Reduction Algorithms for Graphs
with Small Treewidth*

Hans L. Bodlaender and Babette de Fluiter
Department of Computer Science, Utrecht University
P.O. Box 80.089, 3508 TB Utrecht, the Netherlands
e-mail: {hansb,babette} @cs.ruu.nl

Abstract

This paper presents some new ideas and results on graph reduction applied to graphs
with bounded treewidth. Arnborg et al. [2] have shown that many decision problems on
graphscan be solved in linear time on graphswith bounded treewidth, by using afinite set
of reduction rules. We show that this method can also be used to solve the construction
variants of many of these problems, and to solve a number of optimization problems, and
to solve construction variants of many of these optimization problems. For example, the
construction variants of decision problemsthat are definablein monadic second order logic
canbesolvedinthisway. Examplesof optimization problemsthat can be solvedin thisway
are INDEPENDENT SET, INDUCED BOUNDED DEGREE SUBGRAPH, PARTITION INTO
CLIQUES and HAMILTONIAN COMPLETION NUMBER.

We also show that the results of [6] can be applied to these reduction algorithms, which
results in parallel agorithms that use O(n) operations and O(logn log™ n) time on an
EREW PRAM, or O(logn) time on a CRCW PRAM (where n is the number of vertices
of the graph).

1 Introduction

In this paper, new ideas and results are presented on graph reduction, applied to graphs with
bounded treewidth. We consider reduction rules, where a subgraph of a graph G isto be re-
placed by another smaller subgraph (under some additional rules, see Section 2 for the precise
definitions).

A graph property P isafunction which assigns to each graph the value true or false. Arn-
borg et al. [2] have shown that for each graph property P which is of ‘finite index’, and each
constant k, there exists afinite, complete, safe, and decreasing set of reduction rules for graphs
with treewidth at most k. This set of reduction rules can be used to reduce agraph G by aseries
of applications of reduction rules from the set to agraph from somefinite set of ‘small’ graphsif

*This research was partially supported by the Foundation for Computer Science (S.1.O.N) of the Netherlands
Organization for Scientific Research (N.W.0O.) and partidly by the ESPRIT Basic Research Actions of the EC under
contract 7141 (project ALCOM I1). Some results of this paper have appeared in [5].

and only if P(G) holds and the treewidth of GG isat most k. The set of finiteindex graph proper-
ties includes many interesting properties, including all graph properties expressible in monadic
second order logic.

Arnborg et a. use this result to show the existence of linear time algorithms that decide
whether property P holds for a given graph G' with bounded treewidth, without the need of
using atree decomposition of G. It should be noted that these algorithms use more than linear
memory. Thea gorithm does not depend on the structure of the reduction rules: it can beapplied
for all sets of reduction rules that arefinite, safe, complete and decreasing.

Bodlaender and Hagerup [6] give paralel agorithms based on finite, safe, complete and
decreasing sets of reduction rules. These algorithms use O(n) operations, O(n) memory and
O(lognlog* n) time on the EREW PRAM, or O(logn) time on the CRCW PRAM (n is the
number of vertices of the input graph). However, their algorithm only works if the reduction
rules have some predefined structure. They show that for each graph property P which is of
finite index, and each constant k, there exists afinite, complete, safe, and decreasing set of re-
duction rules for graphs with treewidth at most %, such that each reduction rule in this set has
the desired structure. The algorithm of Bodlaender and Hagerup [6] can be ssimulated on one
processor to get a sequential linear time agorithm which uses linear memory.

In this paper, we extend the results of Arnborg et a. [2] in two ways.

e We discuss a method to solve in many cases not only decision problems (i.e. properties)
on graphs with bounded treewidth, but aso the construction variants of these problems.
We show that this method works for all construction variants of properties that are ex-
pressible in monadic second order logic.

e We show that avariant of the method of Arnborg et al. can be used to solve severa opti-
mization problems on graphs with bounded treewidth, and we give away to prove for a
given optimization problem that this method works.

We also show that a combination of these two results is possible: the construction variants of
severa graph optimization problems of graphs can be solved using graph reduction agorithms
on graphs with bounded treewidth.

Furthermore, we show that the paralld agorithm of Bodlaender and Hagerup [6] can be
applied to our results.

This paper is organized as follows. In Section 2, some definitions and preliminary results
are given. In Section 3, a method to use reduction algorithms for the construction variants of
decision problems is discussed. In Section 4 it is shown that graph reduction can also used to
solve certain optimization problems, and in Section 5, the results of Sections 3 and 4 are com-
bined. Section 6 discusses parallel agorithms, based on reduction, and Section 7 concludes the
paper, and gives some ideas for further research.

2 Preiminaries

Inthis paper, the graphs we consider are undirected, do not contain self-loops or multiple edges.
(Similar results can be derived for directed graphs. For simplicity, we concentrate on undirected

graphs.)

We say aproperty iseffectively decidable if an algorithm is known that decides on the prop-
erty. Similarly, we say afunction is effectively computable if an algorithm is known that com-
putes the function value for a given element of the domain.

The notion of treewidth was introduced by Robertson and Seymour [11].

Definition 2.1. A tree decomposition 7D of agraph G = (V, E) isapair ({X; | i € I},T)
withT = (I, F) atree,and { X; | ¢ € I} afamily of subsets of 1, one for each node of 7", such
that

b U’LEI X’L = V!
e for all edges {v,w} € F, thereexistsani € I withv € X; and w € X;, and
e forall 4,5,k € I: if j ison the path from: to k£ in 7", then X; N X, C X;.

Thetreewidth of a tree decomposition ({X; | ¢ € I}, (I, F')) ismax;er | X;| 1. Thetreewidth
of agraph G, denoted by tw(G), isthe minimumtreewidth over all possible tree decompositions
of G.

Definition 2.2. Aterminal graph G isatriple (V, E, X') with (V, E') an undirected graph, and
X C Visan ordered subset of the vertices, denoted by (x1,...,2;), [> 0, called the set of
terminals. \Verticesin V' < X are called inner vertices. A terminal graph (V, E, X) is called
an [-terminal graph if | X| = [. Aterminal graph (V, E, X) is said to be open, if there are no
edges between terminals (for all v,w € X, {v,w} ¢ E).

The usua undirected graphs (i.e., without terminals) will be simply called graph.
Definition 2.3. The operation & maps two terminal graphs G and H with the same number |
of terminalsto a graph G @& H, by taking the digoint union of G and H, then identifying the
corresponding terminals, i.e., for ¢ = 1,...,[, the ith terminal of G is identified with the ith
terminal of H, and then removing multiple edges.

For an example of the &-operation, see Figure 1.

O =terminal vertex

(O =inner vertex

Figure 1. Example of @&-operation

Two termina graphs (Vi, Ey, (x1,---,xx)) and (Va, By, (y1,---,y)) ae said to be iso-
morphic, if £ = [and there exists a hijective function f : V; — V5 withfor al v,w € Vi,
{v,w} € E1 & {f(v), f(w)} € Ey andforadl i, 1 <i <k, f(x;) = y;. Themain differ-
ence with the usual definition of graph isomorphism is that we require that the corresponding
terminals are mapped to each other.

Definition 2.4. Areduction ruler isan ordered pair (H;, Hs), where H, and H, arel-terminal
graphs for some ! > 0. An application of reduction rule (Hy, H) isthe operation, that takes a
graph G of theform G| & G'g, with G isomorphic to Hy, and replacesit by thegraph G, ® G5,
with G5 isomorphic to H,. Wewrite G = Gy & Gs.

An example of the application of areduction rule is given in Figure 2.

1 1
(O =terminal vertex

r
; (O =inner vertex

2 2

%

Figure 2: Applying rule r to G yields G’
For two graphs G and G’, and a set of reduction rules R, we write G LY G, if there exists
anr € RwithG 5 G'.

Definition 2.5. Let P be a graph property, i.e. for each graph G, P(G) € {true, false}. Let
R be a set of reduction rules.

o Rissafefor P if, whenever G 5 G, then P(G) < P(G').

e R iscompletefor P if theset of graphs {G | P(G) A -3G" : G L1 G'} isfinite.

e R isterminating if there does not exist an infinite sequence G R Go R G3 X ...
e R isdecreasing if, whenever G R @' then G' contains fewer vertices than G.

Clearly, adecreasing set of rulesis terminating.

A set of reduction rules R, that is finite, safe, complete, and terminating for a property P
corresponds to an algorithm that decides whether property P holds on agiven graph: repeat ap-
plying rulesfrom R starting with theinput graph, until no rule from R can be applied anymore.
If the resulting graph belongs to the finiteset {G | P(G) A -3G" : G R G'}, then P holdson
the input graph, otherwise it does not. In[2] it has been shown how, when the set is decreasing,
this algorithm can be implemented such that it takes linear time and polynomial space.

4

Definition 2.6. For a graph property P the equivalence relation ~ p; on [-terminal graphs, is
defined as follows.

G1~py G2 < (Y terminal graphs H P(Gi® H) & P(Gy @ H))
Property P is of finite index, if for all I > 1, ~p; has finitely many equivalence classes.

It appears that many important graph properties are of finite index. For instance, al prop-
erties that can be formulated in monadic second order logic, i.e. that are MS-definable, are
of finite index (for a definition, see e.g. [3]). These include HAMILTONIAN CIRCUIT, k-
COLORABILITY (for fixed k), and many others.

An equivalence relation ~' isarefinement of an equivalence relation ~ if each equivalence
class of ~' isasubset of an equivalence class of ~.

For each integer & > 1, let TW);, be the graph property defined as follows:. for each graph
G, TW,(G) = tw(G) < k. For aproperty P and an integer k, the property P is defined as
PL(G) = P(G) NTW(G).

Lemma 2.1. If P isof finite index, then P, isof finiteindex for each k& > 1.

Proof. The property TW). is of finite index, for each £ > 1, since it is MS-definable (see
e.0.[3]). For each [, let ~; be the equivalence relation on [-termina graphs which is defined as
follows.

G~ Gy & Gy ~py Ga NGy ~rwy, 1 G

If Gi ~; Ga, then Gy ~p_; G2, S0 ~; isarefinement of ~p, ;. Hence the number of equiv-
aence classes of ~p,_; is a most the number of equivalence classes of ~;, which is at most
the number of equivalence classes of ~ p; times the number of equivalence classes of ~7y, ;.
Hence P, is of finite index. O

(A similar lemma holds, if we pose an additional constant upper bound on the maximum
degree of vertices in the graph.)

Finite index corresponds to ‘finite state’: there exists alinear time algorithm that decides
the property on graphs, given with atree decomposition of bounded treewidth. Moreover, this
algorithm is of a special, well described structure. See e.g. [1].

Note that areduction rule (H;, H>) € R issafefor aproperty P if and only if H; ~p; Ho
(if H; and H, are [-termina graphs).

Below, we give alemma on the existence of subgraphs of acertain size and type in graphs
with bounded treewidth. Thislemmawill be used to show that there is afinite, safe, complete
and decreasing set of reduction rules for aproperty P, if property P is of finite index.

Lemma22. Letk andr be positiveintegers. If G = (V, F') isa graph with n vertices and
treewidth at most &£, and n > r +1, then G can bewrittenas G| ® G5, with G and G, terminal
graphs with at most £ + 1 terminals, and G| has at least » + 1 and at most 2(r + 1)(k + 1)
vertices, and, if G1 has one or more terminals, then GG¢ is open and connected.

Proof. Let Hy,..., H; bethe connected components of G. If, for each i, |V (H;)| < r, then
thereisaset I' C {1,...,l},suchthatr+1 < >, |V(H;)| < 2(r +1). Inthiscase, let G
denote the zero-terminal graph consisting of all components H; with i € I’, and let G5 denote
the zero-terminal graph consisting of all components H; with: ¢ I'.

Suppose that thereisan i, 1 < i <[, suchthat |V (H;)| > r 4+ 1. We show that the lemma
holdsfor H;. We can then extend G, with the other components of G to provethelemma. From
now on, let G denote H;.

LeeTD = ({X; |i € I},T = (I,F)) beatree decomposition of width at most of G.
Take s € I arbitrarily, and let X, be the root node of the tree decomposition. For each node
X, let V; denote the set of al vertices of G which occur in X; or in anode X;, where j isa
descendant of 7 in 7', and let G be the graph obtained from G[V;] by deleting a edges between
verticesin X;. Let T'D; denote the tree decomposition obtained from T'D by taking the subtree
rooted a X;. Note that T'D; is atree decomposition of G[V;]. Note furthermore that for each
v € V;, thereisapath in G[V;], and also in G}, to some w € X, since G is connected. Hence
G’ hasat most k& + 1 connected components, and each component contains at least one vertex
of X;.

If G haslessthen (r + 1)(k + 1) vertices, then let G be the zero-terminal graph G, and let
G be the empty zero-terminal graph. If G hasat least (r + 1)(k + 1) vertices, then apply the
following algorithm to find G (the definition of G5 then follows directly).

Algorithm Find

1. *|V(G)| > (r+1)(k+1)andthereisapath fromeachv € Vi toaw € X %)

2. V(@) <2(r+1)(k+1)

3 then Let Hy,..., H; bethecomponentsof G%,. (x| < k + 1 %)

4. Let H; be acomponent with at least » + 1 vertices.

5 Let G bethe terminal graph obtained from H; by taking as terminals the vertices
inV(H;) N X, and leaving out all edges between terminals,

6 return Gy

7 ese (x|V]|>2(r+1)(k+1)x%)

8. Let j bean arbitrary child of sinT.

0. it V| > (r+1)(k+1)

10. then Let G denote the graph G[V}].

11. Let 7D beTD;.

12. Lets =j.

13. Gotostep 1

14. dse (x|V;] < (r+1)(k+1) %)

15. Let V/ = U{V; | iischildof sinT andi # j }.

16. (VI > V] &|Vi > (r + D) (k +1))

17. Let G denote the graph G/[V]].

18. Let T'D be the tree decomposition of G obtained from the old T'D by leav-
ing out the subtree rooted at X ;

19. Gotostep 1

Notethat aterminal graph G that isreturned hasat most &+ 1 terminals, is open and connected,
and has at least » + 1 and at most 2(r + 1)(k + 1) vertices. O

6

The following theorem has been proved in a dightly different form in [2], but we give a
proof which may be somewhat easier to follow.

