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Abstract

By using a nonmonotonic semantics one tries to extract more information from a
theory than would be possible by classical means. Such a nonmonotonic seman-
tics is called informative if it satisfies both supraclassicality (the nonmonotonic
models are a subset of the set of classical models) and consistency preservation
(nonmonotonic models exist whenever the theory is consistent). Most nonmono-
tonic semantics, however, satisfy supraclassicality but lack consistency preserva-
tion. In such cases we propose to apply theory revision in order to construct an
informative (revised) semantics.

We present some postulates for such nonmonotonic theory revision and we
will show that, unlike in classical theory revision, nonmonotonic theories have to
be expanded instead of contracted in order to give them a satisfactory meaning.
Finally, we state some conditions on the nonmonotonic semantics to be satisfied
in order revise theories successfully.

1 Introduction and Motivation

One of the primary advantages nonmonotonic reasoning should have above classical
reasoning is to allow one to draw stronger conclusions than can be obtained by classi-
cal means, i.e. the semantics should be more informative than the classical semantics.
More informative here means that

e nonmonotonic reasoning, in general, should be stronger than classical reasoning.
That is, every conclusion obtained by classical means should also be obtainable

*Delft University of Technology, Department of Mathematics and Computer Science, P.O.Box 356,
2600 AJ Delft, The Netherlands and Utrecht University, Department of Computer Science, Padualaan
14, 3584 CH Utrecht, The Netherlands.

tUtrecht University, Department of Computer Science, Padualaan 14, 3584 CH Utrecht, The
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by nonmonotonic reasoning, i.e., nonmonotonic reasoning should be supraclas-
sical,

e on the other hand, nonmonotonic reasoning should not collapse, if it is still pos-
sible to draw conclusions by classical means. That is, the (set of) conclusions
obtained by nonmonotonic reasoning should be as least as informative as the con-
clusions obtained by classical reasoning.

So nonmonotonic reasoning should not run into inconsistencies whenever the

theory is classically consistent. This principle is also known as consistency preser-
vation.

Comparing nonmonotonic reasoning with classical reasoning applied to the same the-
ory T implies that we distinguish a nonmonotonic interpretation of T" and a classical
interpretation of T'. '

1.1 Classical and non-classical readings of a theory

It may not be immediately clear what we mean by the classical reading and the non-
monotonic models of a theory T'. In a forthcoming paper ([14]) we will give a general
treatment of nonmonotonic vss. first-order interpretations of a given theory. Here, we
give some examples.

In our view, a nonmonotonic semantics gives rise to the selection of certain acceptable
or preferred models of the theory instead of considering the total class of ordinary (clas-
sical) models of the theory.

This idea is most prominently present in the preferential model semantics developed by
Shoham [12] and further analysed by Makinson [5, 6] and Kraus, Lehmann and Magi-
dor [4]. Given a preference relation between models of a first order theory T, instead of
taking into account every model of a first-order theory, only the most preferred models
are chosen as the (nonmonotonic) models of T'. Circumscription is a special case of
such preferential semantics.

There are also approaches in which the model selection is guided by special interpre-
tations of classical connectives, such as, for example, in logic programming. Here, the
implication and negation connectives can be given a special meaning in order to select
the nonmonotonic models of the theory. Since in these semantics every nonmonotonic
model also is a classical model, i.e. respects the standard meaning of these connec-
tives, these semantics again are supraclassical. Thus, we propose to use the ordinary
meaning of the connectives to obtain the classical meaning of theories 7" that assign a
non-standard interpretation to some of the connectives.

Finally, there is a class of nonmonotonic approaches, where a classical language is ex-
tended by the introduction of new symbols that have a special meaning. These sym-
bols constitute the syntactical guides that may help us in finding the acceptable models
among the set of all models. Here the problem to distinguish between a classical and
non-classical reading is more involved.



