,0 converges in distribution and in the mean

to a random variable K0 with some non-degenerate distribution. For b 6= 1

an explicit form of the limiting distribution is still a challenge. For b = 1

Proposition 26 gives the generating function

EsK0 =
Γ(1 + a)Γ(1 + a− as)

Γ(1 + 2a− as)
, s ∈ [0, 1].

In particular, for integer a the distribution of K0 is the convolution of a

geometric distributions with parameters k−1(k + a), k = 1, 2, . . . , a.

Example 24. Suppose

P{η ≤ x} =
1

1− log x
, x ∈ (0, 1), = 0, x ≤ 0, = 1, x ≥ 1.

Then condition (2.1) holds for α = 1, and µ = ∞. Since

P{| log(1− η)| > x} =
− log(1− e−x)

1− log(1− e−x)
, x > 0, = 1, x ≤ 0,

then, as x → ∞, P{| log(1 − η)| > x} ∼ e−x which implies that ν < ∞.

Therefore, as n→ ∞,

(log log n)2

log n
Xn − log log n− log log log n, i = 1, 2,
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weakly converges to the spectrally negative 1-stable law with characteristic

function (2.3). Since P{| log η| > x} = (x+1)−1 holds for x > 0, the normal-

izing constants in the previous display can be calculated in the same way as

in [83, Proposition 2]. Finally, logZn

logn
weakly converges to the uniform [0, 1]

law, and Kn,0 converges to zero in probability.

Example 25. Suppose

P{η ≤ x} =
| log(1− x)|

1 + | log(1− x)| , x ∈ (0, 1), = 0, x ≤ 0, = 1, x ≥ 1.

Then σ2 <∞, yet ν = ∞, and Theorem 21 is not applicable.

2.2 Relation to linear random recurrences

and Markov chains

In this Section we investigate a connection between the functionals acting on

the Bernoulli sieve and certain nonincreasing Markov chains. Also we prove

that the sequences {Un : n ∈ N0}, {Kn : n ∈ N0} and {Kn,0 : n ∈ N0} are

linear random recurrences.

Denote by P
(n)
k andQ

(n)
k the number of exponential points that fall outside

the first k and respectively the first k occupied intervals. Then {P (n)
k : k ∈ N0}

and {Q(n)
k : k ∈ N0} are Markov chains, the former being nonincreasing and

the latter decreasing, that start at point n and have the transition probabil-

ities

pij :=

(
i

j

)∫ 1

0

xj(1− x)i−j
P{η ∈ dx}, j ≤ i, i ∈ N,

and

πij :=

(
i
j

) ∫ 1

0
xj(1− x)i−j

P{η ∈ dx}
1− Eηi

, j < i, i ∈ N, (2.6)

respectively.

In particular,

P{P (n)
1 = k} =

(
n

k

)∫ 1

0

xk(1− x)n−k
P{η ∈ dx}, k = 0, 1, . . . , n. (2.7)
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Denote by Bin (m,x) an rv with the binomial distribution

P{Bin (m,x) = k} = Ck
mx

k(1− x)m−k, k = 0, 1, . . . ,m.

Fix p1, p2 ∈ (0, 1). If an rv Bin (n, p1) is independent of an rv Bin (n, p2) then

Bin (Bin (n, p1), p2)
d
= Bin (n, p1p2).

Consequently, for k = 0, 1, . . . , n and j ∈ N

P{P (n)
j = k} =

(
n

k

)∫ 1

0

xk(1− x)n−k
P{η1η2 · . . . · ηj ∈ dx}.

Since, for n ∈ N, the absorption time inf{k ∈ N : P
(n)
k = 0} has the same

law as Un then, first, for k ∈ N

P{Un > k} = P{P (n)
k > 0} = E(1− (1−Qk)

n), (2.8)

where Qk := η1η2 ·. . .·ηk; secondly, the marginal distributions of the sequence

{Un : n ∈ N0} satisfy the distributional equality

U0 := 0, Un
d
= U

P
(n)
1

+ 1, n ∈ N, (2.9)

where P
(n)
1 is independent of {Un : n ∈ N}.

In a similar vein one can check that the marginal distributions of the

sequences {Kn : n ∈ N0} and {Kn,0 : n ∈ N0} satisfy the following distribu-

tional equalities

K0 = 0, Kn
d
= K

Q
(n)
1

+ 1, n ∈ N, (2.10)

where Q
(n)
1 is independent of {Ki : i ∈ N} and has the law

P{Q(n)
1 = k} = P{P (n)

1 = k| P (n)
1 ≤ n− 1}, k = 0, 1, . . . , n− 1;

and

K0, 0 := 0, Kn, 0
d
= K

P
(n)
1 , 0

+ 1
{P

(n)
1 =n}

, n ∈ N, (2.11)

where P
(n)
1 is independent of {Kn, 0 : n ∈ N0}.
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For m ∈ N0, set

g(n,m) := P{{Q(n)
k : k ∈ N0} hits the state m}.

Under the assumption µ <∞, in [55] it was shown that

lim
n→∞

g(n,m) =
1− Eηm

µm
, m ∈ N. (2.12)

Notice that when µ = ∞ a similar argument yields lim
n→∞

g(n,m) = 0.

2.3 Index of the last occupied interval. Proof

of Theorem 19

In view of Proposition 27 to prove Theorem 19 it suffices to show that
Un−bn

an
⇒ µ iff

Nlogn−bn
an

⇒ µ, where µ is some proper and nondegener-

ate probability law, and Nt was defined in (2.4).

Assume that Un−bn
an

weakly converges to µ, and an → ∞. Then, for y > 0,

P

{
Un − bn
an

> x

}
= P

{
NEn,n

− bn

an
> x

}

≤ P

{
Nlogn+y − bn

an
> x

}
P{En,n − log n ≤ y}

+ P{En,n − log n > y} ≤

Since with probability one Nlogn+y ≤ Nlogn+N
′
y, where N

′
y has the same law

as Ny, then the last inequality can be continued as follows:

≤ P

{
Nlogn − bn

an
+
N ′

y

an
> x

}
P{En,n − log n ≤ y}+ P{En,n − log n > y}.

By the selection principle, there exists a sequence {nk : k ∈ N} such that

lim
k→∞

nk = ∞, and, as k → ∞,
Nlognk

−bnk

ank

weakly converges to some µ∗. Letting

in the last inequality n go to ∞ along the sequence {nk : k ∈ N} and using

(2.5), and then sending y to ∞, we obtain µ(x,∞) ≤ µ∗(x,∞) at all joint

continuity points of µ and µ∗.
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Analogously, for y < 0,

P

{
NEn,n

− bn

an
> x

}
≥ P

{
Nlogn+y − bn

an
> x

}
P{En,n − log n > y}

≥ P

{
Nlogn − bn

an
−
N ′

−y

an
> x

}
P{En,n − log n > y}.

Once again let first n tend ∞ along {nk : k ∈ N}, and then send y to −∞ to

conclude that µ(x,∞) ≥ µ∗(x,∞) at all joint continuity points of µ and µ∗.

Hence, µ = µ∗. The same argument works for any sequence like {nk : k ∈ N}
which proves that

Nlogn − bn
an

⇒ µ.

Recall that P
(n)
1 is an rv with distribution defined in (2.7). Since P

(n)
1

P→
∞ then keeping in mind (2.9) it is plain that Un cannot converge in distri-

bution. Nor can Un − bn, for any unbounded sequence {bn : n ∈ N} of real

numbers. Indeed, if the convergence were the case, from the limit relation

(2.5) and a.s. monotonicity of Nt would follow that Nlogn − bn were bounded

in probability which is well-known to be false. Following the same line of

reasoning one can prove that Un−bn
an

also cannot converge in distribution if an

is either bounded or unbounded but does not go to ∞.

To establish the result in the reverse direction, one can argue in a similar

manner. We, however, prefer to exploit the multiplicative form of renewal

process, widely known as ‘stick-breaking’.

For every ǫ > 0 define

M (ǫ)
n := inf{k ≥ 1 : nη1η2 · . . . · ηk ≤ ǫ}, n ∈ N,

and note that M
(1)
n = Nlogn. Assume that M

(1)
n −bn
an

⇒ ν, where ν is some

proper and nondegenerate probability law. According to Proposition 27, ν is

continuous distribution, an is slowly varying and either bn ≡ 0, or bn is slowly

varying, too. From this it follows that, for every ǫ > 0, M
(ǫ)
n −bn
an

⇒ ν, and ν

does not depend on ǫ.

For any fixed x ∈ R and large enough n ∈ N set kn := [anx + bn]. Recall

that

Qk := η1η2 · . . . · ηk.
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Since, for sufficiently large n,

E(1− (1−Qkn)
n) ≥ E(1− (1−Qkn)

n)1{Qkn>ǫ/n}

≥ (1− (1− ǫ/n)n)P{M (ǫ)
n > kn},

then letting in (2.8) first n to ∞ and then ǫ to 0 gives

lim inf
n→∞

P{Un > kn} ≥ ν(x,∞).

On the other hand, for large n,

E(1− (1−Qkn)
n) ≤ (1− (1− ǫ/n)n)P{M (ǫ)

n ≤ kn}
+ P{M (ǫ)

n > kn}.

Letting in (2.8) first n to ∞ and then ǫ to +∞ leads to

lim sup
n→∞

P{Un > kn} ≤ ν(x,∞).

Combining the inequalities for the lower and upper limits we obtain Un−bn
an

⇒
ν. The proof is complete.