Theorem 2.1. Let & > 1 be a constant, P a graph property, and suppose P is of finite index.
There exists a finite, safe, complete and decreasing set of reduction rules R for P,.. Moreover,
for each reductionrule (H, H') € R, H and H' are open, and if H has one or more terminals,
then H is connected.

If there is also an equivalence relation ~; for each [> 1, which isa refinement of ~p, is
effectively decidable, and has a finite number of equivalence classes, then such a set of reduction
rules can effectively be constructed.

Proof. Notethat weonly haveto construct reductionrules (H, H'), for which thereisaterminal
graph G such that P,(H @ G) holds (and consequently, P, (H' ® G) holds).

For every [< k + 1, and every equivalence class c of ~p,_;, do thefollowing. If I = 0 and
¢ contains graphs with treewidth at most k, then take arepresenting graph H . from ¢ which has
treewidth at most £. If [> 1 and ¢ contains at least one open and connected [-terminal graph
which has treewidth at most k, choose a representing open, connected [-termina graph H. € ¢
with treewidth at most £. Let » be the maximum number of vertices of all chosen graphs H...

Let R denote the set of reduction rules to build. Firgt, for all zero-terminal graphs H with
atleast r + 1 and at most 2(r + 1)(k + 1) vertices, if we have arepresentative for the class ¢
which contains H, then add reduction rule (H, H.) to R. Next, foral I,1 <1 < k + 1, for all
open connected [-termina graphs H with at least » + 1 and at most 2(r + 1)(k + 1) vertices,
if we have a representative for the equivaence class ¢ in which H is contained, then add the
reduction rule (H, H.) to R. Note that if we do not have such a representative, then H must
have treewidth & + 1 or more, and hence there is no terminal graph G for which P,(H & G)
holds.

Itiseasy to seethat R isfinite: there arefinitely many /-terminal graphs with at most 2(r +
1)(k + 1) vertices. Safeness of the resulting set R follows directly from the fact that each left-
and right-hand-side of arulein R belong to the same equivalence class of therelation ~ p, ;. As,
by Lemma2.2, each graph with treewidth at most £ and at least r + 1 vertices, has an applicable

rule from the set R, completeness follows directly: theset {H | P(H) A ~3H' : H K H'}
contains only graphs with at most » vertices. It is obvious that R is decreasing.

We now show how we can effectively construct such a set of reduction rules. Note that the
non-constructive parts in the proof until now are the part of finding a representative for each
equivalence class which contains open terminal graphs with treewidth at most %, and the part
of testing in which equivalence class a graph is contained. For each [, let ~; be an effectively
decidable equivalence relation on [-terminal graphs that is a refinement of ~ p; and has afinite
number of equivalence classes.

Arnborg et a. [2] give away to construct, for a given integer m, a representative of each
equivalence class of ~; (0 < I < m + 1) which contains a graph for which there exists atree
decomposition of width m with all terminals in the same node.

Furthermore, Lagergren and Arnborg [10] give an effectively decidable equivalence rela-
tion N'ka,z’ which has afinite number of equivalence classes for each £ and [, and isarefine-
ment of ~7w, ;. This gives us enough ingredients to show how to construct reduction rules.
First consider the construction of representatives.

7

For each [and k, let ~; ; and ~; ; be equivalence relations on /-terminal graphs which are
defined as follows.

Gi~py Gy & G~y Gy NGy~ G
Gy~ Gy & Gr~p Gy A(Grisopen & Gy isopen)

Itisclear that both ~ ; and ~}, ; are effectively decidable, have afinite number of equivalence
classes, and are arefinement of ~p, ;. Furthermore, ~; ; isarefinement of ~; ;.

Let G bean [-terminal graph with [< k + 1, suppose G has treewidth at most k. Thereisa
tree decomposition of width 2k +1 of G inwhich all terminalsarein one node: take an arbitrary
tree decomposition of width & of G, append anode containing all terminals at an arbitrary place,
and add all terminals to all other nodes.

Use the result from [2] to generate a representative for each equivalence class of ~§€,l (for
each [< 2k + 1) which contains agraph for which there is atree decomposition of width 2k + 1
with al terminals in one node. After the generation, throw away al representatives with more
than £ + 1 terminals or with treewidth & + 1 or more. Theresulting set contains arepresentative
for each equivalence class of ~;, ;, 0 <1 < k + 1, which contains a graph of treewidth at most
k. Let R denote this set.

Now delete al graphsfrom R which are not open. Theresulting set contains arepresentetive
for each equivalence class of ~;, ; which contains open [-terminal graphs of treewidth at most
k, and hence thisis the set we need.

Now it iseasy to construct afinite, safe, complete and decreasing set of reduction rules. Let
r again be the maximum number of vertices of any graphin R. For al [< k& + 1, for al open
and, if | > 1, connected /-terminal graphs H with at least » + 1 and at most 2(r + 1)(k + 1)
vertices, findan H' € R for which H ~; H' (using the algorithm for deciding ~ ;). If an H'
isfound, then add the reduction rule (H, H') to an initially empty set of reduction rules R. O

Theopen and connectedness properties of the reduction rulesin Theorem 2.1 are not needed
for the algorithm of Arnborg et d [2], but they are used for the parallel agorithm of Bodlaender
and Hagerup [6], see also Section 6. As each right-hand-side of arule in R is open, applying
arulein R can never give multiple edges between apair of vertices. The connectedness of the
left-hand-sides of the reduction rules is used to obtain amore efficient way to find occurrences
of left-hand-sides of reduction rulesin agiven graph.

From the proof of Theorem 2.1, we can aso conclude the following.

Corollary 2.1. Let P be a graph property, and for each I > 0, let ~; be a refinement of ~p .
Let & > 1. If ~; hasa finite number of equivalence classesfor each [> 0, then thereisafinite,
safe, complete and decreasing set R of reduction rules for Py, such that for each (H, H') €
R, H ~; H'. Moreover, if ~; is effectively decidable, then such a set R can effectively be
constructed.

More background information about graph reduction and graphs of bounded treewidth can
befound in [4, §].

3 Constructing Solutions

Many graph properties are of the form P(G) = Jscpq) Q(G, S), where D(G) isasolution
domain (or shortly domain), which is some set depending on G, and Q) is a property of G and
S,i.e. Q(G,S) € {true, false} for al graphs G and al S € D(G). An S € D(G) for which
Q(G, S) holdsis called a solution for G. For example, for the perfect matching problem on a
graph G, D(G) can be P(E), the power set of E, and for S € D(G), Q(G, S) holdsif and
only if every vertex in G is end point of exactly one edgein S. Hence S isasolution for G if
S isaperfect matching of G.

Often we are not only interested in whether P(G) holds, but we are aso interested in a
solution S € D(G) for which Q(G, S) holds (if P(G) holds). However, such a solution is
not constructed if reduction algorithms are used: these algorithms only compute whether P(G)
holds or not. For instance, 3-COLORABILITY isof finite index, so there is afinite, safe, com-
plete and decreasing set of reduction rules for this property on graphs with bounded treewidth.
However, by reducing a given graph with these rules, we do not find a three-coloring for it if
one exists.

In this section we give an idea how to construct solutions in reduction agorithms, and we
give a condition for graph properties such that this idea can be used. We also show that con-
structive versions of graph properties that are M S-definabl e satisfy this condition.

Theideaisto solve the construction versions of problems asfollows. First apply areduction
algorithm and store the applied reductions and the place at which they are applied. Then, if
P(G) holds, construct a solution for the reduced graph. After that, undo the reductions one by
onein reversed order, and after each undo-action, reconstruct the solution for the old graph into
asolution of the new graph.

To keep thetotal running time of the algorithm linear in the number of vertices of the graph,
the total timefor all reconstructions of solutions must belinear. Thisispossibleif asolution for
the reduced graph can be constructed in constant time, and, for each undo-action, a solution for
the new graph can be computed from the old solution in constant time. This may for example
be possible if the new solution only differs from the old solution in the part of the graph that
wasinvolved in the undone reduction. Thisgivesrise to the following algorithm for agiven set
R of reduction rules for agraph property P with P(G) = Jscp(q) Q(G, S).

Algorithm ConstructSolution

Input: A graph G

Output: An S € D(G) such that Q(G, S) holdsif P(G) holds, false otherwise
1. <0

2. whilethereisapplicable reductionruler; = (H;, H!) € R
3 do apply r; to G and store place of application of r;

4. t—i+1

5 if=P(G)

6 then return false

7 else (x construct initial solution x)

8 let S € D(G) besuchthat Q(G, S)

9 whilei > 0

10. do (x undo reduction r; _; and reconstruct solution)

11 11 &1

12. undo reduction r;, let G’ denote new graph

13. let H besuchthat G = H ® Hand G’ = H; ® H

14. construct S’ € D(G") from S such that Q(G’, S’) holds, and S’ only differs
from S in part H;

15. G+ G S+ 9

16. return S

In analogy with ~p;, we define ~¢ ;. We show that if @ isof finite index, then thereis a
finite, safe, complete and decreasing set of reduction rules for P, (k > 1), and furthermore,
with this set of reduction rules, it is possible to use agorithm ConstructSolution for construct-
ing solutions. What remains after that is that, to keep the agorithm running in linear time, the
construction of a solution for the reduced graph must be done in constant time, and the con-
struction of a new solution from an old solution in the reduced part of the graph must be done
in constant time.

Before being able to define ~¢ ;, wefirst give anumber of other definitions. The first def-
inition we need is a definition of & for solutions of two /-terminal graphs.

Let D be some solution domain and let G; and G5 be [-terminal graphs. Let S € D(G &
G2). We have to define S[G] in such away that it only depends on G, i.e. it may not contain
vertices or edges which are not in G;. For most domains this works if S[G1] is obtained from
S by deleting all edges which are not in E(G-), and all vertices which are not in V' (G5) from
S. ([] should be seen as a function, mapping the pair (S, G) to S[G].)

Let D be a solution domain, and let a definition of [] be given. For each I > 0, each -
terminal graph G, define

D(G) = {S[G]| S € D(G & H) for some [-terminal graph H }.
Dp)(G) iscalled the domain of partial solutions of Gi. Notethat D(G) C Dyj(G).

Definition 3.1 (Inducibility). Let D be some domain. D isinducible if there is a function []
for D, such that for each graph G and for each pair of terminal graphs GG; and G, such that
G1® Gy = G,each S € D(G), thereisno S’ € D(G), S” # S, suchthat S'[G1] = S[G4]

Definition 3.2 (p-Compatibility). Let G and H be [-terminal graphs for somel > 0, let D
be an inducible domain, and let S € Dy(G) and S’ € Dyy(H). (G, S) and (H.S') are -
compatible if thereisan S” € D(G ® H) such that S”[G] = S and S"[H] = S'. If (G, S)
and (H, S") are &-compatible, then wewrite S & 5" = S”.

Notethat S5’ isdefined properly, sinceif thereisan S” € D(G®H) suchthat S = S”[G]
and S’ = S”[H], then this S” is unique, because D isinducible.

For example, if D(G) = P(V), then D isinducible with the common definition of [],
and D;(G) = D(G) for dl termind graphs G. If G = (V,E,(z1,...,2)) and H =

10

(V' E {y1,...,u1)) are l'-terminal graphs, and S € Dp(G), S" € Dyy(H), then (G, S) and
(H,S'") are ©-compatible if and only if

{i|1<i<IAz;€eS}={i|1<i<IAy €S}

Inthat case, S @ S’ issimply theunionof Sand S’ inG & H.
The following definition is necessary for the definition of ~, ;.

Definition 3.3 (Compatibility). Let D be an inducible domain, let G; and G5 be [-terminal
graphs for some! > 0,and let S; € D[](Gl) and Sy € DH(GQ). (G1,S1) and (G4, So) are
compatible if for each /-terminal graph H, each S € D}(H), (G1, S1) is ©-compatible with
(H,S) ifand only if (G2, S2) is é-compatible with (H, S).
Note that compatibility is an equivalence relation. The set of all these equivalence classes is
denoted by C.,p,, for each [, and the equivalence classes are also called competibility classes.
For two equivalence classes c and ¢’ of some equivalence relation which isarefinement of com-
patibility, we say that ¢ and ¢’ are &-compatible if, for each (G, S) € ¢, (H,S') € d, (G, S)
and (H, S") are &-compatible.

Let P be agraph property, and suppose P(G) can be written as 3scp(ay Q(G, S), such
that domain D isinducible.

Definition 3.4. For each ! > 0, ~(; is an equivalence relation on pairs of /-terminal graphs
G and partial solutions S € DH(G), which is defined as follows. Let G, Go be [-terminal
graphs, and S; € D[}(Gl) and S, € DH(GQ).
(Gl, Sl) ~Q,l (Gz, 52) < (Gl, Sl) and (GQ, 52) are Compallble and
Vi-terminal graphs H VSGD[](H)
(H,S) ®-compatible with (G, S1) and (G2, S2)
= Q(Gl @ H,S @S) = Q(GQ @ H, S @S)

Let C,; denote the set of equivalence classes of ~, ;, and for each (-terminal graph G and
S e D[](G), let BCQ,Z(G, S) =c,CcE CQ)[, if and onIy if (G, S) € cC.

By ~,¢,, we usually denote an equivalence relation which is a refinement of ~g ;. By
C.q, we denote the set of equivalence classes of ~,.¢ ;, and for each /-terminal graph G, each
S € Dp(G), ecrqu(G, S) = cif (G, S) isinequivalence classc € Cyq .

Definition 3.5. For each ! > 0, and for each refinement ~, ; of ~¢ ;, let =, ; be an equiva-
lencerelation on [-terminal graphs, whichisdefined asfollows. For each two [-terminal graphs
G4 and Go,

G1 =1 G2 & {ecqu(Gr,51) € Crgu| S1 € Dy(Gh) }
= {eci(G2,52) € Crgu | S2 € Dj(G2) }

Note that ~,.; is an equivalence relation.

Lemma3.1. For each [> 0, each refinement ~,.q ; of ~¢ 1, =, isarefinement of ~p;.

