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Multicellular organisms are construed as arrays of symbols, each symbol 
standing for a cell. Their development is modelled by algorithmic rules 
which provide the allowed substitutions of new arrays for each symbol in 
the previous array. These substitutions stand for cell divisions, or cell 
death, or for changes of cellular states. The substitutions may depend on 
inputs from neighbouring cells (development with cellular interactions), 
or only on the state of the cell itself (development without interactions). By 
repeated use of a system of algorithms one obtains a developmental 
sequence of arrays, or a set of arrays (a developmental language). 
Additional control mechanisms may be applied to the arrays generated 
by a system, thus defining a hierarchy of language families. This article 
presents a survey of biologically relevant mathematical results available 
on these algorithmic systems. 

1. Introduction 

The development of  plants ap;d animals can be studied and described in many 
different ways and at different levels. At  the present time most  interest is 
centered on the molecular and macromolecular  mechanisms of morphogenesis 
and differentiation as the two main aspects of  development. At the molecular 
level one can speak of  morphogenesis in the sense of  aggregation of  macro-  
molecules into larger structures, such as membranes,  microtubules and 
flagella. These aggregate structures, in turn, serve to determine the shapes of  
cellular organelles and of  cells, as well as influencing the direction of  cell 
divisions, cell enlargement and of  cellular transport  processes. Groups of  
cells acting in unison, form tissues or  organs. In  this manner,  one eventually 
gets to growth descriptions of  entire organisms at the gross morphological  
level. 

t A shorter version of this paper was presented to the Conference on Biologically 
Motivated Automata Theory, held at McLean, Virginia, June 1974. This work has been 
supported by NATO research grant No. 574. 
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A complete description of a developing organism would have to specify 
the essential processes and structures in the proper time sequence at all levels 
of organization. This goal is not only unattainable but is actually undesirable 
since such a description would be so complex that nothing could be done 
with it. It seems to be much more promising to attempt to formulate a theory 
of development on the basis of some essential and unifying features. It seems 
to me that focusing at the behaviour of cells in the course of the development 
of multicellular organisms provides such a basis. 

The following reasons may be given for supporting the choice of cells as 
basic units. (I) Cells are metabolically autonomous units of all higher 
organisms. (2) All metabolic and synthetic activity in a cell is mediated by 
the protein and RNA molecules which are produced according to particular 
portions of DNA (the genes). (3) Among all cell constituents only the DNA 
molecules can be reproduced faithfully, thus inheritance of cellular mech- 
anisms can practically be effected only by the transmission from mother to 
daughter cells of particular sorts of DNA. (4) Each cell in an organism is a 
descendant of a single ancestral cell, the fertilized egg, and each cell of an 
organism carries the same complement of DNA. (5) Some of the genes 
constituting the DNA complement of a cell may at any one time be active 
(producing RNA and protein) or inactive. (6) The activation (de-repression) 
or inactivation (repression) of genes is brought about by molecules which 
are produced either in the same cell or which enter the cell from neighbouring 
cells or from the environment. 

Since in higher organisms the cells appear to be the only functionally 
autonomous units with genetic continuity, we assume them to be the basic 
units in our developmental descriptions. The property of genetic continuity 
among ceils and their descendants introduces another important aspect of 
development, namely that of developmental "programs" or "algorithms". 
As all cells of an organism in its entire life are descendants of a single cell, 
one might ask what "program" this cell carries that enables it to specify the 
course of development the organism follows. Again, this question may be 
posed for developmental processes at all different levels, but at the moment 
we wish to concentrate on the programming of cellular processes. The 
question is therefore: what kinds of "instructions" are necessary to bring 
about the timing and spacing of major cell processes, such as cell division, 
cell enlargement, cell death and differentiation, during the whole life of the 
organism. 

This question does not necessarily have a single answer. This is because 
algorithms may be formulated in different ways and many different sets of 
algorithmic instructions can give rise to the same development. Finding one 
such set of instructions would not ensure that these instructions would 
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actually be responsible for the development of a particular organism. Never- 
theless, it is not entirely hopeless to ask this question since even if one 
cannot be sure which set of instructions is responsible for a particular 
development, one can mostly rule out classes of such sets which cannot be 
responsible. Recognizing these classes can substantially help the experi- 
mentalist in looking for the actual mechanisms. For instance, if on the 
basis of theoretical considerations one can say that certain kinds of develop- 
ment cannot be programmed without cell interactions, then it would be futile 
to base experiments on the assumption that cells act independently in that 
organism. 

