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Synopsis 

The statistics of clusters in binary linear lattices is studied on the assumption that 

the relative weight of an Al or B, cluster is determined only by its size 1 or m, and is 

independent of the location of the cluster on the chain. The average cluster numbers 

and the variance of their fluctuations are calculated for two probability ensembles, 

the quasi-grand ensemble where the total number of units N varies, and the canonical 

ensemble where N is fixed. It is shown that in the latter case in the limit of large N 

the statistics of clusters is fully described by the cluster densities pl and pm, and a 

correlation function g&R) for which a susceptibility theorem is derived. 

1. Introduction. We consider linear systems of N basic units which can 
be in either of two states, A or B. A configuration of the system is repre- 
sented by a sequence of N symbols A and B in some order, e.g. 

AAA BB AABA . . . BAAAB. 

Of the numerous examples of such systems we mention linear arrays of 
N spins 4, the linear lattice gas of N sites, polymer chains with adsorption 
along the chain, copolymers consisting of two types of units, polypeptides 
with the letters A and B specifying whether a monomer unit is in the helix 
or coil state, and polynucleotides with A signifying bonding of units on 
opposite strands (helix) and B implying the absence of a bond (coil). 

A particular configuration will be denoted by s zz (~1, SZ, . .., SAT), where 
the variables si take the values A or B. Each configuration s is also com- 
pletely specified by a linear sequence of alternating A clusters and B 
clusters, e.g. 

A3Bz AzBl . . . AsB1. 

In equilibrium statistical mechanics each configuration is assigned a proba- 
bility P(s) on the basis of the physical properties of the chain. We consider 
a class of systems for which the statistical weight of a configuration is de- 
termined solely by the numbers of Al clusters and B, clusters present, 
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independent of the location of the clusters along the chain. Hence P(s) is 
the same for all s with the same set of occupation numbers (n,,, n,J. It is 
not implied that the clusters do not interact but only that the interactions 
of any cluster with its surroundings are independent of the nature of the 
surroundings so that their effect may be incorporated in the statistical 
weight of the given cluster. Since we are mainly interested in the sta- 
tistical properties for large N, we neglect the fact that frequently the end 
clusters have different statistical weights. If desired the end effects may 
be treated separately. 

A detailed account of the statistics of such binary linear systems with 
particular application to the helix-coil transition in biopolymers is pre- 
sented in the monograph by Poland and Scheragai). Of the earlier work 
we mention papers by Hilla), Zimm and Bragga), Lifson and co-workers‘i-7), 
and Gibbs and DiMarzios). In developing a theory of the kinetics of binary 
linear systems we have found it desirable to extend the existing theories in 
some respects. In the present paper we investigate in detail the averages of 
the occupation numbers {nAl, nBm} and their fluctuations in various proba- 
bility ensembles. We have chosen a coherent presentation and therefore 
must of necessity repeat some known results. 

In section 2 we define distribution functions and calculate the correspond- 
ing partition functions. Section 3 is devoted to the study of cluster popu- 
lations. In section 4 we investigate the behaviour in the limit of long 
chains, N --f 00. In section 5 we apply some of our results to the case of 
the Ising chain. The paper is concluded with a discussion. 

2. Distribdions and partition functions. In this section we discuss proba- 
bility distributions for the cluster occupation numbers {n*,, nnm} and re- 
lated partition functions. When no confusion can arise we shall abbreviate 
nA, = nl and nn, = n,. A set of occupation numbers {nl, n,} will be called 
a state of the system and will be denoted by x 5: {nl, n,}. Furthermore we 
define 

NA = 5 lnl, Nn = g ?nn,, 
1=1 W&=1 

ik?A = g al, ibIB = 5 n,. (2.1) 
1=1 m=l 

Note that Ng + Nn = N and that MA and Mn can differ at most by 
unity. The smaller of MA and MB will be denoted by n/r. The number of 
configurations s corresponding to a state x is given by 

Q(x) = 
MA(X) ! MB(X) ! 

nn,! flnn,! 
(l+s ) MA,MB. ) (2.2) 

1 m 

and will be called the volume of the state x. If the number of units is pre- 
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cisely N’ it is convenient to introduce the conditional volume 