11

Proof. Let Gy and G2 be [-terminal graphs, Suppose Gy ~,¢, G2. We have to prove that for
al I-terminal graphs H, P(G1 & H) = P(Gy @ H). Suppose P(G1 & H) holds. Let S €
D(Gy @ H) suchthat Q(Gy @ H, S) holds. Let S| = S[G1] and S’ = S[H]. Since G ~,¢,
G, thereisan Sy € D[](Gz) such that (G, S1) ~rq, (G2,S2), and hence (G1,S1) ~q,
(G2, S5). Sincedomain D isinducible, (G4, S1) and (H, S) are &-compatible. Furthermore,
(G1,S1) and (G5, So) are compatible, so (G5, Sy) and (H, S') are aso &-compatible. Hence
QG H,S1®S)=Q(Gy® H,Sy® S"), s0 P(Gy & H) holds. By symmetry, this means
thatP(G1®H):P(G2@H). |

Let G be agraph. Suppose we run Algorithm ConstructSolution on G with a set of finite,
safe, complete and decreasing set R of reduction rules. Furthermore, supposethat in line 12 we
undo aruler; = (H;, H,) inG,and H; =g, H;. Let G’ and H be defined asin the algorithm.
Thenthereexistsan S’ € D(G'), suchthat Q(G', S”) holdsand S’ and S do not differin H (i.e.,
SI[H] = S[H]) let S” € D[](Hl) such that (Hi,S”) ~Q,l (H{,S[Hll]), andlet S’ = S" @
S[H]. This gives us an agorithmic method to quickly construct a solution for the unreduced
graph, given a solution for the reduced graph.

So what we need is afinite, safe, complete and terminating set R of reduction rules, such
that for each rule (G1,G32) € R, G1 =g, G2. We now show when thisis possible.

Lemma 3.2. If for eachl > 0, |C,q | isfinite, then =, ; has a finite number of equivalence
classes.

Proof. For each ! > 0, the number of equivalence classes of ~,.¢; isa mogt 2/C-el, whichis
finiteif |C,q | isfinite. 0

Notethat for |C..q ;| to befinite, |C¢ ;| must befinite, and hence also |C.,p ;| Must befinite.

Definition 3.6. For each £ > 1 and/ > 0, each refinement ~,.q ; of ~¢ , let =g be an
equivalence relation on [-terminal graphs, which isdefined as follows. For each two [-terminal
graphs G; and G,

Gl RrQk,l G2 == Gl ~rQ,l G2 A Gl ~NTW,l G?'
The analogy of Lemma 2.1 also holds for ~,.q ;.

Lemma3.3. For eachl > 0, if |C,,/| isfinite, then so is the number of equivalence classes
of RrQk,l-

Lemma3.4. Foreachk > 1,1 > 0, each refinement ~,.; of ~¢g 1, =k, IS arefinement of
Nkal'

Proof. Let Gy and G5 bel-termina graphs. Let H bean [-terminal graph, and suppose P(G1®
H) holdsand tw(G1 & H) < k. Then P(G5 & H) holds because of Lemma3.1. Furthermore,
tw(Go ® H) < k because of Definition 3.6. Hence for al [-termina graphs H, P(G1 & H) A
tW(GlEBH)Sk@P(GQ@H)/\tW(GQEBH)Sk. |

12

We now come to the main result of this section.

Theorem 3.1. Let P be a graph property. Suppose that the following conditions hold.

1. P can bewritten in the form

P(G) = Jsepa) Q(G, 9),

in such a way that domain D isinducible, @ is decidable, arefinement ~,.q ; of ~¢ ; is
decidable, and |C,.¢ | is finite,

2. Thereisafunction s, which assignsto each terminal graph G a positive integer, such that
for each S € Dy;(G), the number of bits needed to represent S isat most s(G).

3. For eachtwo fixed -terminal graphs H and H’, the following holds. For each I-terminal
graph G, if S € D(G & H), then S[H| can be computed from S and H in constant time,
and for each S € Dy(H'), such that (H, S[H]) ~,q; (H',S'), ' ® S[G] can be
computed in constant time from S, S’, H and H'.

Then for each k& > 1, thereis afinite, safe, complete and decreasing set R of reduction rules
for P, and there is an implementation of Algorithm ConstructSolution which can be used to
compute for each graph G, in linear time, an S € D(G) such that Q(G, S) holds, if P,(G)
holds.

If, in addition, @ and ~,.; are effectively decidable, s is effectively computable, and in
condition 3, S[H| and S’ & S|G| are effectively computable from S and H, then R and the
implementation of Algorithm ConstructSolution can be constructed.

Proof. Since |C,.q | isfinite, ~,qx,; has afinite number of equivalence classes, and it isa
refinement of ~p,_;. Let R be afinite set of safe, complete and terminating reduction rules,
such that for eachrule Hy — Hy, Hy =, H>. Notethat this set can be constructed, if ~,.
is effectively decidable, since in that case, ~,g; is effectively decidable (Theorem 2.1).

For each reductionrule Hy — H» inR, keep atable T for Hy, which contains for each pos-
sibleequivalenceclassc € g, apartia solution Sy € D[](Hl) suchthat ec,qr 1 (H1,S1) =
¢, if such asolution exists, and false otherwise.

Let G be agraph. Algorithm ConstructSolution can now be further refined as follows. In
line8,an S € D(G) (G isthereduced graph here) for which Q(G, S) holds can be constructed
asfollows. Each possible S € D(G) istried, and if Q(G, S) holds, then this solution is taken.
Note that this can be done in constant time, because of condition 2, and we can actually do it if
s is effectively computable and (Q is effectively decidable.

In line 14 of Algorithm ConstructSolution, the construction of S’ can be done as follows.
First S[H]] is computed. Then ¢ = ec, i (H,, S[H]]) is computed. After that S” = T'(c) is
obtained, and S’ = S” @& S|H] is computed. Note that all these steps can be done in constant
time, and we can actually do them if the constant time algorithms to compute S[H/] and S” &
S[H] are known.

This completes the proof. |

13

As an important special case, we consider the graph properties that are M S-definable (see
eg.[9) or [3]). Let k£ > 1. Suppose we have a graph property P which can be written as
P(G) = 3sep(a) Q(G, S), where D(G) = D1(G) x D2(G) x --+ x Dy(G) for somet >
1, each D;(G) iseither equal to V(G), to E(G), to P(V(G)) or to P(E(G)), and we have a
definition of @ in monadic second order logic. We show that Algorithm ConstructSolution can
be used to find for agiven graph G an S € D(G) such that Q(G, S) holds, if P(G) holds,
and that we can construct the finite, safe, complete and decreasing set of reduction rulesthat is
needed for the algorithm.

For each two [-terminal graphs G and H,each S = (S4,...,5:) € D(G@ H), let S|G] =
(S1[G], ..., S¢|G]), wherefor each i, S;[G] is defined as follows.

(S;iNV(Q) if Di(G) = P(V(Q))
SiNE(G) if D;(G) = P(E(G))
el s if Di(G) = V(G)AS; € V(G)
@l=9 . if DJ(G) = V(G)AS; ¢ V(@)
L € if Dl(G) = V(G) A S; ¢ E(G)

isV(G® H) or E(G® H), then Dp1;(G) = Di(G) U {e}.

With this definition of [], D isinducible, and |C.p,p, | isfinite, for each I > 0.

Borieet al. [7] have shown that for each k£ > 1, there isahomomorphism /., mapping each
pair (G, S), where G isan [-terminal graph, [< k, and S € Dy(G), to an element of afinite
set Ay, such that the following conditions hold.

1. Foreachl,!’ < k, eachl-terminal graph G and I’-terminal graph G, each S; € D[](Gl)
and S; € DH(GQ), if h(Gh Sl) = h(Gz, 52), then Q(Gl, Sl) = Q(GQ, 52)

2. Thereisafunction fg : A, x A — Ay, such that for each [< &, each two [-terminal
graphs G and H, each S € Dyj(G) and S' € Dpy(H), if (G, S) and (H, S') are -
compatible, then

hG®H,S®S) = fs(h(G,S),h(H,S")).

This homomorphism can be computed if we have a definition of @ in monadic second order
logic.

For each ! > 0, each [-termina graph G and S € D}j(G), let ec)(G, S) = (h(G, S),),
where ¢ € Cenp, issuch that (G, S) belongs to compatibility class c. Furthermore, let C; =
Ap X Ccmp,l1 and let (Gl, Sl) ~1 (GQ, 52) if and onIy if ecl(Gl, 51) = ecl(Gg, 52). Since |Ak|
and |Cermp | @re both finite, |C;| isalso finite. We now show that ~; is arefinement of ~¢ ;.

Let! > 0, let Gy and G5 be [-terminal gl‘aphS, let S| € DH(Gl)! Sy € DH(GZ); such
that G ~¢,; G2. We have to show that for all I-terminal graphs H, al S € D[](H) such that
(G1,S1) and (H, S) are @-compatible, Q(G1 & H,S1 & S) = Q(G2 ® H,S, & S). Let H
be an [-terminal graph, and let S € Dpj(H) suchthat (G, S1) and (H, S) are &-compatible.

14

Then, since h(Gl, 51) = h(GQ, 52),

h(G1® H,S1®S) = fa(h(G1,51),h(H,S))
= f@(h(G2752)ah(H7 S))
= h(GQ@H, S9 @S).

Hence Q(G1® H,S1®S5) = Q(Ga® H, S2® .S). Thisshowsthat condition 1 of Theorem 3.1
holds.

Condition 2 of Theorem 3.1isalso satisfied, sinceeach S € D(G) hasat most O(t|V (G)|+
t|E(G)|) elements (vertices and edges).

Now consider condition 3. We use a data structure for storing tuples S = (Sy,...,5;) €
D[](G), which consists of an array of ¢ data structures for each S;. If .S; isaset of vertices or
edges, then these vertices or edgesare put inalist. If S; isavertex or edge, or ¢, then this vertex
or edge or ¢ isstored. Furthermore, we keep a pointer from each vertex and edge to each place
in the data structure where this vertex or edge occurs. There are at most ¢ of these pointers for
each vertex and each edge.

For each two fixed [-termina graphs H and H’, each [-terminal graph G, if we have S ¢
D(G @ H) stored in thisway, then we can compute S[H] asfollows. Make anew data structure
for S[H| with each S;[H] empty for each i. For each vertex v in H, follow the pointers from v
to the places in which it occursin S, and check in which part S; of S it occurs. Then add v to
S;[H]. Do the same for al edges. Then for each i, check if D; isaset of vertices or edges, but
thereisno vertex or edge in the data structure at thelocation of S;[H|, and if so, add e to S;[H].
Thiscan al be donein constant time, since H has constant size, and each vertex or edge occurs
at most oncein each .S;, so at most ¢ timesin S.

Let ' = (Si, .. ,S{) S DH(HI) such that (H, S) ~rQ,l (HI,SI). S' @ S[G] can be
computed as follows. For each vertex v of H which isnot aterminal, follow the pointers from
vtoal placesin S whereit occurs, and deleteit there. Do the samefor al edgesin H for which
at least one end point is not aterminal.

For each vertex v of H’ which isaterminal, follow the pointers from v to al pointersin S’
where it occurs, and delete v at that place. Do the same for all edgesin H' of which both end
points are terminals.

Next, for each i, 1 < i < ¢, append thelist S! to the list S;. The resulting data structure
represents S’ & S[G]. Hence Algorithm ConstructSolution can be used.

The following theorem follows.

Theorem 3.2. Let P(G) = Jgepey Q(G,S) and let k > 1. If Q is MSdefinable, and
D(G) = D1(G) x---x D¢(G), for somet > 1, suchthat for each i, D;(G) iseither P(V (G)),
P(E(G)), V(G)or E(G), thenthereisafinite set of safe, complete and terminating reduction
rules and an implementation of Algorithm ConstructSol ution which can be used to construct in
linear timean S € D(G) suchthat Q(G, S) halds, if P,.(G) holds.

If in addition, we have a definition of (Q in monadic second order logic, then such a set of
reduction rules and implementation of Algorithm ConstructSolution can be constructed.

Asacorollary, we aso have the following.

15

Corollary 3.1. Let P be a graph property. Suppose that P can be written in the form

P(G) = 3sep,(a)x-—xDi(c) QG, S),

in such a way that for each G and i, D;(G) isequal to V(G), E(G), P(V(G)) or P(E(G)),
and furthermore Q is decidable, a refinement ~, ; of ~¢; isdecidable, and |C;q | is finite.
Then for each k& > 1, thereis afinite, safe, complete and decreasing set R of reduction rules
for P, and an implementation of Algorithm ConstructSolution which can be used to compute
for each graph G, inlinear time, an S € D(G) such that Q(G, S) holds, if P,(G) holds.

If, in addition, @ and ~,; are effectively decidable, then R and the implementation of
Algorithm ConstructSolution can be constructed.

4 Optimization Problems

In this section we show how the idea of reduction agorithms can be extended to optimization
problems.

Let R be a function, mapping the set of graphsto Z U {false}. Typicaly, R will be an
optimization problem, like independent set, vertex cover, etc. We will call R agraph optimiza-
tion problem. The value false is used to denote that a certain condition does not hold. Denote
Z =17 U {false}. Define addition on Z asfollows: if i,j € Z , then we take for i + j the
usual sum, and for all ¢ € Z, ¢ + false = false + i = false.

Instead of reduction rules, we use reduction-counter rulesfor graph optimization problems.

Definition 4.1. A reduction-counter rule isa pair ((H,H'),:), where (H, H') is a reduction
rule, and i € Z . An application of reduction-counter rule ((H, H'),) is the operation, that
takes a counter ent € Z and a graph G of theform G & G3, with G; isomorphic to H, and
replaces cnt by ent + i and G by the graph Gy @ G3, with G5 isomorphic to H,. We write
G5 Gyd Gs.

For two graphs GG and G’, and aset of reduction-counter rules R, wewrite G R G, if there
exitsanr = ((H,H'),i) € RwithG = G'.

To be able to use areduction agorithm with reduction-counter rulesfor graph optimization
problems, we need a notion of finiteness, safeness, compl eteness, termination and decrease for
aset of reduction-counter rules.

Definition 4.2. Let R be a graph optimization problem. Let R be a set of reduction-counter
rules.

e R issdfefor R if, whenever G = G’ for somer = ((H,H'),i) € R, then R(G) =
R(G") +i.

R iscomplete for R if the set of graphs {G | R(G) # false A-3G" : G R G'} isfinite.

R isterminating if there does not exist an infinite sequence G X Gy Y G ...

R isdecreasing if whenever G Y @', then G’ contains fewer vertices than G.