2.4 Empty intervals and Theorem 20

First we consider an important particular case in which some intrinsic inde-

pendence will allow us to find an explicit form of the limiting law.

Proposition 26. Assume that η has the beta law with parameters a > 0 and

1. Then, as n→ ∞, Kn,0 converges in distribution to a random variable K0

with generating function

f(s) := EsK0 =
Γ(1 + a)Γ(1 + a− as)

Γ(1 + 2a− as)
, s ∈ [0, 1].

Thus K0
d
= Π(| log(1 − η)|), where {Π(t) : t ≥ 0} is a Poisson process with

intensity a which is independent of η.
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Proof. The process N∗(t) := #{k ≥ 1 : Jk ≤ t} is a Poisson process with

intensity a. Define M∗
n := #{k ≥ 1 : Jk ≤ E1,n} and

M∗
i := #{k ≥ 1 : Jk ∈ (En−i,n, En−i+1,n)}, Mi := (M∗

i −1)+, i = 1, . . . , n−1.

We exploit the following equality which holds a.s.:

Kn,0 =M1 + . . .+Mn−1 +M∗
n, (2.13)

where all the rvs on the right-hand side are independent,

P{M∗
n = k} =

n

n+ a

( a

n+ a

)k
, k ∈ N0,

and, for i = 1, 2, . . . , n− 1,

P{Mi = 0} =
i

i+ a

i+ 2a

i+ a
, P{Mi = k} =

i

i+ a

( a

i+ a

)k+1

, k ∈ N.

All these facts follow from the following two observations: (a) {N∗(t) : t ≥ 0}
is the Lévy process, (b) E1,n, E2,n −E1,n,. . . , En,n −En−1,n are independent

rvs with exponential laws (with different parameters). It remains to write

down an equivalent form of (2.13) in terms of generating functions and let n

go to ∞:

EsKn,0 =
n

n+ a− as

n−1∏

i=1

i

i+ a

i+ 2a− as

i+ a− as
→ f(s).

Since

EsΠ(t) = exp(−at(1− s)) and E(1− η)u =
Γ(1 + a)Γ(1 + u)

Γ(1 + a+ u)
, u > −1,

then

EsΠ(| log(1−η)|) =

∫ ∞

0

EsΠ(t)
P{| log(1− η)| ∈ dt}

=

∫ ∞

0

exp(−at(1− s))P{| log(1− η)| ∈ dt}

= E(1− η)a(1−s) =
Γ(1 + a)Γ(1 + a− as)

Γ(1 + 2a− as)

= EsK0 .
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To establish the convergence of Kn, 0 in the general case we will first

consider a sampling scheme in which exponential points E1, E2, . . . are thrown

at the epochs of an independent Poisson process {Π(t) : t ≥ 0} with intensity

one and prove the convergence in distribution of KΠ(t),0, as t→ ∞. The next

step of the proof is depoissonization.

Proof of Theorem 20.

(a) Convergence in the Poisson model. For n, i ∈ N0 and t ≥ 0 set a
(i)
n :=

P{Kn, 0 = i},

f (i)(t) =
∞∑

k=1

tk

k!
a
(i)
k and g(i)(t) := e−tf (i)(t).

Notice that

g(0)(t) + e−t = P{KΠ(t), 0 = 0}, g(i)(t) = P{KΠ(t), 0 = i}.

Equality of distributions (2.11) is equivalent to the following equalities

a
(0)
0 = 1, a(0)n =

n−1∑

k=0

a
(0)
k P{P (n)

1 = k}, n ∈ N;

a
(i)
0 = 0, a(i)n = a(i−1)

n Eηn +
n−1∑

k=0

a
(i)
k P{P (n)

1 = k}, i, n ∈ N,

from which we deduce after some calculations

g(0)(t) = Eg(0)(tη) + Ee−tη − e−t − e−t
Ef (0)(tη) =: Eg(0)(tη) + q(t);

g(i)(t) = Eg(i)(tη) + e−t(Ef (i−1)(tη)− Ef (i)(tη)), i ∈ N.

Fix any t0 ∈ R and define

q1(t) := 1{t>t0}

(
E exp(−etη)− exp(−et)

)
,

q2(t) := 1{t≤t0}

(
E exp(−etη)− exp(−et)

)
,

q3(t) := 1{t>t0} exp(−et)Ef (0)(etη), q4(t) := 1{t≤t0} exp(−et)Ef (0)(etη).
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Since g(0) is bounded and g(0)(0) = 0,

g(0)(et) =

∫

R

q(et−u)d
( ∞∑

n=0

P{Jn ≤ u}
)
.

If it were shown that qj, j = 1, 2, 3, 4, was directly Riemann integrable (dRi)

on R then since q(et) = q1(t) + q2(t) − q3(t) − q4(t) we could apply the key

renewal theorem to conclude that

lim
t→∞

P{KΠ(t), 0 = 0} = lim
t→∞

g(0)(et) =
1

µ

∫ ∞

0

q(t)

t
dt

= 1− 1

µ

∞∑

j=1

Eηj

j
P{Kj, 0 = 0}. (2.14)

We will only prove that q3 and q4 are dRi, the analysis of q1 and q2 being

similar. Since q3 and q4 are continuous and positive on the sets {t ≤ t0} and

{t > t0} respectively, it suffices to find dRi majorants. We have

q3(t) ≤ 1{t>t0}

(
E exp(−et(1− η))− exp(−et)

)

≤ 1{t>t0}E exp(−et(1− η)) =: q5(t),

q4(t) ≤ 1{t≤t0}

(
E exp(−et(1− η))− exp(−et)

)

≤ 1{t≤t0}(1− exp(−et)) =: q6(t).

The functions q5 and q6 are dRi, since they are bounded, monotone on the

sets {t ≤ t0} and {t > t0}, respectively, and integrable. Integrability of f5

follows from the condition ν <∞. This completes the proof of (2.14).

Arguing in the same manner as for the case i = 0 we conclude that for

i ∈ N

lim
t→∞

P{KΠ(t), 0 = i} = lim
t→∞

g(i)(et) =
1

µ

∫ ∞

0

e−t(Ef (i−1)(tη)− Ef (i)(tη))

t
dt

=
1

µ

∞∑

j=1

Eηj

j

(
P{Kj, 0 = i− 1} − P{Kj, 0 = i}

)
.

Assume now that µ = ∞ and ν <∞. It suffices to prove that, as t→ ∞,

h(t) := e−t

∞∑

k=0

tk

k!
a
(0)
k → 1.
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Since h(0) = 1, h is bounded and satisfies

h(t) = Eh(tη)− e−t
Ef (0)(tη),

we conclude that

h(et) = 1−
∫

R

exp(et−u)Ef (0)(et−uη)d
( ∞∑

n=0

P{Jn ≤ u}
)
.

In the same way as in the first part of the proof we check that the key renewal

theorem applies to yield

lim
t→∞

h(et) = 1− 1

µ

∫ ∞

0

e−u
Ef (0)(uη)

u
du = 0

the last integral converges in view of the condition ν < ∞). Thus, we have

already proved that, as t→ ∞, KΠ(t), 0
d→ K0).

If µ <∞ then

EK0 =
∞∑

i=1

P{K0 ≥ i} =
1

µ

∞∑

i=1

∞∑

j=1

Eηj

j
P{Kj, 0 = i− 1} =

1

µ

∞∑

j=1

Eηj

j
=
ν

µ
.

Depoissonization. For any fixed ǫ ∈ (0, 1) and x > 0 we have

P{KΠ(t), 0 > x}
≤ P{KΠ(t), 0 > x, [(1− ǫ)t] ≤ Π(t) ≤ [(1 + ǫ)t]}+ P{|Π(t)− t| > ǫt} ≤
≤ P{ max

[(1−ǫ)t]≤i≤[(1+ǫ)t]
Ki, 0 > x}+ P{|Π(t)− t| > ǫt} =

= P{K[(1−ǫ)t], 0 > x}+ P{K[(1−ǫ)t], 0 ≤ x, max
[(1−ǫ)t]+1≤i≤[(1+ǫ)t]

Ki, 0 > x}+

+ P{|Π(t)− t| > ǫt} := I1(t) + I2(t) + I3(t).

Similarly,

P{KΠ(t), 0 ≤ x} ≤
≤ P{K[(1−ǫ)t], 0 ≤ x}+ P{K[(1−ǫ)t], 0 > x, min

[(1−ǫ)t]+1≤i≤[(1+ǫ)t]
Ki, 0 ≤ x}+

+ P{|Π(t)− t| > ǫt} := J1(t) + J2(t) + I3(t). (2.15)
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If exponential points E[(1−ǫ)t]+1, . . . , E[(1+ǫ)t] fall to the left from the point

E[(1−ǫ)t],[(1−ǫ)t] then

max
[(1−ǫ)t]+1≤i≤[(1+ǫ)t]

Ki,0 ≤ K[(1−ǫ)t], 0

and

K[(1+ǫ)t], 0 ≤ min
[(1−ǫ)t]≤i≤[(1+ǫ)t]−1

Ki,0,

which means that neither the event defining I2(t), nor J2(t) can hold. There-

fore,

max(I2(t), J2(t)) ≤ P{ max
[(1−ǫ)t]+1≤i≤[(1+ǫ)t]

Ei > E[(1−ǫ)t],[(1−ǫ)t]} =

= E

(
1−

(
1− e−E[(1−ǫ)t],[(1−ǫ)t]

)[(1+ǫ)t]−[(1−ǫ)t])
= 1− [(1− ǫ)t]

[(1 + ǫ)t]
.