9(x; N’) = Q(x) 6[N(x) -N’], (2.3) 

where 6(N - N’) = 8,,,. is a Kronecker delta. If in an N chain an Al 
cluster has weight ~1 and a B,, cluster has weight vm. the total weight of 
the state x is 

(2.4) 

Hence the probability distribution over states is given by 

P(x; N) = L?(x; N) G(x)/2~ 

where 2~ is the canonical partition function 

(2.5) 

ZN = C 12(x; N) G(x). (2.6) 

In some cases, e.g. in polymerization equilibrium, one must also consider a 
distribution over N with relative weight z N. The corresponding quasi-grand 
distribution function596) is 

P(x; .z) = zNQ(x; N) G&)/E(z), (2.7) 

is the quasi-grand partition function. The first term in (2.8) is unity by 
convention. In contrast to the usual canonical and grand canonical en- 
sembles in statistical mechanics the distributions (2.5) and (2.7) can give 
widely different results for the averages of observables, because the factor 
(N !)-I is missing in (2.7) and hence the distribution over N is very broad. 

In order to evaluate the partition functions it is convenient to consider 
constrained ensembles where the nature of the first and last cluster, and 
the total number of clusters are specified. Thus we introduce 

Pif(x; N, M) = Qif(x; N, M) G(x)/Zg,,, (2.9) 

where i and f take the values A or B and indicate whether the first and 
last cluster are A or B, and where 

Qif(x; N, M) = Dif(x; N) S[M(x) - M-J, 

ZS,, = C Qif(x; N, M) G(x). (2.10) 
E 

The corresponding quasi-grand partition functions are 

(2.11) 
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where we use the convention 

z~$=z;;=o ’ AB 
, L -zf$= 1. 0,o - (2.12) 

Hence 

S(z) = - 1 + g [E”MA(z) + Egyz) + Egyx) + qgyz)]. (2.13) 
M-O 

The partition functions (2.11) are easily evaluated in terms of the cluster 
generating functions 

co 
U(x) = z 23211, V(z) = 5 zmvm, (2.14) 

Z=l m=l 

and one finds explicitly 

EP(z) = U(z)[U(z) V(z)]M, 

E$s(z) = BP(z) = [U(x) V(z)]M, 

EF(z) =z V(z)[U(z) V(.z)]M, (2.15) 

so that 

W) = [1 + U(z) + V(z) + U(z) V(z)l/[l - U(z) V(z)]. 

The partition functions 2% are found from 

(2.16) 

(2.17) 

where the integration is along a contour encircling the origin of the complex 
z plane. The free energy per unit in the thermodynamic limit N + 00 is 
determined by the singularity za of Sif(z) nearest to the origin. It is given by 

CJI = -kT lim N-r In 2% = kT In 20, (2.18) 
NM 

where k is Boltzmann’s constant and T absolute temperature. The free 
energy pl is independent of the end conditions. A phase transition in the 
sense of a non-analyticity in the free energy can occurs? 10) because the 
singularity .ZO can arise in two ways, either as a root of the equation 

U(z) V(z) = 1 (exterior condition), (2.19) 

or alternatively because one of the cluster generating functions U(x) or 
V(z) fails to converge. For definiteness we may choose U(z) as the series 
with smallest radius of convergence. Then a phase transition can occur as 
one varies the physical parameters because of a switchover from the ex- 
terior condition (2.19) to 

z = lim [u~]-~/~ (interior condition). (2.20) 
l-=-a 
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When the latter condition prevails the statistical properties of the system 
in the thermodynamic limit are dominated by the A cluster of infinite size. 
Since we are interested in nontrivial cluster populations we shall henceforth 
assume that the free energy is determined by a (simple) root of eq. (2.19). 
Under this condition we find 

z$* = U(.za) pz;-\‘[I + @(n-N)], 

z*n = zn” 
LV N = pzO”[l + 0(1-N)], 

2-p = V(a)) pziN[l + B(ji-N)], 

with 

(2.21) 

