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Abstract

This thesis focuses on uncertainties in remotely sensed image segmenta-
tion and their visualisation. The first part aims to develop and implement
a visual exploration tool to interact with a fuzzy classification algorithm.
The proposed tool uses dynamically linked views, consisting of an image
display, a parallel coordinate plot, a 3D feature space plot, and a classified
map with an uncertainty map. It allows interaction with the parameters
of a fuzzy classification algorithm by visually adjusting fuzzy membership
functions of classes. Its purpose is to improve insight into fuzzy classifica-
tion of remotely sensed imagery and related uncertainty. The visual fuzzy
classification technique is tested on a Landsat 7 ETM+ image of an area
in Southern France characterised by land cover objects with indeterminate
boundaries. The visual classifier gives an overall classification accuracy of
88%, outperforming traditional fuzzy classifiers. Additionally, a focus group
user test of the tool provides qualitative feedback and shows that insight into
a fuzzy classification algorithm and uncertainty improves considerably.

Spheres and ellipsoids are used to represent class clusters in a 3D feature
space prior to a remotely sensed image classification. These shapes provide
only rough approximations of irregular shaped class clusters. α-shapes can
improve visualisation of class clusters in a 3D feature space, as α-shapes vi-
sualise the shape of a class clusters more accurately. In addition, α-shapes
might improve insight into a classification, and related uncertainty. These
shapes can clearly show where classes overlap, giving an indication for the-
matic uncertainty. Most classification algorithms do not take into account
irregular and concave cluster shapes. Therefore, a classification algorithm,
based on α-shapes, is proposed and implemented. Meaningful classification
results can be obtained with α-shapes.

The aim of the second part of this study is to develop, implement and
apply image segmentation techniques for identification of objects and quan-
tification of their uncertainty. A split-and-merge algorithm is applied on
an IKONOS image of an agricultural area in the Netherlands. Existential
uncertainty of spatial objects is quantified through object boundaries. The
segmentation algorithm is applied at various values of splitting and merging



Abstract

thresholds. Objects occurring at many segmentation steps have less exis-
tential uncertainty than those occurring at only a few steps. Segmentation
results are validated with a topographic map and a boundary matching tech-
nique.

The segmentation technique is extended with a supervised procedure
based on grey-level and multivariate texture to extract spatial objects from
an image scene. Object uncertainty is quantified to identify transitions zones
of objects with indeterminate boundaries. The Local Binary Pattern (LBP)
operator, modelling texture, is integrated into a hierarchical splitting seg-
mentation to identify homogeneous texture regions in an image. A multi-
variate extension of the standard univariate LBP operator is proposed to
describe colour texture. The technique is illustrated with two case studies.
The first considers an image with a composite of texture regions. The two
LBP operators provide good segmentation results with accuracy values of
95% and higher. The second case study involves segmentation of coastal land
form and land cover objects using Light Detection And Ranging (LiDAR)
imagery and multi-spectral Compact Airborne Spectral Imager (CASI) im-
agery of a coastal area in the UK. The multivariate LBP operator is superior
to the univariate LBP operator, segmenting the area into meaningful ob-
jects, yielding valuable information on uncertainty at transition zones. The
univariate LBP measure is extended to a multi-scale texture measure to im-
prove identification of land forms. A region growing segmentation based on
the multi-scale LBP measure is applied to identify spatial land form objects
from a LiDAR digital surface model (DSM). Meaningful coastal land form
objects can be extracted with this algorithm.

Visualisation methods described in the first part and the segmentation
techniques described in the second part are combined and extended to visu-
alise object uncertainty. The third part of this study aims to develop and
implement visualisation techniques to explore the relation between uncer-
tainty in the spatial extent of image objects and their thematic uncertainty.
An object is visualised in 3D feature space and in geographic space based
on a user-defined uncertainty threshold. Changing this threshold updates
both visualisations, showing the effect of uncertainty on the spatial extent
of an object and its shape in feature space. Spheres, ellipsoids, convex hulls,
isosurfaces, and α-shapes are compared for visualisation of objects in a 3D
feature space plot. These objects are derived either by visual classification
or segmentation. α-shapes provide the most accurate representation, how-
ever, computational demands are very high, making them unsuitable for fast
interactions. Alternatively, an isosurface can provide a good approximation
of an α-shape, facilitating fast interaction. The visualisation technique is
illustrated with the results of the case studies discussed in the first and sec-
ond part of this study. Results show that this interactive visualisation tool
allows for valuable inferences about object uncertainty.

viii
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Deze studie richt zich op onzekerheden in segmentatie van remote sen-
sing beelden en hun visualisatie. Het eerste deel heeft tot doel een visuele
exploratie techniek te ontwikkelen om meer inzicht te verkrijgen in een fuzzy
classificatie algoritme. Deze techniek maakt gebruik van beeld visualisatie
gecombineerd met een parallel coordinate plot, een 3D plot van de attri-
buut ruimte, en een geclassificeerd beeld met informatie over onzekerheid.
Het geeft de mogelijkheid voor interactie met de parameters van een fuzzy
classificatie algoritme door visuele bijstelling van fuzzy membership func-
ties voor de individuele klassen. Het doel is om inzicht te verbeteren in
het functioneren van een fuzzy classificatie techniek en thematische onzeker-
heid. De techniek is getest op een Landsat 7 ETM+ beeld van een gebied
in Zuid-Frankrijk dat gekenmerkt wordt door landbedekkings objecten met
vage grenzen. Het classificatie algoritme geeft een goed resultaat met een
nauwkeurigheid van 88%, wat beter is dan traditionele fuzzy classificatie
algoritmen. Een gebruikers test geeft een kwalitatieve beschrijving van de
gebruikte visualisatie technieken. Deze test toont aan dat inzicht in een fuz-
zy classificatie algoritme en onzekerheid kan verbeteren met het gebruik van
visualisatie technieken.

Bollen en ellipsöıden worden gebruikt om klasse clusters in een 3D attri-
buut ruimte te visualiseren voor een beeld classificatie. Deze vormen geven
een ruwe beschrijving van onregelmatige klasse clusters. α-shapes kunnen
visualisatie van klasse clusters verbeteren in een 3D ruimte. Tevens kunnen
α-shapes gebruikt worden om inzicht in classificatie van remote sensing beel-
den en onzekerheid te verbeteren. De meeste classificatie algoritmen houden
geen rekening met concave cluster vormen. α-shapes modelleren de klasse
vormen zo nauwkeurig mogelijk en deze studie laat zien hoe α-shapes ge-
bruikt kunnen worden in een beeld classificatie. Waardevolle classificatie
resultaten worden behaald met deze techniek.

Het doel van het tweede deel van deze studie is het ontwikkelen, im-
plementeren en toepassen van beeld segmentatie technieken voor identifica-
tie van objecten en het kwantificeren van hun onzekerheid. Een ‘split-and-
merge’ techniek is toegepast op een IKONOS beeld van een landbouwgebied
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in Overijssel, Nederland. Thematische object onzekerheid wordt gekwanti-
ficeerd via object grenzen. De segmentatie techniek wordt toegepast met
verschillende criteria voor het opsplitsen en samenvoegen van object blok-
ken. Objecten die op meerdere segmentatie stappen voorkomen zijn stabiel
en vertonen minder onzekerheid dan objecten die maar op een aantal seg-
mentatie stappen voorkomen. Segmentatie resultaten zijn gevalideerd met
een topografische kaart en een techniek die object grenzen vergelijkt.

De segmentatie techniek is verder uitgebreid met een aanpak gebaseerd
op univariate- en multivariate textuur maten om ruimtelijke objecten in een
beeld te detecteren. Object onzekerheid is gekwantificeerd om overgangszo-
nes tussen vage objecten te identificeren. De Local Binary Pattern (LBP)
maat is gëıntegreerd in een hiërarchische segmentatie procedure voor iden-
tificatie van homogene gebieden gekenmerkt door textuur. Een multivariate
uitbreiding van deze textuur maat is voorgesteld en beschreven voor het mo-
delleren van textuur in meerdere banden (multivariate textuur). De techniek
is gëıllustreerd met twee praktijk studies. De eerste toepassing gebruikt een
beeld van een compositie van vijf kunstmatig texturen. De univariate en
multivariate LBP maten geven goede segmentatie resultaten met nauwkeu-
righeidswaarden van 95% en hoger. Segmentatie in de tweede toepassing
heeft tot doel landvorm- en landbedekkings objecten te identificeren in een
Light Detection And Ranging (LiDAR) beeld en een multispectraal Compact
Airborne Spectral Imager (CASI) beeld van een kustgebied in Engeland. De
studie toont aan dat de multivariate LBP maat beter is dan de univariate
LBP maat in segmentatie van het gebied. De segmentatie geeft waardevolle
informatie over onzekerheid in de overgangszones tussen objecten. Tevens
is de univariate LBP maat uitgebreid naar een textuur maat voor meerdere
schalen om identificatie van landvormen te verbeteren. Een ‘region growing’
segmentatie techniek gebaseerd op deze maat is toegepast op een LiDAR
hoogte model. Dit algoritme maakt het mogelijk om landvorm objecten te
identificeren van een digitaal hoogte model van een kustgebied in Engeland.
Tevens wordt een maat voor ruimtelijke onzekerheid verkregen, die waarde-
volle informatie geeft over overgangszones.

De visualisatie technieken die beschreven zijn in het eerste deel van deze
studie en de segmentatie technieken in het tweede deel worden gecombineerd
om object onzekerheid te visualiseren. Het derde deel heeft tot doel een
visualisatie techniek te ontwikkelen om de relatie tussen onzekerheid in de
ruimtelijke verbreiding en thematische onzekerheid van objecten te verken-
nen. De verbreiding van een object wordt gevisualiseerd in een 3D attribuut
ruimte en in de geografische ruimte, gebaseerd op een onzekerheidsgrens gede-
finieerd door een gebruiker. Verandering van deze grens laat de verandering
zien in beide visualisaties. Daarmee laten deze visualisaties het effect zien
van onzekerheid op de representatie van een object in beide ruimtes. Bol-
len, ellipsöıdes, convex hulls, isovlakken en α-shapes worden vergeleken voor
visualisatie van objecten in een 3D plot. Deze objecten zijn verkregen van
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een visuele classificatie of een segmentatie van een beeld. α-shapes geven
de meeste nauwkeurige representatie van een cluster. Echter er is veel re-
kenkracht nodig om α-shapes te berekenen en visualiseren, wat deze vormen
ongeschikt maakt voor snelle interacties. Isovlakken kunnen gebruikt worden
als een alternatief, omdat ze een goede beschrijving geven van een α-shape
en een snelle interactie mogelijk maken. Deze visualisatie techniek wordt
beschreven met de resultaten van de toepassing die beschreven zijn in deel
1 en 2 van deze studie. De resultaten tonen aan dat de visualisatie techniek
gebruikt kan worden om waardevolle conclusies te trekken over onzekerheden
in ruimtelijke objecten.

xi



Samenvatting

xii



Acknowledgements

In September 2000, I started this Ph.D. research at ITC in Enschede. It has been a
very interesting project and I would like to thank my supervisors Menno-Jan Kraak and
Alfred Stein for their help, support, and trust in my work, our discussions and meetings
were very valuable. I would like to thank all of my colleagues in the GIP and EOS
departments for their support and company. Barend Köbben, Ton Mank, Corné van
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Chapter 1

Introduction

Everything is vague to a degree you do not realise
till you have tried to make it precise.

from “The Philosophy of Logical Atomism” — Bertrand Russell

1.1 Problem description

Remote sensing imagery can provide a valuable source of information for mapping
the Earth surface. Satellite images have made it possible to map at global to re-
gional scales, to map remote areas, and to update existing information efficiently
and cheaply (Richards and Jia, 1999; Lillesand and Kiefer, 2000; Campbell, 2002).
Advances in spatial resolution now allow us to detect small objects from both air-
borne sensors and spaceborne sensors. Additionally, the increase in spectral res-
olution of multispectral and hyperspectral sensors has made it possible to derive
information on the physical composition of the surface, such as chemical compo-
nents in vegetation, soil, rock and water. This makes remote sensing data suitable
for a range of applications, like land cover mapping, geology, botany, forestry, bi-
ology, urban planning, and oceanography. For all these applications, an important
stage in image processing is the translation from reflectance or digital numbers
(DN) to thematic information, also known as classification. We classify objects
by reducing a multiplicity of phenomena to a relatively small number of general
classes (Tso and Mather, 2001). Classification is often performed to generalise



1.2. What is uncertainty?

a complex image into a relatively simple set of classes. A classified map is then
used as input into a geographic information system (GIS) for further processing
or analysis. Such inference is most often less than perfect and there is always an
element of uncertainty in a classification result. As it can affect further process-
ing steps and even decision making, it is important to understand, quantify and
communicate uncertainty.

1.2 What is uncertainty?

“Where is the highest mountain on Earth?” This is a simple question and one
would most certainly answer: ‘the Mount Everest in the Himalayas’. However,
this question presupposes that the concept ‘mountain’ is precisely defined when in
fact it is not. It is a vague concept as it gives rise to paradoxical arguments of the
Sorites variety (Varzi, 2001; Fisher et al., 2004). The Sorites paradox can be used
to test whether a concept is vague (Fisher, 2000):

Is one rock a pile of rocks?
The answer to this simple question is clearly ‘No’.
If a second rock is added to the first, is there a pile?
Again the answer is ‘No’.
If a third rock is added, is there a pile?
For a third time the answer is ‘No’

The argument so far is uncontroversial. From it, however, a general form of ar-
gument can be concluded (Fisher, 2000). If there are n rocks, but no pile, then
adding one rock to make n+1 rocks will not make a pile. By repeated application
of this premise it can be seen that as n increases to a large number, the addition of
a single rock still does not change a non-pile into a pile. Therefore, the argument
is logically valid, yet the conclusion is plainly false (Varzi, 2001).

Mount Everest, measuring 8850 m (above sea level), is unmistakeably the high-
est mountain on Earth. There is still a problem; not only the definition of a moun-
tain is inherently vague, also the spatial extent suffers from vagueness. Where ex-
actly is Everest? Where does it begin and where does it end? Everest does not refer
to a volume of a pile of rocks demarcated from its surrounding. A mountain has a
spatial extent, but that extent is a matter of degree. Its summit is definitely part of
the mountain, its (lower) slopes and valleys are to a lesser extent part of the moun-
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tain. This example shows that the concept ‘mountain’ is vague in its definition as
well as in its spatial extent. Not only ‘mountain’ but virtually every geographic
concept suffers from vagueness (Fisher, 2000; Varzi, 2001; Fisher et al., 2004).
Therefore, uncertainty, of which vagueness is a component, has been an important
topic in recent scientific literature on geographical information science and remote
sensing (Burrough and Frank, 1996; Canters, 1997; Fisher, 1999; Wel, 2000; Foody
and Atkinson, 2002).

Data uncertainty as a component of data quality may be taken into account
when considering the ‘fitness for use’ of geographical data for a particular applica-
tion. With the increasing use of remotely sensed data as input in a GIS, uncertainty
in remotely sensed image classification has received more attention (Canters, 1997;
Wel, 2000; Zhang and Foody, 2001; Foody and Atkinson, 2002). Various types of
uncertainty can influence information extraction from remotely sensed imagery.
Atmospheric conditions, geometric calibration, sensor sensitivity, and sensor res-
olution are important during data acquisition. Concerning image classification,
uncertainty can arise from vagueness in class definition, mixed pixels, and transi-
tion zones or fuzzy boundaries.

Many classification methods for extraction of land cover objects have been de-
veloped, and many strategies and modifications have been proposed to improve
classification accuracy, being another component of data quality. In most studies,
map accuracy is assessed by means of a confusion or error matrix, comparing a
sample of classified pixels with reference data obtained from aerial photographs
or ground surveys. Much work has been published on optimal strategies for sam-
pling (Stein and Ettema, 2003), accuracy measures have been refined to deal with
change agreement, and methods have been presented to estimate statistically sound
classification probabilities from the confusion matrix (Rosenfield et al., 1982; Con-
galton, 1991; Foody, 1992; Stehman, 1992; Fenstermaker, 1994). Measures of ac-
curacy, like the confusion matrix, can only be derived for a land cover class as a
whole. Therefore, the most fundamental drawback of the confusion matrix is its
inability to provide information on spatial distribution of uncertainty in a classified
scene. Information on thematic and spatial uncertainty is essential in determining
the quality of a classification result.

Fuzzy set theory as an expression of concepts of vagueness is an appropriate
model for working with remotely sensed imagery (Foody, 1996; Fisher, 1999). To
adapt to the fuzziness characteristic of many natural phenomena, fuzzy classifica-
tion approaches have been proposed and successfully applied in remotely sensed
land cover classification (Wang, 1990; Foody, 1996; Zhang and Foody, 2001). These
‘soft’ or ‘fuzzy’ classifiers can be used to quantify uncertainty as these classifiers

3
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model the membership that a pixel belongs to a certain class. The strength of
class membership is an indication of thematic uncertainty. The spatial distribu-
tion of these uncertainty values provide valuable information on the spatial extent
of classes or objects. In addition to quantification of uncertainty, exploration and
communication are essential in uncertainty analysis. Visualisation seems an appro-
priate means for the presentation and exploration of patterns and spatial behaviour
of uncertainty (MacEachren, 1992; Fisher, 1994; Goodchild et al., 1994; Hoots-
mans, 1996; Wel et al., 1997; Blenkinsop et al., 2000; Bastin et al., 2002).

1.3 Uncertainty visualisation

Uncertainty visualisation aims to present data in such a way that users become
aware of the locations and degree of uncertainties in their data to make more
informed analyses and decisions. Although a desire exists to reduce uncertainty
from an end-users and decision-makers perspective, it can never be eliminated
(Foody and Atkinson, 2002). Therefore, visualisation techniques are required to
explore and to present uncertainty information in an accessible way.

Maps are a form of scientific visualisation, and maps existed before visualisation
developed into a distinct scientific field. The objective of visualisation is to analyse
information about data relationships graphically, whereas cartography aims at
conveying spatial relationships. The emphasis in scientific visualisation is more
on its analytical power (exploratory analysis) than on its communicative aspects;
it is primarily directed at discovery and understanding. In cartography, emphasis
can lie equally on exploration and presentation (MacEachren and Kraak, 1997;
Kraak and MacEachren, 1999). MacKinaly and Schneiderman (1999) stated that
visualisation is the use of computer-supported, interactive, visual representations
of data to amplify cognition.

In recent years, visualisation tools have been proposed that focus on presenta-
tion and exploration of uncertainty in remotely sensed image classifications (Wel
et al., 1997; Blenkinsop et al., 2000; Bastin et al., 2002). None of these tools, how-
ever, provided a way of visually interacting with a classification algorithm. Visual
interaction could greatly improve insight into classification and related uncertainty.
Methods and tools are required to allow a user to explore uncertainty in spatial
data visually and to review the effects of different decisions during classification.
Visual exploration of classification uncertainty and uncertainty related to image
objects are, therefore, the focal points of this research. Visual exploration of the
relation between the thematic component and spatial component of uncertainty
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can provide meaningful information on object transition zones or class overlap.

1.4 Segmentation

Remote sensing classification is often used to partition an image into meaningful
objects. Classifiers, either supervised or unsupervised, are most often pixel-based
assigning a class label to each individual pixel. They are based on distance or
similarity measures in attribute or feature space. In contrast, segmentation in
remote sensing, identifies homogeneous image objects based on spatial properties.
Spatial relations between pixels are an important source of information that can
help in object extraction from remotely sensed imagery. The focus of classification
techniques, therefore, is on thematic pixel information, whereas, for segmentation
techniques it is on spatial information. Segmentation is used to identify image ob-
jects. In a subsequent object-based classification, information about these objects,
like reflectance distribution, object shape and size, and object semantics can be
used to improve classification. This study focuses on segmentation for identifica-
tion of image objects. Additionally, the use of texture may be important. Texture
reflects the spatial structure of pixel values in an image, and it is therefore indis-
pensable in segmenting an area into sensible geographical units. A focal point of
this study is the use of univariate and multivariate texture models in segmentation
to improve object identification.

Recent research on remote sensing classification has focused on modelling and
analysis of uncertainty in a final classification result. Both fuzzy and proba-
bilistic approaches have been applied to uncertainty modelling in remote sens-
ing classification (Canters, 1997; Foody, 1992; Foody, 1996; Hootsmans, 1996; Wel
et al., 1997; Wel, 2000; Zhang and Foody, 2001). Most studies focused on pixel-
based classification uncertainty. An object-based approach may reduce uncer-
tainty. Additionally, interpretation of uncertainty of real world objects may be
more intuitive than that of individual pixels. Geographical objects are often char-
acterised by vagueness, which may be caused by natural transition zones. Quan-
tification of extensional uncertainty (Molenaar, 1998), or uncertainty in the spatial
extent of objects, can help to identify these transition zones.
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1.5 Research objectives

The main aims of this study are:

• To develop and apply explorative visualisation tools to interact with a fuzzy
classification algorithm that help to improve understanding of fuzzy classifi-
cation and thematic uncertainty.

• To develop, implement and apply (texture-based) segmentation methods to
identify image objects and to quantify object uncertainty.

• To develop and implement visualisation techniques to explore the relation
between thematic uncertainty and spatial uncertainty related to image ob-
jects.

1.5.1 Visualisation

Objectives from the visualisation perspective:

• To develop and implement techniques and methods to visually explore un-
certainty in remotely sensed land cover classification.

• To develop and implement techniques to visually interact with a fuzzy classi-
fication algorithm to improve understanding of classification and underlying
thematic uncertainty.

• To develop and implement techniques to visualise the shape of thematic
classes in feature space to improve visual inferences about thematic uncer-
tainty.

1.5.2 Segmentation

Objectives from the segmentation perspective:

• To develop, implement and apply segmentation techniques for identification
of image objects from multi-spectral remotely sensed imagery.

• To develop, implement and apply texture models to improve segmentation.

6
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• To develop and implement techniques to quantify uncertainty related to ob-
jects.

1.5.3 Object uncertainty visualisation

Objectives from the uncertainty perspective:

• To develop and implement visualisation methods to explore the relation be-
tween uncertainty in the spatial extent of objects and their thematic uncer-
tainty.

1.6 Software prototype

All techniques described in this study are implemented in a research prototype
called Parbat. The software tool, is programmed in Java, using the Java Advanced
Imaging library (JAI) for advanced image processing and the Java 3D library for 3D
visualisation (Sun Microsystems Inc., 2004). One advantageous property of Java
is its platform in-dependency, meaning that Parbat can be used on most operating
systems. The prototype can be downloaded from http://parbat.lucieer.net
(Lucieer, 2004). The reader of this thesis is encouraged to try the software, to expe-
rience the full effect of the interactive visualisation and image processing techniques
described in this study.

1.7 Structure of the thesis

Figure 1.1 shows the structure of this thesis, outlining the focus of the individual
chapters. Part I discusses pixel-based classification techniques and visualisation of
thematic uncertainty. In part II, identification of objects is discussed and uncer-
tainty is modelled both in the spatial and thematic domain. Part III aims to link
these domains, visualising the relation between spatial and thematic uncertainty of
objects.

Part I on visualisation, starts with chapter 2 about an interactive visual fuzzy
classification technique. Land cover is classified from a Landsat image of an area

7
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in southern France. The focus of this chapter is on the thematic aspect of uncer-
tainty in a fuzzy remote sensing classification and interaction with a fuzzy classi-
fication algorithm. Chapter 3 focuses on the shape of class clusters in 3D feature
space. α-shapes are used to visualise the shape of reference class clusters and α-
shapes are used in a supervised fuzzy classification to account for irregular cluster
shapes. Part II on segmentation, starts with chapter 4 about a split-and-merge
image segmentation algorithm to identify land cover objects in an IKONOS image
scene. A range of segmentation parameters is used to model spatial uncertainty
through object boundaries. Chapter 5 continues with a supervised texture-based
segmentation algorithm. It is applied to a multi-spectral airborne image (CASI)
of a coastal area in northwest England. Uncertainty is quantified through object
building blocks to identify transition zones between fuzzy objects. The texture-
based segmentation algorithm is extended in chapter 6 for the multivariate case.
Two case studies show that meaningful land cover and geological objects can be
extracted from different remotely sensed images. Again, uncertainty values give
valuable information on spatial uncertainty in transition zones. In chapter 7 the
texture model is extended with a multi-scale approach to identify land form objects
from a LiDAR digital surface model (DSM). A Region growing algorithm segments
meaningful coastal land form objects from a DSM, providing useful information
on object transition zones. In part III, chapter 8 describes a visualisation tool
to explore the relation between uncertainty in the spatial extent of objects and
their thematic uncertainty. It provides insight into object uncertainty both in the
spatial and thematic domain. The thesis is concluded with chapter 9.
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Part I - Visualisation

Part III - Object uncertainty visualisation
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Chapter 2

Interactive Visualisation of a
Fuzzy Classification∗

Everyone is an explorer.
How could you possibly live your life looking at a door

and not open it?

R. D. Ballard

2.1 Introduction

Most proprietary GIS and remote sensing software provide numerous conventional
and advanced classification algorithms. However, most if not all of these packages
do not offer tools to model, visualise and manage uncertainty in classifications.

∗This chapter is based on the following papers:
Lucieer, A. and Kraak, M. J. (2004). Interactive and visual fuzzy classification of remotely

sensed imagery for exploration of uncertainty, International Journal of Geographical Information
Science 18(5): 491–512.

Lucieer, A. and Kraak, M. J. (2002). Interactive visualisation of a fuzzy classification of
remotely sensed imagery using dynamically linked views to explore uncertainty, in G. Hunter and
K. Lowell (eds), Proceedings Accuracy 2002, 5th International Symposium On Spatial Accuracy
Assessment in Natural Resources and Environmental Sciences, Melbourne, Australia, pp. 348–
356.
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Many of these packages can produce good colourful thematic maps, however, users
nowadays want to be presented with information about the quality of these maps.
Uncertainty in classification is an important aspect of the data quality and usabil-
ity or ‘fitness for use’ of a classified map. Therefore, modelling and communication
of uncertainty is becoming more important. An appropriate way to present spatial
and thematic behaviour of uncertainty is via visualisation. In recent years, visual-
isation prototypes have been proposed that focus on presentation and exploration
of uncertainty in a remotely sensed image classification (Wel et al., 1997; Blenk-
insop et al., 2000; Bastin et al., 2002). However, none of these tools provide a
way of interacting with a classification algorithm itself. Visual interaction with
the classification algorithm could greatly improve insight into classification and
related uncertainty.