16

To solve a graph optimization problem R on agraph G with alinear time reduction algo-
rithm, we can now use afinite, safe, complete and decreasing set R of reduction-counter rules
asfollows. Apply the reduction algorithm as usua, using R, but maintain during the reduction
an integer counter. Initially, this counter is equal to zero, and after applying a reduction rule
((H,H'),1), the counter isincreased by i. Let G; denote the graph after the jth reduction is
applied, and let cnt; denote the value of the counter at this moment. It isimportant to note that
the sum of R(G;) and the counter isequal for all j. Thus, at each moment in the reduction algo-
rithm, R(G) = R(G;)+cnt;. Hence, when G has been rewrittento asmall graph G, and G is
inthefiniteset F = {G | R(G) # false A~3 G 5 G'}, then R(G) = R(GY) + enty, which
can be computed easily, since G issmall. However, if Gy isnotin F, then R(G) = false.

In analogy with ~p; for graph properties P, we define ~r ; for graph optimization prob-
lems R.

Definition 4.3. For a graph optimization problem R the equivalence relation ~x; on [-
terminal graphs is defined as follows.

G1 ~p1 G2 & EligZ vl-termina]sgrapth R(Gi© H) = R(G2® H) + i.

Optimization problem R is of finite integer index if the number of equivalence classes of ~r
isfinite, for each fixed .

Note that aif reduction-counter rule ((H, H'), i) is safe for a graph optimization problem
R,then H ~p; H'. Furthermore, if H ~p; H' for two [-terminal graphs H and H', then there
isareduction-counter rule ((H, H'), i) for somei € Z .

For given R, let C'r; be the set of equivalence classes of ~ ; and for each [-terminal graph
G,letecr(G) = cif c € Cr; and G belongs to equivalence class c.

For agraph optimization problem R and an integer £ > 1, the graph optimization problem
Ry, is defined as

| false iftw(G) >k
(@) = { R(G) otherwise

Lemmad4.l. If R isof finite integer index, then for each k& > 1, R, is of finite integer index.

Proof. Foreachl > 0, let ~; bethe equivaence relation on [-terminal graphs which is defined
asfollows.
G1~ Gy & G~ Ga NG ~1w, 1 G2

If Gi ~ Go,then Gy ~gr; Gy and G ~rw, ; G2, and hencethereisan: € Z , such that for
al I-terminal graphs H, Ry, (G1 & H) = Ri(G2 @ H) + 1. Hence ~; isarefinement of ~p, ;.
Furthermore, for each > 0, ~; has afinite number of equivalence classes, hence so has ~p, ;.

O

The following theorem is the analogy of Theorem 2.1 for finite integer index problems.

17

Theorem 4.1. Let k be a constant, suppose R is a graph optimization problem which is of fi-
nite integer index. Then there exists a finite, safe, complete and decreasing set R of reduction-
counter rules for R;,. Moreover, for each reduction-counter rule ((H, H'),i) € R, H and H'
are open, and if H has one or more terminals, then H is connected.

If, in addition, there is an equivalence relation ~; for each [> 0, which is a refinement of
~r,1,» Which is effectively decidable, has a finite number of equivalence classes, and for each
pair H,H', if H ~; H', then we can effectively compute an i € Z such that for each G,
R(H®G) = R(H'®G)+1, then such aset R of reduction-counter rules can be constructed,
and for each ((H, H'),i) € R, H ~; H'.

Proof. Let P be the graph property, defined as follows. For each graph G, P(G) = (R(G) #
false). Foreachl > 0, ~p; isarefinement of ~p;, and ~p, ; isarefinement of ~p, ;. Hence,
with Corollary 2.1, there is afinite, safe, complete and decreasing set R of reduction rules for
Py, such that for each (H,H') € R, H ~p,; H'. For each reduction rule (H, H'), make a
reduction-counter rule ((H, H'),i), where: = 0 if for all G, R(H & G) = false (and hence
R(H'® G) = false),i = R(H ® G) ©R(H' ® G) for some G suchthat R(H © G) € Z
otherwise. Let R’ denote the set of all these reduction-counter rules. Then R’ is afinite, safe,
complete and decreasing set of reduction-counter rules for R.

If we have arefinement ~; of ~p;, for each [> 0, then we can construct afinite, safe,
complete and decreasing set R of reduction rules for P, such that for each rule (H, H') € R,
H ~; H'. If wecan computeani € Z for which R(H & G) = R(H' ® G) + i for each G,
then we can again turn each of theserules (H, H') in areduction-counter rule ((H, H'), i) with
i defined as above. O

Note that the algorithm of Arnborg et al. [2] can easily be adapted to solve a graph opti-
mization problem with afinite, safe, complete and decreasing set of reduction-counter rules. In
Section 6 we show that the efficient parallel algorithm of [6] can be adapted to solve graph op-
timization problems with afinite, safe, complete and decreasing set of reduction-counter rules.

In the remainder of this section, we therefore give a method which makesiit easier to prove
that a graph optimization problem is of finite integer index if it has the following form.

R(G) = opt{z(S5) | S € D(G) A Q(G, 5)},

where D is a solution domain, for each S € D(G), z(S) € Z, and either opt = max or
opt = min. (If thereisno S € D(G) for which Q(G, S) holds, then we define R(G) to be
false.)
Also, we use this method for a number of problems to prove that they are of finite integer
index, and we show for a number of other problems that they are not of finite integer index.
Given R, z, D, asabove, and afixed refinement ~,. ; of ~¢ ;, we define for each /-terminal
graph G and ¢ € C,g, opt(G, c) € Z asfollows.

opt(G,c) = opt{z(S) | S € D;j(G) A ecrqu(G, S) = ¢}
If thereisan S € Dpj(G) such that ec.q (G, S) = c, thenlet optS(G,c) € Dy(G) be
such that ec,q (G, optS(G,c)) = cand z(optS(G,c)) = opt(G,c). opt(G,c) represents

18

‘the value of the best partial solution on G in equivalence class ¢’, and optS(G, ¢) gives such
apartial solution (if existing).
Let ~p; beasdefined in Section 3.

Theorem 4.2. Let R(G) = opt{z(S) | S € D(G) A Q(G, S)}. Suppose D isinducible for []
and thereis a refinement ~,. ; of ~¢ ; for which the following conditions hold.

1. Foreach! > 0, |C,q,| isfinite (C,q isthe set of equivalence classes of ~,. ;).

2. Function z can be extended to the domain of partial solutions for terminal graphs (i.e.
z: Dp)(G) — Z for each terminal graph G) such that the following holds.

(@ Foreach! > 0,eachc,d € C,q,, if cand ¢ are ¢-compatible, then thereisa
constant d;(c, ¢’) € Z suchthat for all i-terminal graphs G and H, all S’ € D(G),
S" e D(H),if (G,S) € cand (H,S") € ¢, then z(S" & 5") = (") + 2(5") &
di(e,c).

(b) For each ! > 0, thereisa constant K; € IN, and for each [-terminal graph G
thereisan integer i € Z , such that for each partial solution S € DH(G), if
|2(S)sig| > K, then S cannot lead to an optimal solution, i.e. for each [-terminal
graph H, foreach S’ € D(G @ H), if Q(G ® H,S") holdsand S'[G] = S, then
2(S') # R(G & H).

Then there is an equivalence relation ~; which is a refinement of ~ ; and has a finite number
of equivalence classes for each [> 0, and hence R is of finite integer index.

If, in addition, ~,¢ ; is effectively decidable, there is an effectively computable function s,
which assigns to each graph G' a positive integer, such that for each S € Dy;(G), the number
of bitsto store S isat most s(G), and z(.S) is effectively computable for each terminal graph
G and each S € Dpy(G), and for each terminal graph G, i¢ is effectively computable, then
~ is effectively decidable, and for each two /-terminal graphs H and H', if H ~; H', then
we can effectively compute an i € Z , such that for each [-terminal graph G, R(H & G) =
R(H'®G) +1i.

Proof. Suppose conditions 1 and 2 hold for R. Let =z on partial solution domains be defined
asin condition 2. For each [> 0, let d; be asin condition 2(a), let i; € IN be asin condition
2(b), and for al [-terminal graphs G, let iz € Z. be asin condition 2(b).

We construct an equivalence relation ~; on [-termina graphs, such that ~; is a refinement
of ~x, and we show that ~; has afinite number of equivalence classes for each /.

For each [> 0, each [-terminal graph G, let f be afunction mapping each c € C,q to
the set { <K, ..., K} U {false}, and, for each ¢ € C}, let

folc) = max(G,c) i If ©K; < max(G,cq) ©ig < K|
G997 false otherwise.

Foreach! > 0,let G} ~; G2 & fa, = fa,, and let C; denote the set of equivalence classes
of ~j.

19

{eK, ..., K} U {false}| = 2K; + 2, which depends only on /. Furthermore, for each
[>0, |Crq,| is constant, which means that there are at most a constant number of different
functions f¢, so |C| isfinite.

We now have to prove that ~; is arefinement of ~ 5, i.e. we have to prove that for all [-
terminal graphs G and G, if G ~; G, thenthereisani € Z , such that for al [-termina
graphs H, R(Gy & H) = R(G5 @ H) + i. We only show this for the case that opt = max. If
opt = min, the proof is similar.

Suppose fi, = fa, = f. Weshow that R(G, ® H) = R(Gy ® H) + iq, ©ia, (Where
iq, andig, arethe integers as defined in condition 2(b) of the theorem).

First consider thecasethat R(G & H) = false. Then{S € D(G1®H) | Q(G1®H,S)} =
(,since z(S) € Z foreach S € D(Gy ® H). Thismeansthat for each ¢ € C}, if f(c) # false
(hencethereisan Sy € Dyj(G1) withec;(Gq,.51) = cand Sy canlead to an optimal solution),
thenfor dl ¢ € €y, if c and ¢’ are @-compatible, fx(c') = false (i.e. thereisno Sy € Dpy(H)
such that (G4, S1) and (H, Sy) are &-compatible and Sy may lead to an optimal solution).
This also means that for all Sy, € D[](Gz), if Sy can lead to an optimal solution, then there
isno Sy € Dpj(H) such that (G, S2) and (H, Spr) are &-compatible and S” may lead to an
optimal solution. Hence R(G1 & H) i, = false = R(G2 ® H) <ig,.

Suppose R(G1 @ H) € Z . Let S € D(G1 © H) be such that Q(Gy @ H, S) holds
and Z(S) = R(G1 ©® H) Let Sy = S[H], S = S[Gl], c = eCrQ,l(GhSl) and
d = ec,gi(H,Sy). Wefirst show that z(S;) = max(Gi,c). Suppose not. Then there
isan S € Dpj(Gy) such that ec,qi(G1,51) = cand 2(S]) = max(G1,c). But then
Q(Gl ¢ H, Si D SH) = Q(G1 G H,S| ® SH) = true, and Z(Si D SH) = Z(Si) + Z(SH) =
di(c,d) > z(S1) + 2(Sy) edi(c,d) = 2(S1 & Sg) = R(G1 & H), which isacontradiction.

Since S isoptimal and z(S;) = max(G1, ¢), it must hold that 2(S1) = ig, + f(c). Since
f(c) €Z ,max(G2,c) € Z ,and hencethereisan Sy € Djj(G2) suchthat ec,q i(Ga, S2) = ¢
and z(S2) = max(Ga, ¢). Furthermore, Q(Gy & H, Sy & Sy) holds, and

RG>y D H) > 2(S»® Sy)
= 2(S2) + 2(Sy) &dc,)
— {2(S5) = max(Ga, H) = £(c) + iy}
F(0) + iy + 2(Si) Sdi(e,d)
= fle)+ig, ig, +ig, +2(Sk) &di(c,d)
= {2(51) = flo) + i}
2(S1) + 2(Sy) di(c,) Sig, +ia,
= z2(5) ©ig, +ia,
= R(G\ @ H) eig, +ic,.

Hence R(G1® H)iy < R(Go®H)iy, Bysymmetry, R(Gy®H)<is < R(G1DH)<,
which means that R(G1 D H) S = R(GQ D H) Sio.

We have now shown that ~; is arefinement of ~p;, for each [> 0. Since |C}| isfinite for
each [, this meansthat R is of finite integer index.

If ~.q, is€ffectively decidable, we have an effectively computable function s, i is effec-
tively computable for each G, and z(S) is effectively computable for each S, then ~; is effec-

20

tively decidable, and we can effectively compute for each pair of /-terminal graphs H, H', an
i € Z suchthat for each I-termina graph G, R(H & G) = R(H' & G) + i. 0

While the theorem may seem complex to use, it isin most cases not hard to find an equiva
lence relation ~,. ; which satisfies conditions 1 and 2(a). Only condition 2(b) is often not easy
to prove. Therefore, we give two other theorems, which are weaker than Theorem 4.2, but eas-
ier to use for showing problems to be of finite integer index, as will be demonstrated later in
this section.

Theorem 4.3. Let R(G) = opt{z(S) | S € D(G) A Q(G, S)}. Suppose D isinducible for []
and there is a refinement ~,.g ; of ~¢ ; for which condition 1 of Theorem 4.2 holds, and = can
be extended to the domain of partial solutions such that condition 2(a) of Theorem 4.2 holds,
and

2(c) for each ! > 0, thereisa constant K; € IN, such that for each [-terminal graph G' and
for each ¢, € €y, if opt(G, ¢) # false and opt(G, ¢’) # false and partial solutions in
class ¢ or ¢ may lead to a solution, then |opt(G, ¢) <opt(G,)| < K.

Then condition 2(b) of Theorem 4.2 also holds.

Proof. Suppose conditions 1 and 2(a) of Theorem 4.2 hold, and condition 2(c) holds for R.
Let z be asin condition 2 and for each [> 0, let d; be asin condition 2(a), let K; € IN beas
in condition 2(c). For al /-terminal graphs G, let i = 0 if thereisno S € Dy;(G) which can
lead to asolution, otherwise, let i; = opt(G, ¢) for some ¢ € C; which may lead to a solution.

We now show that with these definitions of K7 and i, condition 2(b) of Theorem 4.2 holds.
We only consider the case that opt = max. The case that opt = min can be proved similarly.

Let G beani-terminal graph, let S € D;j(G), letc = ec;(G, S), and suppose | z(S) <ig| >
K. If z(S) < opt(G,c), then S can not lead to an optimal solution, since for each I-terminal
graph H, each S € D(G & H), if S’[G] = S, then z(S") < z(optS(G,¢c) & S'[H]), and
Q(G @ H,S') haldsif and only if Q(G & H,optS(G, ¢) & S[H]) holds.