J. = (&o) ( 1 + 4, (2.22) 

where F is small and positive and where zr is the root of (2.19) with next- 
smallest absolute value. Finally p in (2.21) is given by 

p-r = 
[ 

z 
d In V(z) d In V(z) 

dz +’ dz 1 ’ (2.23) 
I=ZO 

where we have used V(zo) V(Q) = 1. 
The calculation of statistical averages of observables f(s) dependent on 

the configurations s may be performed in a similar fashion. We define 

F(x) = z f(s) fi[x(s) - xl/Q@)> (2.24) 

where the delta function specifies that the state {al(s), n,(s)} corresponding 
to the configuration s must be x. The quasi-grand average for specified end 
clusters is given by 

<f(s)>; = <F(x)$ = c F(x) P’f(x; z), (2.25) 

and similarly one defines Q(S)); as an 
bility distribution (2.5) for given end 
grand averages are related by 

average over the canonical proba- 
terms. The canonical and quasi- 

Zg(F(x))$ = & P ZN+l 
(2.26) 

The quasi-grand average is easily evaluated, and hence the canonical aver- 
age is calculated using (2.26). 

3. Cluster populations. In this section we calculate the average cluster 
numbers and their fluctuations in both the quasi-grand and canonical 
ensemble. Owing to the broad distribution over N the fluctuations in 
cluster numbers in the quasi-grand ensemble are enormous. The expressions 
are slightly dependent on end effects and take their most elegant form for 
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i = A, f = B, or vice versa. One easily finds 

ABzv 
a 

<nm>, ~ In BAB(z) z ~ 
m av, (3.1) 

Hence 

<IM>,An = SAn(z) - 1, 

<N>,AB = [<J>, + <m>,l <M>,aB, (3.2) 

where <I), and <w), are internal cluster moments defined generally by 

<lQZ = ; &%+J(z), 
I=1 

<WZk),7, = g WZkZmVm/V(Z). (3.3) 
m=l 

From (2.23) and (3.2) one finds 

pz = <M>,aB/<N>,AB, (34 

so that pz may be interpreted as the average A- or B-cluster density per 

unit. It is simply related to the degree of association xz by 

pz = [<I>, + <w,l-1 = l/2)3. (3.5) 

Of equal importance is the fraction of A units 8, which is given by 

& = <NA>~~/<N>~~ = <b,/[(b, + @0,]. (34 

As z tends to zo the averages of both M and N diverge but their ratio tends 
to a finite value. In order to indicate averages in the thermodynamic limit 

z + zo we shall simply omit the subscript z. The fraction & tends to a 

value 8 between 0 and 1, and pz tends to a value p between 0 and Q as 
z 320. 

For the variance of the fluctuations in the cluster numbers one finds 

<n2nlT>,AB - <W,AB <nlf>,AB = <nl>,AB 6~ + <nd,AB <m>fB, 

<n&d,A*- <nd$B<nm>fB= <nl>tB<nm>fB( 1 + l/<M>pB), 

<%n%n,>,“” - <nm>,AB <nm*>,A* = <.lzm>,AB dmm* + <nm>,AB <n,,r>fB. (3.7) 

Consequently 

<1M2>fB - ( <M>,ABp = <n/r>,AB( 1 + <M$B), 

<N2>,aB - ( <N>,AB)2 = ( <N>,aB)2 + <(I + m)2>, <M>fB. (3.8) 
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Therefore there are large fluctuations in the cluster 
total number of units owing to the wide distribution 
grand ensemble. 

numbers and in the 
over N in the quasi- 

The canonical averages are expressed most conveniently in terms of the 
cluster weights (~1, urn} and the canonical partition function. Thus one 
finds from (2.26) 

where we use the convention (2.12). Hence we find the simple relationA) 

<n& = %Z’$-,, 1 

U~.zi~ 
w4,%l 

and similarly for <n&g. From 
number of A and B clusters 

-z-c12 (3.10) 

(3.9) we find for the averages of the total 

<MB)% = -dAf + C Z$Zsf_N/Z$, 
N' 

where we have used 

(3.11) 

zEf = c vrnz~f_, + 6,,,6,,. (3.12) 
m 

In order to evaluate the second moments of the cluster numbers we note 
from (2.26) that 

where n(Z IRI I’) is the number of pairs of Ai and All clusters separated by 
R units; the notation (I IR1 I’) indicates the order along the chain. The 
average number of such pairs is 