This chapter describes and demonstrates a novel visualisation tool that allows
for interaction with a supervised fuzzy classification algorithm. The objective of
this chapter is to develop, implement and apply a geovisualisation tool by which
a geoscientist can interact with the parameters of a fuzzy classification algorithm
in order to gain insight into the working of a fuzzy classification and related un-
certainty, and to possibly refine the classification result. For this study, a Landsat
7 ETM+ image of an area characterised by semi-natural vegetation types was
selected. Transition zones between these vegetation types are known to be prob-
lematic in image classification. The prototype was evaluated with a focus group
user test.

2.2 Fuzzy classification

Supervised image classification is a technique that is often applied in analysis of
remotely sensed data. The result of such a classification is a thematic map with
a label for each pixel of the class with which it has the highest strength of mem-
bership. This hard or crisp classification is based on conventional crisp set theory.
A conventional classification of remotely sensed imagery, models the study area as
a number of unique, internally homogeneous classes that are mutually exclusive.
However, these assumptions are often invalid, especially in areas where transition
zones and mixed pixels occur. Land cover types are rarely internally homogeneous
and mutually exclusive, therefore, classes can hardly ever be separated by sharp or
crisp boundaries, in feature space as well as geographic space. Furthermore, com-
plex relationships exist between spectral responses recorded by the sensor and the
situation on the ground, where similar classes, pixels or objects show varied spec-
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tral responses and similar spectral responses may relate to dissimilar classes, pixels
or objects. Moreover, remotely sensed images contain many pixels where bound-
aries or sub-pixel objects cause pixel mixing, with several land covers occurring
within a single pixel. Finally, classes are often hard to define resulting in vagueness
and ambiguity in a classification scheme. Most, if not all, geographical phenomena
are poorly defined to some extent and, therefore, fuzzy set theory as an expression
of concepts of vagueness is an appropriate model for working with remotely sensed
imagery (Fisher, 1999; Zhang and Foody, 2001). To adapt to the fuzziness char-
acteristic of many natural phenomena, fuzzy classification approaches have been
proposed (Wang, 1990; Foody, 1996; Zhang and Foody, 2001).

Fuzzy classification is based on the concept of fuzzy sets (Zadeh, 1965). In
the fuzzy set model, the class assignment function attributes to each element a
grade of membership in the real interval [0,1] for every defined set. This grade
of membership corresponds to the degree to which the element is similar to the
concept or prototype represented by that set. Accordingly, fuzzy sets enable rep-
resentation of imprecisely defined classes such as land cover classes. Several tech-
niques exist to derive fuzzy memberships. These techniques can be divided in two
groups (Burrough and McDonnell, 1998):

• The Similarity Relation Model is data-driven. It involves searching for pat-
terns within a dataset similar to traditional clustering. The most wide-spread
method is the Fuzzy c-means algorithm (Bezdek, 1981).

• The Semantic Import Model is user-driven. An expert defines the member-
ship functions (Evans, 1977).

The fuzzy c-means classifier (FCM) uses an iterative procedure that starts with
an initial random allocation of the objects to be classified into c clusters. Given
the cluster allocation, the centre of each cluster (in terms of attribute values) is
calculated as the weighted average of the attributes of the objects. In the next
step, objects are reallocated among the classes according to the relative similarity
between objects and clusters based on a well-known distance measure: the Eu-
clidean, Diagonal (attributes are scaled to have equal variance) or Mahalanobis
(both variance and covariance are used for distance scaling) metrics are frequently
used. Reallocation proceeds by iteration until a stable solution is reached where
similar objects are grouped together in a cluster. Their membership value gives
their degree of affinity with the centroid of the class (Bezdek, 1981). Membership
µ of the ith object to the cth cluster of n number of classes in ordinary fuzzy c-
means, with d the distance measure used for similarity, and the fuzzy exponent q
determining the amount of fuzziness, is defined as:
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µic =
(dic)

−2
q−1∑n

c′=0(dic′)
−2

q−1

(2.1)

Fuzzy clustering techniques like the FCM are unsupervised. This means, that
the data are unlabelled. In some applications, however, a part of the data set
has labels. For example, an expert in the training stage of a supervised remotely
sensed image classification could obtain these labels. Zhang and Foody (2001)
apply a modified version of the fuzzy c-means algorithm in order to develop a
fully-fuzzy supervised classification method. In the supervised fuzzy c-means, the
class centroids are determined from the training data. This reduces the clustering
algorithm to a one step calculation, resulting in fuzzy membership values for each
pixel in each of the defined classes.

The fuzzy exponent, fuzziness or overlap parameter determines the amount of
fuzziness or class overlap. If this parameter is close to one, allocation is crisp and
no overlap is allowed. For large values, there is complete overlap and all clusters
are identical. The fuzziness of the classification can be modulated by varying the
magnitude of the fuzziness parameter. Ideally, it should be chosen to match the
actual amount of overlap. However, class overlap is generally unknown. Although
the fuzziness parameter is often set between 1.5 and 3.0, no clear arguments for
the choice of these values are presented (Burrough and McDonnell, 1998; Foody,
1996; Zhang and Foody, 2001).

Alternatively, expert knowledge of the area can be used to define shape, width
and overlap of the membership functions for each class in a semantic import ap-
proach. However, a well-defined and functional classification scheme should exist.

Visualisation could be helpful in determining fuzziness between classes. If one
would picture a classification of remotely sensed imagery, one could visualise the
procedure in a feature space plot. In fact, classification is a clustering procedure
in which unclassified pixels are labelled according to their position in relation to
the position of class clusters in feature space. Visualisation of reference classes,
their overlap and the position of pixels relative to the class clusters could greatly
improve insight into classification. Visualisation could also help in exploring and
adjusting overlap between classes. Thus, visualisation might improve the result
and understanding of a fuzzy classification by interaction with its parameters.
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2.3 Uncertainty visualisation

In the past one had to rely on traditional methods of cartographic expressions for
visualisation of uncertainty. Today, it is possible to work in an interactive and dy-
namic visualisation environment that incorporates new methods, as those proposed
here, alongside traditional methods. Traditional methods were mainly based on the
theory of semiology of graphics of Bertin (1967). For example, MacEachren (1992)
investigated the use of these graphic variables for uncertainty depiction, noting the
crucial importance of logically coupling visual variables with data scale. Of the
extended set of Bertin’s variables, MacEachren suggested colour saturation as the
most logical for uncertainty visualisation. Wel et al. (1997) proposed four static
visualisation variables for conveying the quantitative character of uncertainty in
remotely sensed image classification using probability vectors of individual pixels.
Those variables being: value (grey-scale maps), colour saturation (bivariate maps),
colour hue (associative ranking maps) and a combination of the latter two variables
(dichotomy maps). An example is the traffic light principle: red, orange and green
convey to a user prohibition, alertness, and permission respectively. Hootsmans
(1996) proposed colour lightness and saturation to visualise uncertain information
derived from fuzzy sets. Hootsmans combined colour hue to depict thematic class
information and colour saturation or lightness to visualise uncertainty in one static
map.

Techniques as described above focused on the extraction of uncertainty infor-
mation from a classification, either as a probability vector or a membership vector
per pixel, and presentation of this information to a user. The probability or mem-
bership vectors are summarised in a single uncertainty number, for example by
computing the maximum membership or probability, confusion index or entropy
from these vectors. These uncertainty values were then visualised with one of
the techniques describe above, either as an uncertainty map or a thematic map
combined with uncertainty information. These types of visualisations can help in
communicating uncertainty in the final classification product, however, they do
not allow for interaction with the classification.

Developments in computer graphic technology introduced dynamic visualisa-
tion techniques in cartography. For example, animation techniques were imple-
mented to improve interpretation of large amounts of data, as is the case in visu-
alisation of (classification) uncertainty. MacEachren (1994) distinguished between
different uses of temporal graphic variables: to animate maps and to depict dy-
namic processes in time. Sequential display of different uncertainty maps and
different thematic maps derived from the same image may make up an anima-
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tion. For example, probabilities can be visualised sequentially, according to their
ranking, thereby enabling the representation of all probabilities underlying a clas-
sification. This animation can follow different schemes, such as simply sequential,
progressive, cyclic and back-and-forth. Fisher (1994) proposed duration as a vari-
able to depict uncertainty: the higher the probability, the longer the period of
time the class colour is displayed. Wel et al. (1997) proposed a method to toggle a
thematic map and associated uncertainty map to result in a combined sensation of
classes and uncertainty. Hootsmans (1996) used animation techniques to represent
uncertainty related to fuzzy series analysis. A sequence of maps was generated by
processing a fuzzy series for a set of alpha-cuts. Ehlschlaeger et al. (1997) described
a technique of visualising uncertainty in elevation data using animation.

These dynamic visualisation techniques offered a more advanced and flexible
solution to visualising uncertainty information. They provided insight into (per-
pixel) uncertainty in the classification result by means of visualising the entire vec-
tor of probabilities or memberships. Most, if not all, of the mentioned techniques
focused on visualising uncertainty in the classification result and did not allow for
interaction with the classification. Another disadvantage of these techniques is
that visualisation and interpretation of uncertainty becomes difficult when there
is a large number of classes.

An interactive visualisation environment might be required to be able to im-
prove the exploration of a classification and related uncertainty. The choice of
a specific visualisation technique also depends on the user group. For decision
makers, visualisation of uncertainty in the form of static maps might be sufficient,
however, a scientific expert needs more in order to be able to improve the clas-
sification process. Geographic visualisation (geovisualisation or GVis) techniques
might be helpful in this sense (MacEachren and Kraak, 2001). These techniques
focus on exploration as opposed to presentation. Interactive visualisation tech-
niques such as dynamically linked views (Dykes, 1997; MacEachren, 1994) and
geographic brushing (Monmonier, 1989) are essential for exploration of geospa-
tial information. A special issue of the International Journal of Geographical
Information Science was devoted to visualisation for exploration of spatial data
(Kraak and MacEachren, 1999). Several authors showed that geovisualisation tools
with dynamically linked views facilitate exploratory analysis and ‘visual thinking’
(Andrienko and Andrienko, 1999; MacEachren et al., 1999). Therefore, uncertainty
visualisation should not just present expert users with meta-information on data
quality but should also enable them to explore uncertainty and its relation to the
original data.

Recent studies (Bastin et al., 2002; Blenkinsop et al., 2000) showed that ex-
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ploratory geovisualisation tools can help to improve the expert’s understanding of
uncertainty in a classified image scene. They proposed a combination of static,
dynamic and interactive visualisations for exploration of classification uncertainty.
Again, dynamically linked views and brushing functionality played a key role in
these prototypes. The focus of these tools is on visual exploration of uncertainty
in a classification result using linked displays of the original image, a parallel co-
ordinate plot, a 2D feature space plot, the classified image with thematic classes,
the uncertainty image displaying an uncertainty summary statistic per pixel and
animation of alternative classifications. These tools provided better insight into
classification uncertainty, however, they do not allow for interaction with the pa-
rameters of a classification algorithm. A user should be able to visually interact
with a classification algorithm to improve their knowledge of the nature and effects
of the algorithm. Improved understanding may contribute to a superior classifi-
cation. A feature space plot, dynamically linked with an image display and the
classification result, may provide the best technique to visualise a classification.
A user should be able to adapt the reference class clusters in a feature space plot
to change the parameters of a fuzzy classification algorithm. Visual interaction
with these parameters can help to gain insight into the origin and effect of uncer-
tainty in a classification. Another advantage is that it can help to fine-tune the
classification result.

2.4 Components of the visual classifier

In this study, the visualisation design of MacEachren et al. (1999) is applied.
MacEachren et al. (1999) proposed three dynamically linked representation forms
that facilitate data exploration. Their prototype consisted of:

• Geoviews in which geographic space is mapped.

• Parallel coordinate plots that display several parallel axes, one for each vari-
able in the data set with a line connecting individual records from one axis
to the next, producing a signature.

• 3D scatterplots that represent the relationships between three variables.

The prototype in this study, called Parbat, adopts these different representation
forms to facilitate visual classification (figure 2.1). The initial geoview in Parbat is
an image display with a colour composite of three image bands or a single image
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band in grey-scale. It contains two windows: the main image window with a
size of 500 by 500 pixels and a pan window if the image is larger than the main
window size. The image display provides basic image exploration functionalities
such as an enhancement tool for contrast stretching, a zoom tool (with a variable
zoom factor) floating over the main image window, and a geographic brushing tool
to derive information about pixel reflectance values or digital numbers (DN) and
geographic location (figure 2.1(a)).

The parallel coordinate plot (Inselberg, 1985; Inselberg, 1998) offers a tech-
nique by which a multidimensional space can be visualised in two dimensions. In
Parbat, the Parvis parallel coordinate plot designed and implemented by Leder-
mann (2004) is adopted (Hauser et al., 2002). All image bands are plotted in
the parallel coordinate plot (PCP). Axes can be reordered, scaled and translated
by simple drag operations. Records can be selected in the display by dragging
over them with a ‘brush’. Individual pixels can be selected and their signature
and a DN-value label can be displayed on each axis. Since real-time high quality
rendering of large datasets, like remotely sensed imagery, can become very time
consuming, the PCP provides the user with a fast preview rendering of the data.
On each axis, a transparent histogram can be plotted to obtain information about
the mean DN-value and variance per band for better understanding of the data
density (figure 2.1(c)).

The 3D feature space plot (figure 2.1(b)) is generated from three image bands.
These bands can be selected from the colour composite in the image display, from
the PCP based on their histograms, or any of the bands in the image. The unit
on the axis in the 3D plot is reflection in digital numbers ranging from 0 to 255.
Initially, all pixels are plotted in the 3D plot as small dots. In this mode, individual
pixels cannot be selected. For selection purposes, the user can choose to plot small
(grey) spheres that represent pixel values. If the image contains more than 2000
pixels, the pixels are sampled from the image either randomly or on a regular grid.
To display the scatter cloud more accurately the user can also choose to calculate
and visualise a density plot, in which the values of the 2000 most frequent occurring
pixels are displayed. The pixel spheres are coloured according to their frequency
using a grey scale with bright values as the most, and dark values as the least
occurring pixel value. To explore the location of pixels in feature space the 3D
plot can be navigated by (auto-)rotation, translation and zoom. Individual pixels
can be selected to derive their DN-values. When a pixel is selected, it is highlighted
and it flashes for five seconds to attract attention, its value is shown in the plot
window. The position of the view changes automatically to an optimal location.
Band names and DN-labels are shown on the three axes in the plot.

20



Chapter 2. Interactive Visualisation of a Fuzzy Classification

The 3D feature space plot is dynamically linked with the image display, i.e. the
result of a selection in one view is also shown in other views by highlighting and
the views are updated upon user action. In the image display, the selection colour
used for highlighting a selected pixel can interfere with the original pixel colours
in the image, therefore, selection colours can be changed in both views.

2.5 Visualisation of classes

An important step in a supervised classification is the choice of reference pixels
(also known as regions or areas of interest) for the representation of different
land cover classes. Usually, reference pixels are identified in the image or derived
from external data like aerial photography or field observations. Groups of class
reference pixels represent a land cover class. These pixels can be imported and
visualised in the image display in their unique class colour. Statistical information
from these reference pixels, like minimum and maximum values, mean vector and
(co) variance matrix, is used in many classification algorithms.

The focus of this study is to develop an interactive visual fuzzy classification
based on the visualisation of these reference class clusters in the 3D feature space
plot. The user can add all reference classes or individual classes to the 3D plot.
These class clusters are depicted by (semi-transparent) spheres, coloured accord-
ing to their class colour. (figure 2.2). The centroid of a sphere (i.e. position in
the 3D plot) is based on the mean vector of the class reference pixels. Initially,
the radius of a sphere is based on two times the maximum standard deviation.
Lighting and shading is applied to improve visibility of pixels, and class spheres
and to facilitate the ‘3D feel’. Moreover, transparency can be changed interac-
tively so that pixels inside the spheres become visible. Class overlap is clearly
visible in places where spheres intersect (figure 2.2). Class spheres can be selected,
showing a pop-up window with information about class label, class colour, mean
DN-value in each band and maximum standard deviation (i.e. sphere radius). Ex-
ploration of this 3D plot provides valuable information about classes, class overlap
and pixel positions. By selecting a pixel in the 3D plot inside or outside one of the
spheres, a user can explore the geographical locations of pixels with the selected
value highlighted in the image display. In addition, when a pixel is selected in the
image a user can see whether or not it is included in a class cluster. The distance
in feature space between a pixel and a class cluster or centroid reveals much in-
formation about its uncertainty. Additionally, when a pixel is located in between
class spheres, uncertainty is most likely high. Especially, in the regions where class
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(a) (b)

(c)

Figure 2.1: Three main visualisations: (a) Image display with a colour composite of band
4, 5 and 3 of a Landsat 7 ETM+ image; (b) 3D feature space plot shows the scatter cloud
of pixels. The 3D plot can be linked to the image display in figure 2.1(a); (c) The parallel
coordinate plot (PCP) shows the signatures of pixels in all seven bands.
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Figure 2.2: 3D feature space plot showing the class spheres of the reference classes. Overlap
occurs between class maquis and pine, maquis and garrigue, and agriculture and urban. The
class sphere of the maquis class is selected. The pop-up window shows the class label, colour,
the number of pixels in the reference area, the mean value in each of the bands and the radius
of the class sphere. The value of a selected pixel and the number of pixels in the image with
the selected value are shown in the upper-right corner of the plot window. These image pixels
are highlighted in the image display.

spheres overlap uncertainty values are high. The position and radius of the class
spheres provide an initial condition for a fuzzy classification of the image with the
spheres representing fuzzy membership functions. Interaction with these spheres
could improve a classification and could help to fine-tune a classification result
and discover relations between feature space, a thematic map, and an uncertainty
map.
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2.6. Visual fuzzy classification

2.6 Visual fuzzy classification

The class spheres are used to define the membership functions for a fuzzy clas-
sification. In traditional fuzzy classification, the fuzziness parameter is set to a
specific value. This decision is often relatively arbitrary. In addition, in a seman-
tic import model the membership function is seldom based on well-founded data.
Therefore, it can be argued that visual information on class overlap and class range
is invaluable for determining the width and overlap of membership functions.

In Parbat a membership function is depicted by a class sphere, with the centroid
as the point where membership equals 1.0, and the outside of the sphere itself is
the point where membership equals 0.0, corresponding to a triangular membership
function. Pixel membership values range between 0.0 (sphere) and 1.0 (centroid)
in the area inside the sphere (figure 2.3). The initial radius of a sphere (width of
the membership function) is based on two times the maximum standard deviation
of the class under consideration. When the user selects a class sphere he or she
is presented with a pop-up window with information about the class label, colour,
mean values and the radius. The radius can be adjusted with a slider, increasing
or decreasing the size of the sphere. The exact value for the radius of the changing
sphere is shown in the pop-up window. By changing the radius of a class sphere,
the user changes the width of the triangular membership function of a class (fig-
ure 2.3). Class overlap zones can be resized to increase or decrease the fuzziness,
effectively changing the fuzziness parameter in a fuzzy c-means classification for
those particular classes.

When all membership functions are adjusted based on the visual interpreta-
tion of class spheres, all unclassified pixels in the image can be classified. First,
the user has to decide on the type of output products of the classification. Users
are likely to be interested in a crisp classification product to see the spatial dis-
tribution of classes in the image or to see a generalised, classified version of the
image. Therefore, a hard (i.e. ‘defuzzified’) land cover image is one of the main
outputs of the classification, providing class labels and class colours for each pixel
(figure 2.4(a)). A membership image with a membership layer for each class is
the second product (figure 2.4(b)). Information about transition zones can be
obtained from these membership images. A third output is an image depicting
the maximum membership per pixel. This image gives an indication of the un-
certainty of the classification; the lower the maximum membership, the higher is
the uncertainty (figure 2.4(c)). Another powerful measure to depict uncertainty
is the confusion index (CI) (Burrough and McDonnell, 1998) as a value for class
vagueness of a membership vector.
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Figure 2.3: Representation of an interactive visual fuzzy classification. The classes agricul-
ture and urban overlap in the 3D feature space plot. The class spheres depict triangular
membership functions that are used for classification. The membership functions of the two
overlapping classes are projected onto band 4 for clarification of the process. A popup slider
is used to adjust the radius of the sphere, thereby changing the width of the membership
function and possibly changing the overlap with another class/membership function.
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CI =
µmax2

µmax
(2.2)

As a final output, an image with the confusion index is produced. This image
gives an excellent overview of the areas where uncertainty is highest and classes
overlap (figure 2.4(d)). When the actual classification is performed, the selected
classification outputs are shown on screen and automatically linked to the 3D
feature space plot. Pixels that fall outside any of the class spheres are unclassified.
They are shown in black in the hard class image (figure 2.4(a)). The resulting
image displays have the same functionality as the original image display. The user
can navigate, zoom and query pixels in the image (see also figure 2.1(a)).

The dynamic links between the class image display and the 3D plot are very
powerful. These links give the user the possibility to explore and discover relations
between the class of a certain pixel, its uncertainty and the location in feature
space. Based on the visual information a user can get a good indication of areas
with high uncertainty and its origin. Insight into the actual classification can
be improved, because the user can ‘play’ with the parameters of the algorithm
by adjusting the class spheres in feature space. The new result is shown as a
class image with related uncertainty information. Changes in class membership
functions are immediately depicted in the output images. The user will get a better
feel of the functioning of a fuzzy classification. Another advantage of this tool is
that it enables a user to fine-tune the classification result.

2.7 Implementation of the prototype Parbat

The visualisation and classification techniques described above were implemented
in the software prototype Parbat (http://parbat.lucieer.net (Lucieer, 2004)).
The user interface contains a series of buttons to access the main visualisation
and classification functions, similar to commercial image processing software like
ERDAS Imagine and ENVI. Selection dialogs and displays are opened in new
windows. Thus, Parbat implements a multiple document interface (MDI) with-
out backing window; the main window is the button bar (figure 2.5). Currently,
Parbat can read band sequential files based on the standard ENVI format. Both
input and output functions use this file format. A band sequential file (often with
the extension .bsq) is a generic binary file with an ASCII header describing the
number of rows, columns, bands, band names, data type, projection, and sensor.
Reference pixels for classification are selected from regions of interest (ROIs) digi-
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Figure 2.4: Classification result after an initial visual fuzzy classification based on default
radii of the class spheres: (a) Crisp land cover class image display with class labels based on
maximum membership. Black pixels are unclassified. These unclassified pixels occur outside
any of the class spheres in the 3D feature space plot; (b) Membership image display for
the class maquis shows high membership values for pixels in the Northwest, hilly part of
the area; (c) Maximum membership map shows, for every pixel, the maximum membership
value from the membership vector. The maquis and water pixels are classified with low
uncertainty and maquis, urban and agricultural areas with higher uncertainty values; (d)
Confusion image display shows areas where confusion in classification occurs (bright areas).
Urban and agricultural areas overlap in feature space, as can be seen in figures 2.2 and 2.3.
Pixels in this overlap zone show high confusion values in the image display (note: high
uncertainty = high confusion = bright value).
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Figure 2.5: Parbat prototype, showing several selection, information and display windows.

tised in ENVI. The ENVI ROI ASCII export format is used as input in Parbat for
visualisation of reference class pixels in the image display and class spheres in the
3D plot. Information about these ROIs is used in subsequent classification.

Currently, this prototype is tested and run on a Pentium III 800MHz laptop
with 512Mb RAM and a video card supporting OpenGL running a Linux operating
system (Parbat can also be run on MS Windows and other operating systems).
Java 3D utilises OpenGL in the background and a video card supporting this 3D
graphics standard greatly enhances 3D visualisation performance. A visual fuzzy
classification based on three bands of an image of 512 by 512 pixels takes less
than three seconds on this machine. Navigation of both the image display and 3D
feature space plot is fast and smooth, without jittering.
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2.8 Prototype test case

2.8.1 Study area and data set

In order to test the prototype, a subset of a Landsat 7 ETM+ image of an area in
Southern France was used. Transition zones between vegetation types are known to
be problematic in land cover classification of remotely sensed images (Foody, 1996).
Therefore, classification uncertainty plays an important role in these images. A
geovisualisation tool like Parbat can help to gain insight into classification un-
certainty. An area in which these classification problems occur is the ‘La Peyne’
catchment located Northwest of Montpellier, France. This area was chosen as a
study area to demonstrate the use of a geovisualisation tool for visual fuzzy classi-
fication and uncertainty. The area is situated at the fringe of the ‘Massif Central’
and is characterised by various geological and lithological substrates. The large
variety in these substrates has caused a wide range of soil conditions and vege-
tation types. The northern part of the area is covered by a Mediterranean oak
forest (also known as ‘maquis’) dominated by Quercus ilex and Quercus pubescens
and lower ‘garrigue’ shrub lands. The southern part of the area is characterised
by vineyards and agricultural crops (Lucieer et al., 2000; Sluiter, 2004). A subset
(225 km2) of a Landsat 7 (ETM+) scene covering the ‘La Peyne’ area is used in
this study (figure 2.6). The image was acquired on June 26th, 2001.