By a large deviation result (see, for example, [12]), there exist positive con-

stants δ1 and δ2 such that for all t > 0

I3(t) ≤ δ1e
−δ2t.

Select now t such that (1 − ǫ)t = n ∈ N. Then from the calculations above

we obtain

P{KΠ(n/(1−ǫ)), 0 > x} ≤ P{Kn, 0 > x}
+ 1− n/[(1 + ǫ)n/(1− ǫ)] + δ1 exp

−δ2n/(1−ǫ) .

Sending first n to ∞ and then ǫ to 0 we obtain

lim inf
n→∞

P{Kn, 0 > x} ≥ P{K∞,0 > x}

at all continuity points x of the right-hand side. The same argument applied

to (2.15) establishes the converse inequality for the upper limit.

(b) Assume we can prove that

sup
n≥1

EKm
n,0 <∞ for each m ∈ N. (2.16)
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Then, for each a > 0, the sequence {Ka
n,0 : n ∈ N} is uniformly integrable.

Since, as n→ ∞, Ka
n,0

d→ Ka
0 then, by [29, Theorem 5.4], lim

n→∞
EKa

n,0 = EKa
0

and EKa
0 <∞.

For n ∈ N0 set bn := EKn, 0, rn := Eηn

1−Eηn
. We have according to (2.11)

b0 = 0, bn =
n∑

m=1

πn,n−mbn−m + rn, n ∈ N,

where πij were defined in (2.6). Now bn can be represented as

bn =
n∑

m=1

g(n,m)rm, n ∈ N,

where g(n,m) was defined in (2.12) (for convenience we set g(n, n) to be

one). Similarly, for j ∈ N,

EKj
n,0 =

n∑

m=1

g(n,m)rm

(
j−1∑

i=0

(
j

i

)
EKi

m,0

)
. (2.17)

Although there is an ‘explicit’ formula

EKn, 0 = E

∞∑

k=0

((
1− e−Jk + e−Jk+1

)n
−
(
1− e−Jk

)n)

=

∫ ∞

0

(
E(1− e−x(1− η))n − (1− e−x)n

)
dH(x)

=

∫ ∞

0

( n∑

k=1

(−1)k+1

(
n

k

)
e−kx(1− E(1− η)k)

)
dH(x)

=
n∑

k=1

(−1)k+1

(
n

k

)
1− E(1− η)k

1− Eηk
,

where H(x) :=
∑∞

k=0 P{Jk ≤ x} is the renewal function, it is of little help to

derive the convergence

lim
n→∞

EKn,0 = EK0 (2.18)

in case µν < ∞. The only existing proof [59] of (2.18) we are aware of

proceeds by exploiting a limiting scheme in which ‘boxes’ are identified with

gaps between consecutive points in a stationary renewal process on R and
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‘balls’ are identified with points of an independent Poisson process with the

intensity measure e−xdx, x ∈ R.

In view of (2.18),

sup
n≥1

(
n∑

m=1

g(n,m)rm

)
<∞.

Furthermore,

sup
n≥1

(
n∑

m=1

g(n,m)tmrm

)
<∞, (2.19)

for any bounded sequence {tn : n ∈ N}.
The proof of (2.16) runs by induction on m. When m = 1, (2.16) follows

from (2.18). Assume that (2.16) holds for all positive integersm ≤ m0−1 ∈ N.

Setting

tn :=

m0−1∑

i=0

(
m0

i

)
EKi

n,0,

we conclude that the sequence {tn : n ∈ N} is bounded. Therefore, in view

of (2.17) and (2.19), sup
n≥1

EKm0
n,0 <∞ which proves (2.16).

Assuming finally that ν = ∞ and µ < ∞ and using (2.12) along with

Fatou’s lemma gives

lim inf
n→∞

bn ≥
∞∑

m=1

1− Eηm

µm

Eηm

1− Eηm
=

1

µ

∞∑

m=1

Eηm

m
= ∞,

where the last series diverges in view of the condition ν = ∞. The proof is

complete. �

2.5 Proof of Theorem 21

Assume that ν < ∞ and that Un−bn
an

weakly converges to some proper and

nondegenerate law γ. According to Theorem 19, the latter can occur if one of

five conditions (1)-(5) holds and then an → ∞. Notice that for each of these

conditions there exist distributions that satisfy it together with the condition
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ν < ∞ (as e.g. in Examples 23 and (24)). By Theorem 20(a) and Markov

inequality
Kn,0

an
=
Un −Kn

an

P→ 0, n→ ∞.

Therefore, Kn−bn
an

weakly converges to γ.

Assume now that Kn−bn
an

weakly converges to a proper and nondegenerate

probability law γ. Essentially in the same way as for Un (but now using the

result of Theorem 20) we can prove that an → ∞, and the same argument

as above proves that Un−bn
an

weakly converges to γ. The proof is complete.

2.6 Proof of Theorem 22

Case µ <∞. With g(n,m) defined on p. 63, we have

P{Zn = m} = g(n,m)P{Q(m)
1 = 0}.

Since, according to (2.6),

P{Q(m)
1 = 0} =

E(1− η)m

1− Eηm
,

an appeal to (2.12) completes the proof of this case.

Case µ = ∞. Denote by Over (z) := inf{z − Sn : Sn < z, n ∈ N0} the

undershoot at z > 0. For k ∈ {1, 2, . . . , n} we have

P{Zn > k} = P{Over (En,n) > En,n − En−k,n}. (2.20)

Assume first that α ∈ [0, 1) and for fixed ǫ ∈ (0, 1) set kn := [nǫ]. Since

En,n is independent of the undershoot and tends to +∞ in probability, an

appeal to [32, Theorem 8.6.3 ] allows us to conclude that

Over (En,n)

En,n

d→ Ẑα.

Using (2.5) we obtain that En,n/ log n
P→ 1. Since, for x > 0,

P{En,n − En−kn,n ≤ x} = (1− e−x)kn ,
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we can check that

(En,n − En−kn,n)/ log n
P→ ǫ.

Therefore,
En,n − En−kn,n

En,n

P→ ǫ.

Now the result follows from the relation

P

{
logZn

log n
> ǫ

}
= P{Zn > kn}

(2.20)
= P

{
Over (En,n)

En,n

>
En,n − En−kn,n

En,n

}

→ P{Ẑα > ǫ}.

Indeed, while in the case α ∈ (0, 1), each ǫ ∈ (0, 1) is a continuity point of the

distribution of Ẑα, in the case α = 0 the relation establishes the convergence

in probability logZn/ log n→ 1 (notice that logZn/ log n ≤ 1 a.s.).

Consider now the remaining case α = 1. For fixed ǫ ∈ (0, 1) set kn :=

[exp(m−1(ǫm(log n)))], where m−1(·) is the increasing and continuous inverse

of m(x) =
∫ x

0
P{− log η > y}dy, x > 0. Using again the independence of En,n

and the undershoot and exploiting [46, Theorem 6] leads to the conclusion

m(Over (En,n))

m(En,n)

d→ Ẑ1.

Fix any k ∈ N. It is well-known that m(x) is slowly varying at ∞. There-

fore,mk(log x) is also slowly varying at∞, and, as s ↓ 0,mk(− log(1−e−s)) ∼
mk(− log s). Applying Proposition 1.5.8 and Theorem 1.7.1′ from [32] to the

equality

E[mk(En,n)] = n

∫ ∞

0

mk(− log(1− e−s))e−nsds

we get E[mk(En,n)] ∼ mk(log n).

Similarly,

Emk(En,n − En−kn, n) ∼ mi(log kn)

∼ mk(log exp(m−1(ǫm(log n)))) = ǫkmk(log n).
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The last two relations (with k = 1 and k = 2) together with Chebyshev’s

inequality imply that

m(En,n)/m(log n)
d→ 1 and m(En,n − En−kn, n)/m(log n)

d→ ǫ.

Consequently,m(En,n−En−kn, n)/m(En,n)
d→ ǫ. To finish the proof it remains

to note that

P

{
m(logZn)

m(log n)
> ǫ

}
= P {Zn > kn}

(2.20)
= P

{
m(Over (En,n))

m(En,n)
>
m(En,n − En−kn, n)

m(En,n)

}

→ P{Z̃ > ǫ}.

The proof is complete.

2.7 Time of the first exceedance of the

threshold

Below is given a criterion of the weak convergence for

Ct := inf{k ∈ N : Tk > t}, t ≥ 0

the time of the first exceedance of the threshold t by a zero-delayed random

walk with nonnegative steps. Theorem 19 relies heavily on this result.

Proposition 27. Assume that T1 > 0 almost surely, and the law of T1 is

non-arithmetic.

The following assertions are equivalent.

(i) There exist functions {a(t), b(t) : t ≥ 0}, a(t) > 0 and b(t) ∈ R such

that, as t → ∞, (Ct − b(t))/a(t) weakly converges to a proper and

nondegenerate probability law.

(ii) Either the law of T1 belongs to the domain of attraction of a stable law,

or P{T1 > x} slowly varies at ∞.
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Set m := ET1 and σ2 := DT1.

(1) If σ2 < ∞ then, with b(t) := m−1t and a(t) := (m−3σ2t)1/2, the limiting

law is standard normal.

