
Reduction Algorithms for Graphs
with Small Treewidth�

Hans L. Bodlaender and Babette de Fluiter
Department of Computer Science, Utrecht University
P.O. Box 80.089, 3508 TB Utrecht, the Netherlands

e-mail: fhansb,babetteg@cs.ruu.nl

Abstract

This paper presents some new ideas and results on graph reduction applied to graphs
with bounded treewidth. Arnborg et al. [2] have shown that many decision problems on
graphs can be solved in linear time on graphs with bounded treewidth, by using a finite set
of reduction rules. We show that this method can also be used to solve the construction
variants of many of these problems, and to solve a number of optimization problems, and
to solve construction variants of many of these optimization problems. For example, the
construction variants of decision problems that are definable in monadic second order logic
can be solved in this way. Examples of optimization problems that can be solved in this way
are INDEPENDENT SET, INDUCED BOUNDED DEGREE SUBGRAPH, PARTITION INTO

CLIQUES and HAMILTONIAN COMPLETION NUMBER.
We also show that the results of [6] can be applied to these reduction algorithms, which

results in parallel algorithms that use O(n) operations and O(logn log� n) time on an
EREW PRAM, or O(log n) time on a CRCW PRAM (where n is the number of vertices
of the graph).

1 Introduction

In this paper, new ideas and results are presented on graph reduction, applied to graphs with
bounded treewidth. We consider reduction rules, where a subgraph of a graph G is to be re-
placed by another smaller subgraph (under some additional rules, see Section 2 for the precise
definitions).

A graph property P is a function which assigns to each graph the value true or false. Arn-
borg et al. [2] have shown that for each graph property P which is of ‘finite index’, and each
constant k, there exists a finite, complete, safe, and decreasing set of reduction rules for graphs
with treewidth at most k. This set of reduction rules can be used to reduce a graph G by a series
of applications of reduction rules from the set to a graph from some finite set of ‘small’ graphs if

�This research was partially supported by the Foundation for Computer Science (S.I.O.N) of the Netherlands
Organization for Scientific Research (N.W.O.) and partially by the ESPRIT Basic Research Actions of the EC under
contract 7141 (project ALCOM II). Some results of this paper have appeared in [5].

1



and only if P (G) holds and the treewidth ofG is at most k. The set of finite index graph proper-
ties includes many interesting properties, including all graph properties expressible in monadic
second order logic.

Arnborg et al. use this result to show the existence of linear time algorithms that decide
whether property P holds for a given graph G with bounded treewidth, without the need of
using a tree decomposition of G. It should be noted that these algorithms use more than linear
memory. The algorithm does not depend on the structure of the reduction rules: it can be applied
for all sets of reduction rules that are finite, safe, complete and decreasing.

Bodlaender and Hagerup [6] give parallel algorithms based on finite, safe, complete and
decreasing sets of reduction rules. These algorithms use O(n) operations, O(n) memory and
O(logn log� n) time on the EREW PRAM, or O(logn) time on the CRCW PRAM (n is the
number of vertices of the input graph). However, their algorithm only works if the reduction
rules have some predefined structure. They show that for each graph property P which is of
finite index, and each constant k, there exists a finite, complete, safe, and decreasing set of re-
duction rules for graphs with treewidth at most k, such that each reduction rule in this set has
the desired structure. The algorithm of Bodlaender and Hagerup [6] can be simulated on one
processor to get a sequential linear time algorithm which uses linear memory.

In this paper, we extend the results of Arnborg et al. [2] in two ways.

� We discuss a method to solve in many cases not only decision problems (i.e. properties)
on graphs with bounded treewidth, but also the construction variants of these problems.
We show that this method works for all construction variants of properties that are ex-
pressible in monadic second order logic.

� We show that a variant of the method of Arnborg et al. can be used to solve several opti-
mization problems on graphs with bounded treewidth, and we give a way to prove for a
given optimization problem that this method works.

We also show that a combination of these two results is possible: the construction variants of
several graph optimization problems of graphs can be solved using graph reduction algorithms
on graphs with bounded treewidth.

Furthermore, we show that the parallel algorithm of Bodlaender and Hagerup [6] can be
applied to our results.

This paper is organized as follows. In Section 2, some definitions and preliminary results
are given. In Section 3, a method to use reduction algorithms for the construction variants of
decision problems is discussed. In Section 4 it is shown that graph reduction can also used to
solve certain optimization problems, and in Section 5, the results of Sections 3 and 4 are com-
bined. Section 6 discusses parallel algorithms, based on reduction, and Section 7 concludes the
paper, and gives some ideas for further research.