The study area is actively used as a research area for modelling floods, ero-
sion, evapotranspiration, and soil temperature. Information on basic land cover
provides important input for these models. The following land cover classes can
be found in the study area: water (lake), maquis, garrigue, pine forest, agriculture
(mostly vineyard) and urban area. Not all classes are likely to have similar spec-
tral responses and overlap. Water, for example, is often a spectrally ‘pure’ class
and usually does not overlap with other classes. However, maquis and garrigue
were expected to show very similar signatures with significant overlap of clusters
in feature space. Fieldwork showed that these classes often gradually change from
one to the other. Urban areas are often a mix of roofs, gardens, cars and streets.
Thus, the urban class would probably show a high variance in its class cluster in
feature space. The same applied to vineyards, characterised by a mix of vegetation
and bare soil, with the percentage of vegetation cover depending on the season.

Fieldwork was carried out to obtain ground reference data. Regions with ‘pure’
classes have been observed in the field and corresponding pixels digitised and ex-
tracted from the image to form reference class clusters. The mean and standard
deviation from these class reference pixels was then used to plot the class spheres
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Figure 2.6: Colour composite of band 4,5, and 3 of a subset of a Landsat 7 ETM+ image of
the ‘La Peyne’ catchment in southern France.

in the 3D feature space plot. Additionally, the reference areas were highlighted
in their class colour in the image display. Individual classes could be added or
removed from the 3D plot or image display. The locations and sizes of the class
reference spheres in the 3D plot provided an initial setup for the fuzzy classifica-
tion. Before the actual classification, a user is stimulated to explore overlap zones
between classes by navigation in the 3D plot and to explore relations between pix-
els in the 3D plot and pixels in the image display and their distance to the class
reference clusters.

2.8.2 Visual fuzzy classification of the study area

To test the visual fuzzy classification in the prototype, band 4 (NIR), 5 (MIR) and
3 (RED) from the Landsat 7 test image were used. These three bands explained
most of the variability in the image and were expected to give good classifica-

30



Chapter 2. Interactive Visualisation of a Fuzzy Classification

Table 2.1: Classification accuracy % for a classification based on the initial class sphere
configuration

Reference
Class Maquis Garrigue Urban Agriculture Water Pine Total

Unclassified 31.19 5.63 8.61 12.79 0.00 3.91 14.30
Maquis 68.81 0.00 0.00 0.00 0.00 0.00 16.75

Garrigue 0.00 94.37 0.00 0.33 0.00 0.00 23.57
Urban 0.00 0.00 91.39 34.92 0.00 0.00 21.76

Agriculture 0.00 0.00 0.00 51.97 0.00 0.00 17.08
Water 0.00 0.00 0.00 0.00 100.00 0.00 3.23

Pine 0.00 0.00 0.00 0.00 0.00 96.09 3.31
Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00

tion results. When the reference class spheres were plotted, it could be observed
that classes agriculture and urban overlapped considerably (figures 2.2 and 2.3).
In addition, the maquis and garrigue class spheres, as well as the maquis and
pine classes overlapped slightly. The water class sphere showed no overlap with
other classes. An initial classification with the default membership functions (note
that the default sphere radius equals two times the maximum standard deviation)
showed that many pixels remained unclassified (figure 2.4(a)). This was caused
by the small width of the membership functions. A confusion matrix from an
accuracy assessment (table 2.1) showed that the urban class was over-classified
and the agricultural class was under-classified, compared to what has been ob-
served in the field. This initial classification had an overall accuracy of 72.12%
(table 2.4). Furthermore, the image display with the confusion index visualised
the spatial distribution of uncertainty (figure 2.4(d)). It showed that there was
considerable confusion in agricultural and urban areas. In addition, in regions
affected by shadow, confusion was high. This observation corresponded to the
overlapping class spheres in the 3D plot. A user can explore these areas of high
uncertainty by selecting a pixel with high confusion in the confusion image display
and study the position of this pixel in the feature space plot (it is highlighted,
it flashes and the position of the viewer changes to the optimal location). This
exploration session showed that pixels with a high confusion index (i.e. high un-
certainty) were located in the overlap zones between classes urban and agriculture.
The maximum membership image display showed that in areas where maquis and
water occur membership was highest, and therefore, uncertainty values were low
(figure 2.4(c)). When pixels in these areas in the image display were selected, it
could be observed that these pixels were located inside the maquis and water class
spheres in the 3D plot, close to the centroids, therefore with high membership
values.
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Table 2.2: Classification accuracy % for a classification based on the adjusted class sphere
configuration

Reference
Class Maquis Garrigue Urban Agriculture Water Pine Total

Unclassified 10.07 0.00 7.89 2.95 5.00 0.78 4.50
Maquis 89.93 0.54 0.00 0.00 0.00 3.12 22.14

Garrigue 0.00 99.46 3.83 15.90 0.00 0.00 30.38
Urban 0.00 0.00 50.48 0.57 0.00 0.00 5.87

Agriculture 0.00 0.00 37.80 80.57 0.00 0.00 30.73
Water 0.00 0.00 0.00 0.00 95.00 0.00 3.07

Pine 0.00 0.00 0.00 0.00 0.00 96.09 3.31
Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00

2.8.3 Fine-tuning the visual classification

To fine-tune the classification a user can go back to the 3D plot to reconfigure the
class spheres based on a previous exploration session (figure 2.7). In the previous
session, a considerable amount of pixels was unclassified because these pixels did
not fall within any of the class spheres, therefore their membership was equal to
0. The first step of the fine-tune session was to increase the width of some of the
membership functions (figure 2.3). The radius of the garrigue class sphere could
easily be increased without making the overlap zone with maquis too large. The
width of the urban class could be reduced, since it was over-classified in the initial
classification. This class sphere was selected in the 3D plot and its radius decreased
with the slider. The agriculture class sphere was resized to a larger size, because it
was under-classified in the initial classification. See figure 2.7(a) for the resulting
class sphere configuration. A second classification based on this configuration
showed that most of the unclassified pixels in the previous session were classified
(figure 2.7(b)). The area of the urban class was much smaller, corresponding with
the small number of villages observed in the area, and the accuracy values for the
maquis, garrigue and agriculture class increased (table 2.2). The confusion image
display showed that confusion was highest in narrow transition zones between
maquis and garrigue and in agricultural parcels (figure 2.7(d)). These parcels are
most likely bare soil patches that are spectrally very similar to roofs of houses in
the urban area. A selection of pixels in these areas showed that these pixels were
located in the overlap zone between the agriculture and urban classes in the 3D
feature space plot. The overall classifcation accuracy was 85.16% (table 2.4).
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Figure 2.7: After an initial classification the classification result was fine-tuned by adjusting
class sphere radii: (a) 3D plot with the adjusted class spheres; the sizes of the maquis class
sphere, as well as the garrigue and agriculture class spheres increased. The radius of the urban
class sphere decreased. This configuration of class clusters better reflects the situation in the
field; (b) The revised ‘defuzzified’ (crisp) land cover map; (c) The maximum membership
values for every pixel; (d) The confusion index for every pixel.
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Table 2.3: Classification accuracy % for a classification based on an adjusted class sphere
configuration of the first three Principal Components

Reference
Class Maquis Garrigue Urban Agriculture Water Pine Total

Unclassified 0.11 0.00 27.99 6.80 12.50 0.00 5.82
Maquis 99.89 0.11 0.00 0.00 0.00 0.00 24.35

Garrigue 0.00 96.42 5.50 6.31 0.00 3.91 26.80
Urban 0.00 0.00 53.35 2.21 0.00 0.00 6.73

Agriculture 0.00 2.60 13.16 84.67 0.00 0.00 29.95
Water 0.00 0.00 0.00 0.00 87.50 0.00 2.83

Pine 0.00 0.87 0.00 0.00 0.00 96.09 3.53
Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00

2.8.4 Visual classification based on Principal Components

The visual classifier as proposed in this study is based on three image bands.
These bands are chosen from all image bands, based on interpretation of the par-
allel coordinate plot and colour composites in the image display. In other words,
only three dimensions of a seven dimensional feature space (in case of a Landsat
7 ETM+ image) were used. Alternatively, dimensionality reduction techniques
could be applied to reduce a seven dimensional space to three dimensions. In this
example, a Principal Component Analysis (PCA) was carried out to derive the
three principal components that explain most variance in the data. These first
three PC bands explain 99% of the total variance in seven original bands. The
axis of the 3D plot were then formed by these first three principal components
(figure 2.8(a)). Likewise, the image display contained a colour composite of these
principal components (figure 2.8(b)). A visual fuzzy classification was then carried
out in principal component space. The classification result is shown in figure 2.8(c).
Table 2.3 gives the confusion matrix for this classification. It shows that almost
no under-classification or over-classification occurred. The overall accuracy was
88.26%.

2.8.5 Visual classifier versus standard fuzzy classifiers

Table 2.4 and figure 2.9 show that the visual classifier outperformed the standard
supervised fuzzy classifiers (SFCM). In general, all standard fuzzy classifiers over-
classified the urban area, i.e. too much urban area occured in the classification
result (figure 2.9(a)). Four supervised fuzzy classifiers (SFCM) were compared to
the visual classifier. A fuzzy overlap parameter of 2.0 was used for all classifiers.
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Figure 2.8: Visual fuzzy classificiation of Principal Component space with the first three
Principal Components: (a) 3D Principal Component space with class spheres; (b) Image
display with colour composite of the first three Principal Components; (c) PCA fuzzy visual
classification.
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Table 2.4: Classification accuracy assessment for different classifiers
Classifier Bands Distance Accuracy % Kappa

Visual Classifier 3, 4 and 5 original spheres 74.12 0.68
Visual Classifier 3, 4 and 5 adjusted spheres 85.16 0.81
Visual Classifier 3 PCA adjusted spheres 88.26 0.85

SFCM 3, 4 and 5 Euclidean 68.13 0.61
SFCM 3, 4 and 5 Mahalanobis 63.50 0.56
SFCM all Euclidean 68.50 0.61
SFCM all Mahalanobis 68.15 0.61

The Euclidean and Mahalanobis distance measures gave different classification re-
sults. Additionally, the SFCM classification was carried out using the same three
bands as in the 3D plot and using all bands in the image to test the effect of the
number of bands. Table 2.4 shows that there was not much difference in perfor-
mance between the different SFCM classifiers. Both visual classifiers outperformed
the SFCM classifiers. Fine-tuning of the initial classification result improved ac-
curacy with more than 10% to an overall classification accuracy of 84.41%. A
visual classification based on the first three principal components resulted in a
classification accuracy of 88.26%.

The main gain of the visual classifier, however, is the insight a user gets into the
classification algorithm and related uncertainty by exploring the relations between
classes and pixels and the relations between the spatial classification result (image
display) and uncertainty information (confusion and maximum membership dis-
play), and corresponding thematic or spectral information in the 3D feature space
plot. Dynamically linked views and interaction with the class reference spheres
are, therefore, of crucial importance for the effectiveness of a visual classifier.

2.9 Prototype evaluation with focus groups

Evaluation is an important issue in considering the effectiveness of the prototype
in improving understanding for fuzzy classification and uncertainty. Initially, a
qualitative evaluation is of interested for a prototype with a focus on exploration.
Focus groups provide a technique of qualitative user testing (Kessler, 2000; Morgan,
1998). Harrower et al. (2000) describe focus groups as a “cost-effective way to
generate qualitative evidence concerning the pros and cons of a geovisualisation
system”.

Eight researchers were invited for a two-hour focus group session. The partic-
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Figure 2.9: Standard supervised fuzzy c-means classification (SFCM all bands with Euclidean
distance measure and overlap of 2.0) for comparison with the fuzzy visual classifier in fig-
ure 2.7: (a) Image display with hard classes shows that the urban class is over-classified
and the agricultural class is under-classified; (b) Image display with the confusion index for
the standard fuzzy c-means, which depicts high confusion values in agricultural, urban and
garrigue areas.

ipants all had an academic background in remote sensing or visualisation. The
session was started with a 20-minute presentation about the background of fuzzy
classification of remotely sensed imagery and about geovisualisation. Then, the
prototype was demonstrated by showing the different displays and their basic func-
tionality, followed by a visual fuzzy classification based on class clusters in the 3D
feature space plot. Next, the participants worked with the prototype for 45 min-
utes with clear directions to focus on the visual fuzzy classifier. Finally, their
experiences were discussed in a 40-minute session.

All participants felt that the visualisation tool helped in understanding a clas-
sification algorithm. Dynamic linking of the different representations greatly im-
proved their insight. The 3D plot provided an excellent visualisation for classifi-
cation. Interaction with the class clusters helped in understanding the effect of
changing membership functions and class overlap on the classification and uncer-
tainty. Some participants noted that a tool like this would be very helpful in
teaching students on remotely sensed image classification, to help them visualise
the classification process.

One of the mentioned disadvantages was that the role of the parallel coordinate

37



2.10. Discussion

plot is small in this prototype. The PCP helps in choosing bands for the 3D plot
(based on the histograms); however, the PCP is not linked to the image and 3D
plot, therefore, it is difficult to use it in classification. A dynamic link of the PCP
with the other displays would be an improvement. Another disadvantage is the
shape of the class spheres. It might falsely suggest equal variance in every band
and it implies a very ‘smooth’ class shape. Some classes can be very irregularly
shaped and visualisation of these exact class shapes could be useful. Therefore,
one should not compare the shape of a class cluster with the shape of a sphere,
representing a membership function in 3D feature space.

The classification products like the confusion and maximum membership image
displays provided a good overview of the geographical distribution of uncertainty
in the classification. Detailed exploration of individual pixel values provided good
insight into thematic pixel uncertainty. The prototype is not restricted to one
type of application, like land cover mapping. In other applications like geological,
soil or vegetation mapping, a tool like this might be very useful and helpful. In
addition, the prototype is not restricted to one type of remotely sensed imagery.
One of the main complaints about existing software was that ‘uncertainty tools’
are lacking in commercial remote sensing and GIS packages. Parbat bridges the
gap between classification and uncertainty visualisation.

It can be concluded from this focus group session that the prototype complies
with the objectives. Although, some detailed aspects of the user interface and
functionality could be improved, the main objective of the prototype was clear.
All participants found that the proposed geovisualisation prototype helped in clar-
ifying the functioning of a supervised fuzzy classification algorithm. It also helped
in understanding uncertainty and fuzzy class overlap.

2.10 Discussion

A Landsat ETM+ image contains seven bands; other sensors, like hyperspectral
sensors, produce up to hundreds of bands. Choosing the three bands that de-
scribe most of the variance for the application at hand is a difficult task. Several
techniques exist to reduce a multi-dimensional space to three dimensions. In this
study, a principal component analysis was applied to reduce the dimensionality of
the data. Alternatively, a projection of a hyper-dimensional feature space to three
dimensions could be used. Other examples for dimensionality reduction techniques
include projection pursuit, multi-dimensional scaling, self organising map (SOM),
or other statistical techniques like a discriminant analysis. The visual classifica-
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tion results show, however, that dimensionality reduction technique like a principal
components analysis only improve overall accuracy with a small percentage. Other
visualisation techniques for visualisation of hyper-dimensional spaces exist, for ex-
ample the hyperbox or starplot. However, these techniques are not suitable for
classification purposes.

The membership function used in Parbat is a triangular shaped function. A
useful addition to the prototype would be an option to choose the shape of the
membership function, either globally or per class. For example, the user should
be able to select a trapezoidal or Gaussian membership function. This makes it
possible to assess the effect of different membership functions on the classification
result. Additionally, the centroids of the class spheres (i.e. centre of the mem-
bership functions, where membership equals 1.0) are fixed. A user might want to
change the location of a class sphere to assess the effect of relocation of reference
class clusters on fuzzy overlap for example.

Class clusters in the 3D feature space plot are visualised by semi-transparent
spheres. However, a sphere is a very rough approximation of the shape of a class
cluster. By using a sphere, one assumes equal variance in every direction. In fact,
the maximum standard deviation of the three bands is used to set the radius of a
class sphere. A better approximation of the shape of a class cluster would be an
ellipsoid. A 3D ellipsoid could be constructed from the mean vector and covariance
matrix of a class. The mean vector provides the centre of the ellipsoid and from
the covariance matrix, eigenvalues and eigenvectors can be calculated. Eigenvalues
represent the length of the axes; eigenvectors represent the direction of the axes of
an ellipsoid. In this way, for every reference class ellipsoids can be constructed and
visualised. However, an ellipsoid is also an approximation of the shape of a class
cluster. Evaluation of the prototype showed that users would like to see the ‘real’
shape of a class clusters in feature space. They argued that it would help in the
interpretation of reference classes and assessing their overlap. α-shapes provide a
technique for calculating a shape from a set of points in feature space. Therefore,
α-shapes provide a way of visualising irregular and even concave shaped clusters
in a 3D feature space plot. In the next chapter, α-shapes will be discussed.

Visualisation of uncertainty in the final classification result is done by depicting
maximum membership or confusion values in a separate grey-scale map. Alter-
natively, the map containing hard land cover classes can be combined with the
uncertainty map. Colour hue can be used to describe the classes and colour sat-
uration or lightness can be used to visualise uncertainty information. One of the
visualisation techniques as described in section 2.3 could be used to present the
final classification result combined with uncertainty information. The focus of this
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study, however, is on explorative visualisation of a fuzzy classification and not on
presentation of uncertainty in a classification result.

The effectiveness of the geovisualisation tool not only depends on the visuali-
sation techniques used but also on the knowledge of the user (a geoscientist). The
selection of reference or ground truth pixels is an important step in the classifica-
tion process. Sufficient knowledge of the area under consideration is essential for
good classification results.

2.11 Conclusions

Uncertainty plays an important role in land cover classification of remotely sensed
imagery. Classification of areas where transition zones between vegetation types
occur, usually results in high classification uncertainty. Fuzzy classification pro-
vides a technique for quantifying this uncertainty. Visualisation provides an ex-
cellent means of exploring the functioning of a fuzzy classification algorithm and
related uncertainty. In this study, a geovisualisation tool was proposed and dis-
cussed. With this tool a geoscientist can visually interact with the parameters of
a supervised fuzzy classification algorithm. The user can find an optimal classi-
fication result and derive insight into classification uncertainty. The tool consists
of three basic plots: an image display, a parallel coordinate plot, and a 3D fea-
ture space plot. The user can interactively adjust the membership functions of
classes and fuzzy overlap zones in the 3D feature space plot. All plots are dynam-
ically linked and have geographic brushing functionality to stimulate exploration
and, consequently, improve insight into classification and uncertainty. To test the
proposed prototype, a Landsat 7 ETM+ image of an area in Southern France
was used. In this area, transition zones between semi-natural vegetation types
dominate. A visual fuzzy classification resulted in a hard land cover map and
uncertainty maps, showing membership layers, maximum membership per pixel
and the confusion index per pixel. The user can adapt reference class spheres in
the 3D feature space plot to fine-tune the classification. Good classification results
were obtained with an overall classification accuracy of 85.16%. A visual fuzzy
classification in 3D principal component space, provided good classification results
with an overall accuracy of 88.25%. A focus group user test showed that remote
sensing users find the described visualisation techniques very valuable. Users noted
that the main advantage of the visual classifier is an improvement of insight into
the classification algorithm and related uncertainty. Exploring the relations be-
tween classes and pixels and the relations between the (crisp) classification result
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and uncertainty information, and corresponding thematic or spectral information
in the 3D feature space plot provides important information for understanding a
fuzzy classification and related uncertainty.
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Chapter 3

Alpha-shapes for
Visualisation and
Classification∗

There are some minds like either convex or concave mirrors,
which represent objects such as they receive them,

but never receive them as they are

J. Joubert

3.1 Introduction

In chapter 2, a new interactive visualisation tool for visualising a fuzzy classifi-
cation of remotely sensed imagery was proposed. Lucieer and Kraak (2002) and
Lucieer and Kraak (2004) focused on visual exploration of a fuzzy classification al-
gorithm and interaction with its parameters. A geovisualisation tool together with
a supervised fuzzy classification algorithm was implemented to demonstrate the
use of exploratory visualisation techniques in assessing classification uncertainty.

∗This chapter is based on the following paper:
Lucieer, A. and Kraak, M. J. (2004a). Alpha-shapes for visualising irregular shaped class clus-

ters in 3D feature space for classification of remotely sensed imagery, Proceedings Visualisation
and Data Analysis 2004, San Jose, USA.



3.2. Class cluster shape

This tool allowed a geoscientist to interact with the parameters of a fuzzy classifica-
tion algorithm by adjusting fuzzy transition zones between classes in a 3D feature
space plot. The purpose of this tool was to improve a geoscientist’s understanding
of uncertainty in remotely sensed image classification. Good classification results
were obtained with visual fuzzy classifications.

Class clusters in the 3D feature space plot were visualised by semi-transparent
spheres. A sphere is a very rough approximation of the shape of a class cluster. By
using a sphere one assumes equal variance in every direction, however, often this
is not the case. Evaluation of the software prototype revealed that users would
like to see the ‘real’ shape of a class cluster in feature space, because it would help
in interpretation of reference classes and assessing their overlap. α-shapes provide
a way of visualising irregular shaped clusters in 2D and 3D space.

The aim of this chapter is to propose and implement α-shapes for visualisa-
tion of reference class clusters. α-shapes are expected to improve visualisation
of class clusters in a remote sensing image classification, therefore, it is argued
that α-shapes will also improve insight into classification and related uncertainty,
providing a way of visualising class clusters more accurately. The position of an
unclassified pixel in feature space in relation to one or more reference classes (i.e.
α-shape of a cluster of reference pixels) can be assessed more accurately. Uncer-
tainty arises from vagueness in the attribution of classes to unclassified pixels and
visualisation can be helpful in communicating this vagueness. The more accurate
the representation of classes in feature space, the better the uncertainty assessment
of a classification.

The second objective of this study is to propose and implement a classification
algorithm based on α-shapes. Most classification algorithms cannot cope with
concave cluster shapes in feature space. α-shapes can deal with irregular or even
concave clusters in a classification.

3.2 Class cluster shape

For a supervised remote sensing classification, reference data is used. An impor-
tant step in a supervised classification of remote sensing imagery is the choice of
reference pixels for the representation of classes. Usually, reference pixels are se-
lected from the image or from external data like aerial photography or field data.
In this study, reference pixels are selected and extracted from the image by digi-
tising polygons in the image display. Each polygon depicts a land cover class and
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Figure 3.1: Irregular shaped cluster in a 2D feature space. Comparison of cluster representa-
tion by a circle, an ellipse, a convex hull, and an α-shape.

is displayed in a unique class colour. Class statistics, extracted from the selected
pixels, are used to classify all unlabelled pixels. Visualisation of class information
in feature space gives a user valuable information about the location of classes and
about possible overlap or vagueness between classes.

In chapter 2, spheres are plotted in the 3D feature space plot to depict reference
classes. These spheres provided simple representations of class reference clusters.
A better approximation of the shape of a class cluster is an ellipsoid, as it takes into
account difference in variance in different bands. A 3D ellipsoid can be constructed
from the mean vector and covariance matrix of a class. The mean vector gives the
centre of the ellipsoid. From the covariance matrix, eigenvalues and eigenvectors
can be calculated. Eigenvalues represent the length of the axes and eigenvectors
represent the direction of the axes of an ellipsoid. Although an ellipsoid gives a
better representation of the shape of a cluster, it is still inaccurate when a cluster
is irregular with concave shaped sections. α-shapes can be used to overcome this
problem and to improve the visualisation of irregular shaped clusters. Figure 3.1
shows an example of a 2D feature space with a class cluster of pixels represented
by a circle, an ellipse, a convex hull, and an α-shape.
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3.3 α-shapes

The geometric notion of ‘shape’ has no associated formal meaning. Edelsbrunner
and Mücke (1994) introduced α-shapes as a definition and computation of the
shape of a finite point set in three-dimensional Euclidean space. α-shapes can
be viewed as generalisations of the convex hull of a point set. It formalises the
intuitive notion of shape, and for varying parameter alpha, it ranges from crude
to fine shapes. Let S be a finite set of points in Rd (where d is the dimension)
and α a real number with 0 ≤ α ≤ ∞. The α-shape of S is a polytope that is
neither necessarily convex nor connected. For α = ∞, the α-shape is identical to
the convex hull of S. However, as α decreases, the α-shape shrinks by gradually
developing cavities. These cavities may join to form tunnels, and even holes may
appear (Edelsbrunner and Mücke, 1994).

Fischer (Fischer, 2004) metaphorically describes α-shapes as ice-cream con-
taining chocolate pieces. He writes the following: “One can intuitively think of an
α-shape as a huge mass of ice-cream making up the space Rd and containing the
points S as ‘hard’ chocolate pieces. Using one of these sphere-formed ice-cream
spoons we carve out all parts of the ice-cream block we can reach without bumping
into chocolate pieces, thereby even carving out holes in the inside (e.g. parts not
reachable by simply moving the spoon from the outside). We will eventually end
up with a (not necessarily convex) object bounded by caps, arcs and points. If we
now straighten all ‘round’ faces to triangles and line segments, we have an intuitive
description of what is called the α-shape of S.” An example for this process in 2D
(where the ice-cream spoon is simply a circle) is shown in figure 3.2.

3.4 α-shape implementation and visualisation

To illustrate the proposed α-shape class visualisation, the Landsat 7 ETM+ image
of the ‘Peyne’ river catchment in Southern France was used (section 2.8). The
following land cover classes can be found in the study area: water (lake), maquis,
garrigue, pine forest, agriculture (mostly vineyard) and urban area.

α-shapes were implemented to improve the visualisation of the shape of these
class clusters in the 3D feature space plot. For the implementation of α-shapes in
Parbat, external open-source software called hull was used. Hull was programmed
in the C–programming language by Clarkson (2004). Hull calculates the (3D)
coordinates of vertices that make up the α-shape from a set of (3D) points based
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Figure 3.2: Example of a 2D α-shape. Parameter α determines the radius of the disc con-
necting two outer points (source: CGAL (2004))

on a Delauney triangulation. The parameter α is calculated by finding the smallest
value of α so that all points in the cluster are contained in the α-shape without
forming holes. It is possible, however, to set a value of α to obtain different
realisations of an α-shape. For every reference class, pixel values were extracted
from the corresponding reference areas in the image scene. These reference pixels
form a cluster for each class in 3D feature space. Hull computes the coordinates
of the corresponding α-shapes for every cluster.