<n(Z lRl I’)>$ 

= c Z~ZQZ;~ZQZ$C?(N + Z + R + I’ + N” - N)/Z$ (3.14) 
N’, N” 

Similarly one finds 

OW,>: = E [<n(Z 1RI m)>% + <fi(m IRl &:I.], 
R>O 

(3.15) 
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with 

<fl(J IQ m)>E 

= x Z~z@~*v,Z~%(N’ + I + R + m + N” - N)/Z$. (3.16) 
N’,N” 

The expression for <%,+a,~ ):b is found from (3.13) by a change of indices. 

4. Thermodynamic limit. The canonical averages derived in the last sec- 

tion will now be studied in the thermodynamic limit N --f co. With the 

aid of (2.21) one finds from (3.9) 

pt = lim L (nl)g = pzfjul/U(zo), 
N-N 

irrespective of the end conditions. Hence 

p1 = Pfl, pm = pfm, 

(4.1) 

we may write 

(4.2) 

where the distributions fl and fm are normalized to unity. Note that the 

densities pa and p m are identical with those found from the quasi-grand 

averages in the limit z -+ ~0, e.g., 

pi = lim <nl>if/<N>if. 
z+.So 

In the same manner one finds 

p(Z jR/ I’) = lim N-i<n(Z IRI I’)>% = plpl~g~~(R), 
N-r-3 

P(Z IRI m) = P(% IRI I) = fw’m&dR)~ 

p(m IRIm’) = PT@w&BB(R), 

where 

BAA = [~v(zo)l-~zf~~~, 

&m(R) = P+@:~, 

&m(R) = [~u(zo)]+:Z$~. 

From (2.21) and (4.2) it follows that at large distances 
correlation functions tend to unity exponentially, though 

(4.3) 

(4.4) 

(4.5) 

(R --f co) these 

not necessarily 

monotonically. From (3.12) we have the simple relationships 

&4(R) = z fmgAB(R - m), 

gBB(R) = ; fzga@ - I), 
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GAB@) =p-Q(R) + Ifhga~(R--1) 

=p-'S(R) + Z/W&BB@--m). (4.6) 
m 

From (3.15) and (4.6) we find 

Pz,m = P(i PI m) = P-%Wm. (4.7) 

These results are easily generalized. Thus one has in obvious notation 

p(h IRl/ ml lR2l *** I&) = ii PI, iilPnz. 
!&I-2 

(4.8) 
j=l k=l 

iFI &dRd. 

In particular, since gAn(O) = p-l, the density of k neighbouring clusters is 

just the product of the individual cluster densities multiplied by a factor 

pr-k. The statistics of clusters along the chain in the thermodynamic limit 

N + co is completely characterized by the cluster densities pl and pm, and 

the correlation function gAn(R). 
In order to evaluate the fluctuations in cluster numbers in the canonical 

ensemble in the limit N --t co the above calculation must be carried one 

step further in the asymptotic expansion with respect to N. The final re- 

sults for the fluctuations are independent of the nature of the clusters at 

the ends of the chain. In order to simplify the notation of intermediate 

steps in the calculation which do depend on the end effects we choose for 

definiteness the symmetric case (i, f) = (A, B). From (3.9) and (4.5) we 

have in the limit of large N 

<n2>$B = pz 2 gAn(N’) gAA(N - N’ - 1)/&%&N) 
N’ 

=pz[N--I-- 1 +CAB+OAA] + o(l), 

where N - I - 1 is the number of possible locations 

the chain and where 

(4.9) 

of an Al cluster on 

o,j3 = : [gaXr(R) - 11 + L% 
R=O 

~l,p = A or B. (4.10) 

Similarly one finds from (3.14) 

= pzpv NFR gAB(N’) gAA(R) gAA(N - N’ - z - R - z’)kAdN) 