This discussion of "algorithms" and "programs" presupposes that we can 
formulate them in a general and consistent manner, and that they are further- 
more readily interpretable in the usual biochemical and cell-physiological 
terms. I think that the mathematical framework of arrays of finite automata 
fulfils these conditions. The concept of finite automata is general enough to 
provide for all kinds of timing cycles, transport mechanisms, inducing and 
inhibitory effects within and among cells that one might consider. The states 
of cells as automata are also readily interpretable in terms of presence or 
absence of chemical cell constituents (with respect to threshold concentra- 
tions), and/or in terms of combinations of active and inactive genes. The 
inputs of cells are the compounds which enter it during a certain time interval, 
or the membrane excitations it received. Similarly, their outputs are com- 
pounds which are leaving the cell or excitations it gives rise to. The state 
transition function is partly an expression of the effects of genes on each 
other, in the sense of repression or depression of genes by products of other 
genes, and partly of control effects among the RNA and enzyme molecules 
in the cytoplasm. 

The mathematical constructs (L-systems) which we propose to use for 
describing development are of a discrete nature in several respects. First of 
all, we have discrete spatial units, the cells, which were discussed above. 

Secondly, the states and inputs of cells are assumed to be discrete entities 
and there are to be finitely many of them. There are, of course, a definite 
number (few thousand) of discrete genes, each in a few copies in each ceil. 
Thus, if in developmental regulations we would need to consider only the 
combinations of active genes which are present at any one time in a cell, 
each active gene giving rise to a compound important in some way to growth 
and morphogenesis, then the state (as well as the input and output) of each 
cell would naturally be a discrete entity. Should there be a large number of 
genes involved in developmental processes in an organism, the number of 
possible combinations of active and inactive genes could be extremely large. 
This does not in fact seem to be the case: in developmental processes which 
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have been investigated in detail only a small number of important compounds 
were found. 

There is, however, the added complication that we cannot simply view 
development as a process in which a number of genes are switched on or off 
in different cells at different times. Clearly, the various cytoplasmic com- 
ponents may vary continuously in their concentrations, and there are many 
known control effects among these components, such as feedback and allos- 
teric inhibition of enzymes, inNbition or stimulation of the enzyme synthetic 
rates at the RNA level, diffusion of metabolites, etc. The possibilities for 
cytoplasmic influence on the course of development could be hopelessly 
numerous and involved. There is again evidence, however, that most of the 
metabolic and synthetic processes are regulated to stay at steady state levels, 
and that developmental events, such as differentiation, take place when 
sudden changes occur from one steady state to another in a number of 
biochemical pathways. Although continuous cytoplasmic changes, which are 
important for development, cannot be ruled out, it is not too far-fetched to 
assume that in the majority of cases the cytoplasmic events can also be 
considered as discrete ones. 

A third parameter which is assumed to be discrete in our systems is time. 
The computation of new cell states, based on the previous states and inputs, 
takes place at certain intervals. Since this interval can be chosen as small as 
desired, this assumption does not seem to be a serious limitation. It is a 
problem, however, that the smaller the time interval is, the larger the number 
of states necessary for various timing cycles. Clearly, a compromise must be 
found between very detailed and very gross descriptions. The recognition 
that most cell processes are highly stable, with occasional shifts into other 
areas of stability, makes a realistic developmental description without too 
finely spaced time steps a possibility. 

2. The Developmental Model 

According to the views presented above we describe the development of 
multicellular organisms by growing arrays of finite automata. Each con- 
figuration of states in such an array is a momentary description of the 
organism, and the whole life of the organism is described by a sequence of 
such configurations. The same state transition function applies to all of the 
automata in the array. A state transition may consist of a change of the 
state symbol of a cell into a new symbol, or it may represent cell division by 
allowing the substitution of more than one new symbol in the array in 
place of the previous symbol, or it may stand for cell death by letting the 
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empty string be substituted for a symbol. The transition function may be 
either deterministic (having only a single value for any given combination 
of present state and inputs) or non-deterministic (having more than one 
value for some combinations). If the transition function is deterministic, 
then one obtains a single sequence of arrays from a given initial array. 

Deterministically produced sequences of arrays constitute an interesting 
class of abstract objects in their own right, besides being readily interpretable 
as life histories of organisms. These sequences may be finite or infinitely long. 
They have a finite length only if at some stage the entire array disappears 
(automata may be removed from as well as added to such arrays, so under 
certain conditions it may happen that all automata are removed and no 
further application of the transition function is possible). Infinitely long 
sequences may in turn consist of infinitely repeating periodic occurrences of 
some arrays (after an initial non-repeating portion of the sequence), or they 
consist of arrays which grow without bounds. Thus we may speak of ter- 
minating growth (in the case that the sequence is finite) or of limited growth 
(when it is ultimately periodic), or of proper growth (when the size of the 
arrays increases without bound). The theory of growth functions of one- 
dimensional deterministic sequences has been intensively investigated (see 
references further below), and is of great interest biologically. 

Apart from being deterministic or non-deterministic, the state transition 
function may also be given either as a purely combinatorial construct, i.e., 
by specifying separately for each combination of states and inputs the next 
state or states; or the function may be specified by a general formula, or by 
an approximation to a continuous function (Lindenmayer, 1974). The 
simulation language CELIA (cellular linear iterative array generator) has 
been specifically designed b~ Baker & Herman (1972) and Herman & Liu 
(1973) to make use of composite state transition functions in programming 
growing cellular arrays. This language has been applied to simulate hetero- 
cyst differentiation in blue-green algae (Baker & Herman, 1972), and to the 
modelling of the development of large branching and differentiating plant 
structures such as inflorescences (Frijters & Lindenmayer, 1974). 