Next, the α-shapes were visualised (using Java3D) in the 3D feature space plot.
Directional lighting and shading were added to the plot and a shiny material ap-
pearance was applied to the α-shapes, to improve visibility of pockets and voids.
Transparency of the shapes could be changed interactively so that pixels inside
α-shapes were still visible. α-shapes could be selected and queried to obtain in-
formation about their class label, mean values and colour. Figure 3.3 shows four
different visualisations of class urban and class agriculture to show the difference
in class representation. The convex hull and α-shape depict the class shape more
accurately than a sphere and ellipsoid do. The shapes of these two classes are
elongated, showing that variance is not equal in every direction. Figure 3.4 shows
α-shapes for all land cover classes. Classes maquis, garrigue, pine and water are
more compact, but show nevertheless very irregular shapes.
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Figure 3.3: Comparison of class shape representation for class urban and class agriculture:
(a) Classes visualised as spheres. Sphere radius is based on two times the maximum stan-
dard deviation; (b) Classes visualised as ellipsoids. Ellipsoid parameters are based on class
covariance matrices; (c) Classes visualised as convex hulls; (d) Classes visualised as α-shapes.
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Figure 3.4: α-shapes based on reference pixels for every land cover class.

3.5 α-shape based classification

Most classification algorithms make assumptions about class statistics. The most
frequent used distance metrics are the Euclidean distance and the Mahalanobis
distance, taking into account (co)variance of the reference clusters. A minimum
distance to mean classifier applies the Euclidean distance and models a class cluster
as a sphere around the mean vector in a 3D feature space. The Mahalanobis
distances models a class cluster as an ellipsoid, assuming a normal distribution
of cluster pixels. The frequently applied maximum likelihood classifier assumes
that reference class clusters are characterised by a normal distribution, however,
this is often not the case. Making invalid assumptions about class distributions
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Figure 3.5: Euclidean distance from a pixel to the closest point on an α-shape is used for
fuzzy classification.

can lead to incorrect classification results, introducing errors and uncertainties.
These conventional classifiers do not take into account concave or irregular cluster
shapes, however, irregular clusters often occur in remotely sensed data. Figure 3.4
shows that most, if not all, class clusters are very irregular, not conforming to
a normal distribution. A classifier that takes into account irregularities in class
cluster shape might improve classification results and reduce uncertainties. In
addition to visualisation of class clusters in 3D feature space, α-shapes can be
used to guide a fuzzy classification.

In this chapter, the fuzzy c-means classifier (equation 2.1) is adapted based on
α-shapes. For every (unclassified) pixel in the image the Euclidean distances from
the pixel to the closest point on each of the α-shapes are calculated (figure 3.5).
Equation 2.1 is then used to compute membership values for every pixel to every
land cover class. Fuzzy overlap q is set to 2.0. The classification result is ‘defuzzi-
fied’ based on the maximum membership and a crisp land cover map is obtained.
The membership images for each class give valuable information about transition
zones and uncertainty. To summarise thematic uncertainty of a pixel the confusion
index is calculated (equation 2.2).

After classification, the results (hard classes, class memberships, maximum
membership and confusion index) can be displayed as images. Dynamic links
between the classification image displays and the 3D plot with the α-shapes are
valuable, as they give the user the possibility to explore and discover relations
between the class of a pixel, its uncertainty, and its location in feature space.
Based on the visual information a user can get a better impression of the spatial
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Figure 3.6: α-shape based fuzzy classificaiton result: (a) ‘defuzzified’ classification result; (b)
image with the confusion index.

and thematic aspect of class uncertainty compared to traditional classification and
visualisation techniques.

3.6 α-shape classification results

Similar to the classification in chapter 2, bands 4 (NIR), 5 (MIR) and 3 (RED)
from the Landsat 7 image of the ‘La Peyne’ catchment are used to test the α-
shape based classifier. Figure 3.4 shows that classes agriculture and urban overlap
considerably, but none of the other reference classes overlap.

Figure 3.6 and table 3.1 show that the urban class is over-classified and the
agricultural class is under-classified, compared to what has been observed in the
field. Furthermore, the image display with the confusion index visualises the spa-
tial distribution of uncertainty. It shows that there is considerable confusion in
agricultural and urban areas. This correspond to the overlapping α-shapes of these
classes in the 3D feature space plot. In addition, in regions affected by shadow,
confusion is high. Some shadow patches are classified as pine. This can be tested
by selecting a pixel with high confusion in the confusion image display and by
exploring its position in the feature space plot (it is highlighted, it flashes and
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Table 3.1: Classification accuracy % for a classification based on α-shapes
Reference

Class Maquis Garrigue Urban Agriculture Water Pine Total
Maquis 100.00 0.00 0.00 0.00 0.00 0.00 39.16

Garrigue 0.00 99.46 0.96 4.59 0.00 0.00 21.18
Urban 0.00 0.00 72.49 25.25 0.00 0.00 13.23

Agriculture 0.00 0.00 26.56 70.16 0.00 0.00 20.94
Water 0.00 0.11 0.00 0.00 99.17 0.00 2.60

Pine 0.00 0.43 0.00 0.00 0.83 100.00 2.88
Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table 3.2: Classification accuracy for α-shapes and convex hulls
Classifier Bands Distance Accuracy % Kappa

Visual Classifier 3, 4 and 5 α-shapes 69.92 0.63
Visual Classifier 3, 4 and 5 convex hull 68.40 0.61

the position of the viewer changes to the optimal location). Overall, the α-shape
classifier gives good results with an overall classification accuracy of 69.92%. Accu-
racy assessment results in table 3.2 show that the α-shape based classifier performs
slightly better than standard supervised fuzzy c-means classifiers. The confusion
matrix shows that the overlapping classes Urban and Agriculture are difficult to
separate. The visual classifier based on spheres, however, performs much better
(see chapter 2 and table 2.4). The reason for this lower accuracy value might be
due to the choice of the distance metric. In the next section, possible improvements
are proposed.

3.7 Distance metrics for α-shape based classifier

The distance metric for the α-shape based classification is taken as the Euclidean
distance from a pixel to the nearest point on an α-shape. In fact, this classification
is similar to a nearest neighbour classifier, the main difference being that the
representation of the reference class can be changed, by changing parameter α.
This is an important aspect, as these different class representations emphasise the
fuzzy concept of classes.

A crucial aspect for the performance of a classifier is the choice of a distance
metric. Ideally, the distance metric should account for the shape of the class clus-
ters. The Euclidean distance to an α-shape, as proposed in the previous section,
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(a) (b)

Figure 3.7: Problems with distance metric for α-shape classifier: (a) The distance from a
pixel to a pixel on the α-shape might be incorrect, as the surface of an α-shape might be
closer; (b) The distance to an α-shape centroid can give incorrect classification results. The
‘real’ distance might be much shorter or the projected line might intersect the shape at several
positions.

is not an ideal distance metric for α-shapes since it does not take into account the
central concept of the shape. Ideally, the distance metric should depict the shortest
distance to the α-shape. Since the distance from a pixel to the closest pixel on an
α-shape is used, the obtained distance does not always reflect the closest distance
(figure 3.7(a)). In the case of α-shapes, the distance metric could be calculated
based on the α-shape’s centroid. A line could be projected from a pixel to the α-
shape’s centroid. Then, the distance from to pixel to the line’s intersection point
with the shape could be used as a distance metric in classification (figure 3.7(b)).
However, in some cases this technique might fail as the centroid might be located
outside the shape (e.g. in case of a horseshoe shape) or the distance to the shape
might be much closer than calculated. Additionally, the line might intersect the
shape several times (figure 3.7(b)). Therefore, this distance metric might not re-
flect the actual situation and it might result in incorrect classification results.

Therefore, a distance measure based on the α-shape as a representation of a
membership function is proposed (figure 3.8). To use the α-shape as a membership
function the ‘central concept’ of the shape needs to be calculated. This central
concept is defined as all locations in feature space where µ = 1.0. The central
concept can be modelled with the medial axis. The medial axis of a surface in 3D
is the closure of all points that have two or more closest points on the surface (Dey
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Figure 3.8: α-shape used as representation for a membership function. The medial axis
represents values with µ = 1.0. The α-shape itself is the cross-over point (µ = 0.5) of the
membership function

and Zhao, 2002). A possible improvement of the α-shape based classifier is a fuzzy
classification algorithm, based on an α-shape and its medial axis, representing a
membership value of 1.0. The surface of the α-shape represents the crossover point
with a membership value of 0.5. Basically, every α-shape represents an irregular
membership function. For every unclassified pixel, a membership value can be
calculated based on these membership functions, accounting for irregular class
shapes. Figure 3.9 shows an example of a 3D medial axis of an α-shape of the
urban class.
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Figure 3.9: A 3D medial axis (shown in white) of an α-shape (shown in semi-transparent red)
for class urban

3.8 Discussion

For calculation of α-shapes a parameter α is required. It determines the resolution
of the shape. Currently, the value for α is chosen such that α is as small as possible
(i.e. shape described with highest accuracy), but all points in the reference pixel
cluster are included in the shape. Thus, areas with a low density of reference
pixels are still included in the α-shape. A valuable addition would be an option
to interactively change the value of parameter α for each shape individually. This
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function would provide much information on the density of points in class clusters.

The effectiveness of α-shapes for remote sensing classification is not assessed
in this study. However, a previous focus group user test showed that users are
interested in visual class representations. All users made a comment about class
shapes, saying that they would have liked to see the ‘real’ shape of a class cluster,
because it would give more (accurate) information information about the shape,
position and overlap of classes. In this study, classes are represented by α-shapes to
show their irregularity in feature space. A visual classifier based on these shapes is
a valuable addition to Parbat and traditional classifiers. Different users, however,
might prefer different visualisations. For some users it might be more convenient to
use spheres or ellipsoids for class interpretation, as α-shapes might be too complex.

3.9 Conclusions

This chapter shows that α-shapes provide a good technique for visualising class
clusters in 3D feature space. α-shapes show that class clusters are often irregularly
shaped in a 3D feature space. α-shapes are expected to be helpful in the inter-
pretation and exploration of a remote sensing image classification and in assessing
classification uncertainty. In addition to visualisation, α-shapes were used to adapt
the distance metric in a supervised fuzzy classification algorithm. Irregular or even
concave shapes of class clusters were taken into account. A classification based on
α-shapes was implemented in Parbat. Classification results showed that a fuzzy
classifier based on α-shapes performs well with an overall accuracy of 70%, which
was slightly higher than standard FCM classifiers but lower than the visual clas-
sifier discussed in chapter 2. However, several suggestion were given to improve
the visual classifier based on α-shapes. A possible improvement might include
the use of a medial axis and an α-shape for representation of a membership func-
tion. Future research should focus on usability and effectiveness issues for α-shape
visualisation.
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Segmentation





Chapter 4

Segmentation of Spatial
Objects and their
Uncertainty∗

Uncertainty and mystery are energies of life.
Don’t let them scare you unduly, for they keep boredom at bay and spark creativity.

R. I. Fitzhenry

4.1 Introduction

In chapters 2 and 3, the focus was on visualisation of pixel-based classification
techniques and thematic uncertainty. Object-oriented approaches to satellite sen-
sor image processing have become increasingly popular with the growing amount
of high-resolution satellite imagery and the increase in computing power (Sande
et al., 2003; Zhan, 2003; Walter, 2004). The basic processing units of object-
oriented image analysis are segments (image objects), as opposed to single pix-

∗This chapter is based on the following paper:
Lucieer, A. and Stein, A. (2002). Existential uncertainty of spatial objects segmented from

satellite sensor imagery, IEEE Transactions on Geoscience and Remote Sensing 40(11): 2518–
2521.
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els. Object-oriented analysis can provide useful information on object statistics,
texture, shape (e.g. length, area, convexity, roundness, compactness), and topo-
logical features (e.g. neighbouring objects, super-object). Additionally, a close
relation between real-world objects and image objects might exist. This relation
can improve the value of the final classification and cannot be fulfilled by common,
pixel-based approaches (Sande et al., 2003).

Segmentation techniques can help to extract spatial objects from an image
scene. Image segmentation is primarily used to subdivide an image into meaning-
ful segments. These segments may or may not correspond to objects as observed
in the terrain. Image segmentation is in a sense related to spectral classification,
which puts pixels into classes defined either a priori or during classification. Seg-
mentation differs from classification, however, as spatial contiguity is an explicit
goal of segmentation whereas it is only implicit in classification. Spectral classifi-
cation of satellite sensor images applied on a pixel basis ignores potentially useful
spatial information between pixels. Several studies have shown that segmenta-
tion techniques can help to extract spatial objects from an image (Gorte and
Stein, 1998; Gorte, 1998; Sande et al., 2003; Benz et al., 2004; Li and Peng, 2004).
A novel region growing segmentation algorithm was applied to identify land cover
objects, forming the basis for classification for the land cover map 2000 (LCM2000)
of Great-Britain. eCognition (eCognition, 2004) was the first commercial tool for
segmentation and object-oriented classification for remote sensing and aerial im-
agery. It is a powerful tool for using image semantics in a classification procedure
and it has been shown to give good classification results (Benz et al., 2004). How-
ever, an analysis of object uncertainty is lacking and no tools for quantification of
object uncertainty are readily available.

Uncertainty will be present in any segmented image and can have a significant
effect on further image processing. Therefore, existential uncertainty is of a ma-
jor importance for spatial objects, expressing the uncertainty that an object, as
identified by a segmentation procedure, exists (Molenaar, 1998). Quantification
of existential uncertainty is essential to evaluate segmentation quality. Recently,
probabilistic and fuzzy techniques have been used to quantify and model uncer-
tainty in classification procedures (Wel et al., 1997; Zhang and Foody, 2001; Foody
and Atkinson, 2002). This has mainly been applied on a pixel basis and no atten-
tion has been given to uncertainty related to image objects.

The objective of this study is to quantify existential uncertainty of spatial
objects derived from high-resolution satellite sensor imagery with a split-and-merge
image segmentation algorithm. The study is applied on an IKONOS image of
an agricultural area near Enschede, the Netherlands. An essential step of image
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segmentation is its validation. The existence of objects, however, depends upon the
context of a study: for example, topographical objects may differ from geological
objects or land cover objects. In this study the approach is taken that an object
with a high existential certainty corresponds to an object as represented on a
topographic map.

4.2 Image segmentation with a split-and-merge
algorithm

Commonly, three approaches are distinguished towards segmentation (Haralick
and Shapiro, 1985): edge-based segmentation, region-based segmentation and
split-and-merge segmentation. Split-and-merge segmentation, as applied in this
study, consists of a region splitting phase and an agglomerative clustering phase.
In the splitting phase the image B is initially considered as a square block of pixel
values with mean vector MB and covariance matrix SB . The dimension is deter-
mined by the number of bands in the image; in case of IKONOS this equals 4.
This block is split into four square sub-blocks (B1, B2, B3 and B4), characterised
by vectors of mean pixel values MB1 , MB2 , MB3 and MB4 and covariance matrices
SB1 , SB2 , SB3 and SB4 in the sub-blocks.

To define homogeneity, a threshold εms for the mean and thresholds εss for the
covariance matrix are considered. These values are chosen in advance and kept
constant during segmentation. An image block B is homogeneous if

|MBi
−MB | < εms for i = 1, 2, 3, 4 (4.1)

and

|SBi
− SB | < εss for i = 1, 2, 3, 4 (4.2)

and heterogeneous if one of these equations does not apply. Heterogeneous sub-
blocks are split recursively until homogeneity occurs or a minimum block size of
one pixel is reached. The resulting data structure is a regular quadtree. In the
clustering phase adjacent block segments are merged if the combined segment is
homogeneous. The homogeneity rules 4.1 and 4.2 are applied in a similar way.
Thresholds for mean and covariance matrix are denoted by εmm and εsm, respec-
tively (Panjwani and Healey, 1995).
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?

Figure 4.1: Existential uncertainty of the dotted object boundary is high, whereas the solid
line represents an object with a low degree of existential uncertainty.

4.3 Quantifying existential object uncertainty

The final result of a segmentation procedure depends upon the thresholds εms,
εss, εmm and εsm. For various thresholds, objects of different sizes emerge. Small
ε values lead to small objects, whereas large values result in large objects. Some
objects are insensitive to threshold values, whereas some objects disappear be-
yond a particular threshold and others expand in size. It is hypothesised that
objects emerging in a uniform shape irrespective of threshold values correspond
to real world objects as represented on a topographic map. Objects disappearing
at a specific threshold have a high degree of existential uncertainty and are called
‘unstable objects’. Objects which remain the same at different segmentation lev-
els are ‘stable’ objects and have a low degree of existential uncertainty. Object
uncertainty can be represented by their boundaries (figure 4.1).

To quantify existential uncertainty in a segmentation procedure, ranges for the
splitting thresholds εms and εss and merging thresholds εmm and εsm are chosen.
These ranges are divided into n steps. At each step, object boundaries, in the
form of segment edge pixels, are determined. At step k these boundary pixels are
assigned the value 1 and non-boundary pixels the value 0 and are represented on
a segment-boundary image Ik. This results in an image with boundary stability
index (BSI) values, defined as

BSI =
∑n

k=0 Ik

n
(4.3)
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BSI contains values between 0.0 and 1.0, the value 0.0 emerging in the absence
of a boundary at each step, the value 1.0 in the presence of a boundary at each
step, and intermediate values in between. Segment boundaries with large BSI-
values are boundaries with a high existential certainty, small BSI-values represent
boundaries with high existential uncertainty.

4.4 Segmentation validation measures

Segmentation validation is necessary to assess segmentation accuracy. To quanti-
tatively assess a segmentation result, m objects from a reference data set are iden-
tified and the percentage of overlap of the largest segments inside these objects is
calculated. The image is over-segmented if overlap is less than one hundred percent
and under-segmented if overlap is more than one hundred percent. To quantify
the fit of each of the reference objects with the largest segments overlapping these
objects, the area fit index (AFI) is used,

AFI =
Areference object −Alargest segment

Areference object
(4.4)

where A is the area in pixels. For a perfect fit overlap is 100% and AFI equals
0.0. A reference object is over-segmented if overlap is less than 100% and AFI
is greater than 0.0. A reference object is under-segmented if overlap is 100% and
AFI less than 0.0. In some situations overlap can be less than 100% and AFI is
less than 0.0, then the object is over-segmented but the largest segment is larger
than the reference object.

Another technique for segmentation validation is to quantitatively compare
segment boundaries with boundaries on a reference map. Following Delves et al.
(1992), let p be a boundary pixel of a region in the reference map and D(p) be the
shortest (Euclidean) distance, measured in pixels, between p and any boundary
pixel in the segmented image. Then,

D(b) =

∑
boundary pixels D(p)

N
(4.5)

where the sum is taken over all boundary pixels in region b, and N is the number
of boundary pixels in the reference data set. As such, D(b) measures the average
distance between a segment boundary pixel and the reference boundary. For a
perfect fit, D(b) equals 0.0. If the region b equals the whole image, the image
segmentation accuracy measure is obtained, denoted by D(B). The number of
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boundary pixels in the segmented image M , however, is not taken into account.
For high values of M many boundary pixels in the neighbourhood of p occur and
therefore, low D(B) values are obtained. A boundary image with a high M value
may be extremely over-segmented. To correct for M in the calculation of D(B)
the following correction factor is proposed

D(B)corr =
|N −M |

N
+ D(B) (4.6)

Recently, Prieto and Allen (2003) introduced the closest distance metric (CDM)
for evaluation of similarity between boundary images. For each boundary pixel in
the segmented boundary image, the reference image is inspected for a possible
matching boundary pixel within a certain radius. The closest distance is then
used to define a cost function

CDM = 100
(

1− D(M,N)
(|M ∪N |)

)
(4.7)

D(M,N) is the cost of matching boundary pixels based on the closest distance
metric, and |M ∪ N | is the union of boundary pixels in the two images. The
advantage of CDM is that it provides a normalised value in percentage accuracy.
In addition, it takes into account the difference between the number of boundary
pixels in the segmented image and the reference map.

4.5 Study area

The study area, characterised by agriculture, is located south-west of Enschede, the
Netherlands. Six land cover types occur in the area: water, grassland, woodland,
bare soil, crops and build up area. Both homogeneous and heterogeneous parcels
occur, with crisp objects dominating the region. A subset of 512 by 512 pixels of
an IKONOS image, covering all major land cover types, acquired on April the 3rd

of 2000 is used for this study (figure 4.2).

A vector-based topographic map on scale 1:10 000 is used as a reference data
set for segmentation validation. The vector map is converted to raster format
with a spatial resolution equal to the IKONOS image. The image is geometrically
corrected with ground control points derived from the topographic map. The
root mean squared error (RMSE) of geometric correction was 0.349 pixel. A first
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 2000 m

N

Figure 4.2: False colour composite of a subset of an IKONOS image of an area southwest of

Enschede, the Netherlands (acquired 3rd of April, 2000).

degree polynomial function was used to register the image to the topographic map
coordinate system.

4.6 Segmentation results

Figure 4.3 presents a single segmentation of the image. For this segmentation the
following values were used: εms = 10.0, εss = 300.0, εmm = 20.0 and εsm = 100.0.
In the splitting phase 60355 homogeneous blocks were formed. After merging
18387 objects remained. An initial visual assessment showed that forested areas
and urban regions contained a large number of very small segments, caused by
the large variance in reflectance in these areas. Homogeneous parcels and the
water body were correctly segmented, whereas heterogeneous parcels were over-
segmented.
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4.6. Segmentation results

Figure 4.3: Segmented IKONOS image after splitting and merging phase. Object colours are
determined by their mean DN-value. Object boundaries are shown in black.

As crisp objects dominate the image scene it is assumed that objects can be
represented by their boundaries. An image with BSI-values was calculated to
depicts object stability. The number of segmentation steps n was 100. Thresholds
for splitting were kept small εms = 10.0 and εss = 300.0, and constant for all
steps to avoid blocky artifacts in the segmentation result. Thresholds for merging
ranged from εmm = 12.0 to 42.0 and εsm = 25.0 to 275.0. Figure 4.4 shows the
resulting BSI-values in grey-scale. Bright values depict high boundary stability,
while low stability is represented by darker values, non-boundary pixels are black.
Boundaries of heterogeneous parcels and boundaries of small objects in urban and
forested areas are characterised by low stability, and therefore, high uncertainty
values. Boundaries of the water body, homogeneous parcels and roads can be
clearly identified in the image and are depicted by high BSI-values.
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Figure 4.4: BSI in grey-scale; high stability boundaries are bright, while low stability bound-
aries are dark, non-boundary pixels are black.

4.7 Segmentation validation

The first step in segmentation validation was a visual comparison of object bound-
aries from a segmentation result with object boundaries from the topographic
reference map. Figure 4.5 shows the boundaries of a segmentation result (thresh-
olds: εms = 10.0, εss = 300.0, εmm = 20.0 and εsm = 100.0). The boundaries of the
topographic map are given in figure 4.6. It shows that the main object boundaries
match with the topographic map, the forested and urban areas are over-segmented
as a lot of small segments occur.

To quantitatively assess segmentation results seven reference objects were se-
lected from the topographic raster map (figure 4.6). These objects represented
the land use in the study area. Seven objects that are easy to segment (e.g. wa-
ter body) and difficult to segment (e.g. forest and a heterogeneous parcel) were
chosen. These seven reference objects are described in table 4.1.

For each segmentation step, three object properties provided an indication of
segmentation accuracy. A first indication was the number of segments inside each
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Figure 4.5: Object boundaries from segmentation result.

Water body
Recreational beach
Road
Building
Homogeneous crop parcel

Classes

Heterogeneous crop parcel
Forest patch

Figure 4.6: Boundaries from topographic map and seven reference objects.
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Figure 4.7: The number of segments within each reference object.

of the reference objects for each segmentation step (figure 4.7). The largest seg-
ment best approximates the reference object, but segments can be very small. A
second accuracy indication was the area of the largest segment inside a reference
object. With this property the overlap percentage was calculated. For a perfect
fit overlap should be a 100% (figure 4.8). The largest overlap occurred at segmen-
tation steps with the highest thresholds. To quantify segmentation accuracy using
area information the Area Fit Index AFI was used (equation 4.4). AFI-values for
the 7 reference objects are given in figure 4.9.

The number of segments inside a reference objects decreased for each object

Table 4.1: Description of seven reference objects used for validation
Object Area [pixels] Description
object 1 16453 Water body (lake)
object 2 421 Recreational beach
object 3 560 Road
object 4 33 Building
object 5 1540 Homogeneous crop parcel
object 6 2101 Heterogeneous crop parcel
object 7 2823 Forest patch
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Figure 4.8: Overlap percentages of the largest segment inside each reference object.
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Figure 4.9: AFI values for the largest segment inside each reference object.
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(figure 4.7). Generally, these segments were very small and for calculation of over-
lap percentage the largest segments were used. For each reference object the over-
lap percentage increased with higher threshold values (figure 4.8). For objects 1
(lake) and 7 (forest) overlap percentages were higher than 93% at segmentation
steps with the highest thresholds. Objects 4 (building), 5 (homogeneous parcel)
and 6 (heterogeneous parcel) contained overlap values between 80% and 90%. Ob-
ject 2 (recreational beach) and object 3 (road) contained overlap values less than
22%. To determine the fit of segments AFI-values were calculated (figure 4.9).
For an ideal fit AFI equals 0.0 and overlap equals 100%. For none of the 7 objects
this situation occurred. If AFI is greater than 1.0 and overlap is less than 100%
a reference object is over-segmented. Object 1 (lake) reached an AFI-value of 0.0
at segmentation step 50, its overlap was 96% at this step. Objects 2 and 3 did
not reach an AFI-value of 0.0. Object 2 was over-segmented for all steps. At
segmentation step 76 the largest segment of object 3 was merged with an agricul-
tural parcel resulting in a large negative AFI-value. The bad fit for object 2 and 3
can be explained by the fact that neighbour adjacency was calculated based on
4 directions (north, east, south, west), also known as a 4-adjacency model. The
8-adjacency model also takes into account the diagonal neighbours. This adja-
cency model might be useful in segmenting long shaped objects with a diagonal
orientation, like object 2 and 3. Object 4 (building) showed negative AFI-values
between -0.36 and -0.44. Thus, the largest segment was larger than the reference
object (under-segmented), but did not entirely overlap (maximum overlap was
82%). The resolution of the multi-spectral IKONOS bands was too coarse for de-
tection of individual buildings, therefore, the accuracy for the building object was
poor. Segmentation of object 5 (homogeneous crop) was best for the final segmen-
tation step (overlap was 90% and AFI was 0.10). This also occurred for object 6
(heterogeneous crop), but overlap was 83% and AFI was 0.17. At segmentation
step 85, object 7 (forest) was segmented best, with an AFI-value of 0.08 and an
overlap of 82%. After segmentation step 86, object 7, was under-segmented.