In such cases we propose to translate these special symbols or formulas containing these
special symbols back into first-order formulas. For example, in a default theory A =
(W, D) over a first-order language £, we translate every default rule
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Y

)

into a first-order formula
dfo=0NBLA...A B =7
Then the classical reading of A is given by the theory
Ao =WU{ds, |0 € D}

It is not difficult to see that every model of an extension E of A also is a classical model
of A f.o

Likewise, if T is an auto-epistemic theory, its classical interpretation is given by the
models of the theory T, derived from T by substituting (recursively) every formula
of the form L¢ by the formula ¢. The nonmonotonic models of T are the models of
the objective part of the auto-epistemic extensions of 7. Again, by the conditions that
every auto-epistemic extension E of T has to satisfy, it can be seen that every model
of E'is also a classical model of T},

1.2 The lack of consistency-preservation

While almost all nonmonotonic logics are supraclassical (cf. [6]), most of them do not
satisfy consistency preservation. For example, the following well-known formalisms:
default logic (with the exception of normal default logic), auto-epistemic logic, non-
monotonic semantics of logic programming and preferential entailment semantics all
lack consistency preservation.

We consider this an unfortunate state of affairs. In particular, we consider the princi-
ple of consistency preservation as extremely useful in such applications as debugging
and diagnosis. Here, we use nonmonotonic reasoning to draw conclusions about the
expected behaviour of a system if everything goes well, i.e. the (normality) assump-
tions are not violated. But we would also like to draw conclusions in exceptional cases,
where the normality assumptions do not hold and *ordinary’ nonmonotonic reasoning
fails.

The reason for this failure is that in most nonmonotonic semantics, especially those
used in logic programming, there is no possibility to recover from a conflict, if some
assumptions made in reasoning nonmonotonically turn out to be responsible for violat-
ing a constraint.

Let us give a motivating example.



Example 1.1
Suppose you are at the airport knowing that

1. you are treated as a class A passenger iff you receive a special pass-through card,

2. everyone receiving a special pass-through card has direct access to the gates via
a special port.

3. but, if there is no reason to receive a special card then you will pass through the
normal port and

4. if you have access through the normal port and it can be assumed that you are not
a class A passenger then you will be checked.

5. Every VIP is treated as a class A passenger and finally,

o

it happens that you are not checked.

The following program describes this situation:

P : class_A_passenger

T

receive_special_card.

receive_special_card <+ class_A_passenger.
direct_access.by.special_port <+ receive_special_card.
access_by_normal_port <+ -—receive_special_card.
checked < access_by.normal_port,—class_-A_passenger.
class__A_passenger < VIP.
L« checked.

Note that P is classically consistent: it has four classical models where the first two
models are

M, = {cAp, rsc, dasp, —~anp, ~ch,~VIP}

and
M, = {cAp, rsc, dasp, ~anp, ~ch, VIP},

while M; and M, are obtained by making anp true in M; and M, respectively.

If you would use the stable model semantics as your intended semantics, however, P
is nonmonotonically inconsistent: Stable(P) = (. The reason why, should be clear:
there is no reason to assume that you should receive a special card, but this assumption
is directly responsible for the violation of the constraint 6.

So the program is not classically inconsistent, but the problem is that none of the clas-
sical models is a stable model of the program. This means that stability as a criterion
to select acceptable models from the set of classical models fails and that we have to
select other models.



The problem is, which models we choose. Clearly, if you add the fact
receive_special .card +

or the fact
VIP «

to P, both M; and M, will occur as a stable model of an expanded version of P. But
it is also possible to add the rule

class_A_passenger < —access_by_normal_port

to P and obtain M, as a stable model of the resulting expansion.
Note that in the first and the last case, we add some information that is classically deriv-
able from the program. [ |

This example suggests that consistency preservation may be obtained by changing our
program P to a related theory P’, and to use the intended semantics of P’ to give P
a suitable meaning. That is, we may find intended models of the original theory by
applying theory revision.

Basically, this is the idea applied in the dominant classical AGM theory revision frame-
work (see [2]). Here, a classically inconsistent theory 7 is transformed into a classical
consistent theory 7" and the models of 7" are used to give a meaning to 7.