The approach of using growing automata arrays in order to model devel- 
opment can in general be applied to any multicellular or multi-compartmental 
organism, whether consisting of filaments, sheets, or three-dimensional 
structures. However, the problem of how to specify the connections of newly 
substituted chunks inside two- or three-dimensional arrays has made the 
extension of these models to sheet-like or bulky organisms more difficult 
(work is in progress on "graph L-systems", Culik & Lindenmayer, 1974). 
Most of the work up to now has concerned either simple filaments or branch- 
ing filaments. Although branching filaments are actually three-dimensional 
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objects, they can be easily coded into one-dimensional strings by various 
parenthesis notations (Lindenmayer, 1968, 1971), and the strings can be 
generated algorithmically (in the case when inputs are received by the ceils, 
the input processing from the branches must be specially regulated). 

The development of higher organisms is usually more conveniently 
simulated on the basis of segments consisting of thousands or millions of 
cells, rather than on the basis of individual ceils. As long as the segments 
may be assumed to be autonomously programmed, their use as units in 
L-systems present us with no problems. 

When only one-dimensional arrays are considered, the formalisms and 
results of formal language theory become applicable to our constructs. The 
set of states is then interpreted as the alphabet of a language generating 
system, the state transition function becomes the set of productions, and 
the starting array the axiom. The language which is generated by such a 
system is a set which consists of all the strings produced from the axiom 
under the simultaneous application of production rules to every symbol in 
the axiom, repeating this process on all the strings generated in the first 
step, and continuing for infinitely many steps. A developmental language 
is thus an unordered set consisting of all possible stages of a certain species 
of organisms one may find. Of course, this set may be either finite or infinite; 
finite if the development is terminating or limited along every possible 
generating sequence, and infinite otherwise. A developmental language 
corresponds to a museum or herbarium collection of specimens conserved 
in all possible stages of their development, and without knowing the order 
in which they were produced. 

When in a one-dimensional automata array no inputs are taken into 
account between the cells, i.e., when the next-state function is a function 
only of the present state of each cell, then we call the corresponding language 
generating system an "OL-system" (these have also been called "zero-sided" 
or "informationless Lindenmayer systems"). When the automata receive 
inputs from m left neighbours and n right neighbours, i.e., when the next- 
state function is a mapping from a sequence of state symbols which is 
m + n +  1 symbols long, then we call the language generating system an 
"(m, n) L-system". Clearly, a (0, 0)  -L-system is the same as an OL-system. 
"One-sided Lindenmayer systems" were originally defined as (m, n) L- 
systems such that m = 1 and n = 0, or m = 0 and n = 1, but now this 
definition has been modified in the sense that they are called "one-sided" if 
m > 0  and n = 0, or m = 0 and n>0.  Similarly, "two-sided Lindertrnayer 
systems" were originally (1, 1) L-systems, while now they are defined as 
(m, n)  L-systems such that m > 0  and n>0.  All (rn, n)  L-systems, for what- 
ever non-negative values of m and n, are called "IL-systems". The term 
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"L-systems" is meant to include these as well as other related systems some 
of which are mentioned below. 

Productions of (m, n) L-systems are written in the form: (aI,  . . . .  am, b, cx, 
. . . .  c,)~c~, where the underlined symbol b is the one for which the string c~ on 
the right-hand side has to be substituted. In the case of OL-systems, we 
simply write productions as: b ~ .  

The formal definitions of these and related systems, as well as many of 
the mathematical results concerning them are given by Salomaa (1973) 
and Herman & Rozenberg (1975). The latter book contains a chapter by me 
and three chapters by the authors which discuss some of the biological 
insights that these systems can provide, as well as suggestions for certain 
concrete applications to morphogenetic problems. 

3. Development Without Cellular Interactions 

The usefulness of OL-systems to biological problems consists primarily 
of gaining an understanding of the morphogenetic power of cell lineages. 
What is meant by this is the recognition of the type of structures which can 
arise by autonomously programmed cells, the behaviour of which is con- 
trolled only by their lineage (their ancestry). Each cell may change its state 
repeatedly, or divide equally or unequally, or die, and no effects may take 
place between them. The complexity of structures which can be generated 
in this way has been very surprising, and may be instructive to biologists 
looking for mechanisms to account for certain types of development. It is 
entirely possible that in many cases where an interactive mechanism is 
postulated by experimentalists, a non-interactive one would suffice. Cell 
lineages have, of course, been studied extensively by biologists for many 
years, and in eases where such an attempt has been successful we can 
be almost sure that we are dealing with non-interactive mechanisms 
(essentially OL-systems). We may mention recent studies on the green 
alga Chaetomorpha linum (Liick, 1974) as an example for finding OL-type 
development. 