= ,TJ~,I~,[+N~ - (I + I’ + ;) N 

+ +(Z + Z’ + l)(Z + Z’ + 2) + N(~AB -k 2uAA)l i- o(l), (4.11) 

where again the sum of the first three terms in square brackets is the 

number of possible locations of an ordered pair of Al and Av clusters. In 
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the same fashion one finds 

z W PI m)GB = plp&Ns - (I + m - 4) N 

+-i(l+m--)(z+m)+3N~AB]+0(1), 

5 <fgm IRI o$B = PzP~~[W - (I + m + j) N 

+ H+m+ 1)(l+m+2) -I-N( GAA-t CAB+ CBB)] + w). (4.12) 

The additional results which are needed are easily found from the ones 

given above by a change of indices. 

For the variances of the fluctuations in cluster numbers we finally find 

using (3.13) and (3.15) 

1 

= P&V + PZPZ’[2(TAA - z - I’ - 11, 

1 
lim - [<Pz~PL&$ - (~~l>~&(n,>~] 

N-a, N 

__- PZPm[2cAB - I- m + 11, - 

lim & [<n,n,,>$ - (n,>$ <n,,,>$] 
N-too 

= pmbn‘~ + pmpm,[kBB - m - m’ - 11. (4.13) 

We stress again that these results are independent of the end clusters. The 

quantities on the right-hand sides are related by some identities which 

-follow from (4.6), 

PcAA=PoAB+P+e- 1, 

PaBB = POAB f P - 8, (4.14) 

where we have used 

<I> = e/p, <m> = (1 - 0)/p. (4.15) 

Summing any of the three expressions (4.13) over the cluster indices one 

finds, using (4.14) and (4.15), 

lim _!- [<M,M&& - <Ma)% <Ms>lf,] = p2 - p -b 2P2aAB, 
Ne-cc N 

(4.16) 

where a?, /3 = A or B, so that the fluctuations in the total numbers of 
clusters MA and MB are independent of the indices A and B, as they 
should since MA and MB can differ at most by unity. The expression on 

the right-hand side in (4.16) is simply related to the fluctuations in size 
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of individual clusters. This relation is found by noting that in the canonical 
ensemble the total number of units N cannot fluctuate, so that 

<w>g = (<N>$)? 

Hence one finds from (4.13) 

p2 .- p +- 2p%*n = pq<z 2) - <z>2 + <w&2> - <m>q. (4.17) 

A similar relationship between the fluctuations in the total number of 
clusters and the fluctuations in size of individual clusters was found in 
the continuum cluster-interaction modelli). 

The variance on the left side in (4.16) may be expressed in terms of a 
thermodynamic derivative and this means that the identity (4.16) has the 
nature of a susceptibility or compressibility theorem. In order to make the 
connection explicit it is expedient to introduce a thermodynamic variable 
conjugate to the total number of clusters. For example, each of the cluster 
weights ZQ may be multiplied by a factor C, signalling the presence of an 
A cluster. The average number of A clusters in the canonical ensemble is 
then given by 

(MA): = 5 $ In Z%(r), 

or in the thermodynamic limit, using (2.21) 

lim $ <MA)% z p = - 
a(ln 20) 

N- a(ln t) ’ 

(4.18) 

(4.19) 

Similarly the variance in (4.16) is given by the second logarithmic deriva- 
tive with respect to 5 and hence one finds the susceptibility theorem 

p-i-p2R=~ 
00 

&TAB(R) - 11 = 5$, (4.20) 

where by definition gAn(--R) = gun and we have used gun = p-1. 
In turn one may derive (4.17) from (4.20) using (2.23). These relations are 
of particular interest near a phase transition where the fluctuations can 
become very large and the susceptibility ap/ag‘ may diverge. 