We will generalize this idea to a classically consistent, but nonmonotonically inconsis-
tent theory T'. We will apply theory revision to 7" and transform T to another theory 7"
that does have intended models. Then we use the intended models of 7" as the intended
models for T'. In this way we will construct a semantics that is consistency-preserving.

The problem then is how to characterize suitable theory transformations. We will for-
mulate some fairly simple postulates for nonmonotonic theory revision and then we
will show that, unlike classical theory revision, nonmonotonic theory revision has to
be performed by expanding the original theory instead of contracting it.

2 Restoring consistency preservation by theory revision

As stated in the introduction, we would like to have a nonmonotonic logic to satisfy the
principles of supraclassicality and consistency preservation.

To state these principles in a more precise way, we will assume that, given a not nec-
essarily closed theory T specified in some first-order language £, our nonmonotonic
logic is characterized by a set Sem(T") of nonmonotonic models for T. We will denote
the set of classical models of T' by Mod(T'). Then both principles can be formulated
as follows:

1. Supra(classicality):
For every theory T', Sem(T) C Mod(T);
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2. Cons(istency preservation):
For every theory T, Sem(T') # @, whenever Mod(T) # 0.

It has been observed that almost every nonmonotonic semantics satisfies Supra, while
few satisfy Cons ([6]). So let us assume that we have a theory T and a semantics Sem
such that Supra is satisfied, but Cons is not. We will look for a semantics Sem* revis-
ing Sem that satisfies both principles.

The problem we are confronted with closely resembles the problem of theory revision
for classical theories: there we are forced to revise our interpretation of a theory 7" if T
turns out to be classically inconsistent, i.e. Mod(T) = 0, while here we have to revise
our nonmonotonic interpretation of the theory if Sem(T") = @, while still M od(T') may
be nonempty.

In the well-known AGM-approach to theory revision (cf. [2]), revision is accomplished
by theory transformation: the current inconsistent theory 7 is replaced by a transfor-
mation R(T") of T and the (classical) meaning of R(T) is used to provide a suitable
meaning for T'.

Since we are aiming at restoring consistency preservation, we will not deal with the
problem what to do if Sem(T) = Mod(T) = @, but we will also apply this idea of
theory revision by theory transformation. That is, if Semn(T") = 0, we propose to derive
the proposed meaning Sem*(T) of T by

(i) transforming T to some theory T" = R(T),
(ii) applying the original semantics Sem to 7", and
(iii) requiring that Sem*(T') = Sem(R(T)).

Since we want to deal with nonmonotonic revision in classically consistent theories, we
will assume that there is some class 7 of classically consistent theories, i.e. for every
T e€T,Mod(T) # 0. We call a pair (T, Sem) a nonmonotonic semantics. The non-
monotonic semantics we want to have are informative semantics:

Definition 2.1 (Informative semantics)
A nonmonotonic semantics (T, Sem) is called informative if it satisfies both Supra and
Cons.

A theory transformation R is a computable mapping from 7 to 7. We would like to
know which transformations are suitable and which are not. In order to give such a
characterization, we will present some postulates for the triple (7, Sem, R), called a
revision framework, where (T, Sem) is a nonmonotonic semantics and R is a theory-
transformation R : 7 — 7. Furthermore, we assume that Sem is supraclassical with
respect to 7.

We propose to use the following simple postulates:
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P1l. Sem(R(T)) # @ whenever Mod(T) # 0.

This postulate specifies that revision should be successful: we should
find a transformation R such that Sem(T") exists if T is consistent.

P2. R(T) =T, whenever Sem(T) # 0.

We should be careful in extending our semantics: only in those cases
in which Sem does not provide a meaning for 7', it is allowed to change

T.

P3. Mod(R(T)) = Mod(T).
This postulate stipulates that theory transformation should be classi-
cally neutral: we should not change the class of models from which
the subset of models has to be chosen that we (nonmonotonically)
prefer.

Note that the revised semantics Sem* based on Sem is meant to satisfy both Supra and
Cons.