The most distinctive characteristics of deterministic OL-systems is a 
certain repetitiveness of the substrings which they produce (cf. Ehrenfeucht 
& Rozenberg, 1973; Rozenberg, 1974). This property is most obvious in the 
so-called "locally catenative" sequences generated by some of the deter- 
ministic OL-systems (Rozenberg & Lindenmayer, 1973). In this ease one 
can find a formula which obtains for all the strings produced (except for 
a few initial ones) and which specifies each string as a concatenation of some 
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previous strings in the sequence. Structures produced be repeated concatena- 
tions of previous stages are known in biology as "compound structures", 
such as compound leaves composed of leaflets, compound inflorescences 
composed of flowers, etc. The repeated and nested occurrence of larger and 
larger components in such structures is due to cyclically occurring symbols 
in the derivations. The biological significance of these kinds of models lies 
in the recognition that compound structures can result from simple cycles of 
cellular states. 

An extension of the locally catenative property is the "recurrence" property 
(Herman, Lindenmayer & Rozenberg, 1975). Recurrence systems are sets 
of formulas which specify (by concatenation rules) all of the strings of a 
given OL-sequence. A locally catenative system is a recurrence system with a 
single formula. Every OL-system, as well as every EOL-system (see above 
reference), has the recurrence property. These characteristics of interactionless 
developmental structures are more difficult to recognize in nature, and as far 
as I know have not yet received a biological name. Which does not mean that 
it might not in the future serve to characterize an important class of develop- 
mental processes, namely those in which there are interlocking cycles of 
cellular states. 

As an example for the generating power of an OL-system we take the 
development of a compound leaf. It is well known that all cells in a leaf 
originate in the row of cells at the leaf margin. In order to account for the 
generation of the gross form of the leaf, the positions of lobes and notches, 
one needs therefore to program only the marginal row of ceils. It is true 
that if interactions can take place among the cells in the course of develop- 
ment, then such interactions may occur via cells which lie not on the margin 
but somewhere on the blade of the leaf. But assuming morphogenetic 
mechanisms without interactions, the cells lying in the interior have no 
effect, and we can model leaf development by considering only the row 
of marginal cells. 

The following deterministic OL-system produces a developmental se- 
quence giving rise to a compound leaf. Let the symbols standing for cellular 
states be: a, b, c, d and k. Let the production rules (the state transition 
function) be as follows: a~cbc, b~dad, c~k, d~a, k~k. Two of the 
production rules are such that one cell gives rise to three new cells. While 
this is violating the usual case of binary cell divisions, these rules were 
chosen because of symmetry considerations. It would be quite easy to 
construct a similar OL-system with only binary cell divisions (see Rozenberg 
& Lindenmayer, 1973), but more states would be needed in order to co- 
ordinate the right-hand and left-hand side productions. Let a be the starting 
symbol. Then we obtain the following developmental sequence: 
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a 

cbc 
kdadk 

kacbcak 
kcbckdadkcbck 

kkdadkkacbcakkdadkk 
kkacbcakkcbckdadkcbckkacbcakk 

kkcbckdadkcbckkkdadkkacbcakkdadkkkcbckdadkcbckk 

We can clearly observe that each array from the fourth array on has a 
repeating structure which can be expressed by the following formula for 
all n >I 4, 

S. = kS._ 3S._ 2S._ 3k. 

This is a locally catenative formula except for the appearance of the constant 
k at the ends of each array. Strictly speaking, this sequence of arrays is 
defined by two recurrence formulas, one similar to the above one, except 
for having the term k,_ ~ for each k, and the other formula simply stating 
that K, = K,_t,  for all n>_.2. 

b 
a u c C a 

b d~ d 

o ~  x~,o a k~ I~ o b I I b 

FIG. 1. Compound development of leaf-margins, generated by a locally catenative 
OL-system. 

Our interpretation of leaf shapes represented by the last three arrays are 
shown in Fig. I. We represent the symbols a and b by sharp projecting 
tips, the symbols c and d by the lateral margins of lobes, and the symbols k 
by notches, the older the notch the more k's. The formula which describes 
this sequence indicates that the two side lobes repeat the whole structure of 
the leaf 3 steps back, and the centre lobe repeats the whole leaf 2 steps back. 
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This developmental behaviour is due to two cycles of states we have postu- 
lated in our production rules, namely, one cycle of length 3 going through 
states a, b, d, and another cycle of length 2 with states a and b. These cycles 
are shown in the state transition diagram for our system (Fig. 2). 

u , ° ~  b 

¢ d 

Fx~. 2. State transition diagram for the locally catenative OL-system. 

Thus we have demonstrated that a compound leaf can be generated by a 
rather simple mechanism involving five cellular states, provided that a 
proper cyclic state transition function is found. The generating algorithm 
given here gives rise to an infinite sequence of arrays, thus it programs for 
increasingly larger and more compound leaf shapes. Since normal leaf 
growth terminates at some definite stage, one would have to have a mech- 
anism superimposed on the one given in order to stop development at some 
stage. Below we will mention some of the methods by which such stopping 
control can be imposed. 