(2) If σ2 = ∞ and
∫ x

0

y2P{T1 ∈ dy} ∼ L(x) x→ ∞,

for some L slowly varying at ∞, then, with b(t) := m−1t and

a(t) := m−3/2c(t), where c : R
+ → R

+ is any function satisfying

limt→∞ tL(c(t))/c2(t) = 1, the limiting law is standard normal.

(3) Assume that

P{T1 > x} ∼ x−αL(x) x→ ∞, (2.21)

for some L slowly varying at ∞ and some α ∈ (1, 2). Then, with b(t) := m−1t

and a(t) := m−(α+1)/αc(t), where c : R+ → R
+ is any function satisfying

limt→∞
tL(c(t))

cα(t)
= 1, the limiting law is α-stable with characteristic function

(2.2).

(4) Assume that (2.21) holds for α = 1. Let c : R+ → R
+ be any function

satisfying limx→∞ xL(c(x))/c(x) = 1, and set

ψ(x) := x

∫ c(x)

0

P{T1 > y}dy.

Let b : R+ → R
+ be any function satisfying b(ψ(x)) ∼ ψ(b(x)) ∼ x. Then,

with the so defined b(t) and a(t) := b(t)c(b(t))/t, the limiting law is 1-stable

with characteristic function (2.3).

(5) If (2.21) holds for some α ∈ [0, 1) then, with b(t) ≡ 0 and a(t) := tα/L(t),

the limiting law is the Mittag-Leffler distribution.

2.8 Bibliographic comments

The Bernoulli sieve was introduced by Alexander Gnedin in [55]. This model

generalizes at least three classical schemes of Applied Probability.

(a) If the law of η is degenerate at some point from the interval (0, 1), the

Bernoulli sieve naturally arises in the leader election problem and its variants
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or equivalently in the problems around the maximum of geometric samples.

This setting has received an enormous amount of attention especially in the

AofA community ([35, 49, 65, 89, 94] and many others).

(b) Assuming that η has the beta law with parameters θ > 0 and 1 denote

by Kj,n the number of intervals in the corresponding Bernoulli sieve which

contain j points. Consider a random vector C(n) := (Cn,1, . . . , Cn,n), where

Cn,j is the number of cycles of length j in the θ-biased random permutation

of n, and denote by Ln =
∑n

j=1Cn,j the total number of cycles (exhaustive

information about random permutations and related objects is available in a

nice, reader-friendly monograph [2]). Then

C(n) d
= (K1,n, . . . , Kn,n) and Ln

d
= Kn =

n∑

j=1

Kj,n.

It is known that the law of C(n) is given by the Ewens sampling formula:

P{C(n) = (c1, . . . , cn)} = 1{∑n
j=1 jcj=n}

n!

θ(n)

n∏

j=1

(
θ

j

)cj 1

cj!
, cj = 0, 1, . . . , n.

Also it is a classics of the field that the numbers of cycles of distinct lengths

are asymptotically independent and weakly converge to the Poisson laws,

and the total number of cycles, properly normalized and centered, weakly

converges to the standard normal law. Thus our Theorem 21 can be seen as

a generalization of the latter statement.

As far as we know there are only few papers [55, 58, 59, 60, 61] which do

not assume that the law of η is known.

(c) A scheme of allocation of n balls over an infinite array of boxes indexed

by positive integers with deterministic probability Qk of hitting the kth box is

called the infinite occupancy scheme. Although such a model was introduced

and partially studied in [11, 39], the first systematic treatment is due to

Samuel Karlin [91]. Among other things the cited paper has proved a CLT

for the number of occupied boxes (an ultimate version was obtained in [45]).

Modern exposition of the area can be found in a recent survey [56].

The Bernoulli sieve is the Karlin’s occupancy scheme in a random envi-

ronment. The only difference from the original model is that the probability



78 CHAPTER 2. THE BERNOULLI SIEVE

of hitting the kth box (interval) by a ball (exponential point) is random

Qj = η1 · · · ηj−1(1− ηj), j ∈ N.

Chapter 2 is based on [58]. Theorem 21 generalizes one Gnedin’s result

given in [55, Proposition 10] under the assumption Var (log η) <∞. Note that

our technique is simpler and more probabilistic than purely analytic approach

of [55]. The proof of Theorem 20 exploits a ”poissonization-depoissonization”

device. This approach is well-known and dates back at least to Marc Kac [90]

(see also [91] for an application to the Karlin’s occupancy scheme). Section

2.7 is devoted to a criterion of the weak convergence of

Ct := inf{k ∈ N : Tk > t}

the time of the first exceedance of the threshold t ≥ 0 by a zero-delayed

random walk {Tn : n ∈ N0} with nonnegative steps. The weak convergence

of Ct was investigated by many authors (see, for instance, [7, 30, 47, 69, 73]).

However, to our knowledge, separate particular results are scattered over the

literature and there is no paper that would contain a complete information

concerning the weak asymptotics of Ct. In case when the step of {Tn : n ∈ N0}
only takes positive integer values, a criterion of the weak convergence of

Ct can be derived from Theorem 1.2, Theorem 1.5 and Proposition 3.1 in

[84]. Note that the first two cited statements were formulated for rvs other

than Ct, but with the same weak asymptotic behavior. Following exactly the

same route as in [84], one can check that random walks with steps having

nonarithmetic laws enjoy the same weak asymptotics.
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Chapter 3

Asymptotics of intrinsic

martingales in branching

random walks

3.1 Definition of BRW and intrinsic martin-

gales in BRW

Consider a population starting from one progenitor and evolving like a gener-

alized Galton-Watson process, in which individuals may have infinitely many

children. We assume that the structure of the branching process is enriched

by the locations of individuals on the real line, so that the progentitor is lo-

cated at the origin, and the displacements of children relative to their mother

are described by a point process Z =
∑N

i=1 δXi
on R.

ThusN := Z(R) is the total size of offspring of a particular member of the

population, and Xi is the displacement of the i-th child. The displacement

processes of all population members are supposed to be independent copies of

Z. We further assume Z({−∞}) = 0 and EN > 1 (supercriticality) including

the possibility P{N = ∞} > 0 as already stated above. If P{N < ∞} = 1,
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then the population size process forms an ordinary Galton-Watson process.

Supercriticality ensures survival of the population with positive probability.

For n = 0, 1, ... let Zn be the point process that defines the positions on R

of the individuals of the n-th generation, with their total number being given

by Zn(R). The sequence {Zn : n = 0, 1, ...} is called the branching random

walk (BRW).

Let V :=
⋃∞

n=0 N
n be the infinite Ulam-Harris tree of all finite words

v = v1...vn (shorthand for sequence (v1, ..., vn)), with root ∅, zero generation

N
0 := {∅}, and edges connecting each v ∈ V with its successors vi, i =

1, 2, ... The length of v is denoted as |v|. Call v an individual and |v| its
generation number. A BRW {Zn : n = 0, 1, ...} may now be represented as a

random labeled subtree of V with the same root. This subtree T is obtained

recursively as follows: For any v ∈ T, let N(v) be the number of its successors

(children) and Z(v) :=
∑N(v)

i=1 δXi(v) denote the point process describing the

displacements of the children vi of v relative to their mother. By assumption,

the Z(v) are independent copies of Z. The Galton-Watson tree associated

with this model is now given by

T := {∅} ∪ {v ∈ V\{∅} : vi ≤ N(v1...vi−1) for i = 1, ..., |v|},

andXi(v) denotes the label attached to the edge (v, vi) ∈ T×T and describes

the displacement of vi relative to v. Let us stipulate hereafter that
∑

|v|=n

means summation over all vertices of T (not V) of length n. For v = v1...vn ∈
T, put S(v) :=

∑n
i=1Xvi(v1...vi−1). Then S(v) gives the position of v on the

real line (of course, S(∅) = 0), and Zn =
∑

|v|=n δS(v) for all n = 0, 1, ...

On the figure 2.1.1 (a random variable M only takes values 2 and 3)

differences S(11)−S(1), S(12)−S(1), S(13)−S(1) and S(21)−S(2), S(22)−
S(2) are realizations of two independent copies of Z. Subsequent evolution

of the population is similar.

Fig. 4.1.1: A realization of the BRW

Suppose there exists γ > 0 such that

m(γ) := E

∫

R

eγxZ(dx) ∈ (0,∞). (3.1)
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For n = 1, 2, ..., define Fn := σ(Z(v) : |v| ≤ n− 1), and let F0 be the trivial

σ-field. Put

Wn := m(γ)−n

∫

R

eγxZn(dx) = m(γ)−n
∑

|v|=n

eγS(v) =
∑

|v|=n

L(v), (3.2)

where L(v) := eγS(v)/m(γ)|v|. Notice that the dependence of Wn on γ has

been suppressed. The sequence {(Wn,Fn) : n ∈ N0} forms a non-negative

martingale with mean one, thus converging a.s. to some limiting variable

W , satisfying EW ≤ 1. This martingale is called intrinsic martingale of the

branching random walk.

It is known (see, for instance, [3]) that P{W > 0} > 0 if and only if

{Wn : n ∈ N} is uniformly integrable. While uniform integrability is clearly

sufficient, the necessity hinges on the well known fact that W satisfies the

stochastic fixed point equation

W =
∑

|v|=n

L(v)W (v) a.s. (3.3)

for n ∈ N, where the W (v), |v| = n, are i.i.d. copies of W that are also

independent of {L(v) : |v| = n}, see e.g. [26]. In fact W (v) is nothing but
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the a.s. limit of the martingale {∑|w|=m
L(vw)
L(v)

: m ∈ N0} which forms the

counterpart of {Wn : n ∈ N0}, but for the subtree of T rooted at v.