If 2(S) = opt(G, ¢), then by condition 2(c), |2(S) <ig| < K;. O

Theorem 4.4. Let R(G) = opt{z(S) | S € D(G) A Q(G, S)}. Suppose D isinducible for []
and there is a refinement ~,. ; of ~¢ ; for which condition 1 holds, and = can be extended to
the domain of partial solutions such that condition 2(a) holds, and

2(d) for each > 0, thereisa constant I € IN, and with each /-terminal graph G, we can
associate an equivalence class c € C..q,, such that the following holds.

(i) For all i-terminal graphs G and H, and S € Dp(G), S € Dp(H), if
eCTQ’l(G,S) = ¢q and BCTQ,Z(H, SI) = cg, then (G,S) and (H, SI) are @-
compatible, and Q(G @® H, S ¢ S’) holds.

(ii) If opt = max, then for all /-terminals graphs G, all S € Dy(G), if S can lead to
asolution (i.e. thereisan (H, S”) suchthat Q(G & H, S & S’) holds), then z(S) <
opt(G, cq) < K.

21

(iii) 1f opt = min, then for all I-terminalsgraphs G, all S € Dpy(G), if S canleadto a
solution, then opt(G, cq) <2(S) < K.

Then condition 2(b) of Theorem 4.2 also holds.

Proof. Suppose conditions 1 and 2(a) of Theorem 4.2 hold, and condition 2(d) holds for R.

Let z beasin condition 2, and for each I > 0, let d; be asin condition 2(a), let K] € IN be as

in condition 2(d), and for all I-terminal graphs G, let c € C,.g,; beasin condition 2(d).
Foreach! > 0, let

K, = K] 4+ 2max{|d(c,d)| | e,c € Crgu A cand ¢ are d-compatible},
and for each [-termina graph G, let

.} opt(G,cq) ifopt(G,cq) # false
‘G710 otherwise.

We now show that with these definitions of K; and ¢, condition 2(b) of Theorem 4.2 holds.
We only consider the case that opt = max. The case that opt = min can be proved similarly.

Let G be an [-terminal graph, let S € Dyj(G), and suppose |2(S) <ig| > K;. We have
to show that S can not lead to an optimal solution. Suppose S leadsto asolution. Let H bean
[-terminal graph and suppose thereisan S’ € D(G @ H) such that Q(G @ H, S’) holds and
S'|[G] = S. Weshow that z(S") < R(G @ H). Let Sy = S'[H], let ¢ = ecg, (G, S) and let
d =ec,qi(H,Su).

Because of condition 2(d)(ii), z(S) ©max(G, c¢¢) < K, which meansthat z(S) # false
and max(G, ci) # false, hencei; = max(G, c¢g). Thismeansthat z(S)<ig < K;, and hence
i <z(S) > K, 90 2(S) < max(G, cq) < K;. Furthermore, because of condition 2(d)(ii),
2(Sy) < max(H, cy) + K. Thismeans that

2(8") = 2(S)+ 2(Sy) &d(c,)
< max(G,cq) &K+ max(H,cy) + K] <di(c,c)

{ by definition of K}
max(G, cq) + max(H, cy) <di(c, ') ©2max{di(c,d) | ¢,d € Crg,}
z(maxS(G, c¢)) + z(maxS(H, cy)) ©max{d(c,c') | ¢, € Crg,}
{ condition 2(d)(i) }
z(maxS(G, cq) ® maxS(H, cpr))

+ di(cq, cr) ©max{di(c,d) | ¢, € Crgy}
z(maxS(G, cq) ® maxS(H, cpr))
R(G® H).

IA

IA N

Hence z(S’) < R(G @ H). This completes the proof. O

We now give a number of graph optimization problems for each of which we can either
prove that it is of finite integer index by using the method of Theorem 4.2, Theorem 4.3, or
Theorem 4.4, or we can prove that it is not of finite integer index.

22

Definition 4.4 (INDUCED BOUNDED DEGREE SUBGRAPH)
Given: A fixed integer constant p > 0, agraph G = (V, E).
Find: The maximumvalue of | S|, where S C V and all verticesin G[S] have degree at most p.

For p = 0, thisisthe INDEPENDENT SET problem.

Definition 4.5 (p-DOMINATING SET)

Given: Afixed integer constant p > 1,agraph G = (V, E).

Find: Theminimumvalue of |S|, where S C V" and all verticesin V' <-S have at least p neigh-
borsin S.

For p = 1, thisisthe DOMINATING SET problem.

Definition 4.6 (PARTITION INTO CLIQUES)

Given: Agraph G = (V, E).

Find: The minimum value of s, such that there is a partition {V1,...,V;} of V in which for
eachi, 1 <i < s, G[V;] isa complete graph.

Definition 4.7 (COVERING BY CLIQUES)

Given: Agraph G = (V, E).

Find: The minimum value of s, such that thereisa set {V7,...,V,}, inwhichfor each i, 1 <
i <s,V; CV,G[V;] isacomplete graph, and for each edge e € F, thereisani, 1 <i < s,
suchthat e € E(G[V;]).

Definition 4.8 (HAMILTONIAN PATH COMPLETION NUMBER)

Given: Agraph G = (V, E).

Find: The minimum value of |S|, where S C {{u,v} | u,v € V},suchthat G' = (V,E U S)
contains a Hamiltonian path.

Definition 4.9 (MAXIMUM CUT)

Given: Agraph G = (V, E).

Find: The maximum value of z((V1, V%)), where (V;,V3) partitions V, and z(V3,V5) =
{{v,w} € E|veViAweVy}.

Definition 4.10 (MAXIMUM LEAF SPANNING TREE)

Given: Agraph G = (V, E).

Find: The maximum value of z(T'), where T' is a spanning tree of GG, and z(T") denotes the
number of vertices of degree one of T.

Definition 4.11 (LONGEST PATH)
Given: Agraph G = (V, E).
Find: The maximum value of s, such that thereisa path (vy,vs,...,vs) ING.

Definition 4.12 (LONGEST CYCLE)

Given: Agraph G = (V, E).
Find: The maximum value of s, such that thereisa path (vy,...,vs) in G, and {vs,v1} € E.

23

(The problem HAMILTONIAN CIRCUIT COMPLETION NUMBER can be solved using re-
sultsfor HAMILTONIAN PATH CoMPLETION NUMBER and is not further discussed here.)

Theorem 4.5. The following graph optimization problems are of finite integer index:
1. INDUCED BOUNDED DEGREE SUBGRAPH for all p > 0,
2. p-DOMINATING SET for all p > 1,
3. MAxiMuM CuUT on graphs with bounded degree,
4, PARTITION INTO CLIQUES,
5. HAMILTONIAN PATH COMPLETION NUMBER, and
6. MAXIMUM LEAF SPANNING TREE.

For each of these problems on graphs with bounded treewidth, a finite, safe, complete and de-
creasing set of reduction-counter rules can be constructed.

Proof.

1 INDUCED BOUNDED DEGREE SUBGRAPH. Letp > 0befixed. D(G) = P(V'), and for
agiven graph and solution S € D(G),

Q(G,S) =Vyes |Na,s(v)| < p,

where
Ngs(w)={we S| {v,w} € E(G)},

z(S) = |S|, and opt = max. For two [-terminal graphs G and H,and S € D(G & H), let
S[G] = SNV(G), and let 2(S[G]) = |S[G]|. Hence Dyy(G) = D(G), and two solutions S €
Dy(G)and S" € Dyj(H) are compatible and &-compatible if they contain the same terminals.
Foreachl! > 0,let I; = {1,...,l},let F; = {{i,j} | 1 < i < j < I}, and for each
I-terminal graph G = (V. E, (x1,...,x1)), et F(G) = {{i,j} | {zi,z;} € E}.
Foreachl > 0, let

Crg; = {(I,false) | I C L} U{(F,I,N)|F CF
AT CLHANC{@,n)]|ie[Ane{l,...,p}}.

|Crq,1| is bounded, because p is fixed. For each [-terminal graph G = (V, E, (x1,...,21)),
exch S € Dy(G), let ec,qu(G, S) € Crq, be defined as follows. If thereisav € S such
that |N¢,s(v)| > p, thenec,q (G, S) = (I, false), whereI = {i € I; | z; € S}, otherwise,
ec;i(G,S) = (F,I,N), where

F = F(G),
I = {iel;|z €S},
N = {(i,|Nas(@i)l) | i € I}.

24

Let Gy = (Vi, Eq, (21, ..., 2)) and Gy = (Va, B9, (y1, ..., y)) betwo [-terminal graphs,
let S € D[](Gl) and S; € D[](Gz) (Gl,Sl) ~rQ,l (GQ,Sz) if and onIy if BCTQ,Z(GI,Sl) =
ecr,(G2,S2).

Wefirst show that ~, ¢ ; isarefinement of ~¢ ; for al I. Suppose (G'1, S1) ~rq.1 (G2, S2).
Clearly, (G1,S1) and (G», So) are compatible. We have to show that for each I-terminal graph
H = (VH,EH, (Zl,. .. ,Zl>), each Sy € DH(H) such that (GI,SI) and (H, SH) are @-
compatible, Q(G1 @& H,S; & Sy) holds if and only if Q(Gs & H, Sy, & H) holds. Let H
be an [-terminal graph, let Sy € D(j(H) suchthat (G1, S1) and (H, Sy) are &-compatible. If
BCTQJ(Gl,Sl) = BCTQJ(GQ, 52) = (I, false) for some I C I, then Q(G1 e H,S1 & SH) =
false = Q(G2 G H, Sy ® SH) SUppOSE BCTQ,Z(GI,Sl) = eC,,-Q’l(G27 Sg) = (F,I, N), where
N ={(i,n;) | i € I}.

Q(G1® H,S & Si)
Voesiasy INGioH,S 055 (V)] < p
Vier |Nm,su(2i)| + |Nay s, (i) <{j € I | x5 € Ney s, (xi) Azj € Nusy (2} <p
AVyes,—x [Nays, (v)] <p
AVoesy—z |Nmsy(v)] <p
= Vier [Nm,sy ()| + [nil {7 € I'|{i,j} € FA{z, 2} € E(H)} <p
AVoes;—x |Nay,s, (v)| < p
AVoesy—z |Nmsy(v)] <p
= Vier|Nusy ()| + [Na,s,(yi)| < {7 € I'| yj € Nao,s, (¥i) Azj € Nusy (i)} < p
AVoesy—v [NGy,s, (V)] < p
AVoesy—z |Nmsy(v)] <p
= Q(G2® H,Sy ® Sp)

Hence ~,¢ ; isarefinement of ~(;.

We now show that d; is well defined for @l I > 0. Let ¢, € C,q,, such that c and ¢
are compatible. Let I C I; such that ¢ = (I,false) or ¢ = (F,I,N) for some F and N, and
' = (I,false) or ¢ = (F',I,N') for some F' and N'. Let G and H be [-termina graphs,
let S € Dyy(G) and S" € Dpy(H) such that ec,q (G, S) = cand ec,g(H,S') = ¢'. Then
|IS® S| =|SuS|=|S|+ |9 <|I|, henced;(c,) = |I.

We now define K; and ¢ for all I > 0 and al I-terminal graphs G, as in condition 2(d)
of Theorem 4.4. Foreach! > 0, let K; = [, and for each [-termina graph G, let ¢ =
(F(G),0,0). Clearly, for each I-terminal graphs G and H, each S € Dyj(G) and S” € Dyy(H),
if ec,g (G, S) = cqgandec,q(H,S") = cy, then (G, S) and (H, S') are &-compatible, and
Q(G® H,S®S") holds. Furthermore, for each [-terminal graph G = (V, E, X),andeach S €
Dpy(G) that can lead to asolution (i.e. ec.q (G, S) # (F(G), false)), ecq (G, S ©X) = cg
and |S| emax(G,cq) < |S|e|SeX| <l =K.

This proves that MAXIMUM DEGREE BOUNDED SUBGRAPH is of finite integer index for
al fixed p > 0.

25

2 p-DOMINATING SET. Letp > 1 befixed. This proof is similar to the previous one.
D(G) ="P(V), for dl I-terminal graphs G, S € D(G),

Q(Ga S) = vaV—S |NG,S(@)| > D,

2(S) = |S|, and opt = min. [] isdefined inthe sameway asfor INDUCED BOUNDED DEGREE
SUBGRAPH, and hence so are & and (&-)compatibility. For each [> 0, let

Crgr = {(I,false) | I CL}U{(F,I,N)|F CF
AN CLANCH{@,n)|ie<IAne{l,...,p}}.

For each /-terminal graph G = (V, E, X = (x1,...,21)),8h S € D}j(G), letec,q (G, S) €
Crq, be defined as follows. If thereisav € V & X such that [Ng s(v)] < p, then
BCTQ,Z(G, S) = (F(G), false). Otherwise, eCrQ’l(G, S) = (F,I, N), where

F = F(G),
I = {iel;|z €S},
N = {(i,INas(x)]) | i € I <L}

In the same way as for INDUCED BOUNDED DEGREE SUBGRAPH it can be shown that
~rq, isarefinement of ~¢ ;.

For each [> 0, d; is defined in the same way as for INDUCED BOUNDED DEGREE SUB-
GRAPH, since d; only dependson D.

We show again that condition 2(d) of Theorem 4.4 holds. Foreach [> 0, let K; = [, and
for each [-termina graph G, let ¢ = (F(G), I}, (). Clearly, for al [-termina graphs G and
Hand S € DH(G)’ S e DH(H) such that ech’l(G,S) = ¢ and ech’l(H, SI) = ¢y,
Q(G @ H,S ® S’) holds. Furthermore, for each [-terminal graph G = (V,E, X),each S €
Dp(G),ifec,u(G, S) # (F(G), false), thenec,q (G, SUX) = cg, and min(G, cg)<{ S| <
|ISUX|<|S| <l=K,.

3 MAXIMUM CuUT on graphs with bounded degree. Let d > 0 be the maximum degree
of the graphs. For each graph G, let D(G) be the set of pairs (V4, V3), such that V7 and V5
partition V. For each two [-terminal graphs G and H, and S = (V4,V,) € D(G @ H), let
S[Gl = (Vi nV(G),V2 NV (G)). Notethat D(1(G) = D(G), and that D isinducible for [].
Two pairs (G, S) and (H, S) are (¢-)compatible if S and S’ partition the terminals of G and
H in the same way.