Segmentation validation for the whole image was carried out using a boundary
matching procedure. The D(B) measure (equation 4.5) was used to describe a
segment’s fit to a reference object by means of its boundaries. Thus, all boundaries
from each segmentation step were compared to the boundaries of objects in the
topographic reference map. D(B) values in figure 4.10 show that the best fit of
segment boundaries was obtained at the first segmentation step. Most objects,
however, were severely over-segmented in the first step. Therefore, a corrected
value D(B)corr (equation 4.6) was applied to correct for the number of boundary
pixels in the segmented image. Where D(B)corr was equal to D(B), the number
of boundary pixels was equal in both the segmented image and topographic map
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Figure 4.10: Boundary fit D(B) and D(B)corr values for the whole image for each segmen-
tation step.

and the correction factor was 1.0. At this step D(B) was equal to 1.33. D(B)corr

values showed that an optimal segmentation result, for a best boundary fit and
an optimal number of boundary pixels, was obtained at segmentation step 55 for
D(B)corr = 0.91.

Additionally, CDM provided an accuracy percentage for boundary matching
for the whole image. Figure 4.11 shows a CDM value for every segmentation step.
The best match with the topographic map was obtained at segmentation step 64,
with a CDM value of 53.38%.

4.8 Discussion

The split-and-merge algorithm used in this study generally produced good segmen-
tation results. Glasbey (Glasbey and Horgan, 1995) found that boundaries derived
with split-and-merge segmentation are rough and retain some of the artifacts of
blocks from the splitting phase. If the thresholds for splitting are kept small, how-
ever, these blocky artifacts are no longer present in the final segmentation result.
Texture measures could be used to improve segmentation in texture rich areas such
as forested and urban regions in the IKONOS image. The use of texture will be
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Figure 4.11: Boundary fit CDM values for the whole image for each segmentation step.

discussed in the following chapters. Additionally, elongated objects (e.g. object 2
and 3) give difficulties in segmentation. An 8-adjacency neighbourhood model as
opposed to a 4-adjacency model might be useful in segmenting elongated objects
with a diagonal orientation, like object 2 and 3. Under-segmentation of small ob-
jects, like object 4, can be explained by the fact that the spatial resolution of the
multi-spectral IKONOS bands (4m) is too coarse for detection of small buildings.
Incorporation of information from the panchromatic band could be helpful in this
case.

In this study existential uncertainty of image objects was discussed. Other
types of uncertainty, like extensional uncertainty (Molenaar, 1998; Cheng and
Molenaar, 2001), can be distinguished as well. This type of uncertainty refers
to the uncertainty in spatial extent of an object. Extensional uncertainty is im-
portant for the spatial representation of fuzzy objects. For crisp objects existential
uncertainty, as described here, plays the most important role.

In this chapter, different accuracy assessment techniques were applied. Conse-
quently, different accuracy values for the same segmentation result were generated.
Hence, even the validation procedure is subjected to uncertainty. The context of

73



4.9. Conclusions

the validation map is an important issue, as topographic objects used as refer-
ence are likely to provide other segmentation accuracy values as objects derived
from a soil map or geological map. This factor should be taken into account for
interpretation of validation results.

4.9 Conclusions

In this chapter, a method to quantify existential uncertainty of spatial objects
derived from satellite sensor imagery with a split-and-merge image segmentation
algorithm is proposed. Objects disappearing at a specific segmentation thresh-
old have a high degree of existential uncertainty and are called ‘unstable objects’.
Objects which remain the same at different segmentation levels are ‘stable’ ob-
jects. These objects have a low degree of existential uncertainty, characterised by
a boundary stability index BSI derived from a range of segmentations generated
with different threshold values.

Seven reference objects were selected from a topographic map for segmentation
validation. The percentage of overlap and the area fit index AFI are measures for
quantification of segmentation accuracy. To determine segmentation accuracy for
the whole image, segment boundaries were used to calculate the fit D(B) with the
topographic boundaries. A correction factor D(B)corr was proposed to correct for
the number of boundary pixels in the segmented image. Additionally, the CDM
metric was used to calculate a normalised accuracy percentage, taking into account
the number of boundary pixels. The boundary stability index (BSI) allows for a
quantification of existential uncertainty and is suitable for its visualisation. The
area fit index (AFI) and the closest distance metric (CDM) are suitable measures
for validation of segmentation results.
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Chapter 5

Texture-based Segmentation
to Identify Fuzzy Objects∗

When the only tool you have is a hammer,
everything begins to look like a nail.

L. Zadeh

5.1 Introduction

The focus of the previous chapter, was on identification of image objects using
segmentation. Existential uncertainty was quantified by the object boundary sta-
bility index. The study area was characterised by crisp objects, therefore, ob-
ject uncertainty could be depicted by object boundaries. Many geographical phe-
nomena, however, are characterised by indeterminate boundaries (Burrough and

∗This chapter is based on the following papers:
Lucieer, A., Fisher, P. F. and Stein, A. (2004). GeoDynamics, CRC Press LLC, chapter

Texture-based Segmentation of Remotely Sensed Imagery to Identify Fuzzy Coastal Objects.
Lucieer, A., Stein, A. and Fisher, P. F. (2003). Texture-based segmentation of high-resolution

remotely sensed imagery for identification of fuzzy objects, Proceedings of GeoComputation 2003,
Southampton, UK.

Lucieer, A., Fisher, P. F. and Stein, A. (2003). Fuzzy object identification using texture-based
segmentation of high-resolution DEM and remote sensing imagery of a coastal area in England,
Proceedings of the Second International Symposium on Spatial Data Quality, Hong Kong.
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Frank, 1996; Fisher, 2000). Extensional uncertainty, depicting uncertainty in spa-
tial extent of objects (Molenaar, 1998), is often very high for objects with indeter-
minate boundaries, also known as fuzzy objects (Cheng and Molenaar, 1999; Mole-
naar and Cheng, 2000; Molenaar, 2000; Cheng and Molenaar, 2001). In areas where
fuzzy objects dominate, an indication of object uncertainty is important.

A straightforward approach to identify fuzzy objects is to apply a (supervised)
fuzzy c-means classification (FCM), or similar soft classifier (Bezdek, 1981; Foody,
1996; Zhang and Foody, 2001). This classifier gives the class with the highest
membership for each pixel, and membership values of belonging to any other class.
However, pixel-based classifiers, like the FCM, do not take spatial relations between
pixels into account, also known as pattern or texture.

Texture analysis has been addressed and successfully applied in remote sensing
studies in the past. An interesting overview paper concerning texture measures
is from Randen and Husøy (1999). Bouman and Liu (1991) studied multiple
resolution segmentation of texture images. A Markov random field (MRF) model-
based segmentation approach to classification for multi-spectral images was carried
out by Sarkar et al. (2002). For multi-spectral scene segmentation and anomaly
detection, Hazel (2000) applied a multivariate Gaussian MRF. Recently, Ojala
and his co-workers have further pursued an efficient implementation and applica-
tion towards multi-scale texture-based segmentation (Ojala et al., 1996; Ojala and
Pietikäinen, 1999; Pietikäinen et al., 2000; Ojala, Pietikäinen and Mäenpää, 2002).
Their Local Binary Pattern (LBP) measure outperforms most of the traditional
texture measures in classification of texture images (Ojala et al., 1996). LBP is a
rotation invariant grey scale texture measure.

In identifying spatial objects from remotely sensed imagery, the use of texture
is important. Texture reflects the spatial structure of pixels in an image, and it
is therefore indispensable in segmenting an area into sensible geographical units.
The aim of this study is to present a supervised texture-based image segmentation
technique that identifies objects from fine spatial resolution Light Detection And
Ranging (LiDAR) imagery and from multi-spectral Compact Airborne Spectral
Imager (CASI) imagery. It is applied to a coastal area in northwest England. In-
formation on coastal land cover and land form units is required for management
of this conservation area. Since this environment is highly dynamic, (semi-) au-
tomatic and objective techniques are required to update information and maps.
This chapter further explores the use of texture in segmentation. Additionally, a
focal point is quantification of object uncertainty to identify transition zones.
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5.2 Study area

The study area is on the coast of Northwest England, known as the Ainsdale Sands.
The Ainsdale Sand Dunes National Nature Reserve (NNR) totals 508 ha and forms
part of the Sefton Coast. The NNR is within the coastal Special Protection Area. It
is also within the Sefton Coast candidate Special Area of Conservation. The NNR
contains a range of habitats, including intertidal sand flats, embryo dunes, high
mobile yellow dunes, fixed vegetated dunes, wet dune slacks, areas of deciduous
scrub and a predominantly pine woodland. Management of this area consists of
extending the area of open dune habitat through the removal of pine plantation
from the seaward edge of the NNR, maintaining and extending the area of fixed
open dune by grazing and progressively creating a more diverse structure within
the remaining pine plantation with associated benefits for wildlife (Sefton Coast
Partnership, 2004). Therefore, mapping of this coastal area can be useful for
protection and management of the environment as a major and threatened habitat
type and as a defence against coastal flooding.

In 1999, 2000 and 2001 the Environment Agency, UK, collected fine spatial
resolution digital surface models (DSM) by LiDAR, and simultaneously, acquired
multi-spectral Compact Airborne Spectral Imager (CASI) imagery (one flight each
year). The aircraft was positioned and navigated using Global Positioning System
(GPS) corrected to known ground reference points. The aircraft flew at approxi-
mately 800 m above ground level, acquiring 2 m spatial resolution LiDAR scenes
and 1 m spatial resolution CASI imagery. In this study, the imagery of 2001 was
used. These images, geometrically corrected by the Environment Agency, were
spatial composites of multiple flight strips. The area covered by these images was
approximately 6km2. Figure 5.1(a) displays a subset of 512 by 512 pixels of band
12 (Near Infrared) of the CASI image. Figure 5.1(b) shows the LiDAR DSM of
the same area.

A relevant distinction exists between land cover and land form, both character-
ising coastal objects. Land form properties can be extracted from digital elevation,
the LiDAR DSM of the area. Four land form classes can be distinguished: beach
plain, dune, dune slack and woodland. Land cover is obtained from spectral in-
formation from the CASI imagery. Four land cover classes can be distinguished:
sand, marram grass, willow shrub and woodland. Detailed mapping of these units
is required, because knowledge about the location and dynamics of these object
types is important for monitoring the rare habitats in this area, as well as, the
coastal defence against flooding.
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5.2. Study area
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Figure 5.1: Overview of the study area: (a) Band 12 (NIR, 780 nm) of a CASI image of the
Ainsdale Sands; (b) LiDAR DSM of the study area.

Coastal objects are characterised by fuzzy boundaries. Therefore, information
on uncertainty is required to identify transition zones and to map these objects.
Cheng and Molenaar (2001) proposed a fuzzy analysis of dynamic coastal land
forms. They classified the beach, foreshore and dune area as fuzzy objects based on
elevation data using a semantic import model. Some classification errors, however,
are likely to occur when using elevation as diagnostic information alone. For
example, an area of low elevation behind the fore dune was classified as beach,
whereas it is almost certainly an area of sand removal by wind like a blowout
or an inter dune area. These types of errors can be reduced by using spatial or
contextual information (by looking at morphometry or land forms). Cheng et al.
(2002), Fisher et al. (in press) and Fisher et al. (2004) proposed a multi-scale
analysis for allocating fuzzy memberships to morphometric classes. This technique
can be used to model objects, which are vague for scale reasons. The morphometry
classes modelled at different scale levels were: channel, pass, peak, pit, plane, and
ridge. Although this analysis fails to identify positions of dunes, it is possible to
identify dune ridges and slacks and to monitor their changing positions. The use
of textural information might improve identification of these coastal objects.
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Chapter 5. Texture-based Segmentation to Identify Fuzzy Objects

5.3 Texture

Regions with similar reflectance can be identified easily as objects on a remote
sensing image. Additionally, texture is an important property of geospatial objects
and should be taken into account in image analysis. In this study, texture is defined
as a pattern or characteristic spatial variability of pixels over a region. The pattern
may be repeated exactly, or as a set of small variations, possibly as a function of
position. There is also a random aspect to texture, because size, shape, colour and
orientation of pattern elements can vary over the region.

Measures to quantify texture can be split into structural (transform-based),
statistical and combination approaches. Well-known structural approaches are the
Fourier and wavelet transform. Several measures can be used to describe these
transforms, including entropy, energy and inertia (Nixon and Aguado, 2002). A
well known statistical approach is the grey level co-occurrence matrix (GLCM)
(Haralick et al., 1973) containing elements that are counts of the number of pixel
pairs for specific brightness levels. Other texture descriptors are Markov random
fields (MRF), Gabor filter, fractals and wavelet models. A comparative study of
texture classification is given in (Randen and Husøy, 1999). They concluded that a
direction for future research is the development of powerful texture measures that
can be extracted and classified with low computational complexity. A relatively
new and simple texture measure is the local binary pattern operator (LBP) (Ojala
et al., 1996; Pietikäinen et al., 2000; Ojala, Pietikäinen and Mäenpää, 2002). It
is a theoretically simple yet efficient approach to grey scale and rotation invariant
texture classification based on local binary patterns.

5.4 Texture measure - the Local Binary Pattern
Operator (LBP)

Ojala, Pietikäinen and Mäenpää (2002) derived LBP by defining texture T in a
local neighbourhood of a grey scale image as a function t on the grey levels of P
(P > 1) image pixels

T = t(gc, g0, . . . , gP−1) = t(gc, ~gP ) (5.1)

where gc corresponds to the value of the centre pixel pc and ~gP = (g0, . . . , gP−1)
represents the values of pixels in its neighbourhood. The neighbourhood is defined
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5.4. Texture measure - the Local Binary Pattern Operator (LBP)
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Figure 5.2: Circular pixel neighbourhood set for P = 8 and R = 1

by a circle of radius R with P equally spaced pixels that form a circularly symmetric
neighbourhood set (figure 5.2). The coordinates of the neighbouring pixels in a
circular neighbourhood are given by

{xc,i, yc,i} = {xc −R sin
2π

P
, yc + R cos

2π

P
} (5.2)

Invariance with respect to the scaling of pixel values or illumination differences
is achieved by considering the signs of the differences instead of their numerical
values

T ∗ = t(sign(g0 − gc), sign(~gP − gc)) (5.3)

This results in the following operator for grey scale and rotation invariant
texture description

LBPc =
P−1∑
i=0

sign(gi − gc) (5.4)
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Ojala, Pietikäinen and Mäenpää (2002) found that not all local binary pat-
terns describe properties of texture well. LBP captures the uniformity of the
central pixel towards its neighborhood, but it does not capture the uniformity of
the neighborhood itself. Therefore, they introduced a uniformity measure U to
define uniformity in patterns, corresponding to the number of spatial transitions
or bitwise 0/1 changes in the pattern. With gP = g0, Uc is defined as

Uc =
P∑

i=1

|sign(gi − gc)− sign(gi−1 − gc)| (5.5)

Patterns with Uc ≤ j are designated as uniform. Ojala, Pietikäinen and
Mäenpää (2002) found that for j = 2 the best LBP measure is obtained for de-
scribing texture images. This results in the following operator for grey scale and
rotation invariant texture description

LBPc,j =
{ ∑P−1

i=0 sign(gi − gc), if Uc ≤ j
P + 1, otherwise

(5.6)

The LBP operator thresholds the pixels in a circular neighbourhood of P
equally spaced pixels on a circle of radius R, at the value of the centre pixel.
It allows for detecting uniform patterns for any quantisation of the angular space
and for any spatial resolution. Non-uniform patterns are grouped under one label,
P + 1.

5.5 Texture-based image classification

Most approaches to supervised texture classification or segmentation assume that
reference samples and unlabelled samples are identical with respect to texture
scale, orientation, and grey scale properties. This is often not the case, however,
as real world textures can occur at arbitrary spatial resolutions, rotations and
illumination conditions. The LBP operator is very robust in terms of grey scale
variations, since the operator is by definition invariant against any monotonic
transformation, and it is rotation invariant. The operator is an excellent measure
of the spatial structure of local image texture, but by definition, it discards the
other important property of local image texture, contrast. Therefore, the LBP
measure can be further enhanced by combining it with a rotation invariant variance

81



5.5. Texture-based image classification

measure that characterises the contrast of local image texture. Local variance is
defined as

V ARc =
1
P

P−1∑
i=0

(gi − µc), where µc =
1
P

P−1∑
i=0

gi (5.7)

Most approaches to texture analysis quantify texture measures by single values
(e.g. mean, variance, entropy). However, much important information contained
in the distributions of feature values might be lost. In this study, the final texture
feature is the histogram of LBPc,j occurrence, computed over an image or a region
of an image. Additionally, the joint distribution of the two complementary LBPc,j

and V ARc operators is taken. This joint distribution is approximated by a discrete
two-dimensional histogram of size b(P +2), where P is the number of neighbours in
a circular neighbourhood and b is the number of bins for V ARc. Ojala, Pietikäinen
and Mäenpää (2002) show that this is a powerful tool for rotation invariant texture
classification. The number of bins used in quantisation of the feature space plays a
crucial role. Histograms with too modest a number of bins fail to provide enough
discriminative information about the distributions. If the number of entries per bin
is very small (i.e. too many bins), histograms become sparse and unstable. In this
study, following Ojala et al. (1996), the feature space is quantised by computing the
total feature distribution of LBPc,j , V ARc for the whole image. This distribution
is divided into 32 bins having an equal number of entries.

In texture classification the (dis)similarity of sample and model histograms
as a test of goodness-of-fit is evaluated using a nonparametric statistic, the log-
likelihood ratio statistic, also known as the G-statistic (Sokal and Rohlf, 1987).
The G-statistic is defined as

G = 2

([∑
s,m

tb∑
i=1

fi log fi

]
−

[∑
s,m

(
tb∑

i=1

fi

)
log

(
tb∑

i=1

fi

)]
−

[
tb∑

i=1

(∑
s,m

fi

)
log

(∑
s,m

fi

)]
+

[(∑
s,m

tb∑
i=1

fi

)
log

(∑
s,m

tb∑
i=1

fi

)])
(5.8)

where, the sample s is a histogram of the texture measure distribution of an
image window, the model m is a histogram of a reference image window of a
particular class, tb is the total number of bins and fi is the probability in a bin.
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By using a nonparametric test, no assumptions (possibly erroneous) about the
feature distributions have to be made. The value of the G-statistic indicates the
probability that two sample distributions come from the same population: the
higher the value, the lower the probability that the two samples are from the same
population. The more alike the histograms are, the smaller is the value of G.

The window size should be appropriate for the computation of the texture fea-
tures. However, as windows of increased size are considered, the probability that
regions contain a mixture of textures is increased. This can bias the comparison,
since the reference textures contain only features of individual patterns. On the
other hand, if the window size is too small it is impossible to calculate a tex-
ture measure. Within this constraint, it is impossible to define an optimum size
for segmenting the entire image, therefore, classifying regions of a fixed window
size is inappropriate (Aguado et al., 1998). Alternatively, a top-down hierarchi-
cal segmentation process, as discussed in the next section, offers a very suitable
framework for classifying image regions based on texture.

5.6 Texture-based image segmentation

Split-and-merge segmentation, as described in the previous chapter, consists of a
region-splitting phase and an agglomerative clustering (merging) phase (Horowitz
and Pavlidis, 1976; Haralick and Shapiro, 1985; Lucieer and Stein, 2002). Ob-
jects derived with unsupervised segmentation have no class labels. Class labels
can be assigned in a separate labelling or classification stage. In the unsupervised
approach of Lucieer and Stein (2002) (also see chapter 4), the image was initially
considered as a block of pixel values with mean vector and covariance matrix. This
block was split into four sub-blocks characterised by vectors of mean pixel values
and covariance matrices. To define homogeneity, a threshold for the mean and
thresholds for the covariance matrix were considered. These values were chosen in
advance and kept constant during segmentation. Heterogeneous sub-blocks were
split recursively until homogeneity or a minimum block size was reached. The
resulting data structure was a regular quadtree. In the clustering phase, adjacent
block segments were merged if the combined object was homogeneous. The homo-
geneity rules were applied in a similar way. However, texture was not taken into
account in this approach. Recently, Ojala and Pietikäinen (1999) applied a simi-
lar unsupervised split-and-merge segmentation with splitting and merging criteria
based upon the LBPc,j , V ARc texture measure.

Supervised segmentation uses explicit knowledge about the study area to train
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5.6. Texture-based image segmentation

the segmentation algorithm on reference texture classes. In a supervised approach,
segmentation, objects with class labels are obtained. Aguado et al. (1998) intro-
duced a segmentation framework with a top-down hierarchical splitting process
based on minimising uncertainty. In this study, the LBPc,j , V ARc texture mea-
sure and the segmentation framework as suggested by Aguado et al. (1998) are
combined. Similar to split-and-merge segmentation each square image block in
the image is split into four sub-blocks forming a quadtree structure. The criterion
used to determine if an image block is divided is based on a comparison between
the uncertainty of a block and the uncertainty of its sub-blocks.

Similar to split-and-merge segmentation each square image block in the image
is split into four sub-blocks forming a quadtree structure. The criterion used to
determine if an image block is divided is based on a comparison between uncer-
tainty of a block and uncertainty of its sub-blocks. The image is segmented such
that uncertainty is minimised, where uncertainty is defined as the ratio between
the similarity values (G-statistic), computed for an image block B, of the two
most likely reference textures. The reference textures are histograms of LBPc,j

and V ARc of characteristic regions in the image. To test for similarity between an
image block texture and a reference texture, the G-statistic is applied. Uncertainty
UB is then defined as

UB =
1−G2

1−G1
(5.9)

where G1 is the lowest G value of all classes (highest similarity) and G2 is the
second lowest G value. UB can contain values between 0.0 and 1.0. UB is close
to 1.0 if G1 and G2 are similar. In this case, the decision of classifying the region
is vague. Segmentation uncertainty decreases if the difference between these two
texture similarities increases. The subdivision of each image block is based on this
uncertainty criterion. An image block is split into four sub-blocks if

UB >
1
4
(USB1 + USB2 + USB3 + USB4) (5.10)

where the left side of equation 5.10 defines uncertainty when the sub-blocks are
segmented according to the class obtained by considering the whole block B. The
right side of equation 5.10 defines uncertainty obtained if the sub-blocks ((USB1,
USB2, USB3 and USB4) are segmented into the classes obtained by the subdivision.
Thus, the basic idea is to subdivide an image block only if it is composed of
several textures. Additionally, segmentation is always uncertain at the boundaries
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Chapter 5. Texture-based Segmentation to Identify Fuzzy Objects

of textures because the image block contains a mixture of textures. Accordingly,
blocks that have at least one neighbouring region of a different class are subdivided
until a minimum block size is reached (Aguado et al., 1998). Finally, a partition of
the image with objects labelled with reference texture class labels can be obtained.

The building blocks of each of the objects give information about object un-
certainty. The measure UB is used to depict the uncertainty with which an object
sub-block is assigned a class label. The spatial distribution of block uncertainty val-
ues within an object provides information about uncertainty in the spatial extent
of objects. Therefore, high uncertainty values are expected for object boundary
blocks, caused by mixed textures or transition zones.

5.7 Texture image example

To illustrate the problem of classifying regions of different texture an image (512
by 512 pixels) with a composition of photographs of five different textures from
the Outex library (Ojala, Mäenpää, Pietikäinen, Viertola, Kyllönen and Huovinen,
2002) (figure 5.3(a)) was used. Each of these classes is unique in terms of their
texture. It shows that the human visual system not only can distinguish image
regions based on grey scale or colour, but also based on pattern. Five classes could
be distinguished in figure 5.3(a), labelled class NW (granite), class NE (fabric),
class SW (grass), class SE (stone) and class Centre (reed mat). A pixel-based
classifier does not take into account texture or spatial information. This is shown
in figure 5.3(b), which gives the result of a pixel-based classifier. In this case a
supervised fuzzy c-means classifier using a Mahalanobis distance measure and a
fuzziness value of 2.0 was applied (Bezdek, 1981; Zhang and Foody, 2001). Five
reference regions of 40 by 40 pixels were selected in the centre of the five texture
regions to train the classifier. Figure 5.3(b) shows that, although the patterns are
still visible, no clear spatial partition of classes was found.

Figure 5.4 shows the results of two segmentations of figure 5.3(a). Figure 5.4(a)
shows that a split-and-merge segmentation without texture characterisation, as de-
scribed in chapter 4, cannot identify regions of homogeneous texture. It should be
noted that this approach was unsupervised (no reference data were used to train
the algorithm) (Lucieer and Stein, 2002). Random grey values were used to depict
different objects. Figure 5.4(b) shows a segmentation result from an unsuper-
vised split-and-merge segmentation algorithm with the LBPc,j , V ARc histograms
to model texture (Ojala and Pietikäinen, 1999). Good results were obtained since
the spatial partition corresponds to the five different texture classes in the texture
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5.7. Texture image example
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Figure 5.3: Pixel-based classification of texture image: (a) Artificial composition of five differ-
ent natural textures (source: Ojala, Mäenpää, Pietikäinen, Viertola, Kyllönen and Huovinen
(2002)); (b) Pixel-based supervised fuzzy c-means classification.

composite.