2 Preliminaries

In this paper, the graphs we consider are undirected, do not contain self-loops or multiple edges.
(Similar results can be derived for directed graphs. For simplicity, we concentrate on undirected
graphs.)

2



We say a property is effectively decidable if an algorithm is known that decides on the prop-
erty. Similarly, we say a function is effectively computable if an algorithm is known that com-
putes the function value for a given element of the domain.

The notion of treewidth was introduced by Robertson and Seymour [11].

Definition 2.1. A tree decomposition TD of a graph G = (V;E) is a pair (fXi j i 2 Ig; T )
with T = (I; F ) a tree, and fXi j i 2 Ig a family of subsets of V , one for each node of T , such
that

�
S
i2I Xi = V ,

� for all edges fv; wg 2 E, there exists an i 2 I with v 2 Xi and w 2 Xi, and

� for all i; j; k 2 I: if j is on the path from i to k in T , then Xi \Xk � Xj .

The treewidth of a tree decomposition (fXi j i 2 Ig; (I; F )) is maxi2I jXij � 1. The treewidth
of a graphG, denoted by tw(G), is the minimum treewidth over all possible tree decompositions
of G.

Definition 2.2. A terminal graph G is a triple (V;E;X) with (V;E) an undirected graph, and
X � V is an ordered subset of the vertices, denoted by hx1; : : : ; xli, l � 0, called the set of
terminals. Vertices in V � X are called inner vertices. A terminal graph (V;E;X) is called
an l-terminal graph if jXj = l. A terminal graph (V;E;X) is said to be open, if there are no
edges between terminals (for all v; w 2 X , fv; wg =2 E).

The usual undirected graphs (i.e., without terminals) will be simply called graph.

Definition 2.3. The operation � maps two terminal graphs G and H with the same number l
of terminals to a graph G � H , by taking the disjoint union of G and H , then identifying the
corresponding terminals, i.e., for i = 1; : : : ; l, the ith terminal of G is identified with the ith
terminal of H , and then removing multiple edges.

For an example of the �-operation, see Figure 1.

= terminal vertex

= inner vertex

1 1

2 2

1

2

Figure 1: Example of �-operation

3



Two terminal graphs (V1; E1; hx1; � � � ; xki) and (V2; E2; hy1; � � � ; yli) are said to be iso-
morphic, if k = l and there exists a bijective function f : V1 ! V2 with for all v; w 2 V1,
fv; wg 2 E1 , ff(v); f(w)g 2 E2 and for all i, 1 � i � k, f(xi) = yi. The main differ-
ence with the usual definition of graph isomorphism is that we require that the corresponding
terminals are mapped to each other.

Definition 2.4. A reduction rule r is an ordered pair (H1;H2), whereH1 andH2 are l-terminal
graphs for some l � 0. An application of reduction rule (H1;H2) is the operation, that takes a
graph G of the form G1�G3, withG1 isomorphic toH1, and replaces it by the graph G2�G3,
with G2 isomorphic to H2. We write G r

! G2 �G3.

An example of the application of a reduction rule is given in Figure 2.

= terminal vertex

= inner vertex

G
G’

r

r

1

2

1

2

1

2

1

2

Figure 2: Applying rule r to G yields G0

For two graphs G and G0, and a set of reduction rules R, we write G R
! G0, if there exists

an r 2 R with G r
! G0.

Definition 2.5. Let P be a graph property, i.e. for each graph G, P (G) 2 ftrue; falseg. Let
R be a set of reduction rules.

� R is safe for P if, whenever G R
! G0, then P (G), P (G0).

� R is complete for P if the set of graphs fG j P (G) ^ :9G0 : G
R
! G0g is finite.

� R is terminating if there does not exist an infinite sequence G1
R
! G2

R
! G3

R
! � � �.

� R is decreasing if, whenever G R
! G0, then G0 contains fewer vertices than G.

Clearly, a decreasing set of rules is terminating.
A set of reduction rules R, that is finite, safe, complete, and terminating for a property P

corresponds to an algorithm that decides whether property P holds on a given graph: repeat ap-
plying rules fromR starting with the input graph, until no rule fromR can be applied anymore.

If the resulting graph belongs to the finite set fG j P (G) ^ :9G0 : G
R
! G0g, then P holds on

the input graph, otherwise it does not. In [2] it has been shown how, when the set is decreasing,
this algorithm can be implemented such that it takes linear time and polynomial space.