4. Development With Cellular Interactions 

The systems with interactions among the cells (IL-systems) apply to a 
much wider range of developmental processes. Various developmental 
control mechanisms which have been proposed in the literature and which 
are based on transport or diffusion of active substances, or on propagation 
of excited states (e.g. of membranes) can be expressed in terms of IL-systems 
(provided that they act on one-dimensional structures). The insights that 
one can gain by translating the usual formalisms (differential equations) 
for such mechanisms into our discrete notation, depend on the useful mathe- 
matical results that one can obtain for IL systems. At the present time 
there are only a few such results. One might name here the results of Rozen- 
berg (in press) concerning the proper hierarchy of (m, n) L-languages with 
increasing values of m and n. Also, his finding that the set of (m, n) L- 
languages is identical to the set of (1, m + n -  1) L-languages. The values of 
m and n needed to simulate a particular developmental process has clearly 
to do with the speed at which the active substances (or excitations) involved 
may travel in one or the other direction along the filament, or has to do 
with their diffusion constants. 

A (1, 1) L-system has been constructed (by Lindenmayer in Herman & 
Rozenberg, 1975) for the well-studied development of the main root of 
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maize. Erickson & Sax (1956) have obtained data concerning the rate of 
expansion of thin segments along the root as a function of the distance of 
each segment from the root tip. They could thus obtain the change of rate 
of growth (the relative elemental rate of growth) as a function of distance 
from tip. This relative elemental rate of growth is low near the tip, it in- 
creases to a rate of 40 % expansion per hour at 4 mm from the tip, and 
then falls to zero at 10 mm from the tip. 

In order to model this essentially filamentous growth behaviour, we 
assume interactions to take place both in the apical and in the basal direc- 
tions. Time steps are taken at one hour intervals, segments of 2 mm width 
are taken as the basic spatial units, and their relative elemental growth rates 
are expressed as digitized doubling rates. For instance, segments exhibiting 
40 % per hour expansion rate are assumed to double twice every 5 hr. Altogether 
five sorts of 2 mm segments are assumed, designated from tip to base as 
a, b, c, d, and e. The timing cycles controlling doubling correspond to 
relative elemental rates of 1/6, 2/5, 1/4, 1/10 and 0 per hour, and are as 
shown in Fig. 3. 

o,~-----> a z - - >  o ~ ---> ... ..--.-> a e ----> o~ 

bo 
b~>bz--.-.>b3~b 4 - - >  bs--->b I 

Co "~o  
c.~----> Cz ---> c 3---> c4----> c j 

do 
d~- - ' ~  d g - - ~  d3 -- -~ • • • - - ->  d,o---~ d , 

eo 
eo----~e o 

FiG. 3. The timing cycles controlling doubling, 

Thus in this particular model one needs 6 + 5 + 4 + 1 0 + I  = 26 states. 
Changes of states are programmed by the following rules (where p and q 
stand for any pair of symbols from the set {a,b,c,d,e}, p ~ q, and x>  0, y~>0). 

/,,Py,qx.__)-->q:,+ 1 

(qo,qx)~qx+ 1 
<p o,p,Jy>---rqo 

<,p o,p o>--,p ° 

In each rule the change of state is given for a segment which is in a state 
corresponding to the underlined term as influenced by either its immediate 
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left or its right neighbour segment or both. These rules represent some very 
simple assumptions concerning physiological effects root segments may have 
on each other, such as the production of hormones or nutrients in one part 
of the root and their transmission and utilization in another part. 

A developmental sequence determined by the above rules is shown in 
Fig. 4. 

a 4 b~ cj  q'6 eo 

l ! \  I \ . \  \ 
(;',= D4 CO C3 ~O eo eo 

F i \ \  \ \ \  
P b5 c4 do d9 eo eo 
l \  l j \ \ \ \  ?oof,. ?io? 
3 ]. 0 0 2 0 I. 0 0 0 

q4 03 Co c3 do s2 eo eo eo o o 

03 D4 CO C4 uO u5 cO ¢=0 ("0 ~0 ~'0 ~.0 

0 6 b 5 c I d o o'4 e 0 '=o '~o ~0 0 C>, io 

! L I~ \ Z , ~ \  \o \  \ \ \ \  
~1 ~ C:~ O0 " 5  ~0 eo ~:0 eo eo e.o eo eo 

I \  I \  / \ \ \ \ \ \ \ \ , \ \  

0 b cn C4 d n d? e 0 e 0 e 0 e e 0 e 0 e o e 0 e 0 3 3 • - - - 0 \ \ 

I ! \ \ \ , ~ . \Z  o\.\o\~ ,~ZZ.\~ 
04 L'4 Co cl do de ~0 ~0 ~0 ~.0 ':.0 ~o ~o ~0 '-o '-~,o 

a5 D5 f2 do do d,9"e,o'e, o e, o e, o eo /#,oe, oeoeo  e,o c", 0 

I 1 I \ .~ . ' ~ , \ \ \~ \  ~ , \ \ \ \ \  \ 
06 b I c3 d o d l  OeO eo e 0 e 0 e 0 e 0 e 0 eo e 0 e 0 e 0 e 0 

FIG. 4. D e v e l o p m e n t a l  s e q u e n c e  for  t he  p r i m a r y  r o o t  o f  ma ize ,  g e n e r a t e d  by  a (1 ,  1)  
L-system. 