Figure 5.5 shows the results of a supervised texture-based segmentation of
figure 5.3(a). The uncertainty criteria proposed by Aguado et al. (1998) were
applied to obtain this result. Five reference regions were selected in the image,
corresponding to the five different texture classes (similar to the supervised fuzzy c-
means classification). Values for P and R were 8 and 1 respectively (corresponding
to the 8 adjacent neighbours). Figure 5.5(a) shows the segmented objects with their
corresponding class label. In figure 5.5(b) uncertainty values (UB) for each of the
objects’ building blocks are given. Class NE was segmented with lowest uncertainty
values, between 0.3 and 0.4. The centre class was segmented with uncertainty
values between 0.4 and 0.5. Class SE was segmented correctly, but with higher
uncertainty values, between 0.5 and 0.7. Confusion of this class occurred with
class SW. Class NW was segmented correctly, but with high uncertainty values
between 0.5 and 0.75. In class NW a cluster of small objects was segmented as
class SW. The building blocks of these objects showed uncertainty values of 0.95
and higher. Confusion of this class occurred with class SE. The main area of class
SW was segmented correctly. In this class, small objects were segmented as class
NW, SE and Centre, however, block uncertainty values were higher than 0.94 for
these objects. This type of texture, however, was very irregular (i.e. its pattern
was not repetitive and the reference area did not fully represent the whole texture
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(a) (b)

Figure 5.4: Unsupervised split-and-merge segmentation: (a) Segmentation of figure 5.3(a)
based on mean and variance; (b) Segmentation based on LBPc,j , V ARc texture histograms
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Figure 5.5: Supervised texture-based segmentation: (a) Texture-based segmentation of fig-
ure 5.3(a) with five reference classes; (b) Related uncertainty for all object building blocks.

area). In addition, all small blocks at the boundaries of textures showed high
uncertainty values (> 0.9), because they contained mixtures of different textures.

An accuracy assessment of the segmentation results provided an overall ac-
curacy of 96.20% and a Kappa coefficient of 0.95. The confusion matrix with
per-class accuracy percentages is given in table 5.1. These accuracy values show
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5.8. Segmentation of LiDAR DSM

Table 5.1: Confusion matrix with per-class accuracy values % for segmentation of texture
image

Reference
Class Class NW Class NE Class Centre Class SW Class SE Total

Class NW 97.03 0.67 0.93 1.97 0.00 20.34
Class NE 0.00 96.37 0.02 0.00 0.00 19.44

Class Centre 0.59 1.62 95.99 0.39 0.24 19.48
Class SW 2.08 0.00 1.17 94.79 2.97 20.18
Class SE 0.30 1.34 1.89 2.85 96.79 20.56

Total 100.00 100.00 100.00 100.00 100.00 100.00

(a) (b)

Figure 5.6: Texture measures for LiDAR DSM: (a) Image of the LBPc,j measure for P = 8
and R = 1; (b) Image of the V ARc measure for P = 8 and R = 1.

that good segmentation results can be obtained with the LBP texture measure.

5.8 Segmentation of LiDAR DSM

Figure 5.6 shows two images of the LBPc,j and V ARc texture measures of the
LiDAR DSM of the study area (figure 5.1(b)). These images provided a basis
for the texture-based segmentation algorithm to segment the area into meaningful
land form objects.

88



Chapter 5. Texture-based Segmentation to Identify Fuzzy Objects

Figure 5.7 shows the result of a supervised segmentation of a 512 by 512 pixel
subset of the LiDAR DSM of the study area (figure 5.1(b)). Four reference areas
of 40 by 40 pixels were selected for training. These areas represented the following
land form classes: beach, dune, dune slack and woodland. Values for P and R were
8 and 1 respectively. Figure 5.7(a) shows the segmented objects with class labels
and figure 5.7(b) shows the corresponding uncertainty values (UB). Woodland was
used as one of the land form classes, as it showed a characteristic texture in the
LiDAR DSM. The woodland area was segmented correctly, with low uncertainty
values ranging from 0.02 to 0.35. Uncertainty values increased at the border of the
woodland area. Fieldwork showed that zones of willow trees occurred at the border
of the main pine woodland area, which explained the higher uncertainty because of
their slightly different texture. Dune slacks and blowouts are very similar in form.
Blowouts are active, however, and not vegetated. Dune slacks are often stable,
because they are vegetated. These texture differences could not be observed in the
LiDAR DSM. Therefore, these units were segmented as a single class type, called
dune slacks. The core of these areas was segmented correctly, with uncertainty
values between 0.2 and 0.5. The boundaries of these objects, however, showed
uncertainty values of 0.8 and higher. These high values can be explained by the
transition zones from dune slacks to dune. No crisp boundary can be observed
between these object types. Furthermore, figure 5.7 shows that no distinction
could be made between the fore dune and the inland dune field. These areas have
similar textures and, therefore, were segmented as one class. The (steep) fore
dune showed, as expected, a short transition zone to the beach, depicted by high
uncertainty values (> 0.8) shown as a thin black line in the upper left corner of
figure 5.7(b). The dune area was segmented with low uncertainty values (< 0.4),
except for the transition zones with the dune slacks. In the southwest and centre
part of the image, small objects (with uncertainty values of 0.95) were incorrectly
segmented as beach. This can be explained by observations in the field showing
that this area is an active flat and bare sand area, with similar texture to the beach
area. The beach flat was segmented early in the segmentation process, as can be
concluded from the large building blocks. Uncertainty related to the segmentation
of these building blocks varied between 0.1 and 0.5. Within the beach area, highest
uncertainty occurred in areas where sand was wet and showed a different texture
from dry sand.

Fieldwork provided reference data for segmentation validation. An accuracy
assessment of the segmentation results provided an overall accuracy of 85.59%
and a Kappa coefficient of 0.81. The confusion matrix with per-class accuracy
percentages is given in table 5.2. It can be concluded from this table that small
areas of both beach and dune were incorrectly labelled as dune slack.
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Figure 5.7: Segmentation result LiDAR DSM: (a) Supervised texture-based segmentation of
the LiDAR DSM with four reference land form classes; (b) Related uncertainty for all object
building blocks.

Table 5.2: Confusion matrix with per-class accuracy values % for segmentation of LiDAR
DSM

Reference
Class Beach Flat Dune Dune Slack Woodland Total

Beach Flat 100.00 0.00 3.24 0.00 27.16
Dune 0.00 100.00 1.56 0.00 16.54

Dune Slack 0.00 0.00 95.20 0.00 25.07
Woodland 0.00 0.00 0.00 100.00 31.24

Total 100.00 100.00 100.00 100.00 100.00

5.9 Segmentation of CASI image

Figure 5.8 shows two images of the LBPc,j and V ARc texture measures of band 12
of the CASI image of the study area (figure 5.1(a)). These images provided a basis
for the texture-based segmentation algorithm to segment the area into meaningful
land cover objects.

In figure 5.9, the results of the segmentation of the CASI image (figure 5.1(a))
are shown. The image was resampled to a spatial resolution of 2 m to match
the spatial resolution of the LiDAR DSM. Again, a subset of 512 by 512 pixels
was used for segmentation. Band 12 at 780 nm (NIR) was chosen for this study,
as it is suitable for discrimination of land cover types. Figure 5.9(a) shows the
segmentation result for four land cover types: sand, marram grass, willow shrub,
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(a) (b)

Figure 5.8: Texture measures for band 12 of CASI image: (a) Image of the LBPc,j measure
for P = 8 and R = 1; (b) Image of the V ARc measure for P = 8 and R = 1.

woodland. Four reference areas of 50 by 50 pixels were selected to train the
algorithm. Values for P and R were 8 and 1 respectively. The woodland area
in the southeast corner of the image was correctly segmented with uncertainty
values between 0.1 and 0.5 (figure 5.9(b)). The northeastern corner of the image
and several small objects in the northern part of the image were also segmented
as woodland. However, fieldwork showed that no woodland occurred in this area.
This area was characterised by a chaotic pattern of dune slacks and dune ridges
with a mixture of vegetation types. No homogeneous textures could be found,
therefore this area showed high uncertainty values (> 0.7) in the segmentation
result. The main part of the dune field was segmented as willow shrub land.
Fieldwork showed that marram grass is mainly found on the fore dune and on the
highest parts of the dune ridges in the dune field. Only a few small patches of
marram grass occur in figure 5.9(a) in the fore dune area. Willow shrub was found
all over the dune field, but mainly in the dune slacks. Image texture for these
two classes, however, was very similar. Marram grass fields were characterised by
a mixture of grass and sand; willow shrub areas were characterised by a mixture
of small willow shrubs and sand or low grass. High uncertainty values (higher
than 0.7 in the dune field and higher than 0.95 in the fore dune and dune ridge
areas) in figure 5.9(b) confirmed the confusion between these two classes. The
sand cover on the beach was correctly segmented, because of its characteristic
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5.9. Segmentation of CASI image
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Figure 5.9: Segmentation result band 12 CASI image: (a) Supervised texture-based seg-
mentation of band 12 of the CASI image with four reference land cover classes; (b) Related
uncertainty for all object building blocks.

Table 5.3: Confusion matrix with per-class accuracy values % for segmentation of CASI image
Reference

Class Sand Marram Grass Willow Shrub Woodland Total
Sand 100.00 0.00 0.00 0.00 26.42

Marram Grass 0.00 0.00 0.22 0.00 0.06
Willow Shrub 0.00 98.94 99.78 0.00 41.99

Woodland 0.00 1.06 0.00 100.00 31.54
Total 100.00 100.00 100.00 100.00 100.00

texture. Uncertainty values were lower than 0.2. Again, figure 5.9(b) shows a
short transition zone from the fore dune to the beach with a decreasing marram
grass coverage (narrow zone with uncertainty values of 0.95 and higher southeast
of the sand area).

An accuracy assessment of the segmentation results provided an overall ac-
curacy of 70.53% and a Kappa coefficient of 0.61. The confusion matrix with
per-class accuracy percentages is given in table 5.3. It can be concluded from this
table that major marram grass areas were incorrectly segmented as willow shrub.
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5.10 Discussion and conclusions

In this chapter, a texture-based supervised segmentation algorithm derived la-
belled objects from remotely sensed imagery. Texture was modelled with the joint
distribution of LBP and local variance. The segmentation algorithm was a hierar-
chical splitting technique, based on reducing uncertainty at the level of the image
blocks that are obtained. By applying this technique, one does not only obtain
a texture-based image segmentation, but also an indication of uncertainty for all
object building blocks. The spatial distribution of uncertainty values provided
information about the location and width of transition zones. This study showed
that object uncertainty values provide important information to identify transition
zones between fuzzy objects.

The proposed algorithm provided good segmentation results for a test case
study with a composite image of five different textures. An overall accuracy of
96.20% was obtained. To illustrate the algorithm for mapping coastal objects, a
LiDAR DSM and CASI image of a coastal area on the northwest coast of England
were used. Good segmentation results were obtained for the extraction of land
form objects from the LiDAR DSM, depicted by an overall accuracy of 86%. Un-
certainty values provided meaningful information about transition zones between
the different land forms. Land cover objects derived from the CASI image showed
high uncertainty values and many incorrectly labelled objects. The overall accu-
racy was 71%. The woodland area showed a characteristic texture in both data
sources, however, the woodland object showed a different spatial extent and area in
both segmentation results. This difference was caused by the occurrence of small
patches of willow trees in, and on the border of, the woodland area. The texture of
these willow trees is different from the pine trees in the area in the LiDAR DSM.
The segmentation result of the LiDAR DSM correctly depicted the spatial extent
of the pine area. However, the texture difference did not occur in the CASI image,
resulting in a different segmentation result.

This and other segmentation errors can possibly be prevented by taking into ac-
count spectral information from more than one band. The combination of textural
and spectral information from all 14 CASI bands could greatly improve segmenta-
tion results. This combination could be useful for mapping other land cover types
in the area, like grasses, herbaceous plants, mosses, and shrubs. Additionally, the
resolution of the neighbourhood set of the LBP measure affects the segmentation
result. In this study, a neighbourhood set of the nearest eight neighbouring pixels
(P = 8, R = 1) was used. A multi-resolution approach with different combinations
of P and R might improve texture description.
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Chapter 6

Multivariate Texture-based
Segmentation∗

For those who have seen the Earth from space . . .
the experience most certainly changes your perspective.

The things that we share in our world are far more valuable
than those which divide us.

D. Williams

6.1 A multivariate texture model

The LBP texture measure, as described in chapter 5, allows a texture description
of a single band. Most remote sensing images, however, consist of multiple bands.
Segmentation of land cover objects based on a single CASI band in chapter 5
showed that unsatisfactory results were obtained. Including multiple bands might

∗This chapter is based on the following papers:
Lucieer, A., Stein, A. and Fisher, P. F. (in review ). Multivariate texture-based segmentation

of remotely sensed imagery for extraction of objects and their uncertainty, International Journal
of Remote Sensing . in review.

Lucieer, A., Orkhonselenge, T. and Stein, A. (2004). Texture based segmentation for identifi-
cation of geological units in remotely sensed imagery, in A. Frank and E. Grum (eds), Proceedings
of the 3rd International Symposium on Spatial Data Quality ISSDQ’04, Technical University of
Vienna, Bruck an der Leitha, Austria, pp. 117–120.



6.1. A multivariate texture model

improve segmentation considerably, as a combination of bands provides more spec-
tral information for identification of different land cover types.

In their psychophysical study Poirson and Wandell (1996) showed that colour
and pattern information are processed separately by the human visual system.
Mojsilovic et al. (2000) extracted colour-based information from the luminance
and chrominance colour components. The achromatic pattern component was
utilised as texture pattern information. Another approach is that of Panjwani and
Healey (1995) which captured spatial relations both within and between colour
bands with Markov random fields (MRFs). More recently, Pietikäinen et al. (2002)
showed that the powerful LBP texture measure can also be applied to colour
images. They processed colour information and texture information separately
and obtained good classification results for colour texture images. Most research
on colour texture is focused on images of different materials with a well-defined
texture. In standard RGB-images the pattern in the different colour bands is often
highly correlated. This makes it possible to summarise pattern information in a
single band and process it separately from colour information. In remote sensing
images information is recorded from different parts of the spectrum, therefore,
texture in these bands is not necessarily similar. In between band relations should
be taken into account when looking at multivariate texture measures for remotely
sensed imagery. The LBP texture measure, described in chapter 5 is a robust,
rotation invariant and flexible texture measure. An extension to the multivariate
case is expected to provide good segmentation results.

In this chapter the new Multivariate Local Binary Pattern operator, MLBPc,
is introduced and implemented. It is based on the univariate LBPc,j measure,
describing local pixel relations in three bands, also known as colour texture. In
addition to spatial relations of pixels within one band, pixel relations between
bands are also considered. Thus, the neighbourhood set for a pixel consists of the
local neighbours in all three bands. The local threshold is taken from these bands,
which makes up a total of nine different combinations (figure 6.1). This results in
the following operator for a local colour texture description

MLBPc =
∑P−1

i=0 sign(gb1
i − gb1

c ) + sign(gb2
i − gb1

c ) + sign(gb3
i − gb1

c )+
sign(gb1

i − gb2
c ) + sign(gb2

i − gb2
c ) + sign(gb3

i − gb2
c )+

sign(gb1
i − gb3

c ) + sign(gb2
i − gb3

c ) + sign(gb3
i − gb3

c )
(6.1)

where b1 is the first band, b2 is the second band, and b3 is the third band. The
first part of the equation calculates LBP values for the center pixel of the first
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Figure 6.1: The neighbourhood set for the multivariate (three band) case not only takes into
account the spatial relations within each of the bands, but also the relations between the
bands.

band based on relations with the neighbors in the first band and the two other
bands. The second part of the equation calculates LBP values for the center pixel
of the second band and the third part of equation 6.1 calculates LBP values for
the center pixel of the third band. Each of the three central pixels is, therefore,
compared with neighborhood pixels in the other bands. MLBPc is not just a
summation of LBPc,j of individual bands, it also models pixel relations between
bands. These cross-relations can be important in the distinction of different color
textures. A total of nine LBP values is obtained and summed to derive MLBPc.
The color texture measure is the histogram of MLBPc occurrence, computed over
an image or a region of an image. This single distribution contains 32P bins (for
P = 8 resulting in 72 bins).

MLBPc measures the binary colour pattern of a texture. To complete this
measure with contrast and variance information the colour histogram RGB-3D is
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included, adopted from Pietikäinen et al. (2002). Each 8-bit band is quantised
into 32 levels by dividing the pixel values on each band by 8, resulting in a three-
dimensional histogram with 323 entries. The similarity measure for the MLBPc

and RGB-3D histograms is the G-statistic (equation 5.8). The sum of these two G-
statistic values is used as a similarity measure in a top-down hierarchical splitting
segmentation to obtain image block class labels and uncertainty values (Aguado
et al., 1998).

6.2 Colour texture example

To illustrate the solution for classifying regions of different colour texture, a three-
band image (512 by 512 pixels) with a composition of six different colour textures
(figure 6.2(a)) was used. This colour texture image was composed of textures from
the Outex library (Ojala, Mäenpää, Pietikäinen, Viertola, Kyllönen and Huovi-
nen, 2002). The following textures were used: Upper Left (UL) = fur, Upper
Right (UR) = carpet, Middle Left (ML) = wood, Middle Right (MR) = pasta,
Lower Right (LR) = flour, Lower Left (LL) = seeds. Segmentation of this image
provided a complex task as textures at different scale levels occur and variation in
colour is high in this image. Six references regions of 40x40 pixels were selected,
corresponding to the six different texture classes. Values for P and R were 8
and 1 respectively. Figure 6.2(b) shows the segmentation result. All regions were
identified correctly with only a few small object blocks incorrectly segmented. In
the lower left object some dark spots were segmented as fur (Upper Left), most
likely caused by similarity in colour distributions. Additionally, in the lower right
object some dark shadow spots were (mis-)segmented as flour (Lower Left). Un-
certainty for incorrectly segmented object blocks and boundary zones was high
(> 0.9) (figure 6.2(c)).

An accuracy assessment of the segmentation results provided an overall ac-
curacy of 98.32% and a Kappa coefficient of 0.98. The confusion matrix with
per-class accuracy percentages is given in table 6.1. These accuracy values show
that good segmentation results can be obtained with the multivariate LBP texture
measure.
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(a)

(b)
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Figure 6.2: Segmentation of colour textures: (a) Artificial composition of six different natural
colour textures; (b) Supervised texture-based segmentation based on the multivariate MLBPc

distribution and RGB-3D colour histogram with six reference classes; (c) Related uncertainty
for all object building blocks.
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Table 6.1: Confusion matrix with per-class accuracy values % for segmentation of texture
image

Reference
Class UL UR ML MR LL LR Tot.

UL 99.93 0.56 1.31 0.26 1.91 0.38 12.72
UR 0.02 99.41 0.03 1.59 0.02 0.02 24.11
ML 0.05 0.00 98.09 0.05 0.12 0.21 9.62
MR 0.00 0.02 0.02 97.82 0.02 0.09 16.44
LL 0.00 0.01 0.55 0.10 97.68 2.30 21.77
LL 0.00 0.00 0.00 0.16 0.26 97.00 15.35

Tot. 100.00 100.00 100.00 100.00 100.00 100.00 100.00

6.3 Multivariate texture segmentation of a CASI
image

In chapter 5 land cover units were segmented from a single CASI image band.
Segmentation with one CASI band (band 12 in section 5.9) discarded valuable in-
formation in other bands. Fieldwork showed that these single band segmentation
results were generally poor. The willow shrub area was over-segmented, whereas,
marram grass on the dune ridge did not occur in the segmentation result. A multi-
variate approach towards texture segmentation might improve segmentation. The
combined MLBPc and RGB-3D texture measure, models texture in three bands.
CASI band 1, 8 and 12 explain most of the variance in the image scene and char-
acterise land cover classes well. Figure 6.3 shows a supervised segmentation based
on the multivariate MLBPc measure, and the three-dimensional colour histogram
RGB-3D. Figure 6.3(b) shows that segmentation of the marram grass class has
improved considerably. The fore dune area and the dune ridges are segmented as
marram grass, as was observed in the field. The core areas show low uncertainty
values, whereas the boundaries show high uncertainty values. This corresponds
to observations that marram grass gradually changes to willow shrub land and
sandier terrain. The woodland area is segmented correctly. In addition, segmen-
tation of the north-eastern part of the area (marram grass and willow shrub) has
improved, as the incorrect segmentation result of a single band showed woodland
in this area. The beach area was correctly segmented with low uncertainty val-
ues. Some small incorrectly segmented blocks (marram, willow and woodland)
occurred in the beach area where the sand was wet. This wet area showed a lower
reflectance in the image. High uncertainty values (> 0.9) occurred in all transition
areas, indicating occurrence of fuzzy objects with indeterminate boundaries.

An accuracy assessment of the segmentation results provided an overall ac-
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Figure 6.3: Segmentation of land cover from a 3-band CASI image: (a) Colour composite
of band 12, 8 and 1 of CASI image (b) Supervised texture-based segmentation based on the
multivariate MLBPc distribution and RGB-3D colour histogram with four land cover classes;
(c) Related uncertainty for all object building blocks.
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Table 6.2: Confusion matrix with per-class accuracy values % for multivariate texture-based
segmentation of CASI image

Reference
Class Sand Marram Grass Willow Shrub Woodland Total
Sand 100.00 0.00 2.38 0.00 26.96

Marram Grass 0.00 96.92 20.29 0.00 20.98
Willow Shrub 0.00 2.11 64.77 0.00 17.34

Woodland 0.00 0.97 12.55 100.00 34.73
Total 100.00 100.00 100.00 100.00 100.00

curacy of 77.09% and a Kappa coefficient of 0.71. The confusion matrix with
per-class accuracy percentages is given in table 6.2. It can be concluded from this
confusion matrix that segmentation of marram grass and willow shrub improved
considerably compared to segmentation based on one CASI band. However, some
of these areas remain incorrectly segmented.

6.4 Identification of geological units in Mongolia

To illustrate the use of texture-based segmentation for identification of objects,
an additional study was carried out. Textural information derived from remotely
sensed imagery can be helpful in identification of geological units. These units are
often mapped based on field observations or interpretation of aerial photographs.
Geological units often show characteristic image texture features, for example in
the form of fracture patterns. Pixel-based classification methods might, therefore,
fail to identify these units. A texture-based segmentation approach, taking into
account spatial relations between pixels, can be helpful to identify geological units
from an image scene.

6.4.1 Study area and geological map

The study area is located in Dundgovi Aimag, Southern Mongolia (105◦50′–106◦26′

E and 46◦01′–46◦18′ N). The total area is 1415.58 km2. The area is characterised
by an arid, mountainous-steppe zone with elevations between 1300 m and 1700 m.
The area is sparsely vegetated and weathering and erosion are intensive.

In the 1950’s and 1970’s, geological mapping and surveying was carried out at
a scale of 1:200 000 and 1:1000 000. In 2004 an accurate image interpretation was
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carried out to derive a recent geological map. The following geological units can
be found in the area:

1. Sedimentary rocks

• Q4 — Quaternary Lakes sediments

• Q — Quaternary sediments

• E2 — Eocene (middle Paleogene)

• E1 — Miocene (lower Paleogene)

• P-T — Permian & Triassic formation

2. Volcanic rocks

• K2 — Upper Cretaceous basalt

• K1 — Lower Cretaceous basalt

• aT3-J1 — Upper Triassic & Lower Jurassic andesite

3. Intrusive rocks

• yT3-J1 — Upper Triassic & Lower Jurassic granite

• yPR — Proterozoic granite

6.4.2 Remote sensing imagery

Spectral data gathered through remote sensing can provide information about
many features of the Earth’s surface that are of interest to a geologist. Furthermore
by combining surface observations with geologic knowledge and insights, geologists
are able to make valid inferences about subsurface materials. Remote sensing
imagery is useful for mapping geological units at a regional scale in isolated and
inaccessible areas. Additionally, frequent updating of existing maps is possible
with modern sensors like Landsat TM and the Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER). In this study, two images were
used for identification of geological units. Shortwave infrared (SWIR) bands are
particularly useful for identification of these units (Richards and Jia, 1999; Drury,
1993). A Landsat 5 TM scene was acquired on the 13th of May, 1993. A colour
composite of band 7, 5 and 4 of the Landsat TM scene of the study area is shown
in figure 6.5(a).
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Figure 6.4: Geological map of the study area derived from image interpretation, 2004.

An ASTER scene was acquired on the 21st of May, 2002. ASTER Level 1B
product contains radiometrically calibrated and geometrically co-registered data
for all bands. The SWIR bands can detect spectral features of many common
anionic constituents of minerals. These various anion groups form the bulk of the
Earth’s surface rocks. Since this case study focuses on identification of geological
units, the ASTER SWIR bands provide most information for the extraction of
information on rock and soil types. In figure 6.5(b) a colour composite of ASTER
SWIR bands 9, 6 and 4 is given.

6.4.3 Segmentation results

Based on fieldwork a number of areas were selected as reference areas for super-
vised texture-based segmentation. The multivariate texture-based segmentation
algorithm based on the MLBPc and RGB-3D texture measure was applied to
identify geological units in both images. Figure 6.6 shows the segmentation result
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(a) (b)

Figure 6.5: Landsat and ASTER images of the study area in Mongolia: (a) Colour composite
of Landsat TM bands 7, 5 and 4; (b) Colour composite of ASTER SWIR bands 9, 6 and 4.

for the Landsat TM image. Visual comparison of figure 6.6(a) with the geological
map (figure 6.5) shows that, overall, geological units were correctly identified. The
main difference between the segmentation result and the geological map was that
the segmented image showed more detail than the geological map. The aT3-J1,
yPR and K2 units were correctly identified, but the K1 unit is more abundant int
the segmentation result. High uncertainty values occurred in the wide transitions
zones (figure 6.6(b)).