Let (M,Q) be a random variable with distribution defined by

P{(M,Q) ∈ A} = E

(
∑

|v|=1

L(v)1A

(
L(v),

∑

|u|=1

L(u)

))
(3.4)

for any Borel set A in R
+×R

+. Notice that the right-hand side of (3.4) does

indeed define a probability distribution because E
∑

|v|=1 L(v) = EW1 = 1.

Plainly, the distribution of M is given by

P{M ∈ B} := E


∑

|v|=1

L(v)δL(v)(B)


 , (3.5)

for any Borel subset B of R+. More generally, we have (see e.g. [26, Lemma

4.1])

P{Πn ∈ B} = E


∑

|v|=n

L(v)δL(v)(B)


 , (3.6)

for each n ∈ N, whenever {Mk : k ∈ N} is a family of independent copies of

M , and

Π0 := 1, Πn :=
n∏

k=1

Mk, n ∈ N.

It is important to note that

P{M = 0} = 0 and P{M = 1} < 1. (3.7)

The first assertion follows since, by (3.5), P{M > 0} = EW1 = 1. As for the

second, observe that P{M = 1} = 1 implies E
∑

|v|=1 L(v)1{L(v) 6=1} = 0 which

in combination with EW1 = 1 entails that the point process Z consists of

only one point u with L(u) = 1. This contradicts the assumed supercriticality

of the BRW.

For x > 0, define

A(x) :=

∫ x

0

P{− log |M | > y} dy = Emin
(
log− |M |, x

)
(3.8)

and then J(x) := x/A(x). Set J(0) := limx↓0 J(x) = 1/P{|M | < 1}.
The following criterion of uniform integrability was given in [3].



3.1. DEFINITION OF BRW 83

Theorem 28. The martingale {Wn : n ∈ N0} is uniformly integrable (regu-

lar) if and only if the following two conditions hold true:

lim
n→∞

Πn = 0 a.s. (3.9)

and

EW1J(log
+W1) =

∫

(1,∞)

xJ(log x) P{W1 ∈ dx} < ∞. (3.10)

There are three distinct cases in which conditions (3.9) and (3.10) hold

simultaneously:

(A1) E logM ∈ (−∞, 0) and EW1 log
+W1 <∞;

(A2) E logM = −∞ and EW1J(log
+W1) <∞;

(A3) E log+M = E log−M = +∞, EW1J(log
+W1) <∞, and

EJ
(
log+M

)
=

∫

(1,∞)

log x
∫ log x

0
P̂{− logM > y} dy

P̂{M ∈ dx} < ∞.

The main result of this section proves the power-like tail behavior of the

law of sup
n≥0

Wn.

Theorem 29. Suppose there exists b > 1 such that

E

∑

|v|=1

Lb(v) = 1, E

∑

|v|=1

Lb(v) log+ L(v) <∞ and EW b
1 <∞.

(a) If logM has non-lattice law then there exists a constant C ∈ (0,∞) such

that

lim
x→∞

xbP{sup
n≥0

Wn > x} = C.

(b) If logM has lattice law with the span δ then there exists a positive δ-

periodic function C(x) such that, for every x ∈ R,

lim
k→∞

e(γk+x)b
P{sup

n≥0
Wn > eγk+x} = C(x).
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Remark 30. (a) The constant C and the function C(x) are known in an

explicit, but complicated form (see the proof of Theorem 29).

(b) Under the assumptions of Theorem 29, the martingale Wn converges a.s.

and in mean to a random variable W (see the proof of Theorem 29). Arguing

in a similar, but simpler way, one can check that the statement of Theorem

29 holds for the law of W with different C and C(x). The first version of

this result was given in [77, Proposition 7] and then corrected in [79]. Earlier

Liu in [98, Theorem 2.2] obtained a weaker version of this last result by an

application of a famous Kesten-Grincevicius’ theorem (see [66, Theorem 2.3],

[67, Theorem 2], [92, Theorem 5]) to the perpetuity (3.14).

3.2 Properties of the law of W and its con-

nection to perpetuities

First, we point out an inequality that relates the laws of W and sup
n≥0

Wn.

Lemma 31. Suppose that Wn converges in mean to a random variable W .

Then there exists 0 < r < 1 and B = B(r) > 1 such that

P{W > t} ≤ P{sup
n≥0

Wn > t} ≤ B P{W > rt},

whenever t > 1.

Proof. In case N < ∞ a.s., this result is given in [21, Lemma 2]. Our proof

is simpler and does not require that assumption on N .

We only have to check the right-hand side of the inequality. For t > 1

and n ∈ N define the events

En := { max
0≤k≤n−1

Wk ≤ t,Wn > t}.

Then P{sup
n≥0

Wn > t} =
∑∞

n=1 P{En}. Therefore, for any r > 0

P{W > rt} ≥ P{W > rt, sup
n≥0

Wn > t} =
∞∑

n=1

P{W > rt|En}P{En}. (3.11)
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For n ∈ N and any fixed d > 0 set

Qn :=

{∑

|v|=n

L(v)(W (v) ∧ d)
Wn

> r

}
.

Using equality (3.3) we obtain

P{W > rt|En} ≥ P

{∑

|v|=n

L(v)(W (v) ∧ d)
Wn

>
rt

Wn

∣∣∣∣En

}
≥ (3.12)

≥ P{Qn|En} = (P{En})−1
EP{Qn|Fn}1En

=

= (P{En})−1
EP

{∑

|v|=n

L(v)

Wn

(W (v) ∧ d− r) > 0

∣∣∣∣Fn

}
1En

.

Recall that theW (v), |v| = n, are i.i.d. copies ofW that are also independent

of {L(v) : |v| = n}.
Let η be a rv with Eη > 0. By Cauchy-Schwarz inequality

P{η > 0} ≥ (Eη)2

Eη2
. (3.13)

As EW = 1, we can fix r ∈ (0, 1) and pick d = d(r) such that E(W∧d−r) > 0.

Then, according to (3.13),

P

{∑

|v|=n

L(v)

Wn

(W (v) ∧ d− r) > 0

∣∣∣∣Fn

}
≥ (E(W ∧ d− r))2

E(W ∧ d− r)2
=:

1

B
a.s.

Applying this inequality to (3.12) gives

P{W > rt|En} ≥ 1/B.

Appealing to (3.11) completes the proof.

The following is an immediate consequence of the preceding result.

Corollary 32. For α > 0, EW α <∞ if and only if E(sup
n≥0

Wn)
α <∞.

In case P{W > 0} > 0, our next result shows that the law of W is the

law of certain perpetuity.
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Lemma 33. Suppose that the martingale Wn converges in mean to a random

variable W . Denote by W a random variable with distribution P{W ∈ dx} =

xP{W ∈ dx}. Then
W

d
= TW +R, (3.14)

where (T,R) is a random vector which is independent of W with distribution

defined by

P

{
(T,R) ∈ A

}
= E

(
∑

|v|=1

L(v)1A

(
L(v),

∑

|u|=1
u 6=v

L(u)W (u)

))
, (3.15)

for any Borel set A in R
2. In particular, the distribution of T coincides with

the distribution ofM defined in (3.5). The random variables {W (v) : |v| = 1}
in (3.15) are i.i.d. copies of W .

Proof. In the case N < ∞ a.s., this result is given in [98, Lemma 4.1]. Our

new proof is simpler.

Throughout the proof the record u 6= v only concerns the individuals of

the first generation, other than v. Let ϕ(s) be the Laplace-Stieltjes transform

of W . From equality (3.3) with n = 1 it follows that

ϕ(s) = E

∏

|v|=1

ϕ(sL(v)).

For any h > 0

ϕ(sL(v))− ϕ((s+ h)L(v))

h
≤

∑
|v|=1(ϕ(sL(v))− ϕ((s+ h)L(v)))

h

≤
∑

|v|=1(−ϕ′(sL(v))hL(v))

h
≤
∑

|v|=1

L(v).

Now, using the fact, that E
∑

|v|=1 L(v) = 1 and the Lebesgue’s dominated

convergence theorem we can formally differentiate the equality for ϕ(s)

ϕ′(s) = E

∑

|v|=1

ϕ′(sL(v))L(v)
∏

u 6=v

ϕ(sL(u)). (3.16)
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To prove this formal differentiating it’s enough to show (by Lebegue theo-

rem), that

Denote by ψ(s) the LST of W . Then

ψ(s) = −ϕ′(s).

Our aim is to find the LST of the right-hand side of (3.14). Using equality

(3.15) with k(a, b) = e−sxa−sb, where s and x are fixed, we obtain

Ee−sxT−sR = E

∑

|v|=1

L(v)e−sxL(v)−s
∑

u 6=v L(u)W (u) = E(E(·|F1))

= E

∑

u

Yue
−sxYu

∏

v 6=u

ϕ(sYv).

Further

Ee−s(TW+R) =

∫ ∞

0

Ee−sxT−sRdP{W ≤ x}

= E

∑

|v|=1

L(v)

∫ ∞

0

e−sxL(v)dP{W ≤ x}
∏

u 6=v

ϕ(sL(u))

= E

∑

|v|=1

(−ϕ′(sL(v))L(v))
∏

u 6=v

ϕ(sL(u)).

In view of (3.16) we conclude that

−ϕ′(s) = Ee−sW = Ee−s(TW+R),

which proves (3.14).