Other applications of IL-systems have been published by Baker & Herman 
(1972) for heterocyst distributions in the blue-green alga A n a b a e n a ,  by 
Herman & Liu (1973) for shell patterns of Conus ,  and by Herman (197I, 
1972) in connection with the roles of polarity in regenerating systems. 

5. Environmental Effects on Development 

An extension of OL-systems has been proposed by Rozenberg (1973), 
called "table OL-systems". In this case not only a single set of productions 
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may be provided in a given system, but several distinct sets of productions. 
These sets of productions are termed "tables", and the rule is adopted that 
in the generation of any given string only productions from a single table 
may be used. The order in which the various tables are applied to consecutive 
strings is not specified, but derivations may be defined in which given table 
sequences are required. Biologically speaking, tables of productions can 
represent developmental responses to changing environmental conditions. 

The most important environmental effects on development are either those 
of a periodically changing factor, such as light or temperature or moisture, 
or those brought about by a single change of environment, such as photo- 
periodic induction of physiological processes produced when daylength 
exceeds or gets below certain critical value. 

For a case of development under periodically changing environment a 
two-table OL-system given by Surapipith & Lindenmayer (1969) might be 
mentioned. The development of sexual reproductive structures (perithecia) 
in the fungus Sordaria could be shown to be under the influence of white 
light in the presence of a certain photosensitizing agent. When the fungus 
is growing linearly in growth tubes under alternating periods of darkness and 
light, successive segments of the mycelium receive different sequences of 
dark and light, and this results in the appearance of perithecia in bands 
along the growth tube. For each regime of dark and light periods one gets 
a particular banded pattern. Our model could account for these different 
patterns on the basis of a few simple state transitions. 

To illustrate an application of table OL-systems to development under a 
single change of environment, we consider leaf margin development again, 
but now with the possibility of switching from one set of production rules to 
another. This kind of leaf development is more realistic, because now we 
can obtain terminating growth for each particular leaf, while the set of all 
leaves produced by the system is infinitely large. 

We take a deterministic two-table OL-system. Let the set of state symbols 
consist of letters a, b, e, d, k, j, m, the starting symbol be a, and the tables 
of productions be: 

V: a ~ kbk,  b ~ cdc, c ~ e, d ~ kek ,  e ~ jej ,  j ~ L k ~ k,  m ~ m. 

F: a ~ k m k ,  b - - , , e , c - . , , j , d ~ k m k ,  e ~ j m j ,  j ~ j , k ~ k , m - - ' , m .  

Beginning with symbol a, we can derive terminal arrays corresponding to 
fully grown leaves by allowing development under table V for an arbitrary 
number of steps, and then switching to table F. Physiologically such a change 
could result from local unavailability of nutrients, or from photoperiodic 
induction to flowering condition. We show below a sample derivation. 
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V a 
V kbk 
V kcdck 
V kekekek 
V kjejkjejkjejk 
F kjjejjkjjejjkjjejjk 

F k ~ ' m j j j k j j j m . f f j k  
s a n l e  

If we interpret, as before, the k's as notches in leaf margins, the j ' s  as 
lateral portions or serrations of lobes, and the m's as tips of lobes, then we 
have derived a three-lobed leaf shape with three lateral segments (j)  on 
both sides of each lobe. In fact, we see that depending on the time when 
the table switch is done (at or after the third step), three-lobed leaves are 
obtained with all possible numbers of lateral segments for each lobe (but the 
same number of lateral segments within one particular leaf). Thus we get 
leaf shapes such as those shown in the class L4 in Fig. 6. 

If the switching of tables from V to F takes place before the third com- 
putation step, we get transitional shapes with one lobe only. Similarly, one 
lobed leaves are obtained by sequences of tables beginning with VFV. Some 
of these leaf forms are shown in Fig. 5. 

/7/ /77 17/ /77 

J 

Flo. 5. Transitional forms of leaf-margins, generated by a table OL-system. 

These kinds of transitional forms of leaves are well known in plants which 
have undergone photoperiodic induction, producing a number of reduced 
leaves before the apex is converted into flower parts. Similar table-switching 
mechanisms may be responsible for plants with heteroblastic sequences (a 
shoot producing leaves of different shapes in the course of a growing season). 

The adult language produced by the above deterministic table OL-system 
under any sequences of tables is the following: 

{kjkmkjk} O {kffmj"k[n >t O} U {kf'mj"kj"mf'kj"mj"kl. >11}. 