4



Definition 2.6. For a graph property P the equivalence relation �P;l on l-terminal graphs, is
defined as follows.

G1 �P;l G2 , (8l-terminal graphs H P (G1 �H), P (G2 �H))

Property P is of finite index, if for all l � 1, �P;l has finitely many equivalence classes.

It appears that many important graph properties are of finite index. For instance, all prop-
erties that can be formulated in monadic second order logic, i.e. that are MS-definable, are
of finite index (for a definition, see e.g. [3]). These include HAMILTONIAN CIRCUIT, k-
COLORABILITY (for fixed k), and many others.

An equivalence relation �0 is a refinement of an equivalence relation � if each equivalence
class of �0 is a subset of an equivalence class of �.

For each integer k � 1, let TWk be the graph property defined as follows: for each graph
G, TWk(G) = tw(G) � k. For a property P and an integer k, the property Pk is defined as
Pk(G) = P (G) ^ TWk(G).

Lemma 2.1. If P is of finite index, then Pk is of finite index for each k � 1.

Proof. The property TWk is of finite index, for each k � 1, since it is MS-definable (see
e.g. [3]). For each l, let �l be the equivalence relation on l-terminal graphs which is defined as
follows.

G1 �l G2 , G1 �P;l G2 ^G1 �TWk;l G2

If G1 �l G2, then G1 �Pk;l G2, so �l is a refinement of �Pk;l. Hence the number of equiv-
alence classes of �Pk;l is at most the number of equivalence classes of �l, which is at most
the number of equivalence classes of�P;l times the number of equivalence classes of �TWk;l.
Hence Pk is of finite index. 2

(A similar lemma holds, if we pose an additional constant upper bound on the maximum
degree of vertices in the graph.)

Finite index corresponds to ‘finite state’: there exists a linear time algorithm that decides
the property on graphs, given with a tree decomposition of bounded treewidth. Moreover, this
algorithm is of a special, well described structure. See e.g. [1].

Note that a reduction rule (H1;H2) 2 R is safe for a property P if and only if H1 �P;l H2

(if H1 and H2 are l-terminal graphs).
Below, we give a lemma on the existence of subgraphs of a certain size and type in graphs

with bounded treewidth. This lemma will be used to show that there is a finite, safe, complete
and decreasing set of reduction rules for a property Pk if property P is of finite index.

Lemma 2.2. Let k and r be positive integers. If G = (V;E) is a graph with n vertices and
treewidth at most k, and n � r+1, then G can be written asG1�G2, withG1 and G2 terminal
graphs with at most k + 1 terminals, and G1 has at least r + 1 and at most 2(r + 1)(k + 1)
vertices, and, if G1 has one or more terminals, then G1 is open and connected.

5



Proof. Let H1; : : : ;Hl be the connected components of G. If, for each i, jV (Hi)j � r, then
there is a set I 0 � f1; : : : ; lg, such that r+1 �

P
i2I0 jV (Hi)j � 2(r+1). In this case, let G1

denote the zero-terminal graph consisting of all components Hi with i 2 I 0, and let G2 denote
the zero-terminal graph consisting of all components Hi with i =2 I 0.

Suppose that there is an i, 1 � i � l, such that jV (Hi)j � r + 1. We show that the lemma
holds forHi. We can then extend G2 with the other components ofG to prove the lemma. From
now on, let G denote Hi.

Let TD = (fXi j i 2 Ig; T = (I; F )) be a tree decomposition of width at most k of G.
Take s 2 I arbitrarily, and let Xs be the root node of the tree decomposition. For each node
Xi, let Vi denote the set of all vertices of G which occur in Xi or in a node Xj , where j is a
descendant of i in T , and let G0

i be the graph obtained from G[Vi] by deleting al edges between
vertices in Xi. Let TDi denote the tree decomposition obtained from TD by taking the subtree
rooted at Xi. Note that TDi is a tree decomposition of G[Vi]. Note furthermore that for each
v 2 Vi, there is a path in G[Vi], and also in G0

i, to some w 2 Xi, since G is connected. Hence
G0
i has at most k + 1 connected components, and each component contains at least one vertex

of Xi.
If G has less then (r+1)(k+1) vertices, then let G1 be the zero-terminal graph G, and let

G2 be the empty zero-terminal graph. If G has at least (r + 1)(k + 1) vertices, then apply the
following algorithm to find G1 (the definition of G2 then follows directly).