For each graph G, each S = (V1,V3) € D(G), let Q(G, S) = true, let

2(S) = |{{u,v} € E(G) | u € Vi Av € Va}],

and let opt = max. Let z on the domain of partial solutions be defined in the same way as on
the domain of solutions.
Foreachl > 0, let

Crgi={(F,(I,LI; &I)) | FC F,AI C I},

26

and for each I-terminadl graph G = (V,E, X = (z1,...,2)), S = (V1,V2) € D(G), let
ec;i(G,S) = (F,(I,I; 1)) € Crq, where

F = F(Q),
I = {z|xl€V1}

Let G1 and G, be [-terminal graphs, S1 € D[}(Gl)a Sy € DH(GQ) (Gl,Sl) ~rQ,l
(G, Sy) if and only if ec,q(G1,S1) = ecgi(Ga,Sa). If (G1,51) ~rg1 (G2, S2), then
(G1, S1) and (G, S») are compatible, and hence ~,. ; isarefinement of ~¢ ;.

We now define d; and K; for each [> 0, and ¢« for al graphs G.

Let G and H be I-terminal graphs, let S = (V1,V3) € Dy(G) and §" = (W, W,) €
Dyy(H), such that (G, S) and (H, S') are &-compatible. Let ec,q (G, S) = (F,(I,.J)), and
let BCTQJ(H, S) = (FI, ([, J)) Then

2SS = |[{{u,v} € E(G®H)|ueViUW Av e VoUWl

{{u,v} € E(G) |u e Vi Av e Vy}

+ [{{u,v} € E(H) | u € Wy Av € Wh}|

S|{{u,v} € E(G)NE(H) |u e Wi Av e Wyl

= 2(S)+ 28" e|{{i,jle FNF |ielnjeJ}.
Hence di((F, (I, J)), (F',(1,J))) = [{{i,j} e FNF'|i € INj €}
We now show that condition 2(c) of Theorem 4.3 holds. Foreach! > 0,let K; = 2-1-d. Let

G = (V,E, X) bean (-termina graph, let c = (F(G),(I,J)) and let ¢ = (F(G),(I',J)).
We have to show that | max(G, ¢) ©max(G,)| < K;. Let S = (V4,V2) = maxS(G, ¢). Let
S" = (W, Wy), where

W, = (V1<:>X)U{$l|ZEII}
Wy = (VQ@X)U{.%JZGJI}

Then ec,q (G, S") = ¢ and furthermore,

max(G,c) &max(G,d) < z(9) <z(9)
= 2(5)<z(S5)

Sl{{u,v} € B(G) |[ue ViNnWi Av e Von Wi}

Sl{{u,v} € BE(G) |[u e ViNnWaAv € Von Wy}
< 2-1-d=K,.

Because of symmetry, this means that | max(G, ¢) ©max(G,)| < K;. Hence MAXIMUM
CuT isof finite integer index on graphs with bounded degree.

4 PARTITION INTO CLIQUES. For each graph G, let D(G) bethe set of dl partitions S =
{V1,...,V5} of V(G) for which each V; € S induces a connected subgraph of GG. For each
S e D(G), e

Q(G,S) = Vyres G[V'] isacomplete graph,

27

let z(S) = |S|, and let opt = min.
For each [-termind graphs G = (V,E, X)and H = (V',E’.Y),each S € D(G ® H), let

S[G1={V"'nV(G) |V nV(G) # 0},

and let 2(S[G]) = |S[G]|- Hence D;;(G) isthe set of al partitions .S in G in which for each
V' € S, al connected components of G[V] have at least one vertex in X.

Notethat D isinducible for [], since, foran S € D(G @ H), itisnot possible that there is
aV” e Ssuchtha both V" NV(G) X #Pand V"' NV (H) <Y # (), whileSnX = 0.
Two pairs (G, S) and (H, S’) are (¢5-)compatible if the terminals of G and H are partitioned in
the sameway in S and S’.

Foreachl > 0, let

Crg; = {(F,false)|F C F;}
U{(F,J)|FCEA
J = {(lebl)a"'a(']tabt)}) | t>1A
{J1,..., .} patitions I; AV; J; # O A b; € {true, false}}}

For each i-termina graph G = (V, E,(x1,...,21)), each S € Dp(G), let ec,qi(G,S) €
C..q, be defined as follows. If there are Ve Sandv,w € V', v # w, suchthat v ¢ X and
{v,w} ¢ E,thenec,g (G, S) = (F(G),false). Otherwise, ec,¢,(G, S) = (F, J), where

F = F(G),

T = {(Jb) | Gves I={ieL |z, e VINT£DAbe (VI C X))}

(b is aBoolean variable in the definition above.) For each ! > 0, let ~, ¢ ; be defined as
usually It lsfalrly easy to check that if ech’l(Gl, 51) = CCTQJ(GQ, 52), then (Gl, Sl) ~Q,l
(G, S7).

We now define d; for each ! > 0. Let G and H be [-terminal graphs, let S € Dj(G),
S € Dyy(H), suchthat (G, S) and (H, S") are @-compatible. Let ec.q (G, S) = (F, J), and
let BCTQJ(H, S) = (Fl,jl). Then

S|+ 15| elSas| = {(VieSas |V NnX #0}
= |JI.

Hencedl((Fa j)a (Flajl)) = |j|
We now show that condition 2(d) of Theorem 4.4 holds. For each [> 0, let K; = [, and
for each [-termind graph G, let

ce = (F(Q),{(i,true) | 1 < < 1}).

Let G bean [-terminal graph, let S € Dy(G), suchthat ec,.q (G, S) # false. Furthermore, let
S'={{v}|veX}u{V &X |V e SAV'Z X}.

Then S’ € Dyy(G) andec,q (G, S') = cq, andhencemin(G, cq) <{S| < |8'|<fS| < 1 = K.

Hence PARTITION INTO CLIQUES is of finite integer index.

28

5HAMILTONIAN PATH COMPLETION NUMBER. A path P inagraph G is asubgraph of
G, denoted as a sequence (vy, . .., vs), such that for eachi, 1 < i < s, {v;,v;41} € E(G). A
path P = (vq,...,vs) isnon-empty if s > 1. The vertices of apath P are denoted by V'(P).

For each graph G, let each element S in D(G) be a set of non-empty paths in G, such that
theset {V(P) | P € S} partitionsG. Foreach S € D(G),let Q(G, S) = true,andlet z(S) =
|S|<1. Furthermore, let opt = min. Notethat thisdescribesthe problem HAMILTONIAN PATH
COMPLETION NUMBER.

Let G and H bel-termina graphs, S € D(G@® H), S ={Py,...,P,}. Let

S[G] = | J{P/ | P/ isacomponent of P, N G},
i=1

and let z(S[G]) = |S[G]| <1, i.e. S|G] isthe set of pathsin G which is obtained from S by
deleting al vertices and edgeswhich are not in G, and deleting empty paths, and z(S[G]) isthe
number of these paths minus 1. Note that D isinducible for this definition of [].

LeteG = (V,E, X = (x1,...,2;)) bean [-termina graph G, let P = (vy,...,vs) bea
path in G. Suppose V(P) N X = {wjy,...,7,}, ¢ > 1,andforeach1 < j < m < ¢, v,
occurs on the left side of ;,, in P (i.e. by walking from v; to vs in P, we meet ;. earlier than
x;,,). ThenInd(P) isdefined asfollows.

(7/1722, el) |f Tiy :Q}l/\xiq = Vs
md(p) = § (Diviz..vig) Ty oAz, =0,
(i1,02,...,10q,d) if 25, = v1 A, # vs

(d,i1,i9,. ..y iq,d) if 2y # 01 Az, # vs.

(d denotes the ‘dummy’ vertex.)
For each [-termina graph G, each S € Dpj(G), let ec,q, (G, S) be defined as follows.

ecrgu(G,S) = {Ind(P) | P € SAV(P)N X # 0}

Foreach > 0, let C,q,; and ~, ¢ ; be defined asusual. Notethat if (G, S1) ~,q (G2, S2),
then (G, S1) and (G2, S2) are compatible, and hence (G, S1) ~¢g, (G2, S2).

Let G = (V,E,X)and H = (V',E',Y) be l-termina graphs, S € Dpj(G) and S €
Dy (H). If (G, S) and (H, S") are &-compatible, then

HS)+2(8)ex(SeS) = [{PeS|V(P)NX # 0}
+{P eS| V(P)NY # 0}
s{PeSa S |V(P)NX #0}.

This value can be computed from ec,.¢ (G, S) and ec, (H, S), hence d; iswell defined.
We now define K; for each [> 0 and ¢ for each termina graph G, and show that they
satisfy condition 2(d) of Theorem 4.4. Foreach [> 0, let K; = 21, and for each [-termina
graph G, let
ca={()|1<i<l).

29

Clearly, if BCTQ,Z(G, S) = ¢ and eCrQ’l(H, Sl) = cgy, then (G, S) and (H, Sl) are -
compatible.
Let G bean [-termina graph, S € D)(G). Let

S'={(v) | v € X} US[V(G) &X].

Then ' € Dpy(G), and ec,q(G,S") = cg. Hence min(G,cq) < 2(5) < |S'] &S] <
[+1|S|+1<|S| =2 =K.

This completes the proof that HAMILTONIAN PATH COMPLETION NUMBER is of finite
integer index.

6 MAXIMUM LEAF SPANNING TREE. Foreachgraph G, let D(G) betheset of al spanning
treesof G. Foreach S € D(G), let Q(G,S) = true, let 2(S) = the number of vertices of
degreeonein S, and let opt = max.

For each [-terminal graphs G and H, each S € D(G & H), let S[G] bethe set of treesin G
obtained by deleting all vertices and edges from S which are not in . Hence Dy(G) isthe set
of al spanning forests F' of G for which each connected component of F' contains at |least one
terminal of the graph. Notethat D isinducible for []. Let = on the domain of partial solutions
be defined in the same way as on the domain of solutions.

Foreach! > 0, let

CrQ,l = {(F, false) |F C Fl} U
((F,T,{(i,5:) | 1<i<IAs; €{0,1,2})| F C F, AT partitions I;}

For each [-terminal graph G' = (V, E, (v1,. .., 7)), ach S € D}(G), if S contains more than
one connected component, and one of these components does not contain aterminal, then let
ecrg = (F,false) (thereisno H such that G @& H contains a spanning tree), otherwise, let
BCTQ,Z(G, S) = (F,I, A), where

F = F(G),
I = {J|3vcy V'isaconnected componentof SAJ={iel;|z; € V'} AT #0}
A = {(i,si) | 1<i<INs; = |N5,V(:Ui)| if |N57v(xi)| < 2,,otherwise s; = 2}.

Foreach i > 0, let ~,o,; be defined as usualy. It is fairly easy to check that if
(G1,S1) ~rgu (G, S2), then (G, S1) ~q, (G, S2).

We now show that d; iswell defined. Let G and H be [-terminal graphs, let S ¢ DH(G),
S" € Dyy(H), suchthat (G, S) and (H, S') are ©-compatible. Let ec,q (G, S) = (F,Z, A),
andlet ec,q(H,S) = (F',7',A"),where A = {(i,s;) | 1 < i <l}and A" = {(i,s]) | 1 <
i <1}. Then

2(S)+2(8")ex(Sa S =
i € I | INsgs viayuvm (Ti)] > 2 A s; = 1}
+{i € I | INsgs v(c)ov(m)(@i)| > 2 A s; =1},

Thisvalue depends only on (F,Z, A) and (F’',Z', A"), hence d; is well defined.

30

We now show that condition 2(b) of Theorem 4.2 holds. For each [> 0, let K; = 2[, and
for each terminal graph G, let i = z(F'), where F' is amaximal spanning forest of G (i.e.
the connected components of F' are the connected components of G), and z(F') is maximum.
Let G be an [-termina graph, such that each connected component of G contains aterminal.
Let S € Dpj(G) and suppose that |2(S) <ig| > K. First suppose that 2(S) > ig + K.
Let S” be amaximal spanning forest of G such that S is a subgraph of S’. S’ can be obtained
from S by adding at most / <1 edges, and hence z(S’) > z(S) <2I. Butig > 2(.S’), hence
z(S) <ig + K, which gives a contradiction.

Suppose 2(S) < i¢ < K;. Let H bean-terminal graph, let S’ € Dyj(H) such that (G, S)
and (H,S") are &-compatible. We show that z(S @ S’) < R(G @ H). Let F be amaximal
spanning forest of G such that z(F') = i. Let G' bethe subgraph of G & H with V(G') =
V(Ge H),and E(G'") = E(F)UE(S"). Thenumber of vertices of degree onein G’ isat least
2(F) 4+ z(S") l. G' can be modified into aspanning tree T of G & H by deleting anumber of
edgesin G’. This does not decrease the number of vertices of degree one, since if avertex has
oneincident edge, then this edge is not removed. Hence z(T) > 2(G') > z(F) + z(S") &l =
i+ 2(S8") &l > 2(S) + 2(S") + K; <1 > 2(S) + 2(S") > 2(S & S'). This means that
2(S®S") < R(G® H).

Hence MAXIMUM LEAF SPANNING TREE is of finite integer index.

For each problem, we have given an explicit definition of ~,.g ;, hence ~,. g ; is effectively
decidable. Furthermore, z, s and iy are effectively computable. Hence we can construct afinite,
safe, complete and decreasing set of reduction-counter rules of Ry, (k > 1), where R is one of
the optimization problems of this theorem. O

Theorem 4.6. The following problems are not of finite integer index:

1. MAaXIMUM CuUT,

2. COVERING BY CLIQUES,

3. LONGEST PATH, and

4. LONGEST CYCLE.
Proof. Below, in each of the parts of the proof, R denotes the respective optimization problem.
1 MAXIMUM CuUT. Wegive aninfinite set G of two-terminal graphs such that for each G

and G’ inthisset, if G # G' then G % r» G'. For eachn > 2, let G,, be atwo-terminal graph
which is defined as follows (see also Figure 3).

V(Gn)=XUAUB,UC,,

where all setsare digoint, X = (1, z3) isthe set of terminals, A = {ay, a5}, and B, and C,,
each contain n vertices.
E(Gn) = {{zi, a1}, {z2,a2}}
U {{ai,v} |1 <i<2Av € B,UC,}
U {{z9,b} | b € B,}
U {{z1,¢c} | c€ Cy}.

31

Figure 3: Thegraphs G, (n > 2) and H,, (p > 0).

Let G ={G, | n > 2Aneven}.