Finally, (3.15) with A = B × R implies that

P{T ∈ B} := E


∑

|v|=1

L(v)δL(v)(B)


 .

Hence, T
d
=M .

3.3 Proof of Theorem 29

Set

N(x) :=

∫ ∞

0

1

z
P{sup

n≥0
Wn >

x

z
}dP{M ≤ z}.
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The measure U defined by the equality

U(dz) := zb−1
P{M ∈ dz},

is a probability measure, as
∫ ∞

0

U(dz) = EM b−1 = E

∑

|v|=1

Lb(v) = 1.

Our point of departure is the following representation

xbP{sup
n≥0

Wn > x} =

∫ ∞

0

xb

zb
P

{
sup
n≥0

Wn >
x

z

}
dU(z)

+ xb
(
P{sup

n≥0
Wn > x} −N(x)

)
.

Integrate this equality over [0, ey] and then multiply by e−y to obtain

e−y

∫ ey

0

xbP{sup
n≥0

Wn > x}dx (3.17)

= e−y

∫ ey

0

∫ ∞

0

xb

zb
P

{
sup
n≥0

Wn >
x

z

}
dU(z)dx

+ e−y

∫ ey

0

xb
(
P{sup

n≥0
Wn > x} −N(x)

)
d x.

Set

P (y) := e−y

∫ ey

0

xbP{sup
n≥0

Wn > x}dx,

Q(y) = e−y

∫ ey

0

xb
(
P{sup

n≥0
Wn > x} −N(x)

)
dx.

Since

e−y

∫ ey

0

∫ ∞

0

xb

zb
P

{
sup
n≥0

Wn >
x

z

}
dU(z)dx

= e−y

∫ ∞

0

dU(z)z

∫ ey

z

0

vbP{sup
n≥0

Wn > v}dv

=

∫ ∞

−∞

e−(y−t)dU(et)

∫ ey−t

0

vbP{sup
n≥0

Wn > v}dv

=

∫ ∞

−∞

P (y − t)dU(et),
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(3.17) is a renewal equation

P (y) =

∫ ∞

−∞

P (y − t)dU(et) +Q(y).

The function q(x) := E
∑

|v|=1 L
x(v) is log-convex on the set of finiteness.

Thus condition q(1) = q(b) = 1 implies that, for x ∈ (1, b),

E

∑

|v|=1

Lx(v) < 1. (3.18)

By Jensen’s inequality,

E logM = E

∑

|v|=1

L(v) logL(v) < 0.

Condition EW b
1 <∞ implies that EW1 log

+W1 <∞. Therefore, by Theorem

28, the martingale {Wn : n ∈ N0} converges a.s. and in mean to a rv W .

Furthermore, by [77, Proposition 4],

EW a <∞ for all a ∈ (1, b). (3.19)

Set

g(x) := xb
(
P{sup

n≥0
Wn > x} −N(x)

)
.

Then

Q(y) = e−y

∫ ey

0

g(x)dx = e−y

∫ y

−∞

etg(et)dt.

Now we intend to find the asymptotics of P (x), as x→ ∞, by using the key

renewal theorem on the whole line. To this end, we first prove that Q(y) is

directly Riemann integrable. For this to be true, according to [66, Lemma

9.2], it suffices to check that 0 <
∫∞

−∞
g(et)dt <∞ or, equivalently,

0 < I(b) :=

∫ ∞

0

yb−1

(
P{sup

n≥0
Wn > y} −N(y)

)
dy <∞. (3.20)

Pick any a ∈ (1, b). From (3.18) it follows that

EMa−1 = E

∑

|v|=1

La(v) < 1.
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Furthermore, (3.19) and Corollary 32 together imply that E(sup
n≥0

Wn)
a <∞.

Therefore,
∫ ∞

0

ya−1
P{sup

n≥0
Wn > y}dy =

1

a

∫ ∞

0

yadP{sup
n≥0

Wn ≤ y}

=
1

a
E(sup

n≥0
Wn)

a <∞;

∫ ∞

0

ya−1N(y)dy =
1

a
E(sup

n≥0
Wn)

a
EMa−1 <∞;

0 < I(a) =
1

a
E(sup

n≥0
Wn)

a(1− EMa−1) <∞.

As W ≤ sup
n≥0

Wn a.s., we have EW a ≤ E(sup
n≥0

Wn)
a. By Lemma 31, there exist

constants r ∈ (0, 1) and B > 1 such that

E(sup
n≥0

Wn)
a ≤ B

ra
E(W ∨ r)a.

Therefore, setting

Ka := EW a(1− EMa−1),

we conclude that

Ka ≤ aI(a) ≤ B

ra
Ka. (3.21)

Recall a known inequality

(x+ y)s ≤ (2s−1 ∨ 1)(xs + ys), x, y ≥ 0, s > 0, (3.22)

which follows from the concavity of x→ xs for s ∈ (0, 1], and the convexity–

for s > 1. To estimate Ka from above we use equality of distributions (3.14).

If a− 1 ∈ (0, 1] then

EW a = EW
a−1

= E(TW +R)a−1
(3.22)

≤ ET a−1
EW a + ERa−1;

Ka ≤ ERa−1.

For fixed c ∈ (1, b) pick ǫ > 0 such that ET c−1(1 + ǫ−1)c−1 < 1. Suppose

that d := P{ǫR ≥ TW} = 0. Then W ≤ (1 + ǫ−1)TW stochastically, which
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contradicts the choice of ǫ. Hence, d > 0. By Rolle’s theorem, for ǫy ≥ x > 0

and h ∈ (0, 1)

(x+ y)h − xh ≥ h(x+ y)h−1y ≥ h(1 + ǫ)h−1yh.

Thus

Ka ≥ E((TW +R)a−1 − T a−1W
a−1

)1{ǫR≥TW}

≥ (a− 1)(1 + ǫ)a−2
ERa−11{ǫR≥TW} > 0.

In case a− 1 > 1, we use the inequality

(u+ v)a−1 = ua−1 + (a− 1)

∫ v

0

(u+ t)a−2dt

≤ ua−1 + (a− 1)(u+ v)a−2v
(3.22)

≤ ua−1 + (a− 1)(2a−3 ∨ 1)(ua−2v + va−1),

which holds for u, v ≥ 0, and Holder’s inequality with p := a−1
a−2

, q := a − 1,

to obtain

Ka ≤ const (EW a−1
ET a−2R + ERa−1)

≤ const (EW a−1(ET a−1)1/p(ERa−1)1/q + ERa−1)

= const (EW a−1(ERa−1)1/q + ERa−1).

Finally,

EW a = EW
a−1

= E(TW +R)a−1
(3.22)

≥ ET a−1
EW a + ERa−1;

Ka ≥ ERa−1.

By [98, Lemma 4.2],

ERx ≤
{

EW x+1
1 , x ∈ (0, 1],

EW x
EW x+1

1 , x > 1.

whenever ERx < ∞. Under the assumptions of the theorem, both EW b−1

and EW b
1 are finite. This implies that ERx ∈ (0,∞) for all x ∈ (0, b − 1].
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Therefore, letting in (3.21) a go to b along some subsequence yields (3.20)

and, hence, the direct Riemann integrability of Q.

Since
∫ ∞

−∞

tdU(et) =

∫ ∞

0

tb−1 log tP{M ∈ dt}

= EM b−1 logM = E

∑

|v|=1

Lb(v) logL(v) <∞,

then the key renewal theorem on the whole line ensures that

lim
x→∞

P (x) = (E
∑

|v|=1

Lb(v) logL(v))−1

∫ ∞

−∞

Q(y)dy =: C = const,

provided the law of logM is non-lattice. The latter implies

lim
t→∞

tb P{sup
n≥0

Wn > t} = C.

If the law of logM is lattice with the span δ > 0, the renewal theorem

only asserts that

lim
n→∞

P (x+ δn) = (E
∑

|v|=1

Lb(v) logL(v))−1

∞∑

k=−∞

Q(x+ δk) =: C(x).

Thus, for x1 ≥ x2,

lim
k→∞

(ex1P (x1 + δk)− ex2P (x2 + δk))

= lim
k→∞

∫ ex1

ex2
eδbksbP{sup

n≥0
Wn > eδks}ds

= ex1C(x1)− ex2C(x2).

Since P{sup
n≥0

Wn > x} is monotone (in x) then, for fixed s, the last integrand

remains bounded. Therefore, there exist constants b1 and b2 such that

0 < b1 ≤ Gb(x) ≤ b2 <∞,

where Gb(x) := xbP{sup
n≥0

Wn > x}. Letting k go to ∞ through some sequence

{kj : j ∈ N} (its existence is granted by the selection principle) we conclude
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that eδbksβP{sup
n≥0

Wn > eδks} converges to some function C∗(s). The function

x 7→ x−bC∗(x) is non-increasing as the limit of non-increasing functions.

Therefore, the number of its discontinuity points is at most denumerable.

The equality ∫ ex1

ex2
C∗(s)ds = ex1C(x1)− ex2C(x2)

uniquely determines C∗(x) at all continuity points which implies that it does

not depend on the chosen sequence (kj). Consequently, as k → ∞,

Gb(e
x+δk) = e(x+δk)b

P{sup
n≥0

Wn > ex+δk} → C∗(ex) = C(x),

for all but at most denumerably many x. Applying the diagonalization pro-

cedure allows us to conclude that the last equality holds for all x > 0. The

proof is complete.