Algorithm Find
1. (� jV (G)j � (r + 1)(k + 1) and there is a path from each v 2 Vs to a w 2 Xs �)
2. if jV (G)j � 2(r + 1)(k + 1)
3. then Let H1; : : : ;Hl be the components of G0

s. (� l � k + 1 �)
4. Let Hj be a component with at least r + 1 vertices.
5. Let G1 be the terminal graph obtained from Hj by taking as terminals the vertices

in V (Hj) \Xs, and leaving out all edges between terminals.
6. return G1

7. else (� jV j > 2(r + 1)(k + 1) �)
8. Let j be an arbitrary child of s in T .
9. if jVj j � (r + 1)(k + 1)
10. then Let G denote the graph G[Vj].
11. Let TD be TDj .
12. Let s = j.
13. Go to step 1
14. else (� jVj j < (r + 1)(k + 1) �)
15. Let V 0

j =
S
fVi j i is child of s in T and i 6= j g.

16. (� jV 0
j j � jV j � jVj j � (r + 1)(k + 1) �)

17. Let G denote the graph G[V 0
j ].

18. Let TD be the tree decomposition of G obtained from the old TD by leav-
ing out the subtree rooted at Xj

19. Go to step 1

Note that a terminal graph G1 that is returned has at most k+1 terminals, is open and connected,
and has at least r + 1 and at most 2(r + 1)(k + 1) vertices. 2

6



The following theorem has been proved in a slightly different form in [2], but we give a
proof which may be somewhat easier to follow.

Theorem 2.1. Let k � 1 be a constant, P a graph property, and suppose P is of finite index.
There exists a finite, safe, complete and decreasing set of reduction rules R for Pk. Moreover,
for each reduction rule (H;H 0) 2 R, H and H 0 are open, and if H has one or more terminals,
then H is connected.

If there is also an equivalence relation �l for each l � 1, which is a refinement of �P;l, is
effectively decidable, and has a finite number of equivalence classes, then such a set of reduction
rules can effectively be constructed.

Proof. Note that we only have to construct reduction rules (H;H 0), for which there is a terminal
graph G such that Pk(H �G) holds (and consequently, Pk(H 0 �G) holds).

For every l � k+1, and every equivalence class c of �Pk;l, do the following. If l = 0 and
c contains graphs with treewidth at most k, then take a representing graph Hc from c which has
treewidth at most k. If l � 1 and c contains at least one open and connected l-terminal graph
which has treewidth at most k, choose a representing open, connected l-terminal graph Hc 2 c
with treewidth at most k. Let r be the maximum number of vertices of all chosen graphs Hc.

Let R denote the set of reduction rules to build. First, for all zero-terminal graphs H with
at least r + 1 and at most 2(r + 1)(k + 1) vertices, if we have a representative for the class c
which contains H , then add reduction rule (H;Hc) toR. Next, for all l, 1 � l � k+ 1, for all
open connected l-terminal graphs H with at least r + 1 and at most 2(r + 1)(k + 1) vertices,
if we have a representative for the equivalence class c in which H is contained, then add the
reduction rule (H;Hc) to R. Note that if we do not have such a representative, then H must
have treewidth k + 1 or more, and hence there is no terminal graph G for which Pk(H � G)
holds.

It is easy to see thatR is finite: there are finitely many l-terminal graphs with at most 2(r+
1)(k+1) vertices. Safeness of the resulting setR follows directly from the fact that each left-
and right-hand-side of a rule inR belong to the same equivalence class of the relation�Pk;l. As,
by Lemma 2.2, each graph with treewidth at most k and at least r+1 vertices, has an applicable

rule from the set R, completeness follows directly: the set fH j P (H) ^ :9H 0 : H
R
! H 0g

contains only graphs with at most r vertices. It is obvious that R is decreasing.
We now show how we can effectively construct such a set of reduction rules. Note that the

non-constructive parts in the proof until now are the part of finding a representative for each
equivalence class which contains open terminal graphs with treewidth at most k, and the part
of testing in which equivalence class a graph is contained. For each l, let �l be an effectively
decidable equivalence relation on l-terminal graphs that is a refinement of�P;l and has a finite
number of equivalence classes.

Arnborg et al. [2] give a way to construct, for a given integer m, a representative of each
equivalence class of �l (0 � l � m+ 1) which contains a graph for which there exists a tree
decomposition of width m with all terminals in the same node.