Definition 2.2 (Successful revision frameworks)
A revision framework (T, Sem, R) is called successful if

1. it satisfies the postulates P1-P3 and

2. the revised nonmonotonic semantics (T, Sem*), where Sem*(T) = Sem(R(T))
is informative.

Let us first check that indeed, if (7, Sem, R) satisfies the postulates P1-3 and Supra,
then Sem* will satisfy both Supra and Cons.



Observation 2.3 (the postulates guarantee success)
If

1. (T, Sem, R) satisfies P1-P3 and
2. Sem satisfies Supra

then (T, Sem*) is informative.

PROOF By P1, it immediately follows that Sem* satisfies Cons.
Since Sem satisfies Supra, we have Sem*(T') = Sem(R(T')) C Mod(R(T)). Hence,
by P3, Sem*(T') C Mod(T). So Sem* satisfies Supra, too. "

Given these postulates P1-P3, we would like to investigate the following problems:

1. What can we say about the nature of revision functions for nonmono-
tonic theories and how do they compare to revision functions used in
classical theory revision?

2. What will be needed for minimal revision?

3. Which conditions have to be satisfied by a semantics (7, Sem) in or-
der to find a successful revision framework (7, Sem, R)?

We will try to formulate some general answers to this question.

3 What revision functions should be used

In the standard (AGM-inspired) theory revision literature ([2]), retraction is the only
appropriate theory revision operator to give a suitable meaning to an inconsistent the-
ory: From the current inconsistent theory T’ some parts are retracted and the (consistent)
remaining part 7" is used to give T its meaning.

It turns out that revision by retraction, at least for a large part of nonmonotonic seman-
tics, is not suitable!.

3.1 Reasonable semantics: Weak Confirmation of Evidence

Given that a nonmonotonic semantics (7, Sem) obeys the principle of supra-classicality,
what should be reasonable to expect from it? Let us define the following consequence
operator v gem:

T semz iff IM € Sem(T)st. M =z

So T |~gem x holds iff according to an acceptable model M of T, z is true. Then the
least thing we might expect is that there is still some acceptable model for the theory

'In fact, we are not able to come up with a reasonable nonmonotonic semantics for which it can be
proven that retraction is an option in nonmonotonic theory revision.
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T’ obtained from T and z, that is, nonmonotonic reasoning should not collapse just by
adding a (brave) nonmonotonic consequence of the theory.

Slightly generalizing, we introduce the following Weak Confirmation of Evidence (ab-
breviated by WCE)? principle:

Definition 3.1 (WCE)
ForeveryT € T and ® C WFF(L), if T |~gem O, then there exists some ¥ C
WFF(L), suchthatT + ® pvgem V.

As far as we know, this principle holds for every nonmonotonic semantics currently
known.

Remark. Note that this principle can be seen as a weakening of a brave form of cau-
tious monotony:

T bosem T, T Posem y implies T 4+ X osem ¥

The following proposition is an almost direct consequence of the definition of |vgen,
and is useful in proving properties of WCE:

Proposition 3.2 T |~gem ® iff Sem(T) N Mod(®) # 0.

PROOF By definition T' |vge, P iff there is an M € Sem(T) such that M = @ iff
there is an M € Sem(T) such that M € Mod(®) iff M € Sem(T) N Mod(®). =

It is interesting to note that WCE is satisfied by every informative semantics:

Proposition 3.3
If Sem is an informative semantics, then Sem satisfies WCE.

PROOF Suppose that T | g.,, @ for some set . Since Supra is satisfied, this implies
that there is a model M € Mod(T) satisfying ®. Therefore, Mod(T) N Mod(®) =
Mod(T + ®) # 0. Then by Cons, it follows that Sem(T + ®) # (. Hence, there exists
a U such that T + ® pvgen U and, therefore, WCE is satisfied. ]

Since Cons is not implied by Supra+WCE, so WCE is a weaker property than Cons
in the presence of Supra.

2This principle is a weaker variant of the Confirmation of Evidence principle, introduced by Reiter.
We are grateful to Wiktor Marek for giving the reference.