SWIR bands 9, 8 and 4 were used for segmentation of the ASTER image.
In this geological application this ASTER band combination is expected to give
better segmentation results. ASTER Band 4 covers the same spectral region as
Landsat band 5. ASTER band 5–8 are within the range of Landsat band 7,
whereas ASTER band 9 is out of the Landsat spectral range. A visual comparison
of the segmentation result in figure 6.7(a) with the geological map (figure 6.4)
and the segmentation result based on the Landsat bands (figure 6.6(a)), showed
that this result is better than the Landsat result. Units aT3-J1 and P-T were
segmented correctly, however, some small objects surrounding the yT3-J1 unit
were incorrectly segmented. This might have been caused by weathering processes,
as the P-T unit was covered by deposited sediment. This area was segmented as
K1. As expected, uncertainty was high in the transition zones, however, these
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Figure 6.6: Segmentation of geological units from the Landsat TM image: (a) Geological
units as identified by the multivariate texture-based segmentation algorithm; (b) Uncertainty
values for each of the building blocks of the objects.

zones were less wide than in the Landsat segmentation result.

6.4.4 Segmentation validation

For validation of the segmentation results the geological map (figure 6.4) was used
as reference data. An initial visual comparison showed that most large objects
correspond with the units in the geological map. However, many small objects
occurred in the segmentation result. An accuracy assessment of the segmentation
results of the Landsat TM segmentation provided an overall accuracy of 65.23%
and a Kappa coefficient of 0.44. The confusion matrix with per-class accuracy
percentages is given in table 6.3. An accuracy assessment of the segmentation
results of the ASTER segmentation showed better results and provided an overall
accuracy of 71.00% and a Kappa coefficient of 0.51. The confusion matrix with
per-class accuracy percentages is given in table 6.4.

The main source for incorrect segmentation is the difference in detail between
the segmentation results and the geological map. In the map, only the main
geological units are given, however, the segmentation results provided more detail.
A majority filter of 15 by 15 pixels was applied to filter out the smallest objects
from the ASTER segmentation result. Visually, the segmentation result is very
similar to the geological map (figure 6.8). However, the K1 unit is much more
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Figure 6.7: Segmentation of geological units from the ASTER image: (a) Geological units as
identified by the multivariate texture-based segmentation algorithm; (b) Uncertainty values
for each of the building blocks of the objects.

Table 6.3: Confusion matrix with per-class accuracy values % for segmentation of Landsat
TM image

Reference
Class PT yT3J1 K1 aT3J1 yPR Total

PT 67.29 2.79 23.02 6.63 5.86 49.28
yT3J1 1.41 80.11 0.43 1.53 15.79 9.55

K1 22.88 2.31 70.11 24.79 25.92 22.17
aT3J1 7.39 2.76 2.86 52.46 10.73 12.95

yPR 1.03 12.03 3.58 14.59 41.70 6.05
Total 100.00 100.00 100.00 100.00 100.00 100.00

Table 6.4: Confusion matrix with per-class accuracy values % for segmentation of ASTER
image

Reference
Class PT yT3J1 K1 aT3J1 yPR Total

PT 70.6 0.31 49.33 2.39 24.69 52.28
yT3J1 0.11 88.24 0 2.08 6.93 8.99

K1 19.13 0.1 45.68 10.02 6.84 15.95
aT3J1 6.92 3.07 4.65 69.93 4.72 14.65

yPR 3.24 8.28 0.34 15.58 56.83 8.14
Total 100 100 100 100 100 100
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Figure 6.8: Comparison ASTER segmentation result with geological map: (a) Segmentation
result based on ASTER SWIR bands after a 15 by 15 majority filter to reduce the amount
of small objects; (b) Subset of the geological reference map corresponding to the area of the
images.

abundant in the segmentation result. The original image clearly shows a distinctly
different texture from the surrounding area, therefore, this area is segmented as a
K1 instead of a P-T unit. The majority filtering operation did not provide higher
accuracy values, as the total accuracy only increased by 0.5%.

6.5 Discussion and conclusions

In this chapter, a new texture measure was proposed to model multivariate texture
or colour texture. The univariate LBPc,j texture measure was extended to a multi-
variate measure, to model within and between band pixel relations in three bands.
This multivariate extension, MLBPc, in combination with the three-dimensional
colour histogram, RGB-3D, models colour texture as registered on different bands.
An artificial image with a composition of colour textures was used to demonstrate
the use of colour texture in segmentation. Good segmentation results were ob-
tained with the combined MLBPc and RGB-3D texture measures, depicted by
an overall accuracy of 98%. The first real world case study involved segmenta-
tion of a multi-spectral CASI image of a coastal area in England into four coastal
land cover classes. Univariate segmentation of a single band of the CASI image,
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as described in chapter 5, proved unsatisfactory. The multivariate texture model
provided good segmentation results based on three CASI bands with an overall
accuracy of 77%. Additionally, object uncertainty was quantified for each object
building block. These uncertainty values provided information to identify transi-
tion zones between fuzzy objects, like marram grass on the dune ridges and willow
shrub in the dune troughs.

The second case study involved identification of geological units from Landsat
TM and ASTER imagery. Good segmentation results were obtained with the mul-
tivariate texture-based segmentation algorithm. Validation of the segmentation
result of the ASTER image with a geological map provides an overall accuracy of
77%. The detail in the segmentation result, however, was much higher than in
the geological reference map. The quality of the geological map is questionable as
these type of maps are often obtained from a combination of field observations and
image interpretation. Segmentation accuracy is only an indication of the corre-
spondence between the geological map and the segmentation result, rather than an
absolute accuracy value. Because of the higher detail in the segmentation result,
segmentation might help to update existing geological maps.

The diversity of applications and images used in the case studies, shows that
the described multivariate texture-based segmentation algorithm can be applied in
a range of remote sensing applications. The segmentation performance, however,
depends on the types of texture in the image. An image with regular homogeneous
texture will be better segmented than a heterogeneous image with irregular tex-
tures. The univariate and multivariate LBP measures can also be used in a different
framework. For example, contextual classification using the LBP texture measure
might provide valuable results. The multivariate LBP measure was limited to three
bands. More bands could have been used in both MLBPc and RGB-3D texture
models. However, a higher number of bands do not necessarily add more texture
information. Additionally, increasing dimensionality, will result in a much higher
computational demand. From a multivariate dataset, like hyper-spectral imagery
for example, one could select three bands that explain most variance. Another
option is to select the bands that are suitable for the application, like the SWIR
bands for identification of geological units and the NIR bands to map land cover.

In chapter 5, a uniformity measure was defined for the univariate LBP mea-
sure. Ojala, Pietikäinen and Mäenpää (2002) showed that more than 90% of the
patterns in a texture image are uniform. In remote sensing images non-uniform
patterns occur as well and some of these may be characteristic for a specific land
cover class. Hence, an extension of the uniformity measure to the multivariate case
may provide more information on pattern uniformity. A multivariate uniformity
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measure could be calculated by summation of uniformity in each band or by com-
bining the uniformity measure for each of the nine components in the multivariate
LBP measure (equation 6.1). The effect of a multivariate uniformity measure on
segmentation of multispectral remote sensing imagery will be assessed in future
research.

In this study, a neighbourhood set of the nearest eight neighbouring pixels was
used. A multi-resolution approach with different combinations of neighbourhood
sets might improve description of large-scale textures. A multi-scale approach to
texture description is the focus of the next chapter.
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Chapter 7

Multi-scale Texture for Land
Form Segmentation ∗

There is nothing worse than a sharp image of a fuzzy concept.

A. Adams, photographer

7.1 Introduction

Regions with similar reflection can easily be identified as objects on a remote
sensing image. In case of a digital surface or elevation model (DSM or DEM)
similarity in elevation could be used as a criterion to identify land form objects.
These objects, however, are often characterised by more than just elevation. A
dune ridge, for example, has a characteristic profile and/or shape, which shows
a unique texture on a DEM. Therefore, it is argued that texture is an important
property of land form objects and it should be taken into account in land form

∗This chapter is based on the following papers:
Lucieer, A. and Stein, A. (in press). Texture-based land form segmentation of LiDAR imagery,

International Journal of Applied Earth Observation and Geoinformation.
Werff, H. M. A. v. d. and Lucieer, A. (2004). Remote Sensing Image Analysis: Including

the Spatial Domain, Vol. 5 of Remote Sensing and Digital Image Processing, Kluwer Academic
Publishers, Dordrecht, chapter A Contextual Algorithm for Detection of Mineral Alteration Halos
with Hyperspectral Remote Sensing.
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analysis.

The results from a land form segmentation in chapter 5 provided an initial
coarse segmentation of the coastal study area into four general land form classes.
One of the main shortcomings of this algorithm was the resolution at which the
texture model operated. Only one neighbourhood set with P = 8 and R = 1 was
used (equation 5.2). To identify land form objects with more detail and higher
accuracy, patterns should be be modelled at different scales, i.e. different values
for P and R can be used to describe local patterns at different circle radii. Ojala,
Pietikäinen and Mäenpää (2002) show that a multi-resolution LBP texture mea-
sure outperforms well-known texture models in segmenting texture images similar
to figure 5.3(a). In land form analysis a multi-resolution or multi-scale approach
might prove beneficial. For example, a small local neighbourhood set might fail
to capture the pattern of a dune ridge on a DSM. The characteristic pattern of
a dune ridge could, therefore, be described by combining pixel information from
several neighbourhood sets at different scale levels.

Fisher et al. (2004) and Fisher et al. (in press) proposed a multi-scale analysis
for allocating fuzzy memberships to morphometric classes. This technique was
used to model objects, which are vague for scale reasons. The morphometry classes
modelled at different scale levels were: channel, pass, peak, pit, plane, and ridge.
Although this analysis failed to identify positions of dunes, it was possible to
identify dune ridges and slacks and to monitor their changing positions. The use
of textural information might improve identification of these coastal objects, as a
description of texture reflects the spatial structure of elevation and slopes. This
information is indispensable in classifying an area into sensible land form units.
However, a multi-scale approach to texture description is required.

In this chapter, a region growing algorithm is implemented and applied. It is
based on textural information from the LBP operator to extract landform objects
from a DSM. A description of texture reflects the spatial structure of elevation and
slopes, and is therefore indispensable in segmenting an area into sensible landform
units. Land form segmentation is started by modelling texture using the LBP
operator at different scales. Then, objects are formed by seeded region growing.
This process starts at the finest pixel level and it clusters pixels to form objects
based on textural homogeneity. Growing of objects is stopped if a certain thresh-
old is exceeded. A similarity measure is used to determine whether a pixel can be
merged with an object. This measure also provides useful information on exten-
sional uncertainty of objects, expressing uncertainty in their spatial extent. It is
expected that pixels in transition zones show higher uncertainty values than pixels
in core areas with homogeneous textures. To illustrate the use of texture-based
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segmentation for identification of landform objects, a LiDAR DSM of a coastal
area in northwest England is used. This chapter builds on work presented in chap-
ters 4 and 5 and further explores the use of multi-scale texture and generation of
extensional object uncertainty in image segmentation to identify fuzzy land form
objects. The main advantage of the approach taken in this study is that land form
objects can be extracted from elevation data in an objective and fully automated
manner.

7.2 Multi-scale texture model

The LBP texture measure as described in chapter 5 proved to be a suitable de-
scription for local image texture. The definition for the local neighbourhood set
in equation 5.2 allows for selection of neighbourhood sets at different scale levels,
i.e. different combination of P and R (for example P=8, R=1; P=8, R=5; P=8,
R=10). The LBP measure, defined in equation 5.4 can be extended to a multi-
scale texture measure taking into account spatial information at more than one
scale level. To include texture at different scale levels, N neighbourhood sets at
different resolutions are taken to calculate local binary patterns (figure 7.1(a)).
For each neighbourhood set LBPc (equation 5.4) and V ARc (equation 5.7) are
calculated. The multi-scale texture measure is defined by

LBPN
c =

N∑
n=1

LBPn
c (7.1)

where n is a combination of P and R. The multi-scale variance measure V ARN
c

is calculated over all neighbours at the different scale levels. Figure 7.1(b) illus-
trates why a multi-scale neighbourhood might be seen appropriate for land form
description.

7.3 Seeded region growing

In this study, a seeded region growing image segmentation algorithm (Haralick
and Shapiro, 1985; Horowitz and Pavlidis, 1976) is applied to identify and extract
land form objects. Initialisation of seed pixels is an important issue, because it
strongly influences the segmentation result. A random initialisation of seeds is a
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Figure 7.1: Multi-scale circular neighbourhood set: (a) Neighbourhood set for different values
of P and R; (b) Neighbourhood set super imposed on a 3D representation of a LiDAR DSM
to show its usefulness for describing land forms.
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first option, although for every segmentation a different result is obtained. Alter-
natively, segmentation can be started at locations with minimal local variance. To
calculate local variance for every pixel in the image, equation 5.7 is applied with
P = 8 and R = 1, corresponding to a 3 by 3 kernel. Next, the list of pixels is
sorted based on variance. Segmentation is started at pixels with the lowest vari-
ance values. A similarity criterion is used to merge adjacent pixels to form an
image object. An initial similarity criterion for grey-scale images is the difference
between the mean value of an object and a candidate pixel. If the difference is
smaller than a certain threshold, the pixel is merged with the object. To deal with
multi-spectral or hyper-spectral data, either the spectral angle or the Euclidean
distance in feature space is used as similarity criteria. As an initial threshold, the
mean angle difference or the mean Euclidean distance is applied. It is based on an
image kernel of 3 by 3 pixels (P = 8 and R = 1) for every pixel in the image. The
lower the threshold the more objects will be formed. A threshold close to 0 will
segment every pixel as individual objects. A maximum threshold will segment the
whole image as a single object. Thus, the threshold value determines the scale of
segmentation.

After the initial growing phase new seeds are placed to form new objects. This
process is continued until all image pixels are merged with an object. In the next
phase, adjacent objects are merged according to the same similarity criterion. The
spectral angle or Euclidean distance between mean spectra of objects is used to
assess whether objects can be merged. This process is continued until a stable
image segmentation is obtained.

In this approach, only spectral properties are used to form objects. Information
on texture might provide useful information for identification of objects. In this
chapter, an extension of the standard region growing algorithm is applied by using
the multi-scale LBPN

c and V ARN
c texture measures. The purpose is to identify

objects based on texture homogeneity. It is argued that basic land form elements
can be described by a multi-scale texture measure and extracted by region growing
based on this measure. Additionally, pixel similarity measures are used to depict
uncertainty. To derive an uncertainty measure with values between 0.0 and 1.0, the
similarity value is inverted and normalised based on the selected threshold. Thus,
a pixel with a high uncertainty value is assigned to an object with low similarity,
caused by a large angle or distance in feature space between the feature vectors
of an object and an adjacent pixel. Transition zones between objects show high
uncertainty values, as these zones are characterised by vagueness.
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Figure 7.2: 3D view of LiDAR DSM of the study area. It clearly shows the beach, fore dune
and other dune ridges in the dune fields

7.4 Multi-scale texture measures from a LiDAR
DSM

In this study, the LiDAR surface model as described in chapter 5 was used to
identify coastal land form objects. Figure 5.1(b) shows the LiDAR DSM of the
study area. Figure 7.4 gives a 3D representation of the DSM to show the typical
coastal land forms like dune ridges and troughs.

For every pixel in the LiDAR DSM, texture measures were calculated for three
neighbourhood sets LBP 8,1

c , LBP 8,5
c and LBP 8,10

c as well as V AR8,1
c , V AR8,5

c and
V AR8,10

c (P = 8;R = 1, 5, 10). The LBPc values for the three circles were summed
to calculate LBPN

c . This value was then assigned to the centre pixel. Similarly
for V ARc, the variance of the pixels in all three sets was assigned to the centre
pixel. The result of this operation is given in figure 7.3. Land forms are more
pronounced in these texture images. The LBPN

c 7.3(g) and V ARN
c 7.3(h) images

were combined with the original DSM to form a three-band image composite as
input for the region growing algorithm (figure 7.4(a)).
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 7.3: LBPc and V ARc texture values for the LiDAR DSM: (a) LBP 8,1
c image; (b)

LBP 8,5
c image; (c) LBP 8,10

c image; (d) V AR8,1
c image; (e) V AR8,5

c image; (f) V AR8,10
c

image; (g) Total LBP 3
c image; (h) Total V AR3

c image.
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7.5 Texture-based region growing for identifica-
tion of land form objects

For the identification of land form objects, a seeded region growing algorithm
was applied to the texture composite image derived from the LiDAR DSM (fig-
ure 7.4(a)). As a similarity criterion, the angle in feature space between the mean
vector of an object and the feature vector of an adjacent pixel was used. The
threshold was 0.30 radians. Initially 6006 objects were formed. After merging
neighbouring objects in four iterations, 1446 objects remained. The segmentation
result is depicted as an object image; each object has been assigned an object num-
ber and objects are classified into colour classes (figure 7.4(b)). Object boundaries
were extracted and overlayed with the original LiDAR DSM for object visuali-
sation (figure 7.4(c)). Additionally, similarity measures for every pixel provided
information about uncertainty, depicting pixels with high similarity values as a
low uncertainty. Dark values in figure 7.4(d) depict pixels with high uncertainty.

Figure 7.4(b) clearly shows land form objects. The beach flat was segmented
as one homogeneous object with low overall uncertainty values. Dune ridges were
identified correctly, as these objects corresponded to observations in the field. The
fore dune was segmented as one homogeneous object. The dune ridges south-
west of the fore dune were depicted as long thin objects in the segmented image
and several parabolic dune ridges could be observed. The lower parts of these
dunes were segmented as separate objects, correspondeding to blowout areas. The
woodland area was different from the dune area as its variance in texture was
very high, caused by the spiky signal of the laser return from the pine trees. The
woodland area was identified as several homogeneous objects. Uncertainty values
in figure 7.4(d) are high in boundary areas of dunes and dune troughs, depicting
transition zones between these land form objects, as expected.

In figure 7.5 a detailed section of the fore dune area is shown. The steep slope
of the fore dune was segmented as a separate land form object (figures 7.5(c)
and 7.5(d)). The dune ridge itself was segmented as a wide object with several
higher sub-ridges as separate objects in between, corresponding to observations
in the field. High uncertainty values occured in the boundary areas of objects
(figure 7.5(e)), showing transition zones between the dune crest object, the dune
slope object and the beach object. This was a meaningful result as land form
objects are not crisp, they are vague in their definition, existence and spatial
extent. Therefore, uncertainty values were expected to be high in transition zones
between fuzzy land form objects.
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(a) (b)

(c) (d)

0

1
Uncertainty

Figure 7.4: Region growing results: (a) Colour composite of combined elevation, LBP 3
c and

V AR3
c values used as input for region growing; (b) Objects as identified by region growing

algorithm with numbered labels in order of identification; (c) Original elevation image with
object contours; (d) Similarity values for each pixel depicting uncertainty. The darker the
pixel, the higher the uncertainty.
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(a) (b) (c)

(d) (e)

Figure 7.5: Detailed section of the fore dune: (a) LiDAR elevation of the fore dune; (b) Colour
composite of multi-scale LBP, VAR and elevation; (c) Edges as defined by region growing;
(d) Objects identified by segmentation; (e) Uncertainty for every pixel, boundary zones show
high uncertainty values.

7.6 Discussion and conclusions

In this study, a region growing algorithm was implemented to derive land form
objects from a LiDAR DSM based on multi-scale image texture. Image texture
was modelled with the Local Binary Pattern operator (LBP) and local variance.
The standard LBPc and V ARc texture measures were extended with a multi-scale
neighbourhood set. Compared to a local texture measure, a multi-scale approach
provided a better land form description. The combination of the multi-scale LBPN

c

and V ARN
c measures and the original elevation data provided input for a region

growing algorithm. Initial seed pixels were placed to form initial objects, based
on minimum local variance. Merging of objects and adjacent pixels was based
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on a similarity criterion of the angle between the mean vector of an object and
the feature vector of an adjacent pixel. After all image pixels were assigned to
an object, neighbouring objects were merged according to the same similarity
criterion. This process continued until no more objects could be merged in the
image. Since the procedure was unsupervised, the identified objects were assigned
numeric labels in order of identification.

As an application, a LiDAR DSM of a coastal area in England was segmented
into coastal land form objects. The texture-based region growing provided mean-
ingful objects from the LiDAR DSM. Additionally, a pixel uncertainty value was
based on a similarity measure, i.e. a large angle in feature space between an object
mean vector and a neighbouring pixel feature vector was interpreted as a high
uncertainty value. These uncertainty values provided valuable information about
transition zones between fuzzy objects.

In this study, an unsupervised approach was taken towards object identifica-
tion. The advantage is that it provides an objective and automated technique of
land form mapping. The identified objects, however, do not have class labels. A
subsequent step in land form analysis could be a classification stage using objects
for an object-based classification. For example, information on elevation distribu-
tion, texture distribution, object shape, topology, and semantics could be used to
classify objects into meaningful land form classes and label the objects accordingly.

Validation of land forms is a difficult task. In this study, the most up to date
and most accurate elevation data available were used. Therefore, good reliable
reference data could not be used for validation of the segmentation results. The
changing nature of the coastal environment made validation even more compli-
cated, since an accurate land form map of the same date was unavailable. Even if
appropriate reference data would be available, validation itself is not straightfor-
ward. Object validation is often done based on boundaries (chapter 4). As shown
in this chapter, coastal objects have a fuzzy nature, i.e. there are transition zones
between objects. Therefore, boundary matching would be a difficult task as fuzzy
objects only have an arbitrary boundary. Therefore, object validation was neither
feasible nor meaningful. From field observations, however, it could be concluded
that good segmentation results were obtained. The described texture-based region
growing is not restricted to coastal land form mapping. It can easily be applied to
other remote sensing images and other study areas.
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Chapter 8

Visualisation of Thematic
and Spatial Object
Uncertainty ∗

We shall not cease from exploration and the end of all our exploring
will be to arrive where we started . . . and know the place for the first time.

T. S. Eliot

8.1 Introduction

In this chapter, the visualisation tool as described in part I is extended for visu-
alisation of objects to show the relation between thematic uncertainty and spatial
uncertainty. Uncertainty values derived for objects using either visual classification
or segmentation provides information on the thematic content and spatial extent
of objects. Static uncertainty images (figures 2.4(b) and 6.3(b)) give a limited and
global overview of the distribution of uncertainty values.

∗This chapter is based on the following paper:
Lucieer, A. and Veen, L. E. (in prep.). Visualisation of object uncertainty in remotely sensed

imagery by 3D interactive isosurfaces, Information Visualization. in prep.



8.1. Introduction

Object uncertainty provides important information for the fitness for use of a
remotely sensed image segmentation or classification. Uncertainty in the spatial
extent of objects may indicate transition zones or indeterminate boundaries. The-
matic uncertainty may provide information on vagueness due to object or class
definition or overlap. Uncertainty can affect further data processing and even-
tually decision making. Effective communication can make users more aware of
uncertainty in segmentation or classification. More specifically, exploration can
provide valuable information on the relation between uncertainty in the spatial
extent of objects and their thematic uncertainty.

In part I, spheres, ellipsoids, convex hulls and α-shapes were used to visualise
the shape of reference class clusters prior to a visual classification in a 3D feature
space plot. Pixels derived from small references areas in an image were used for a
supervised classification. The same visualisation methods can be used to visualise
reference areas used for supervised segmentation techniques as described in part II.
Essentially, these visualisations can represent any cluster of pixels in 3D feature
space. Therefore, these techniques are also suitable for visualising objects after
classification or segmentation. They can help to explore uncertainty related to
individual classes or objects. Interaction with a user-defined uncertainty threshold
might improve insight into thematic uncertainty of objects, as their representation
in 3D feature space might change for different uncertainty thresholds, effectively
taking a subset from an object cluster by adding or removing pixels based on this
threshold.

An initial step towards visualisation of an object in 3D feature space is a
sphere, representing the mean and maximum standard deviation of an object. A
more accurate object representation is an ellipsoid, taking into account different
variances in different bands. Even more accurate representations of an object are
convex hulls and α-shapes. See chapter 3 figure 3.3 for a comparison of these
shapes. Although α-shapes are visually complex, their accurate representation is
most suitable for detailed exploration of uncertainty, as the exact location and vol-
ume of class or object overlap can be visualised. Additionally, the exact shape of
a pixel cluster may yield valuable information on irregularities and outliers. The
algorithm to calculate an α-shape from a pixel cluster, however, has high com-
putational demands, making it difficult to visualise α-shapes in real-time. Fast
interaction and real-time visualisation are important for exploration of object un-
certainty. If a user changes the uncertainty threshold, it should immediately be
reflected in the object shape. α-shapes and convex hulls have to be re-calculated
for every change of the uncertainty threshold, making these shapes unsuitable for
interactive visualisation. Similarly, for spheres and ellipsoids underlying statistics
have to be recalculated for a changing threshold. To accurately visualise a chang-
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ing object shape in real-time, an algorithm that takes advantage of the similarity
between shapes is preferable. Isosurfaces (Bloomenthal and Wyvill, 1997) can ap-
proximate an α-shape. They visualise objects in 3D feature space in real-time,
enabling interaction.

This chapter aims to develop and implement visualisation methods for explo-
ration of objects and their uncertainty, derived from visual classification or seg-
mentation. Interaction with a user-defined uncertainty threshold is a focal point
to explore the effect of changing uncertainty on the spatial extent of an object
and its thematic uncertainty. A 3D feature space plot (section 2.4) is extended
to visualise the shape or thematic content of objects. An image display (section
2.4) is extended to visualise the spatial extent of objects. It is hypothesised that
the visual link between feature space and geographic space improves exploration
of the relation between spatial and thematic uncertainty.

8.2 Isosurfaces

Pixel locations in feature space correspond to pixel values in an object. Pixels can
be thresholded based on a user-defined uncertainty threshold, showing only pixels
with an uncertainty value lower than the threshold. To visualise a cluster of pixels
as a shape in feature space, each pixel is considered a potential source analogous
to a planet in the universe. A source has a mass, and the potential p is calculated
using the potential energy in a gravity field

p = −G
m1m2

r
(8.1)

where G is the gravitational acceleration (G = 9.8m/s2), m1 and m2 are masses
and r is the distance between them. For a feature space plot, this is simplified to

p =
m1

rc
(8.2)

where G = 1.0, m2 = 1.0, and p is the potential generated at a particular point in
feature space (x, y, z). m1 is the mass of a source determined by the distance to the
closest neighbouring source. The mass is analogous to parameter α for α-shapes
(section 3.3), as a higher mass pulls the surface closer to a source, possibly forming
disjoint shapes. The constant c is used to determine the power of the potential
function.