5. Application to the Ising chain. The theory developed in the previous 
sections will now be applied to the particular case of the Ising chain. In 
this case the probability distribution P(s; N) in the canonical ensemble is 
given by 

P(s; N) = exp[-PEP; N)I/ZN, (5.1) 

where /3 = I/kT and E(s; N) is the energy of a configuratrtn of N spins. 
We associate the state A with spin up, s = + 1, and the state B with spin 
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down, s = - 1. For the Ising chain one assumes nearest neighbour inter- 
actions between spins and a magnetic field acting on each spin. In addition 
we assign an extra energy to the spins at the ends of the chain in order to 
give the end clusters the same weight as the interior clusters. Thus the 
energy is given by 

N-l 

E(s; N) = -J Z 
i=l 

?%.+I - 23 j!l sj - J(SI + SN - I), (5.2) 

where J is the bond energy and H the magnetic field in suitable units. It 
is easily seen that the energy of all configurations s corresponding to the 
same state x is the same and is given by 

E(s) = Z fit&2 + C %nkk, 
1 nl 

with 

(5.3) 

EZ = -j(J + H), Em = -m( J - H) + 4J, (5.4) 

where nl is the number of clusters of 1 spins up and nm the number of 
clusters of m spins down. Hence the statistical weight of an 1 cluster is 

The 

The 

and 

t4q = cd, u = exp[B(J + H)lp 

vrn = U-2wm-2, w = exp[B(J - WI. (5.5) 

cluster generating functions are 

U(z) = W/(1 - z&z), V(z) = z/[&w( 1 - wz)] . (5.6) 

exterior condition (2.19) has two roots 

x0,1 = e PPJ/{cosh BH f [sinhs BH + exp(-4pJ)]h}, (5.7) 

the explicit expressions for the canonical partition functions read 

z** = 
N U(zo) poqN + U(+w,N, 

GB = poztN + plqN + (1 -po--1) &,,, 

ZBB = N V(zo) poqLN + V(Zl) plqN, (5.8) 

where 

(1 -z 
po,1= 

0,14 (1 - ZO,lW) 
2--z,,,(f4+4 * 

(5.9) 

In our previous notation p c po. The parameters p and 8 are related to the 
average energy per unit and the average magnetic moment per unit by 
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lJrnm -$- <E>s = E = -J( 1 - 4~) - H(20 - 1). 

The correlation functions (4.5) are simple exponentials, for example 

GAB@) = 1 + (pdpo)(~o/W + &,0(1 -PO -pdlpo. (5.11) 

By some rather elaborate algebra one may verify the susceptibility theorem 
(4.20). With the aid of the above formulae one easily finds explicit ex- 
pressions for the quantities considered in the previous sections. 

6. Discussion. We have studied the statistics of the occurrence of clusters 
of similar units in binary linear lattices starting from the assumption that 
the relative weight of an Al or B m cluster is determined only by its size 1 
or m. Of particular interest are the expressions derived for the average 
cluster numbers and the variance of their fluctuations for chains of a fixed 
number of units N in the limit of large N. It has been shown that the sta- 
tistics of clusters along the chain in this limit is determined completely by 
the cluster densities pt and pm, and a correlation function gAn(R). The sus- 
ceptibility theorem (4.20) relates the integral of the correlation function to 
a thermodynamic derivative. In a forthcoming articleis) we shall apply 
these methods and results to a theory of kinetics of binary linear systems. 

1) Poland, D. and Scheraga, H. A., Theory of Helix-Coil Transitions in Biopolymers, 

Academic Press (New York, 1970); this book also contains reprints of relevant 

papers, including refs. 2-10. 

4 Hill, T. L., J. them. Phys. 30 (1959) 383. 

3) Zimm, B. H. and Bragg, J. K., J. them. Phys. 31 (1959) 526. 

4) Lifson, S. and Roig, A., J. them. Phys. 34 (1961) 1963. 

5) Lifson, S. and Zimm, B. H., Biopolymers 1 (1963) 15. 

6) Lifson, S., J. them. Phys. 40 (1964) 3705. 

7) Litan, A. and Lifson, S., J. them. Phys. 42 (1965) 2528. 

8) Gibbs, J. H. and DiMarzio, E. A., J. them. Phys. 30 (1959) 27 1. 

9) Poland, D. and Scheraga, H. A., J. them. Phys. 45 (1966) 1456; 45 (1966) 1464. 

10) Fisher, M. E., J. them. Phys. 45 (1966) 1469. 

11) Felderhof, B. U., Ann. Phys. 58 (1970) 28 1. 
12) Felderhof, B. U., to be published. 

REFERENCES 