3.2 Retraction is not suitable for revision

Note that in the AGM approach, whenever a theory is classically inconsistent we have
to apply theory contraction to give it a meaning. If the theory is consistent, we can

leave the theory unchanged. So let us define the following notion of a pure retraction
function:

Definition 3.4 (Pure retraction)
Let T be a class of theories and R : T — T be a theory-transformation.

Then R is a pure retraction function if VT € T. R(T) C T and there exists some
T € T suchthat R(T) # T.

It might be that pure retraction functions are not useful for nonmonotonic theory revi-
sion, while for some (but not all) theories a mixture of adding some information and
retraction is more appropriate. Therefore, we will allow for such cases and define the
following notion of weak retraction functions:

Definition 3.5 (Weak retraction)
Let T be a class of theoriesand R : T — T be a theory-transformation.
Then R is a weak retraction function iff 3T € T. R(T) C T and T # R(T).

Note that the class of pure expansion functions is contained in the class of weak expan-
sion functions.

We will now prove that even weak retraction is not a suitable option for nonmonotonic
theory-revision if the postulates stated above are satisfied and the nonmonotonic se-
mantics satisfies WCE and Supra.

Theorem 3.6

Let (T, Sem) be a nonmonotonic semantics satisfying Supra+WCE, but not Cons.
Then the revision framework (T, Sem, R) cannot be successful if R is a weak retraction
function.

PROOF Suppose, on the contrary, that R is a weak retraction function in the successful
framework (7, Sem, R), where (T, Sem) satisfies Supra+WCE.

Since R is a weak contraction function, there is a theory T € T such that R(T) = T' C
T and T # T, while Mod(T) # 0.

Since the revision framework is assumed to be successful, the postulates P1-P3 have to
be satisfied. By P2, we have

Sem(T) =0
and by P1, it follows that Sem(R(T')) # 0. Hence,

Sem(T') = Sem(R(T)) # 0.

So, let M be an arbitrary model in Sem(T").
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By P3 and Supra, we have
0 C Sem(T') = Sem(R(T)) C Mod(T).
Hence, Sem/(T") N Mod(T) # @, so by Proposition 3.2
T' bosem T

and therefore, by WCE,
T+T sem ¥

for some ¥. But then, since T’ C T, it follows that
Sem(T) = Sem(T +T") # 0,

contradicting the fact that Sem(T) = 0. Therefore, R cannot be a weak retraction
function if the framework is successful. n

Since pure and weak retraction functions now can be excluded, we can take a look at
mixed transformations and pure expansion functions.

Definition 3.7 (Pure expansion)

A pure expansion function is a theory transformation R such that forallT € T, R(T) D
T.

Definition 3.8 (Mixed transformation)
We call a revision function R a mixed revision function if for some T € T, R(T)—T #
O and T — R(T) # 0.

It turns out that the class of mixed transformations is obsolete in the following sense:
we can show that the class of mixed functions can be represented by the class of pure
expansion functions, i.e. for every mixed revision function R satisfying the postulates,
there exists a pure expansion function R’ such that R'(T') = R(T) + T and R’ also
satisfies the postulates.

Lemma 3.9
Let (T, Sem, R) be a successful revision framework, where Sem satisfies Supra and
WCE (but not Cons) and R is a mixed transformation.

Then the revision framework (T, Sem, R'), where R' is a pure expansion function de-
fined as® R'(T) = R(T) + T, is also successful.

PROOF Let the pure expansion function R’ be defined as R'(T') = R(T)+T. We have
to prove that (7, Sem, R') satisfies the postulates P1-P3.

3Note that R'(T') and R(T) are classically equivalent, i.e. Mod(R'(T)) = Mod(R(T))
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Since R(T) = T whenever Sem(T) # 0, it follows immediately that R’ satisfies Pos-
tulate P2.

Since
Mod(R(T)) = Mod(R(T)+T) = Mod(R(T)) N Mod(T)
and, by P3,
Mod(R(T)) = Mod(T),
it follows that

Mod(R(T)) = Mod(T),
hence, R’ satisfies Postulate P3.