The potential at an arbitrary point in feature space is the sum over all sources
of the potentials for that point. The potential is high in the vicinity of sources,
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and low in areas without sources. The derivative of the potential, the gradient g
at location (x, y, z), is defined as:

g = ∇p (8.3)

Visualising the shape of a cluster of pixels now becomes a matter of rendering an
isosurface corresponding to a surface with equal potential.

The most common algorithm for rendering isosurfaces is the marching cubes
algorithm (Lorensen and Cline, 1987), subdividing space into cubes. For each cube
it determines the intersection between the cube and the isosurface, generating one
or more polygons that describe the isosurface within the cube. Generated polygons
for all cubes are then connected into a mesh using a standard triangulation. Despite
its name, the marching cubes method is not very dynamic, as for a change the
entire mesh has to be regenerated. The position and number of sources change for
different uncertainty thresholds. Exploration of object uncertainty relies on real-
time interaction with various uncertainty thresholds. Therefore, an algorithm that
takes advantage of the similarity between shapes would be preferable. Instead of a
mesh, point rendering (Levoy and Whitted, 1985; Rusinkiewicz and Levoy, 2000) is
considered to visualise an isosurface. This algorithm has as its main advantage that
the geometry needs not to be generated and re-calculated. Therefore, it is faster
and ultimately more interactivity is possible. Recently, QSplats were proposed to
make the visualisation more appealing (Rusinkiewicz and Levoy, 2000). Instead
of rendering a large number of points (in the order of 106 or more), each point is
displayed as a small circle or pentagon visualising a shape as a continuous surface.
To visualise an image object in 3D feature space, an isosurface is created based on
object pixels using algorithm 8.1 given below.

Set uncertainty threshold;
Threshold object pixels and collect pixel values;
Set position of sources based on pixel values;
Randomly distribute pentagons in 3D feature space;
while All faces are not on isosurface do

Move pentagons towards isosurface based on potential and gradient;
Move pentagons away from neighbouring pentagons;

end

Algorithm 8.1: Algorithm for visualisation of an object isosurface.

To visualise the isosurface, pentagons are moved towards the isosurface into
the direction of the potential gradient. Pentagons are regularly distributed over
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the surface based on a repulsion force. This force depends on the distance between
neighbouring pentagons and it works perpendicular to the direction of displace-
ment of a pentagon towards the isosurface. Pentagons close together are pushed
away in the opposite direction until a stable and regular distribution of pentagons
over the isosurface is obtained. Each time the uncertainty threshold changes and
sources appear or disappear, the algorithm is re-run to move all pentagons to
the new isosurface. Algorithm 8.2 describes the procedure for moving pentagons
towards an isosurface.

c = position of pentagon;
p = potential at position c;
i = 1.0 = isovalue (distance between source and isosurface);
g = gradient at position c;
g′ = normalised gradient;
d = difference;
δ = magnitude of displacement towards isosurface;
x = X-coordinate at position c;
m = sum of forces at position c;
C1 = speed factor with which pentagons move towards isosurface;
C2 = speed factor with which pentagons move away from each other;
for c in all pentagons do

d = i− p;
δ = d/|g|;
for x in all pentagons do

m = m + (c− x)/|(c− x)|2;
end
c = c + C1 ∗ disp ∗ g′ + C2 ∗ (m− g′m ∗ g′);

end

Algorithm 8.2: Algorithm for moving pentagons towards isosurface.

Initially, all object pixels are considered as a source. Pixel grouping is consid-
ered to reduce the number of sources, increasing the speed of an iteration. This
method groups points that are close to each other in feature space into a single
potential source by partitioning feature space into a regular grid of cubes. Pixels
within a single cube are aggregated into a single source and its location is the
mean of the locations of its pixels. Source uncertainty is the mean uncertainty of
its pixels.

This algorithm is a hill-climbing algorithm, which may suffer from occurrence
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of local maxima. This may happen if an object has a high variance of pixel
values. In that case, sources can be spread across feature space, forming multiple
unconnected isosurfaces for one object. For a single object with disconnected
isosurfaces, pentagons may only move towards the nearest isosurface, making a
distant isosurface invisible. A related problem occurs when a new source appears in
a location at a large distance from any existing source. This situation may happen
if additional sources are added for a growing object. Since all pentagons are close
to an existing isosurface, pentagons will not move to the new source, making that
part of the isosurface invisible. Firstly, a solution to this problem can be found
by a correct initialisation of pentagons. During initialisation, pentagons should
be placed near the sources, inside the isosurface, instead of at random locations.
Secondly, pentagons should be dynamically addedor removed near new sources as
sources are added or removed. Thirdly, using only nearby sources instead of all
sources to position pentagons can speedup the iteration process. Similarly, for a
regular distribution of pentagons over an isosurface only neighbouring pentagons
need to be considered.

Rendering of isosurfaces can be further enhanced by bending of pentagons.
Initially, pentagons are flat surfaces, centered on the isosurface and oriented ac-
cording to the gradient. The isosurface, however, is most often curved. A more
accurate representation can be obtained if the pentagons can be bent by moving
their outer points onto the isosurface. Fewer pentagons can then be used to get
the same visual quality, thus speeding up the process.

8.3 Comparison of object representations

Figure 8.2 shows a comparison of representations for an image object containing
24,000 pixels. Computational speed is fastest for the sphere and the ellipsoid for
this object. However, if the uncertainty threshold changes, all pixels in the object
have to be revisited to recompute its statistics. For an isosurface (figure 8.2(e))
only the parts that are added or removed have to be computed. This speeds up the
rendering process and it makes isosurfaces most suitable for fast interaction. The
most accurate representation is given in figure 8.2(d) showing an α-shape of the
same object. This figure also shows that an isosurface provides a good approxima-
tion (figure 8.2(e)). Computation and rendering of the α-shape on a Pentium III
processor at 800 MHz took 1 minute and 19 seconds, making interaction practically
impossible. The isosurface was computed and rendered within 1.2 seconds. Fig-
ure 8.1 shows a comparison of the computational speed, when interacting with an
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Figure 8.1: Computational speed for generation of each visualisation.

uncertainty threshold, versus the representation accuracy of the different shapes.
Isosurfaces provide a trade off between speed and accuracy, and they are most
suitable when fast interaction with object uncertainty is required.

8.4 Visual link between thematic uncertainty and
spatial uncertainty

A classification or segmentation result is usually shown as a crisp map. Underlying
uncertainty of object or class pixels can be stored and visualised in a separate
map. Use of an uncertainty threshold may be helpful to explore parts of objects
or classes with an uncertainty value lower than the threshold. By interacting with
this uncertainty threshold, a user can explore the range in spatial extent and object
shape. For example, all pixels belonging to an object with an uncertainty value
between 0.0 and 0.3 may show the core area of an object that is identified with
low uncertainty values. It shows the influence of uncertainty on the spatial extent
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(a) (b) (c)

(d) (e)

Figure 8.2: Comparison of shapes for object visualisation: (a) object sphere; (b) object
ellipsoid; (c) object convex hull; (d) object α-shape; (e) object isosurface.

of an object. The extent of some objects will change considerably, especially for
objects with large transition zones, whereas for other objects it will change only
slightly. Similarly, the shape of objects can be visualised in feature space using
isosurfaces. By applying the same uncertainty threshold, the shape of the object
in feature space will change. The amount of change of the object’s shape in 3D
feature space provides information about thematic uncertainty. Linking thematic
and geographic visualisations, in the form of a 3D feature space plot and an image
display, provides a powerful tool for analysis of object uncertainty. This tool is
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illustrated with two case studies, described earlier in part I and part II.

8.5 Case study: classification

The first case study concerns visualisation of uncertainty related to a visual fuzzy
classification. In chapter 2, three bands of a Landsat 7 ETM+ image of the ‘La
Peyne’ catchment in southern France (figure 8.3(a)) were used for classification.
Figure 8.3(b) shows the classification after assigning class labels based on maxi-
mum membership values. Figure 8.3(c) and figure 8.3(d) give membership images
for land cover class agriculture and class urban respectively. Figure 8.4 shows four
isosurfaces for class agriculture using uncertainty thresholds corresponding to the
following membership ranges, respectively 0.75–1.0 (figure 8.4(a)), 0.50–1.0 (figure
8.4(b)), 0.25–1.0 (figure 8.4(c)), and 0.05–1.0 (figure 8.4(d)).

Figure 8.5 shows the image displays with the spatial extent of class agriculture
corresponding to the four uncertainty thresholds. Both isosurface and spatial
extent increase with increasing uncertainty thresholds, but little change occurred
between thresholds 0.75 and 0.95 (figure 8.4(c) and 8.4(d)). The spatial extent,
however, increased considerably for this change in uncertainty (figure 8.5(c) and
8.5(d)). This exploration showed that many image pixels fall between uncertainty
thresholds 0.75 and 0.95, depicted by a significant change in spatial extent. DN-
values of these pixels, however, fall within the same location in feature space,
showing no changes in the shape or size of the isosurface.

Next, classes agriculture and urban are visualised simultaneously to increase
interaction and improve exploration of class overlap. Figure 8.6 shows isosurfaces
and spatial extents of these classes, based on an uncertainty threshold of 0.50,
corresponding to membership values between 0.50 and 1.0. Figure 8.6(a) shows
that the two isosurfaces of these classes overlap. Small spatial overlap zones can
be observed in figure 8.6(b), depicted in white. This visualisation method can help
to explore transition zones and class overlap.
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(a) (b)
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Garrigue

Urban

Agriculture

Classes
Water
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(c) (d)

Figure 8.3: Visual fuzzy classification of Landsat image of the Peyne catchment, France: (a)
Colour composite of bands 4,5 and 3 of a Landsat 7 ETM+ image; (b) Visual fuzzy classifi-
cation result with land cover classes; (c) Image with membership values for class Agriculture;
(d) Image with membership values for class Urban.
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(a) (b)

(c) (d)

Figure 8.4: Isosurface for class Agriculture for different uncertainty thresholds: (a) Uncertainty
range 0–0.25; (b) Uncertainty range 0–0.50; (c) Uncertainty range 0–0.75; (d) Uncertainty
range 0–0.95.
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(a) (b)

(c) (d)

Figure 8.5: Spatial extent of class Agriculture for different uncertainty thresholds: (a) Un-
certainty range 0–0.25; (b) Uncertainty range 0–0.50; (c) Uncertainty range 0–0.75; (d)
Uncertainty range 0–0.95.
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(a)

(b)

Figure 8.6: Isosurfaces and spatial extent for classes Agriculture and Urban, showing overlap:
(a) Isosurfaces based on uncertainty range 0–0.50; (b) Spatial extent for this isosurface
configuration, showing small areas of overlap in white.
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8.6 Case study: segmentation

The second case study involves visualisation of uncertainty related to objects. Two
objects were selected from a segmentation result presented in chapter 6, using a
colour composite of band 12, 8 and 1 of a CASI image of the Ainsdale Sands in
the UK (figure 8.7(a)). The result of a multivariate texture-based segmentation
of the CASI image is given in figure 8.7(b) (section 6.3). The first object is a
woodland object located in the southeast part of the image. Uncertainty values of
its building blocks are shown in figure 8.7(c). The second object is a marram grass
object located on the fore dune, visible as a straight diagonal object from the east
to the north side of the image.

Isosurfaces for the woodland object are shown in figure 8.8. Four uncertainty
thresholds were chosen, corresponding to the following uncertainty ranges: 0.0–
0.25 (figure 8.8(a)), 0.0–0.50 (figure 8.8(b)), 0.0–0.75 (figure 8.8(c)), and 0.0–0.95
(figure 8.8(d)). The corresponding object spatial extent displays are shown in
figure 8.9. For low uncertainty values (0.0–0.25) the ‘core’ area of the woodland
object emerged, showing that only a small amount of object building blocks con-
tained low uncertainty values. In the 3D plot, the woodland isosurface is shown
as a number of small disjoint shapes. For an increasing uncertainty threshold, the
isosurface formed a single large shape containing several small disjoint shapes. The
size of the isosurface showed that variance of pixel values in this object was high.
At the highest uncertainty threshold (0.0–0.95) small object blocks were added to
the spatial extent of the forest object. These object building blocks corresponded
to transition areas where willow trees occured, as opposed to planted pine trees in
the core area. At this uncertainty level, the woodland isosurface covered a large
part of feature space, containing a large range of pixel values.

Figure 8.10 shows isosurfaces for the fore dune object. Four uncertainty thresh-
olds were chosen, corresponding to the following uncertainty ranges: 0.0–0.50 (fig-
ure 8.10(a)), 0.0–0.65 (figure 8.10(b)), 0.0–0.80 (figure 8.10(c)), and 0.0–0.95 (fig-
ure 8.10(d)). The initial threshold was higher than in the previous examples, the
reason for this being that no object building blocks contained uncertainty values
lower than 0.25. Figure 8.10(a) and 8.11(a) show that only a small core area of the
fore dune was selected for a low uncertainty threshold. The isosurface consisted
of two disjoint sources. For an increasing threshold the spatial extent of the fore
dune area increased considerably. The isosurface was formed by one large shape
with some smaller disjoint shapes (figure 8.10(c) and 8.11(c)). At the largest un-
certainty threshold, transition zones to the beach area were added to the spatial
extent of the object. Additionally, the size of the isosurface increased considerably,
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again covering a large part of feature space.
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(a) (b)

Sand
Marram Grass
Willow Shrub
Woodland

Classes

(c) (d)

0

1
Uncertainty

Figure 8.7: Object uncertainty for CASI land cover segmentation: (a) Colour composite of
band 12, 8 and 1 of a CASI image of the Ainsdale Sands, UK; (b) Texture-based segmentation
result showing land cover objects; (c) Uncertainty values for building blocks of woodland
object; (d) Uncertainty values for building blocks of marram grass fore dune object.
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(a) (b)

(c) (d)

Figure 8.8: Isosurface for Woodland object for different uncertainty thresholds: (a) Un-
certainty range 0–0.25; (b) Uncertainty range 0–0.50; (c) Uncertainty range 0–0.75; (d)
Uncertainty range 0–0.95.
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(a) (b)

(c) (d)

Figure 8.9: Spatial extent of Woodland object for different uncertainty thresholds: (a) Un-
certainty range 0–0.25; (b) Uncertainty range 0–0.50; (c) Uncertainty range 0–0.75; (d)
Uncertainty range 0–0.95.
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(a) (b)

(c) (d)

Figure 8.10: Isosurface for Fore dune object for different uncertainty thresholds: (a) Un-
certainty range 0–0.50; (b) Uncertainty range 0–0.65; (c) Uncertainty range 0–0.80; (d)
Uncertainty range 0–0.95.
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(a) (b)

(c) (d)

Figure 8.11: Spatial extent of the Fore dune object for different uncertainty thresholds: (a)
Uncertainty range 0–0.50; (b) Uncertainty range 0–0.65; (c) Uncertainty range 0–0.80; (d)
Uncertainty range 0–0.95.
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8.7 Discussion

In chapters 2, 3, and this chapter, several techniques were discussed to visualise
a cluster of pixels in a 3D feature space. The choice for a specific visualisation
depends on the user task. If accuracy is most important, α-shapes represent a pixel
cluster most accurately. However, as computational demands are high, isosurfaces
are more suitable for exploration purposes, facilitating real-time visualisation and
interactivity.

Isosurfaces for visualisation of objects in 3D feature space are an alternative to
α-shapes. A possible improvement to the tool described in this chapter might be
to use α-shapes when no fast interaction is required. For example, an object could
be visualised as an α-shape for an initial uncertainty threshold. As soon as a user
changes the uncertainty threshold, an object is visualised as an isosurface giving
an approximation of the shape. A user should be able to switch between α-shapes
and isosurfaces, where α-shapes are used for a more accurate representation and
isosurfaces are used for real-time rendering and interaction.

Figure 8.12 gives an overview of the shapes and their suitability with respect
to accuracy. For visualisation of reference class clusters prior to classification or
segmentation, α-shapes and isosurfaces provide the most accurate representation.
Additionally, for this type of visualisation the structure of pixels does not change
during visualisation, therefore, fast interaction is not required. For a visual classifi-
cation spheres and ellipsoids are more suitable. These shapes depict the underlying
statistics of a point cloud, used by a classifier. In chapter 2 spheres were used to
visualise (and interact with) membership functions. In addition, α-shape were
used for a fuzzy classification in chapter 3. Since isosurfaces lack a statistical de-
scription of the underlying data, they are unsuitable for a visual classification. For
visualisation of object uncertainty, as described in this chapter, isosurfaces and
α-shapes are most accurate.

In addition to accuracy and speed issues, usability is an important factor. For
some users, the visual complexity of alpha-shapes, isosurfaces and convex hulls
might be too high. Spheres or ellipsoids might then provide a more comprehen-
sible representation. A focus group user test should be conducted to provide a
qualitative description of the usability of the visualisation methods described in
this chapter.
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Sphere

Ellipsoid

Convex Hull

Alpha-shape
Isosurface

Low
Medium
High

Reference class visualisation prior to
classification or segmentation

Visual Classification

Object uncertainty visualisation
after classification or segmentation

Shapes:

Suitability:

Representational
Accuracy

Figure 8.12: Overview of shapes and their suitability for specific user tasks.

8.8 Conclusions

In this chapter, new visualisation methods were developed for exploration of uncer-
tainty related to image objects. A 3D plot showing feature space was dynamically
linked to an image display showing geographic space. Spheres, ellipsoids, con-
vex hulls, isosurfaces, and α-shapes were compared for visualisation of objects in
a 3D feature space plot. These objects were derived by visual classification or
segmentation. α-shapes provide the most accurate object representation, how-
ever, computational demands were very high, making them unsuitable for fast
interactions. Alternatively, an isosurface is a good approximation of an α-shape,
facilitating interaction. Isosurfaces enable real-time rendering of objects in a 3D
feature space plot. Interaction with an uncertainty threshold showed the change of
an isosurface for a changing threshold, providing an indication for thematic object
uncertainty.

The spatial extent of an object was visualised in an image display. For a
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changing uncertainty threshold, the spatial extent of a selected object changes
accordingly. Visual interaction with an uncertainty threshold and a dynamic link
between feature space and geographic space is a powerful tool for exploration of
the relation between thematic uncertainty and spatial uncertainty related to image
objects.

The first case study concerned visualisation of uncertainty for a visual fuzzy
classifier. Four uncertainty thresholds were applied to show the difference in spa-
tial extent for the agriculture class. Thematic uncertainty was visualised using
isosurfaces. Additionally, the urban class was visualised simultaneously to explore
class overlap.

The second case study involved uncertainty visualisation of objects derived by
multivariate texture-based segmentation from a CASI image of the Ainsdale Sand,
UK. A woodland object was selected as a first example for visualisation of object
uncertainty. The visualisation tool was valuable for exploring both thematic un-
certainty and spatial extent of this object for different uncertainty thresholds. As
a second object fore dune, covered with marram grass, was selected. Again, the
visualisation tool provided valuable insights into object uncertainty. The effective-
ness of the proposed visualisation tool, for different users, should be assessed in
future research.
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Chapter 9

Conclusions

We do not live to eat and make money.
We eat and make money to be able to enjoy life.

George Leigh Mallory (1924)

In this study, visualisation techniques have been proposed for interaction with
a fuzzy image classification and for exploration of thematic uncertainty. A tool
has been developed to illustrate these visualisation techniques. It improves insight
into fuzzy classification of land cover classes from multi-spectral remotely sensed
imagery. Texture-based segmentation algorithms have been developed and applied
to identify land cover objects and land form objects from fine spatial resolution
imagery and to quantify their thematic uncertainty and spatial uncertainty. The
visualisation tool has been extended to explore the relation of uncertainty in the
spatial extent of objects and their thematic uncertainty.

9.1 Visualisation

• Visualisation of reference class clusters in 3D feature space provides new
ways to explore locations of class clusters and class overlap. It yields valuable
information about classes prior to classification. Visual information on class
overlap provides an indication of thematic uncertainty for pixels in overlap
zones. Dynamic linking of a 3D feature space plot and an image display
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provides a suitable technique for exploration of relations between geographic
space and feature space (chapter 2 and 3).

• A new visualisation tool facilitates visual interaction with the parameters of
a supervised fuzzy classification algorithm. 3D spheres depict fuzzy member-
ship functions in feature space, enabling a user to interact with a supervised
fuzzy classification algorithm and improving insight into the effects of class
overlap and changing membership functions. The visual fuzzy classifier is
tested on a Landsat 7 ETM+ image of an area in southern France. Vali-
dation shows that this classifier is superior to standard fuzzy classification
algorithms (chapter 2).

• Spheres and ellipsoids only approximate the shape of class clusters. α-shapes
effectively visualise the ‘real’ shape of class clusters in a 3D feature space plot,
proving helpful in interpretation and exploration of class location, shape and
overlap in a 3D feature space plot. Reference classes, derived from a Landsat
7 ETM+ image of the study area in France, are used to explore class cluster
shapes and overlap (chapter 3).

• α-shapes are used to adapt the distance metric in a supervised fuzzy classifi-
cation algorithm. A fuzzy classifier based on α-shapes performs well (overall
accuracy = 70 %). Several alternatives are proposed for classification im-
provement, based on α-shapes as representations of membership functions
(chapter 3).

• A focus group user test provides qualitative feedback about the applied vi-
sualisation methods. Users conclude that the visualisation tool improves
insight into a fuzzy classification algorithm and related uncertainty (chapter
2).

9.2 Segmentation

• Split-and-merge segmentation is useful to extract objects from remotely
sensed imagery. Segmentation homogeneity criteria have an important effect
on the segmentation result. Several segmentation results can be generated
with different segmentation thresholds to test object uncertainty. Existential
object uncertainty can be quantified by the boundary stability index (BSI).
It indicates object uncertainty as depicted by its boundary pixels (chapter
4).
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• Several methods have been proposed and applied to validate segmentation
results. Seven reference objects on a topographic map have been selected
for segmentation validation. The percentage of overlap and the area fit in-
dex (AFI) of individual objects, are suitable measures for quantification of
segmentation accuracy. To determine segmentation accuracy for the whole
image, segment boundaries have been used to calculate the fit (D(B)) with
topographic reference boundaries. A correction factor (D(B)corr) has been
proposed to correct for the number of boundary pixels in the segmented im-
age. These measures are suitable to depict overall segmentation accuracy
based on boundaries (chapter 4).

• The split-and-merge segmentation algorithm has been extended to include
texture. Texture is modelled with the joint distribution of the local binary
pattern (LBP) operator and local variance. Additionally, object uncertainty
values provide important information to identify transition zones between
fuzzy objects. The proposed algorithm provides good segmentation results
for a test case study with a composite image of five different textures (96%
accuracy).

• The algorithm has been tested on a LiDAR DSM and CASI image of a coastal
area on the northwest coast of England. Good segmentation results have
been obtained for the extraction of land form objects from the LiDAR DSM
(overall accuracy = 86%). Uncertainty values provide meaningful informa-
tion about transition zones between the different land forms. Segmentation
of land cover objects from the CASI image yields an overall accuracy of 71%
(chapter 5).

• To improve segmentation of land cover objects from multi-spectral imagery,
the univariate LBP texture measure has been extended to model multivariate
texture. The multivariate LBP texture operator models within and between
band pixel relations in three bands. In combination with an RGB colour
histogram, it provides a model for multivariate texture-based segmentation.

• An overall accuracy of 98% has been obtained for segmentation of an artifi-
cial image with a composition of colour textures. Three bands of the CASI
image are used to improve segmentation of land cover classes. Compared
to the segmentation result based on a univariate texture model, the mul-
tivariate texture-based segmentation algorithm yields better results (overall
accuracy = 77%). The second case study, involves segmentation of geological
units from ASTER and Landsat imagery of an area in Mongolia. Meaning-
ful geological units are derived (overall accuracy = 77%) providing a useful
technique for updating existing maps (chapter 6).
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• To improve identification of land form objects, the LBP texture measure
is extended with a multi-resolution neighbourhood model to model multi-
scale texture. The combination of multi-scale LBP, variance measures and
elevation values provide input for a region growing segmentation algorithm.
As an application, a LiDAR DSM of a coastal area in England is segmented,
yielding unlabelled land form objects. Additionally, a pixel uncertainty value
is based on a (merging) similarity measure. These uncertainty values provide
valuable information about transition zones between objects (chapter 7).

9.3 Object uncertainty visualisation

• In chapter 8, spheres, ellipsoids, convex hulls, isosurfaces, and α-shapes are
used and compared for visualisation of objects in a 3D feature space plot.
These objects are derived either by visual classification or segmentation. α-
shapes provide the most accurate representation, however, computational
demands are very high, making them unsuitable for fast interactions. Al-
ternatively, an isosurface can provide a good approximation of an α-shape,
facilitating fast interaction (chapter 8).

• Isosurfaces allow for real-time rendering and interaction with a user-defined
uncertainty threshold. Interaction with an uncertainty threshold showed the
change of an isosurface for a changing threshold, providing an indication for
thematic object uncertainty (chapter 8).

• The visualisation techniques are tested in two case studies. The first case
study concerns visualisation of uncertainty for objects derived from a vi-
sual fuzzy classifier of a Landsat image of an area in southern France. The
second case study concerns uncertainty visualisation of objects derived by
multivariate texture-based segmentation from a CASI image of the Ainsdale
Sand, UK. These case studies show that visual interaction with an uncer-
tainty threshold and a dynamic link between feature space and geographic
space, using a 3D feature space plot and an image display respectively, pro-
vides a powerful tool for exploration of the relation between uncertainty in
the spatial extent of objects and their thematic uncertainty (chapter 8).
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