Claim 4.1. Letn > 1, let H be atwo-termina graph. Thereis a partition (V1,V3) of V' =
V(G,® H)suchthat A C Vi, B, U C,, C Vy,and z((V1, V3)) is maximum.

Proof. Suppose (W7, Wy) isamaximum cut for G,, & H, let M* = z((W1,Ws)). Let A} =
WinA, Ay =WynN A, BCi = (Bn U Cn) NWi,and BCy = (Bn U Cn) NWs. Let

(Vl,VQ) = (WlﬁBCluAg,WQ@AQUBCl),and
(Vllavzl) = (WQ@BCQUAl,Wl(i)AlUBCQ).

Then (V3, V) and (V/,Vy) are both cutsof G,, & H,and A C V;, A C V/, B, UC, C V%
and B, U C,, C VJ. We now show that either (V,V3) or (V/,V3) isamaximum cut. Let
M = z((Vy,V3)) and let M' = z((V{,V4)). We consider two cases, namely

1. |A2|:0\/|BCl|:0,and
2. 0<|A2|S|A| and0<|BC’1|§|BCIUBCQ|
In case 1,

M > M*+|A1|-|B01|+|A2|'|B02|<:>|A2|<:>|B01|
M* +|A2|(|BCy| 1) + |BC1|(|A1] 1)
M*.

v

32

In case 2,

M’ > M*+|A1|-|B01|+|A2|'|BCQ|<:>|A1|<=>|BCQ|
M* + |A1[(|BCy| ©1) + | BCo|(|Az] 1)
M*.

v

This proves the claim. O
For each p > 0, let H,, be the graph defined as follows (see a'so Figure 3).
V(Hp,) =Y UD,UF,,

where al setsare disoint Y = (y1,y2) isthe set of terminals, and D,, and F), each contain p
vertices, and

E(Hy,) = {{d,f}|deDyNfeF,}
U {y1,d} | d € Dp}
U {2, fHIf € Bl

Claim 4.2. Letp > 0, let H be atwo-termina graph. There is a partition (V3,13) of V' =
V(H, ® H) suchthat D, C Vi, F,, C V3, and z((V1, V3)) is maximum.

Proof. Similar to proof of Claim 4.1. O

We now show that for each G, G, € G, if n # m, then G, % r2 Gp,.

For: > 2,each p > 0, consider the graph G; ® H): let Vf”’) = AUD,, & VQ(i‘p) =
B; U C; U F,. Thereis amaximum cut (W, W,) of G; & H, such that Vl(i’p) C W; and
VQ(“’) C Wy, because of Claim 4.1, Claim 4.2, and the fact that H,, is symmetrical in D,, and

F,. Inthefollowing table, all cuts that are candidates for maximum cutsin G; © H), are given,
together with there values.

nr. | cut value

v U x, v di+p* +2i+p
PO {a), VP U {ap)) | di+p2+i+1
VI U Lo}, VP U {a}) [di+p2+i+1+2p
Vl(i,p)? VQ(i,p) UX) Li+p*+24p

A WDN PP
A~ N N

Note that either cut 1 or cut 3ismaximum, since: > 2, andp > 0.

Letn > m > 1,n, meven. If p = 0, then 1 isamaximum cut for both G,, & Hy and
G @ Hy, sincei > 2, which meansthat 2: > i + 1. Hence R(G,, ® Hy) = 6n and R(G,,, ®
Hy) =6m,s0 R(G),, ® Hy) ©R(G,, & Hy) = 6(n <m).

33

Letp = 3(n+m) <1. Then
1
R(G,® H,) = 4n+p2+max{2n+§(n+m)®1,n+1+(n+m)<:>2}

) 11
= 4dn+p +max{2§n+§m<:>1,2n+m<:>1}

9 1 1
= 4dn+p +2§n+§m<:>1

1 1
= 6-n+— 2 o1
2n~l—2m+p ,

and
1
R(Gy @ H,) = 4m+p* + max{2m + §(n +m)el,m+1+ (n+m) <2}

, 11
= 4dm+p +max{2§m+§n¢>1,2m+n©1}

= dm+p’+2m+nel
= 6m+n+piel

Hence

1 1
R(Gy & Hy) R(Gp @ Hy) = (65n+gm+p’ &1) &(6m+n+p’ <1)

1
= 5§(n &m)
However, 55(n &m) # 6(n ©&m) = R(G, & Hy) < R(G,, & Hy), sincen # m. S0
Grn #r2 Gm. Aseach G,,, n > 1, n even, belongs to a different equivalence class of ~p o,
the MAXIMUM CuT problem is not of finite integer index.

2 COVERING BY CLIQUES. Foreachn > 1, let G,, bethe two-terminal graph with vertex
set
V(G,) =A{z1, 22} U{a, ..., an},

(z1 and x4 arethefirst and the second terminal, respectively), and edge set
E(Gy) ={{zi,a;} |1 <i<2A1<j<n}

LetG = {G, | n > 1}. Weshow that for esch G,,, G, € G, if n # m,then G,, £ p2 Gn.

Let H bethetwo-terminal graph consisting of terminals i, and y» and no edges, and let H’
be the two-terminal graph consisting of terminals y; and y» and edge {1, y2 }.

Foreachi,i > 1, R(G,® H) = |{e | e € E(G;)}| = 2i,9nce G; & H contains no cliques
of more than two vertices. Furthermore, R(G; ® H') = [{{z1,22,a;} | 1 < j < n}| = i.
This means that for al n and m, n # m,

R(G,® H)&R(G,, DH) =2n<2m #nsm = R(G, ® H') ©R(G,, D H'),

and hence G, %R, G-

3 LONGEST PATH. Foreachn > 1, let G,, bethe two-termina graph with vertex set
V(Gy) = {z1, 22} U{ar, ... an},
(z1 and x4 arethefirst and the second terminal, respectively), and edge set
B(Gy) = {{rra1}} U{{as, ain} | 1< i <n).

LetG = {G\, | n > 1 A neven}. Furthermore, for each p > 1, let H, be the two-terminal
graph with vertex set

V(Hp) = {yh yZ} U {bla E) bp}a
(y1 and y5 arethefirst and the second terminal, respectively), and edge set
E(Gn) = {{y2,01}} U {{bi, bipa} [1 <@ <p}.

Foreach: > 1,j > 1, R(G; ® H;) = max{i, j} + L.

Let1 < n < m,suchthat n and m areeven. Then R(G,, ® Hy,+1) ©R(Gp, © Hyq1) =
n+l+1s(m+1) =n<sm+1 < 0. Furthermore, R(Gy, ® Hyp,) < R(Gr, & Hy,) =
m+1<(m+1) =0. Hence G, #py G-

4 LONGEST CYCLE. Foreachn > 1, let G, bethetwo-termina graph with vertex set
V(G,) =A{z1, 22} U{a, ..., an},
(z1 and x4 arethefirst and the second terminal, respectively), and edge set
E(Gn) = {{z1, a1}t U {{z1,an U {{as aia} [1 <d <n}

LetG = {G\, | n > 1 A neven}. Furthermore, for each p > 1, let H, be the two-terminal
graph with vertex set

V(Hp) = {ylv y2} U {blv SR bp}a
(y1 and y5 arethefirst and the second terminal, respectively), and edge set

E(Gn) = {{y2,b1}} U {{y2, bp}} U {{bi, bia } [1 <0 < p}.

The rest of the proof is similar to the proof that LONGEST PATH is not of finite integer index.
O

5 Constructing Optimal Solutions
Let R be agraph optimization problem. If R can be written in the form
R(G) = opt{2(5) | § € D(G) AQ(G, 5)},

then we are often not only interested in the value of R(G) for agiven graph G, but also a so-
lution S € D(G) for which z(S) = R(G). Inthis section we show that we can combine the

35

results of Sections 3 and 4 to get a method with which we can make an efficient reduction algo-
rithm for R, inwhich both R(G) andan S € D(G) forwhichQ(G, S) holdsand R(G) = z(.5)
are computed. We can then use asmall modification of Algorithm ConstructSolution to do this:
instead of using afinite, safe, complete and decreasing set of reduction rules, use afinite, safe,
complete and decreasing set of reduction-counter rules. Theninlines 1 to 4 of Algorithm Con-
structSolution, apply the reduction-counter rules as described in Section 4.

Theorem 5.1. Let R be a graph optimization problem. Suppose R can be written in the form
R(G) = opt{z(5) | § € D(G) AQ(G, 5)},

where D isinducible for [], @ is decidable, thereisa refinement ~,.; ; of ~¢ ; which is decid-
able, |C,q | isfinite for each ! > 0, conditions 2 and 3 of Theorem 3.1 hold, and conditions 2
and 3 of Theorem 4.2 hold.

Thenfor each k > 1, there exists afinite, safe, complete and terminating set R of reduction-
counter rules for Ry, and an implementation of the modification of Algorithm ConstructSolu-
tion which can be used to compute for each graph G, in linear time, the value Ry (G), and if
Ri(G) €Z ,an S € D(G) suchthat Q(G, S) holdsand z(S) = R(G).

If, inaddition, Q and ~, ; are effectively decidable, = is effectively computable, the func-
tion s from condition 2 of Theorem 3.1 is effectively computable, and in condition 3 of Theo-
rem3.1, S[H] and S’ & S[G] are effectively computable from S, S, H and H’, then we can
construct R and the implementation of the modification of Algorithm ConstructSol ution.

Proof. For each [-termina graph G, let f& be the function as defined in the proof of Theo-
rem 4.2. Let ~; be the equivalence reation on [-terminal graphs defined as follows. G ~;
G2 < fa, = fa,. Theorem 4.1 shows that there is afinite, safe, complete and decreasing set
of reduction-counter rules R for R, such that for each rule ((H, H'),:) € R, H ~; H'. This
set can be constructed if ~,.¢ ; is effectively decidable and functions » and s are effectively
computable.

In the same way as is shown in the proof of Theorem 3.1, for each reduction-counter rule
((H1, H2),1) inR, keep atable T for Hy, which contains for each possible equivalence class
c € C’I‘Qk,l! apartial solution S7 € D[](Hl) such that eCer’l(Hl,Sl) = cand Z(Sl) =
opt(G1,c),if fa,(c) # false, false otherwise. This table can be constructed if ~,¢ ; is decid-
able, and functions s and = are effectively computable.

Let G be agraph. The modification of Algorithm ConstructSolution can now be further
refined as follows. Inline 8, an optima S € D(G) (G isthe reduced graph here) for which
Q(G, S) holds can be constructed as follows (if is effectively decidable, and =z and s are ef-
fectively computable). Each possible S € D(G) istried, and if Q(G, S) holds, and z(S) is
optimal, then this solution is taken. Note that this can be done in constant time, see aso the
proof of Theorem 3.1.

Inline 14 of Algorithm ConstructSolution, the construction of .S’ isdone in the sameway as
is shown in the proof of Theorem 3.1. First S[H!] is computed. Then ¢ = ec,qr(H;, S[H])
iscomputed. After that S” = T'(¢) isobtained, and S" = S” & S[H] iscomputed. In the proof
of Theorem 4.2 it is shown that f:(¢) # false, and hence S” exists. The fact that S’ is an
optimal solution in G, if S is an optimal solution in G, follows from the last part of the proof
of Theorem 4.2. O

36

Theorem 5.1 can be applied to all problems of Theorem 4.5.

Theorem 5.2. Let R = opt{z(S) | S € D(G) A Q(G, S)} be one of the following graph
optimization problems, with opt, z, D and @) as defined in the proof of Theorem 4.5:

1. INDUCED BOUNDED DEGREE SUBGRAPH for all p > 0,
2. p-DOMINATING SET for all p > 1,

3. MAxiMuM CuUT on graphs with bounded degree,

4. PARTITION INTO CLIQUES,

5. HAMILTONIAN PATH COMPLETION NUMBER, and

6. MAXIMUM LEAF SPANNING TREE.

For each & > 1, thereis, and we can construct, a finite, safe, complete and decreasing set of
reduction-counter rules for R, and an implementation of the modification of Algorithm Con-
structSolution with which we can compute in linear time the value R (G), and an S € D(G)
for which 2(S) = R.(G), if Rp(G) € Z .

Proof. We only have to show for each problem that conditions 2 and 3 of Theorem 3.1 hold
(in the ‘effective’ way). This can be done straightforwardly. O

6 Paralld Reduction Algorithms

It is possible to combine the results of Sections 2 up to 5 with results from [6] to obtain fast
parallel agorithms for several problems on graphs with bounded treewidth.

A set of applications of reduction(-counter) rulesissaid to beconcurrent, if thereisno inner
vertex of any subgraph to be rewritten that also occurs in another subgraph to be rewritten.

The idea behind concurrent applications of rulesisthat in aparallel algorithm, all reduction
steps from a concurrent set can be carried out simultaneoudly. This is very useful in order to
obtain fast parallel algorithms, based on reduction.

We use aresult from [6] to show that there exists a finite, safe, complete, and decreasing
set R of reduction rules for finite index properties P, such that in any graph G of treewidth at
most £ with more than a constant number of vertices, a set of 2(n) concurrent reductions can
be found.

Definition 6.1. Suppose G = (V, E) = Hy & H,, Hy = (V1, E1, X) open. Let d be a constant
positive integer. We say that H; isstrongly connected in G with respect to a fixed adjacency list
representation of G and bound d, if for all v, w € Vi, thereisapath (v = g, 21,..., 2, = w)
in Hy fromwv to w, such that for all i, 1 < i < r, the edges {x;,x;—1} and {z;,z;;+1} have
distance at most d in the adjacency list of z;.

Thefollowing lemmais aweaker version of Lemma5in [6].

37

Lemma 6.1. [Bodlaender, Hagerup [6]] For all integers k, nmin > 1, there are integers
d,nmax > landareal ¢ > 0, such that every connected graph G with n. > n,., vertices
and treewidth at most &, with an arbitrary adjacency-list representation, contains at least cn
strongly connected subgraphs which each have at most n.,,,.x inner vertices and at most 2% + 1
terminals, and no inner vertex of any of these subgraphs occurs in another subgraph.

We now can prove the following result, which is a generalization of Theorem 2.1, geared
towards parallel agorithms.