Finally, we have to show that R’ is successful, i.e. P1 is satisfied.
Assume that Mod(T) # 0. Since postulate P1 is satisfied for R, Sem(R(T)) # 0. So
take a model M € Sem(R(T)).

By Supra, it follows that M € Mod(R(T)) and since R satisfies P3, M € Mod(T).
Hence,

M € Sem(R(T)) n Mod(T).
But then, by Proposition 3.2 and WCE it follows that
Sem(R(T) + T) = Sem(R'(T)) # 0,

so P1 is satisfied for R'. .

3.3 Minimal revision and pure expansion

While in the previous section we showed that revision functions can be represented by
pure expansion functions, in this section we will show that in order to perform minimal
revision, only pure expansion functions should be applied.

Definition 3.10 (Minimal revision)
We say that (T, Sem, R) is a minimal revision system if R satisfies the postulates P1-
P3 and the following minimality postulate:

P4 For every R' # R satisfying the postulates P1-P3, if
(R(T)e T) C(R(T)OT)then R(T) = R'(T).

Here, © is the symmetrical set-difference operator.

This postulate expresses that successful revisions should minimize the additions to and
retractions from the original theory.
As an almost direct consequence of the preceding lemma we have:
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Theorem 3.11
If (T, Sem, R) is a minimal revision system satisfying the postulates P1-P4, then R is
a pure expansion function.

Example 3.12

Let T = {Lp} be an auto-epistemic theory. This theory is classically consistent, having
a classical model M = {p}. T, however, does not have an auto-epistemic extension.
Consider the revision 7' = R(T) = T + {p}. It satisfies the postulates and now M is
the model of the objective part of T"’s only auto-epistemic extension.

4 Successful revision frameworks

In the preceding sections we assumed that the nonmonotonic semantics (77, Sem) satis-
fies Supra and WCE and then we proved some properties of the theory transformation
R and the resulting revised semantics.

Let us now turn to the other side and let us assume that we have a successful revision
framework (7, Sem, R). Then we would like to know which properties we could de-
rive for Sem and R to hold.

Our first result states that indeed supraclassicality is a necessary condition for a non-
monotonic semantics in order for the framework to be applicable:

Proposition 4.1
If (T, Sem, R) is a successful revision framework, (T, Sem) must satisfy Supra.

PROOF LetT € T. We prove that Sem(T) C Mod(T). If Sem(T) = @ we are done,
so assume Sem(T') # 0. Then, by P2, R(T) = T, hence Sem(T) = Sem(R(T)). By
P3, it follows that Sem(T) = Sem(R(T) C Mod(T). ]

Without WCE, we have a simple necessary and sufficient condition for a successful re-
vision framework. Essentially, it states that in every subclass of classically-equivalent
theories, there exists at least one theory T such that Sem(T) # 0.

Lemma 4.2
Let (T, Sem) satisfy Supra. Then there exists a successful framework (T, Sem, R) iff
foreveryT € T thereisaT' € T such that Mod(T) = Mod(T") and Sem(T") # 0.

PROOF Trivial, by the definition of successful revision frameworks. [

If, however, we add WCE, we have a stronger result:
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Lemma 4.3

Let (T, Sem) satisfy Supra + WCE.

Then there exists a successful framework (T, Sem, R) iff foreveryT € T, Sem(Cn(T)) #
0.

PROOF Assume that Sem satisfies Supra + WCE and that there exists a successful
framework (7, Sem, R) for some R. So, take an arbitrary T € 7. Then Sem(R(T)) #
(. We have to prove that Sem(Cn(T')) # 0. Note that, by P3, Mod(R(T)) = Mod(T).
Since Mod(T) = Mod(Cn(T), it follows that

Sem(R(T)) N Mod(Cn(T)) # 0,

so by Proposition 3.2 and WCE it follows that R(T') + Cn(T') vsem ®, for some &.
Since Mod(R(T')) = Mod(Cn(T)), it follows that R(T) C Cn(T). Hence, by WCE,
Sem(R(T) U Cn(T)) = Sem(Cn(T)) # 0.