3.4 Asymptotics of non-regular intrinsic

martingales in the BRW

When the intrinsic martingale {Wn : n ∈ N0} is regular, it converges a.s. to

a rv W which is positive with positive probability. In this case, seeking for

conditions which ensure finiteness of EWf(W ), for appropriate functions f ,

forms a classical subject of the branching processes theory. In the opposite

situation, when the intrinsic martingale is non-regular, a natural counterpart

of the problem above is investigating the asymptotics of EWnf(Wn), as n→
∞.

In this Section, we address such a problem for f(x) = log+ x. An addi-

tional motivation for considering these functions stems from the following

discussion. As a slight generalization of a classical Doob’s inequality [110,

p. 71], papers [112] and [80] showed that if {Zn : n ∈ N0} is a non-negative

non-regular martingale with Z0 = a > 0 and EZn log
+ Zn <∞, n ∈ N, then

lim sup
n→∞

Emax
0≤k≤n

Zk

EZn log
+ Zn

≤ a. (3.23)
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Although in [80] it was proved that there exist martingales {Zn : n ∈ N0}
such that

lim
n→∞

Emax
0≤k≤n

Zk

EZn log
+ Zn

= c ∈ [0, a],

we believe that, like the critical Galton-Watson processes with finite second

moments [9], the non-regular intrinsic martingales satisfy

lim
n→∞

Emax
0≤k≤n

Wk

EWn log
+Wn

= 1.

In conclusion, we expect that the results derived in this Section may shed

some light on the asymptotics of Emax
0≤k≤n

Wk, as n→ ∞.

If the martingale {Wn : n ∈ N0} is non-regular then by Vallée-Poussin

theorem [104, Theorem T22]

sup
n≥0

EWn log
+Wn = ∞.

Under the assumption EW1 log
+W1 < ∞, the sequence {Wn log

+Wn : n ∈
N0} forms a non-negative integrable submartingale. Hence,

lim
n→∞

EWn log
+Wn = ∞.

Theorem 34 investigates the asymptotics of EWn log
+Wn, as n→ ∞, under

additional assumptions.

Theorem 34. Assume that

(a) there exists a sequence of non-negative constants {bn : n ∈ N} such that

log Πn

bn
⇒ ρα, n→ ∞,

where ρα is an α- stable law, α ∈ (1, 2], and Πn defined on p. 82;

(b) for some ε > 0 EW1(log
+W1)

α+ε <∞.

Then

lim
n→∞

EWn log
+Wn

bn
= E sup

0≤t≤1
Z(t) ∈ (0,∞), (3.24)

where {Z(t) : t ≥ 0} is an α-stable Lévy process such that the law of Z(1) is

ρα.
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Remark 35. Plainly, condition (a) means that the law of logM belongs to the

domain of attraction of an α-stable law, α ∈ (1, 2] which in particular implies

that E logM = 0. It is well-known (see, for instance, [76]) that bn = n1/αL(n)

for some L slowly varying at ∞ and that
∫

R

eitxρα(dx) = exp(−λ|t|α(1 + iβ sgn t tan(πα/2))), t ∈ R,

where λ > 0 and |β| ≤ 1.

Remark 36. If s2 := E(logM)2 <∞, then (3.24) takes the form

lim
n→∞

EWn log
+Wn√
n

=

√
2

π
s.

Indeed, in this case bn = s
√
n, and the corresponding Lévy process {Z(t) :

t ≥ 0} is Brownian motion. According to André’s reflection principle,

sup
0≤t≤1

Z(t)
d
= |Z(1)|.

Hence E sup
0≤t≤1

Z(t) =
√

2
π
.

Proof. Let {(Mk, Qk) : k ∈ N} be independent copies of a random vector

(M,Q) with distribution defined in (3.4). In particular,

P{Q ∈ A} = xP{W1 ∈ A}, (3.25)

for any Borel set A on R
+.

From the results of [3] it follows that if g(·) is a non-decreasing and

concave function, and h(·) is a non-decreasing function then

EWng(Wn) ≤ Eg

( n∑

k=1

Πk−1Qk

)
, n ∈ N, (3.26)

and

EWnh( max
0≤k≤n

Wk) ≥ Eh( max
1≤k≤n

Πk−1Qk), n ∈ N. (3.27)

By using inequalities

log+ x ≤ log(x+ 1) ≤ log+ x+ log 2,
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(3.26) with g(x) = log(x+ 1), and

n∑

k=1

Πk−1Qk ≤ nmax
1≤k≤n

Πk−1Qk ≤ nmax
1≤k≤n

Πk−1 max
1≤k≤n

Qk,

we obtain

EWn log
+Wn ≤ EWn log(Wn + 1) (3.28)

≤ E log

( n∑

k=1

Πk−1Qk + 1

)

≤ log(2n) + log+( max
1≤k≤n

Πk−1) + log+( max
1≤k≤n

Qk)

= log(2n) + max
0≤k≤n−1

Tk + log+( max
1≤k≤n

Qk),

where Tk := log Πk, k ∈ N0. As {Tn : n ∈ N0} is a martingale then, for

β ∈ (1, α), the Doob’s Lβ– inequality holds

E




max
0≤m≤n

|Tm|

bn




β

≤
(

β

β − 1

)β

E

( |Tn|
bn

)β

.

Besides that, by [76, Lemma 5.2.2] the moments E

( |Tn|
bn

)β

are uniformly

bounded (in n).

In view of

E

( max
0≤m≤n

Tm

bn

)β

≤ E




max
0≤m≤n

|Tm|

bn




β

,

the sequence

{ max
0≤m≤n

Tm

bn
: n ∈ N

}
is uniformly integrable.

By [74, Theorem 4],

max
0≤m≤n

Tm

bn

d→ sup
0≤t≤1

Z(t), n→ ∞,

and now the uniform integrability ensures that

lim
n→∞

E

( max
0≤m≤n

Tm

bn

)
= E sup

0≤t≤1
Z(t) ∈ (0,∞). (3.29)
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Since

E

( log+ max
1≤k≤n

Qk

bn

)α+ε

= E

( max
1≤k≤n

log+Qk

bn

)α+ε

≤ n

bα+ε
n

E(log+Q1)
α+ε,

and recalling that bn = n1/αL(n), and

E(log+Q1)
α+ε = EW1(log

+W1)
α+ε <∞

by the assumption, we conclude that the right-hand side converges to zero,

as n→ ∞. This establishes the limit relation

lim
n→∞

E

( log+ max
1≤k≤n

Qk

bn

)
= 0.

Using (3.28) yields

lim sup
n→∞

EWn log
+Wn

bn
≤ E sup

0≤t≤1
Z(t). (3.30)

Inequality (3.27) with h(x) = log+ x reads

EWn log
+ max

0≤k≤n
Wk ≥ E log+ max

1≤k≤n
Πk−1Qk, n ∈ N. (3.31)

Arguing in the same way as in the proof of a formula in [66, p. 159], we

have checked that

P{max
1≤k≤n

(Tk−1+logQk) > x} ≥ P{logQ > y}P{ max
0≤k≤n−1

Tk > x−y}, x, y ∈ R.

Pick y < 0 such that P{logQ > y} > 0. Then

E

( log+ max
1≤k≤n

Πk−1Qk

bn

)
= E

(max+
1≤k≤n

(Tk−1 + logQk)

bn

)

=

∫ ∞

0

P{max
1≤k≤n

(Tk−1 + logQk) > xbn}dx

≥ P{logQ > y}
∫ ∞

0

P{ max
0≤k≤n−1

Tk > xbn − y}dx

= P{logQ > y}
y + E max

0≤k≤n−1
Tk

bn
.
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Recalling (3.29), and sending first n→ ∞ and then y → −∞ gives

lim inf
n→∞

E log+ max
1≤k≤n

Πk−1Qk

bn
≥ E sup

0≤t≤1
Z(t).

By virtue of (3.31),

lim inf
n→∞

EWn log
+ max

0≤k≤n
Wk

bn
≥ E sup

0≤t≤1
Z(t). (3.32)

Using working in [80, p. 3014-3015], one can verify that, for any x0 > e,

x0 − 1

x0
EWn log

+ max
1≤k≤n

Wk ≤ EWn log
+Wn +

log(x0 − 1) + 1

x0
.

Taking into account (3.32), and letting in the last inequality first n → ∞
and then x0 → ∞, we conclude that

lim inf
n→∞

EWn log
+Wn

bn
≥ E sup

0≤t≤1
Z(t),

which together with (3.30) proves the theorem.

3.5 Bibliographic comments

The notion of branching random walk, as used in the present work, was in-

troduced by John Biggins in [19]. Before the appearance of article [19] the

definition of branching random walk was more restrictive and assumed that

the underlying point process Z has i.i.d. points. The latter processes are

sometimes called homogeneous branching random walks. The first investiga-

tions of the intrinsic martingale defined in (3.35) were undertaken by J.F.C.

Kingman [93] and J. Biggins [19].

Until recently most papers concerned with studying the branching ran-

dom walks have assumed that N <∞ a.s. An incomplete list of papers which

make allowance of P{N = ∞} > 0 includes [3, 4, 5, 6, 77, 78, 82, 85, 87,

100, 101, 120, 121]. The last two papers investigate the weighted branching

processes which were introduced in [117]. In case of non-negative weights,
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the weighted branching process only differs from the BRW in that the point

process Zn has points {L(v) : |v| = n} rather than {S(v) : |v| = n}, i.e., an
additive formulation is replaced by multiplicative one.