Theorem 6.1. Let k beaconstant, P a graph property that is of finite index. There exist a set
of reduction rules R for P, and a constant d, that fulfil the following properties.

e R isfinite, safe, complete, and decreasing for P;..

e For each reduction rule (H,H') € R, H and H' are open, and if H has one or more
terminals, then H is connected.

e There exist constants n,.x, ¢ > 0, such that for any connected graph G = (V, E) for
which P (G) holds or which is a connected component of a graph H with Py (H), either
|V | < nmax, OF for any adjacency-list representation of G, there exists a set of at least
¢|V'| concurrent applications of rules from R in G, such that for each application, re-
placing aterminal subgraph G by another terminal subgraph, G isstrongly connected
in G with respect to this adjacency-list representation and d.

If there is also an equivalence relation ~; for each [> 0, which is a refinement of ~p, is
effectively decidable, and hasa finite number of equivalence classes, then such a set of reduction
rules can be constructed.

Proof. We use the same approach as in the proof of Theorem 2.1. For every | < 2(k + 1),
and every equivalence class c of ~ p, ;, wetake representing open terminal graphs H., asinthe
proof of Theorem 2.1. Again, r isthe maximum number of vertices of any such representing
graph, over al equivalence classes of ~p, ;, al I < 2(k + 1). Lét nmax, d, be as given by
Lemma6.1, with ngiy, =7 + 1.

For al zero-terminal graphs H with at least » + 1 and at most n.,.x Vertices, if we have a
representative for the class ¢ which contains H, then add reduction rule (H, H.) to R. For al
[,1<1<2(k+1),andfor al open connected [-terminal graphs H with at least r + 1 = nyin
and at most nmax + [vertices, if we have a representative for the equivalence class ¢ in which
H is contained, then add the reduction rule (H, H.) to R.

Asin the proof of Theorem 2.1, we can see that R fulfils the first two stated properties.
Construction of the set can also be done as in the proof of Theorem 2.1.

Finally, we note that any connected graph G with more than n,,. vertices such that P, (G)
holds contains a set of ¢|V'| concurrent applications of rules from R, each involving a strongly
connected terminal subgraph: Lemma 6.1 states that there are ¢|V'| strongly connected sub-
graphsin G which have at most n.,.x inner vertices and at most 2k + 1 terminals, and of which
the sets of inner vertices are pairwise digoint. Each of these strongly connected subgraphs can
be taken as left-hand-side in arule application (because of its size), and hence the rule applica
tions are concurrent. O

38

Theorem 6.1 allows us to use the method from [6] to obtain fast parallel algorithms, based
on graph reduction. The basic ideais the following: each vertex can have a processor find all
O(1) vertices to which it has a path of distance at most d, such that any two consecutive edges
{zj_1,z;} and {x;, z;41} have distance at most d in the adjacency list of x;. Then, the pro-
cessor |ooks for a possible occurrence of aleft-hand-side of arule application in the subgraph,
just discovered. Each such occurrence gives apossible rule application. By building a conflict
graph, where applications that are not concurrent correspond to adjacent vertices, and finding an
independent set in the conflict graph, a concurrent set of applications isfound. After O(logn)
parallel reduction rounds, G isreduced to acollection of connected components, each of size at
most nmax. By repeatedly, in paralel, grouping these sets of size between nyax + 1 and 21y ax,
and reducing each group to agraph of size at most n.,.x, We end up with areduced graph G of
constant size, after O(log n) rounds. For more details, we refer to [6].

Moreover, the approach from Section 3 can be used to construct solutions. Reductions are
then undone in parallel, in reverse order. By using proper bookkeeping, we can make sure that
areduction is undone by the same processor that carried out the reduction. Thus, we increase
the time by not more than a constant factor, and use the same number of processors.

We denote the product of the number of processors, and the time used by a parallel ago-
rithm, as the number of operations of the algorithm. The techniques from [6], combined with
the results of this paper, give the following results.

Theorem 6.2. Let k be a constant, P a finite index graph property.

(i) The problem whether for a given graph G, P.(G) = P(G) A tw(G) < k holds can be
solved on an EREW PRAM using O(log n log™ n) time, O(n) operations, and O(n) space, and
on a CRCW PRAM using O(log n) time, O(n) operations, and O(n) space. If a refinement ~;
of ~p; with a finite number of equivalence classes is effectively decidable, then the algorithms
can be constructed.

(i1) Suppose that P can be written in the form

P(G) = Jsep,(ayx--xDy(cr) R(G, S),

in such a way that for each G and i, D;(G) isequal to V(G), E(G), P(V(G)) or P(E(G)).
Then, the problem, given a graph G, to construct an S € D(G) with Q(G, S) if P,.(G) holds,
can be solved on an EREW PRAM using O(log n log* n) time, O(n) operations, and O(n)
space, and on a CRCW PRAM using O(logn) time, O(n) operations, and O(n) space. If Q
is effectively decidable, a refinement ~,.¢ ; of ~(; is effectively decidable, and |C,.¢ ;| isfinite,
then the algorithms can be constructed. These last conditions hold when a definition of @@ in
monadic second order logic is given.

In particular, Theorem 6.2 shows that many well known graph problems, including k-
CoLorABILITY for fixed k£, HAMILTONIAN CIRCUIT, €tc., when restricted to graphs of
bounded treewidth, can be solved constructively in the stated resource bounds.

A similar approach can be taken for problems that are of finite integer index. In addition to
what is written above, each processor p owns an integer variable o, which isinitially 0. For
each reduction-counter rule ((H, H'), 1) carried out, we let one processor p that isinvolved in
carrying out the reduction, add 7 to its integer variable «,,. Suppose we have rewritten input

39

graph G to agraph G’ of constant bounded size. If R(G’) isfalse, then R(G) is false. Other-
wise, weadd R(G') with the sum of all values «,, over all processors p. Thissum can easily be
computed in O(log n) timewith O(n) operations and space on an EREW PRAM. The obtained
vaue equals R(G). Inal other aspects, the method is the same as the one used for finite index
problems.

Theorem 6.3. Let k be a constant, R a graph optimization problem which is of finite integer
index. The problemto compute for agiven graph G thevalue Ry, (G') can be solved on an EREW
PRAM using O(log n log* n) time, O(n) operations, and O(n) space, and on a CRCW PRAM
using O(logn) time, O(n) operations, and O(n) space.

If arefinement ~; of ~ r ; withafinite number of equivalence classesis effectively decidable,
and for each pair H, H', if H ~; H', then we can effectively compute an : € Z such that
((H,H'),1) issafefor Ry, then the algorithms can be constructed.

Theorem 6.4. Let R be a graph optimization problem. Suppose R can be written in the form
R(G) = opt{2(5) | § € D(G) AQ(G, 5)},

where D isinducible for [], @ is decidable, thereisa refinement ~,. ; of ~¢ ; which is decid-
able, |C,q | isfinite for each ! > 0, conditions 2 and 3 of Theorem 3.1 hold, and conditions 2
and 3 of Theorem 4.2 hold.

Then, for each k& > 1, there exists algorithms, that compute for each G the value R, (G),
and if Ry(G) € Z ,an S € D(G) such that Q(G, S) holds and z(S) = R(G), using on an
EREW PRAM O(log n log™ n) time, O(n) operations, and O(n) space, and using on a CRCW
PRAM O(logn) time, O(n) operations, and O(n) space.

If, inaddition, Q and ~, ; are effectively decidable, = is effectively computable, the func-
tion s from condition 2 of Theorem 3.1 is effectively computable, and in condition 3 of Theo-
rem3.1, S[H] and S’ & S[G] are effectively computable from S and H, then we can construct
the algorithms.

Thisimplies parallel agorithms with the stated resource bounds for (the constructive ver-
sions of) INDUCED BOUNDED DEGREE SUBGRAPH for al p > 0, p-DOMINATING SET for
al p > 1, MAXiMuM CuUT on graphs with bounded degree, PARTITION INTO CLIQUES,
HAMILTONIAN PATH COMPLETION NUMBER, and MAXIMUM LEAF SPANNING TREE when
restricted to graphs of bounded treewidth.

7 Conclusions and Further Research

In this paper, we have shown that reduction algorithms as introduced by Arnborg et a. [2] can
not only be used to decide whether a graph property holds for a given graph with bounded
treewidth, but in many cases, they can also be used to give a solution if one exists, to solve
optimization problems on graphs with bounded treewidth, and to construct optimal solutions
for graph optimization problems.

The reduction algorithms of Arnborg et a. use a linear amount of time, but a polynomial
amount of space. We have shown that the techniques from [6] can be used to run the reduc-
tion algorithms in O(log n log™ n) time on an EREW PRAM with O(n) operations and O(n)

40

space, and in O(log n) timeon aCRCW PRAM with O(n) operations and space (n isthe num-
ber of vertices of the graph). Sequential implementations of these algorithms give linear time
algorithms, that use linear space (and the standard pointer-machine model).

We have shown that the reduction algorithms for deciding graph properties and constructing
asolution can be applied to the class of graph properties that are definable in monadic second-
order logic, and for which the solution space consists of tuples of vertices, edges, vertex-sets
and edge-sets. This class includes problems like k-CoLORABILITY (for fixed k&) and HAMIL-
TONIAN CIRCUIT. Unfortunately, it seems that this method can not be used to find tree or path
decompositions of a graph with small treewidth, since we do not know whether the solution
space for these problems can be represented in the right form. It isan interesting open problem
whether our approach can be extended such that tree and path decompositions for graphs with
small treewidth can be found.

For graph optimization problems, we have given a method to prove that for a given graph
optimization problem a reduction algorithm can be used, and we have proved for a number of
problems that this works, e.g. INDEPENDENT SET, PARTITION INTO CLIQUES. For all these
problems, optimal solutions can be constructed. An interesting problem would be to find gen-
eral characterizations of large classes of graph optimization problems for which our method can
be used.

It is also possible to generalize the results in the paper to directed, mixed and/or labeled
graphs. In case of labeled graphs, we can alow the graph to be given together with alabeling
of the vertices and/or edges with labels from a set of size, bounded by aconstant. These labels
could also act as weights for finite integer index problems, e.g., we can deal with WEIGHTED
INDEPENDENT SET, with each vertex a weight from {1,2,...,C} for some fixed C, in the
same way as we dealt with INDEPENDENT SET. The desired output of the algorithm can also
be adirection given to each edge of the graph, such that the directed variant of the input graph
fulfils a certain (M S-definable or otherwise finite state) property. Each of these generalizations
can be handeled in avery similar way as the results, given in this paper.

The results of this paper can aso be used to give algorithms that generate all solutions for
agraph property P of theform P(G) = Jsep(a) Q(G, S), or al optimal solutions for agraph
optimization problem R of the form R(G) = opt{z(S) | S € D(G) A Q(G, S)}. For these
cases, algorithm ConstructSolution can be modified asfollows. Thetable T that iskept for each
left-hand-side H of areduction(-counter) rule, as described in the proofs of Theorem 3.1 and
Theorem 5.1, contains for each equivalence class c alist of al (optimal) S € Dy(H) with
ec,@(H,S) = c. InLine8, dl possible (optima) S € Dy(G) are constructed for which
Q(G, S) holds. In Line 14, for each (optimal) solution S of G, the following is done. Firgt,
S" = S[H]] and ¢ = ec,qi,(H], S[H]]) are computed. Then the list of al partial solutions
S" € T'(c) is obtained, suppose there are m such partial solutions. Then m copies are made of
S, and each copy of S ischanged into S” & S[H| for some S” € T'(c). Notethat thisagorithm
runsin O(n+ s) time, where n. isthe number of vertices of theinput graph, and s isthe amount
of space needed to store al solutions for the input graph.

Graph reduction may possibly aso be a useful tool which helps to solve hard problems on
arbitrary (sparse) graphs. A possible approach to many such problems could be the following.

¢ Fix some safe and decreasing set of reduction or reduction-counter rules.

41

e Apply reduction rules on the input graph and reduced versions, until no rule application
ispossible.

¢ Use another method to solve the problem on the reduced graph.

e Possibly, construct a solution for the original problem from the solution for the reduced
problem by using the method of Section 3.

The hopeis, of course, that the graph after the reductions is substantially smaller than the orig-
inal graph, and hence, that the running time of the third step is much smaller than the running
time when this algorithm would have been applied directly to the input graph. Provided that the
reductions can be carried out quick enough, this approach may be anicetool to reduce thetime
needed to solve some graph problems on arbitrary sparse graphs.

References

[1] K. R. Abrahamson and M. R. Fellows. Finite automata, bounded treewidth and well-
quasiordering. In Proceedings of the AMS Summer Workshop on Graph Minors, Graph
Sructure Theory, Contemporary Mathematics vol. 147, pages 539-564. American Math-
ematical Society, 1993.

[2] S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese. An algebraic theory of graph
reduction. J. ACM, 40:1134-1164, 1993.

[3] S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable graphs. J.
Algorithms, 12:308-340, 1991.

[4] H.L.Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11:1-23, 1993.

[5] H. L. Bodlaender. On reduction agorithms for graphs with small treewidth. In Pro-
ceedings 19th International Workshop on Graph-Theoretic Conceptsin Computer Science
WG’ 93, pages 45-56, 1994.

[6] H.L.Bodlaender and T. Hagerup. Parallel algorithms with optimal speedup for bounded
treewidth. InZ. FUlop and F. Gécseg, editors, Proceedings 22nd International Colloguium
on Automata, Languages and Programming, pages 268-279, Berlin, 1995. Springer-
Verlag, Lecture Notesin Computer Science 944.

[7] R. B. Borie, R. G. Parker, and C. A. Tovey. Automatic generation of linear-time algo-
rithms from predicate calculus descriptions of problems on recursively constructed graph
families. Algorithmica, 7:555-581, 1992.

[8] B. Courcelle. Graph rewriting: an algebraic and logical approach. In J. van Leeuwen, ed-
itor, Handbook of Theoretical Computer Science, volume B, pages 192-242, Amsterdam,
1990. North Holland Publ. Comp.

[9] B. Courcelle. The monadic second-order logic of graphs |: Recognizable sets of finite
graphs. Information and Computation, 85:12—75, 1990.

42

[10] J. Lagergren and S. Arnborg. Finding minimal forbidden minors using a finite congru-
ence. In Proceedings of the 18th International Colloguium on Automata, Languages and

Programming, pages 532-543. Springer Verlag, L ecture Notesin Computer Science, vol.
510, 1991.

[11] N. Robertson and P. D. Seymour. Graph minors. I1. Algorithmic aspects of tree-width. J.
Algorithms, 7:309-322, 1986.