Conversely, let Sem satisfy Supra + WCE and assume that forevery T € T,
Sem(Cn(T)) # 0. Then define R(T) as R(T) = T if Sem(T) # 0 and R(T) =
Cn(T) otherwise. It is not difficult to see that (7, Sem, R) is a successful revision
framework. [

Sometimes we have a semantics Sem that is not consistency-preserving, but we can use
another semantics Sem’ that is consistency-preserving, if, by syntactical manipulation
of (parts of) a theory, Sem can be reduced to Sem':

Definition 4.4 (Reducibility)

Let Sem, Sem’ be two semantics for a class T of theories. We say that Sem is classi-
cally reducible to Sem' iff for all T € T, there is a theory T' € T suchthatT = T’
and Sem(T') = Sem/(T").

Theorem 4.5
If T is class of theories, Sem is classically reducible to Sem' in T and Sem' satis-

fies Supra and Cons, then there is a successful revision framework (T, Sem, R) for
(T, Sem).

PROOF Forevery T € T, define R(T) as follows: R(T) = T if Sem(T) # ® and
R(T)=T + T else.

We show that in (7, Sem, R), the postulates P1-P3 are satisfied.

Let Mod(T) # 0. Let T' be such that Sem(T") = Sem’(T"). Since T is consistent, T"
is also consistent. Since Sem’ is consistency-preserving, it follows that Sem/(T") =
Sem(T') # 0. Let M € Sem(T") C Mod(T') C Mod(T). Then, by WCE, it follows
that Sem(T + T') = Sem(R(T)) # 0. So P1 is satisfied.

Postulate P2 is satisfied by construction of R. Finally, P3 is satisfied, since

Mod(R(T)) = Mod(T + T') = Mod(T) N Mod(T") = Mod(T).

14



An example of such a class of theories is the class of normal logic programs with con-
straints, where for each program P always an equivalent program P’ can be found such
that MinMod(P') = Stable(P’), where MinMod is the minimal model semantics
and Stable the stable model semantics.

5 Discussion

We have presented some postulates for revision of nonmonotonic theories and we have
shown that given some fairly weak conditions on the nonmonotonic semantics, revision
of such theories should be accomplished by expansion instead of contraction.

At first sight, the idea of revision by retraction might be strange. It can be explained as
follows. In nonmonotonic reasoning we reason by making assumptions concerning the
truth or falsehood of certain statements and derive conclusions from them. However,
as soon as we detect some violation of constraints or are not able to derive any con-
clusion from a theory, we realize that we must have assumed to much: some of these
assumptions may not be compatible. Now the only way to get out, is to state explicitly
that one or more assumptions should not be made, i.e. to expand the original theory.
The idea of revision by expansion in nonmonotonic theory revision has been discussed
before. In Auto-Epistemic Logic (AEL) for example, Morris ([8]) has suggested some-
thing like theory expansion for auto-epistemic theories that do not have an AE-extension.
The simple idea is: if there is no AE-extension for a set of premises S, then a set-
inclusion minimal set of ordinary (i.e. modal-operator-free) premises is added to S such
that an AE-extension exists.

In logic programming, the work of Pereira et al. ([9]) on Contradiction Removal Se-
mantics can be seen as a special expansion method, allowing for revision of assump-
tions.

In truth maintenance, belief revision has been performed by a pure expansion tech-
nique, called dependency-directed backtracking (ddb) ([1, 10, 11]). As these methods
mainly have been stated informally and in a procedural way, there were little or no for-
mal results. Recently, in [13], we have shown that ddb is not suitable for the stable
model semantics and only can be complete if the semantics is as weak as a positivistic
or supported model semantics.

Recently, Inoue and Sakama in [3] proposed a very general approach to revision of non-
monotonic theories by proposing to revise a theory 7' by a minimal set of additions /
and removals O such that T' + I — O has an acceptable model. Our results show that
in most cases, when T is classically consistent, removal of formulas in the form of re-
traction is not necessary.
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