The following topics related to the BRW have been receiving a lot of

attention over the years:

• a criterion of uniform integrability of the intrinsic martingale (under

extra moment conditions– [19, 27, 97, 100]; an ultimate version given

in the text as Theorem 28 – in [3] (see also [77]));

• finiteness of f -moments and tail behavior of the law of W , the limiting

random variable for the uniformly integrable intrinsic martingales Wn

[3, 5, 21, 31, 71, 77, 78, 87, 96, 98, 120];

• convergence of the series
∑

n≥0 a(n)(W −Wn) for exponential or regu-

larly varying sequence {an : n ∈ N0} [4, 78, 82];

• under the assumption EN < ∞ it was shown in [25] that the law of

W is a mixture of an atom at zero and absolutely continuous law;

subsequent generalizations of this result to the case EN = ∞, N <∞
a.s. and N = ∞ a.s. were derived in [99] and [116], respectively;

• local uniform convergence of Wn(γ) (w.r.t. γ) and differentiability of

limiting function W (γ) [15, 22]; in [24] the results of the latter paper

were generalized to the multidimensional BRWs and complex γ;

• in some cases when the intrinsic martingale is non-regular, it was proved

in [26] that there exists a sequence {cn : n ∈ N} such that Wn/cn con-

verges in probability to a rv with non-degenerate at zero law (Seneta-

Heyde norming); [37, Theorem 14] gives conditions which ensure that

the convergence holds a.s.

• a path-wise renewal theory for the BRW [53, 102, 109];

• an a.s. central limit theorem for the BRW [23, 95];
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• the asymptotics of the right-most individual in the nth generation of

the BRW was studied in [1, 10, 18, 20, 75, 33, 34]; the second article

contains many further references to earlier work;

• the BRW with barrier [27, 28].

The results of Chapter 3 (excluding the last section) are based on [85].

The results in Section 3.5 have not yet been published.
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Samenvatting

In dit proefschrift onderzoeken we het asymptotieke gedrag van de

oplossingen van random rekursieve vergelijkingen van de form

Xn
d
= X ′

In + Yn, X0 := a ≥ 0, n ∈ N, (3.33)

waarbij een random grootheid (index) In waarden uit verzameling

{0, 1, . . . , n} aanneemt, de vector (In, Yn) niet van de reeks {X ′
n : n ∈ N0}

afhangt, en {X ′
n : n ∈ N0} een stochastische kopie van {Xn : n ∈ N0} is. We

beschouwen drie verschillende modellen en functionalen die op een natuurli-

jke manier bij deze modellen ontstaan.

Het eerste deel is gewijd aan het bestuderen van het asymptotische gedrag

van de functionalen, die op de random wandelingen met een barriére zijn

gedefinieerd. Een random wandeling met een barriére n ∈ N is een random

reeks van stochasten {R(n)
k : k ∈ N0}, die aan de volgende rekurrente vergeli-

jking voldoet:

R
(n)
0 := 0, R

(n)
k := R

(n)
k−1 + ξk1{R(n)

k−1+ξk<n}
, k ∈ N,

waarbij {ξk : k ∈ N} onafhankelijke copiën zijn van de stochastische grootheid

ξ met de kansverdeling pk := P{ξ = k}, k ∈ N. In het vervolg veronderstellen

we dat p1 > 0. We bekijken de drie basiskarakteristieken van dit model:Mn –

aantal sprongen; Vn – aantal nul-aangroeingen tot het moment van n− 1, en

het moment van absorptie Tn self. In het bijzonder, we hebben aangetoond

dat de laatste twee reeksen voldoen aan de recurrente absorptievergelijkingen

van der form (3.33).

Stellingen 4, 5 en 6 geven de volgende voorwaarden (in Stelling 4 zijn

deze voorwaarden tevens noodzakelijk), die garanderen dat de reeks Tn, op

een geschikte manier gecentreerd en genormaliseerd, zwak convergeert.

Daarbij werden de expliciete uitdrukkingen van de normerende constanten en
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de mogelijke limietverdelingen gegeven. In het bijzonder zegt Stelling 6 dat,

onder vorwaarde van een oneindige gemiddelde stap van de random wandel-

ing, de reeks Tn (op een bepaalde manier genormaliseerd) zwak convergeert

naar de exponentiële integraal van een subordinator.

Onder aanname dat ξ tot de attractie-gebied behoort van een stabiele

verdeling met parameter α ∈ (1, 2), worden de eertse twee termen in de

asymptotische ontwikkeling voor de momenten van de eerste en tweede order

van het absorptie-tijdstip Tn gegeven in Stelling 11. Als gevold daarvan krijgt

men ook de asymptotiek van VarTn. In geval van een eindig verwachting van

ξ, gaat Stelling 12 over de zwake convergentie (zonder normalisatie) van

de reeks Vn (aantal nul-aangroeiingen tot het absorptie-moment). In geval

Eξ = ∞, beschrijft Stelling 13 de zwakke wet van de grote aantallen voor Vn

en de asymptotiek van EVn.

Zij {Jn : n ∈ N0} en random wandeling met een stap, die de kansverdel-

ing van | log η| heeft, waarbij de random variabele η nu uit de interval (0, 1)

komt. Zij verder E1, . . . , En, onafhangelijk van {Jn}, een steekproef uit de

standaard exponentiële verdeling. Noteer E1,n ≤ E2,n ≤ . . . ≤ En,n de or-

der statistiken gebaseerd op deze steekproef. Een random wandeling, samen

met de exponentiële steekproef, bepaalt een platsingsschema dat Bernoulli-

zeef wordt genoemd, waarbij n ‘ballen’ 1, 2, . . . , n worden geplaatst in een

oneindige reeks genummerde dosen volgens de volgende regel: ball i komt

in doos k als exponentieel verdeeld punt Ei in het interval (Jk−1, Jk) terecht

komt. We noemen een interval bezet als het minstens een punt vam E1, . . . , En

bevat, en leeg andersom.

Het tweede deel van het proefschrift gaat over het onderzoek naar de

volgende karakteristieken van de Bernoulli-zeef: Un - index van het meest

rechtse bezette intervaal, Kn,0 - aantal lege (onder eerste Un− 1) intervallen,

Kn - aantal bezette intervallen en Zn - aantal punten in het laatste (meest

rechtse) bezette intervaal. We tonen an dat de reeksen Un, Kn,0 Kn de

oplossingen van recurrenten vergelijkingen (3.33) zijn.

Hoofdresultaten uit dit deel zijn over het bestuderen van de zwakke con-
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vergentie van de bovengenoemde functionalen onder de additionele voorwaar-

den dat | log η| geen rooster-verdeling geeft.

In het bijzonder, in Stelling 19 wordt het algemene criterium gegeven van

het bestaan van een limiet-verdeling voor de op een geschickte manier gecen-

treerde en genormaliseerde reeks Un. Een soortgelijk resultaat is gegeven in

Stelling 21 voor Kn onder nog meer voorwaarden. Onder anderen, deze voor-

waarden impliciren een nog fijnere resultaat, dat in stelling 20 wordt gegeven:

Kn,0 convergeert zwak zonder normalisatie. Tenslotte, beschrijft Stelling 22

de zwakke convergentie van Zn onder zekere natuurlijke voorwaarden voor

de verdeling van η.

We bekijken enkele populatie, die van een ouder begint en evolution-

eert volgens het gegeneraliseerde Galton-Watson proces, waarbij individuen

onendig veel nakomelingen kunnen hebben. We veronderstellen dat alle indi-

viduen worden weergegeven als punten op de reële lijn: het alle eerste individu

zit in nul, de aangroeiing van de nakomelingen relatief op hun vader worden

beschreven door het puntproces Z =
∑N

i=1 δXi
op R. Hierbij N := Z(R) is

het totale aantal nakomelingen van de vader, Xi is de positie van de i-de

nakomeling. Het opschuiven van de positie van de individuen ten opzichte

van hun vader wordt beschreven door een exacte copie van het puntproces

Z. In het vervolg veronderstellen we dat Z({−∞}) = 0 en dat de popu-

latie met een positieve kans overleeft, dat wil zeggen EN > 1 (superkritieke

proces).

Voor een n ∈ N0 noteer door Zn een puntproces dat de posities van de

individuen van de n-de generatie beschrijft, waarbij het totale aantal Mn(R)

is. Het stochastische proces {Zn : n ∈ N0} is een vertakkingsproces. Veron-

derstel dat er een γ > 0 bestaat zodanig dat

m(γ) := E

∫

R

eγxZ(dx) ∈ (0,∞). (3.34)

Voor n ∈ N noteer door Fn de σ-algebra, die de alle informatie over de eerste

n generaties inhoudt en zij F0 de triviale σ-algebra. Zij

Wn := m(γ)−n

∫

R

eγxZn(dx). (3.35)
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De reeks {(Wn,Fn) : n ∈ N0} vormt een niet-negatieve martingaal met

verwachting 1, die het cetrale object is in het derde deel van het proefschrift.

Stelling 29 beschrijft het gedrag van de staart van de verdeling van sup
n≥0

Wn

voor de uniform integreerbare (reguliere) martingaal {Wn : n ∈ N0}, onder
bepaalde voorwaarden op de momenten. Het laatste resultaat van het proef-

schrift, Stelling 34, gaat over de asymptotiek van E[Wn log
+Wn], als n→ ∞,

voor de niet-reguliere martingaal {Wn : n ∈ N0}.
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