Of course, many other sets of leaf shapes, with simple or multiple lobes 
and terminating growth can be produced analogously by table-OL-systems. 
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j . 7 m .. ] 

L3 L4 

FIG. 6. Sets of leaf-shapes: Lz, symmetric entire leaves with tips; L2, leaves with two 
rounded lobes of same size; La, leaves with three rounded lobes of same size; L4, leaves 
with three lobes with tips of the same size. 

The kinds of shapes with terminating growth which cannot be produced by 
OL-systems without tables will be discussed below. 

Table L-systems with interactions have been employed to model the 
timing and placing of flowers in inflorescence development (Frijters & 
Lindenmayer, 1974). The role of environment in IL-systems has been ex- 
plored by Herman (1970). 

6. Development with an Adult Stage 

We have seen in the previous section that adult stages of development can 
be represented by arrays which consist of cells in "terminal" states, i.e., 
states which give rise only to themselves. But it is also possible to have 
terminating development when the states of cells change, nevertheless the 
array as a whole remains unchanged. For instance, some cells may die at each 
step and their place is taken by others produced at that step. This occurs 
normally in epithelial tissues, for instance. 

One can then select from a particular L-language those arrays which 
derive themselves and only themselves. Such a set of arrays is called the 
"adult language" of an L-system (Herman & Walker, in press). 

Some very interesting results were obtained by Herman & Walker from 
T.B. 2 
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the biological point of view. Namely, the set of adult languages of OL- 
systems is exactly identical to the family of context-free languages (sets of 
strings generated by a context-free Chomsky grammar). Furthermore, the 
set of adult languages of right-linear OL-systems (those OL-systems which 
have productions only of the form a ~ c or a --* bc where c is either a ter- 
minal symbol or the empty symbol, and a and b are non-terminal symbols) 
is exactly identical to the family of regular languages (sets of strings generated 
by regular grammars). 

We can make use of these theorems in the following way. Let us represent, 
as before, a (potentially infinite) set of leaves produced on a certain plant 
by a set of linear arrays and consider it as an adult language of an L-system. 
Then, if we can prove that the set of adult leaf-margins is not a regular set, 
it could not be the adult language of a right-linear OL-system. Similarly, if 
we can prove that a set of leaf-margins is not a context-free set, then it could 
not be the adult language of any OL-system. 

These considerations result in the surprising finding that sets of symmetric 
entire leaves (without lobes--see class LI below) or sets of leaves with two 
identical lobes (see class L2) can b e  generated as adult languages of OL- 
systems, while sets of leaves with three or more identical lobes (see classes 
L3 and L4) cannot be. A set of entire or two-lobed leaves can be described 
by expressions like 

Z~ = {kjnmj"kln>~ 1}, 

o r  

Lz = {kffkj"kln>~ I}, 

while a 3-lobed leaf corresponds either to 

L z = {k j"k j"k j"k ln>- l} ,  

or to 
L4 = { k j "mj"k j"k j"k j"mj"k  [n >~ 1}, 

depending on whether the lobes have tips (designated by symbol m) or not. 
As before k's stand for notches and j 's  for segments or serrations of lobe 
margins. Examples of the four classes of leaf shapes designated by the 
languages L~ to L 4 are shown in Fig. 4. 

It is well known by formal language theory that L1 and L2 are non-regular 
but context-free languages, while L3 and L4 are non-context-free languages. 
Thus, by the theorem ofHerman & Walker, L1 and L2 can be adult languages 
of OL-systems, but cannot be adult languages of right-linear OL-systems, 
while L3 or L4 cannot be the adult language of any OL-system. 

To illustrate this statement, we can easily produce an OL-system of which 
the adult language is LI. The productions of this system are as follows: 
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a --* kbk ,  b -* jbj ,  b --. jmj ,  j ~ j ,  k ~ k,  m --* m, and the starting symbol 
is _a. Since this is a non-deterministic OL-system, we obtain the derivations 
shown in Fig. 7 (the adult arrays are underlined). 

a 

jkbk,~ 
jkjbjk k]rnjk 

kjjbjjk kjjmjjk 
.,l" N 

FIG. 7 Derivations of a non-deterministic OL-system of which the adult language is L1. 

In order to produce La or L4 one would have to have cellular interactions, 
or table OL-systems. How the latter kinds of systems can produce three- 
lobed adult leaves (for instance of the type L4) was already demonstrated 
in the previous section. 

As an illustration of the generation of L3 by an L-system with interactions, 
let us take the following (1, 0) L-system. Let the set of state symbols consist 
of letters a, b, c, h , j ,  k ,  let the starting symbol be a, and let the productions 
be as follows: a -* kbk ,  b .--, j ck ,  c ---,. jc ,  c --+ k,  k --, k if the left neighbour 
of k is j or k or the environment, but k --* j k j  if the neighbour is c or h; 
furthermore, j --* j if the left neighbour is j or k, but j  --, h if the left neighbour 
is c or h; finally h --, h if the left neighbour is c or h, but h -* j if the left 
neighbour is j or k. 

Since there are two productions for c independently of its left neigh- 
bours, this is a non-deterministic (1, 0) L-system, and we obtain the 
derivations shown in Fig. 8 (the adult arrays are again underlined) beginning 
with symbol a, and assuming a constant left environmental input. 

o 

kbk  

kl~c k k 
J k.ijcjkjk kjkjkjk 

kjfchkjk,.~..x ~ kjfkhkl'k 
kjjjjchjk]./'k kjjjkhjkjjk..,,...~ kjjkjjkjjk 

kjJ~/'~jchhkjjk "~..  kjjjkjhkjjk 
j \ ~ ,  q, 

.." k j j j  kj]j kjj/" k 

Fro. 8. Derivations of anon-deterministic <t, 0> L-system of which the adult language is La. 

Clearly the adult language of this system is the set {kj"kj"kj"kln>~ 1} which 
is our set L3. For every n, the generation of an adult array with n-times j 
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symbols in each segment requires 2n+ 1 derivation steps, which seems to be 
minimal for sets with three equal segments. 

Thus we are permitted to conclude that sets of adult leaves with three or 
more equal-sized lobes (or with lobes which bear a constant size proportion 
to each other) cannot be produced by development without cellular inter- 
actions. Sets of adult leaves with one or two symmetric lobes can be generated 
without cell interactions, but not by systems in which cell divisions generate 
a further dividing cell only to one side (so called right-linear OL-systems). 
The generation of sets of adult leaves with three or more lobes requires 
either interactions, or some form of global control over the cellular arrays, 
such as represented by table OL-systems. We do not believe that this con- 
nection between the generation of adult stages of organisms and the types of 
cellular processes required has been pointed out before. 

7. Growth Functions 

A significant and fruitful question regarding cellular developmental 
algorithms has been that of their growth functions. For each deterministic 
L-system S the growth function f,(n) is defined to have an integer value 
which equals the number of symbols in the array generated by S at the nth 
derivation step. Thus, the deterministic OL-system with productions: a ~ a, 
b ~ ab, c ~ be, and with an axiom consisting of 2 a's, 5 b's and 2 c's, is 
associated with a square growth function, i.e., for this system we have 

f (n)  = (n+3) 2. It is, in fact, quite easy to find deterministic OL-systems 
for many simple polynomial type integer functions. 

Recently, the theory of growth functions of L-systems has received con- 
siderable attention (cf. Paz & Salomaa, 1973; Herman & Vit~inyi, 1974). 
Some of the mathematical results have biological implications. 

For instance, no cellular developmental algorithm (L-system) can have a 
growth function which rises faster than exponential with number of derivation 
steps (time units). 

Every deterministic developmental system without interactions (DOL- 
system) has a growth function of the form (for some k) 

k 

f (n)  = ~ p,(n)c'[, 
i = 1  

where each p~(n) is a polynomial function of n, and in each exponential term c~- 
the e~ is a constant. In other words, all DOL-systems have growth functions 
which are sums of polynomial and exponential terms. From this theorem it 
follows immediately that no filamentous organism without interactions can 
grow according to a function which increases slower than any polynomial 
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function (with finitely many terms) but is not bounded by a constant. 
Functions which increase slower than any polynomial but without bound 
are, for instance, the logarithmic function and functions which contain 
terms with fractional powers of the number of time steps. Thus no inter- 
actionless organism can grow logarithmically or according to the square-root 
of time. 

Developmental systems with interactions (IL-systems) can be found with 
a much wider range of growth functions, among them the ones mentioned 
above. For example, to obtain a familiar S-shaped growth curve which 
approaches an upper limit, one can construct various simple systems with 
interactions. However, these growth curves can also be obtained with 
interactionless systems, since they do not grow without a bound. 

8. Conclusions 

To sum up, we have indicated the underlying assumptions and the bio- 
logical justifications for adopting certain kinds of discrete constructs to 
describe and gain understanding of development. These constructs, growing 
cellular arrays of finite automata, have proved to be rather stimulating and 
useful when one wishes to consider the growth and differentiation of fila- 
mentous, multicellular or multicompartmental organisms and may eventually 
be extendable to organisms with two- or three-dimensional descriptions. 
Biological insights may be gained from these models, on one hand, concern- 
ing broad classes of developmental mechanisms (development with or 
without cellular interactions; symmetric versus asymmetric interactions-- 
polarity; the role of changing enviromnent and of cell death in development, 
simple or interlocking cycles of states--compound structures, etc.), and on 
the other hand by providing us with a framework within which we can 
construct specific models to simulate the development of certain organisms 
in detail. The developmental systems we propose here are able to provide 
only sketchy and tentative models, and they cart certainly be improved upon. 
Some important developmental processes such as cell movement, cannot 
yet be expressed within these systems. Nevertheless, unexpectedly gratifying 
results have been obtained so far, and we are hopeful that this trend may 
continue in the future. 
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