Furthermore, Lagergren and Arnborg [10] give an effectively decidable equivalence rela-
tion �0TWk;l

, which has a finite number of equivalence classes for each k and l, and is a refine-
ment of �TWk;l. This gives us enough ingredients to show how to construct reduction rules.
First consider the construction of representatives.

7



For each l and k, let �k;l and �0k;l be equivalence relations on l-terminal graphs which are
defined as follows.

G1 �k;l G2 , G1 �l G2 ^G1 �
0
TWk;l

G2

G1 �
0
k;l G2 , G1 �k;l G2 ^ (G1 is open , G2 is open)

It is clear that both �k;l and �0k;l are effectively decidable, have a finite number of equivalence
classes, and are a refinement of �Pk;l. Furthermore, �0k;l is a refinement of �k;l.

Let G be an l-terminal graph with l � k+1, suppose G has treewidth at most k. There is a
tree decomposition of width 2k+1 ofG in which all terminals are in one node: take an arbitrary
tree decomposition of width k ofG, append a node containing all terminals at an arbitrary place,
and add all terminals to all other nodes.

Use the result from [2] to generate a representative for each equivalence class of �0k;l (for
each l � 2k+1) which contains a graph for which there is a tree decomposition of width 2k+1
with all terminals in one node. After the generation, throw away all representatives with more
than k+1 terminals or with treewidth k+1 or more. The resulting set contains a representative
for each equivalence class of �k;l, 0 � l � k+ 1, which contains a graph of treewidth at most
k. Let R denote this set.

Now delete all graphs fromRwhich are not open. The resulting set contains a representative
for each equivalence class of �k;l which contains open l-terminal graphs of treewidth at most
k, and hence this is the set we need.

Now it is easy to construct a finite, safe, complete and decreasing set of reduction rules. Let
r again be the maximum number of vertices of any graph in R. For all l � k + 1, for all open
and, if l � 1, connected l-terminal graphs H with at least r + 1 and at most 2(r + 1)(k + 1)
vertices, find an H 0 2 R for which H �k;l H 0 (using the algorithm for deciding �k;l). If an H 0

is found, then add the reduction rule (H;H 0) to an initially empty set of reduction rules R. 2

The open and connectedness properties of the reduction rules in Theorem 2.1 are not needed
for the algorithm of Arnborg et al [2], but they are used for the parallel algorithm of Bodlaender
and Hagerup [6], see also Section 6. As each right-hand-side of a rule in R is open, applying
a rule inR can never give multiple edges between a pair of vertices. The connectedness of the
left-hand-sides of the reduction rules is used to obtain a more efficient way to find occurrences
of left-hand-sides of reduction rules in a given graph.

From the proof of Theorem 2.1, we can also conclude the following.

Corollary 2.1. Let P be a graph property, and for each l � 0, let �l be a refinement of �P;l.
Let k � 1. If�l has a finite number of equivalence classes for each l � 0, then there is a finite,
safe, complete and decreasing set R of reduction rules for Pk, such that for each (H;H 0) 2
R, H �l H

0. Moreover, if �l is effectively decidable, then such a set R can effectively be
constructed.

More background information about graph reduction and graphs of bounded treewidth can
be found in [4, 8].

8



3 Constructing Solutions

Many graph properties are of the form P (G) = 9S2D(G)Q(G;S), where D(G) is a solution
domain (or shortly domain), which is some set depending on G, and Q is a property of G and
S, i.e. Q(G;S) 2 ftrue; falseg for all graphs G and all S 2 D(G). An S 2 D(G) for which
Q(G;S) holds is called a solution for G. For example, for the perfect matching problem on a
graph G, D(G) can be P(E), the power set of E, and for S 2 D(G), Q(G;S) holds if and
only if every vertex in G is end point of exactly one edge in S. Hence S is a solution for G if
S is a perfect matching of G.

Often we are not only interested in whether P (G) holds, but we are also interested in a
solution S 2 D(G) for which Q(G;S) holds (if P (G) holds). However, such a solution is
not constructed if reduction algorithms are used: these algorithms only compute whether P (G)
holds or not. For instance, 3-COLORABILITY is of finite index, so there is a finite, safe, com-
plete and decreasing set of reduction rules for this property on graphs with bounded treewidth.
However, by reducing a given graph with these rules, we do not find a three-coloring for it if
one exists.

In this section we give an idea how to construct solutions in reduction algorithms, and we
give a condition for graph properties such that this idea can be used. We also show that con-
structive versions of graph properties that are MS-definable satisfy this condition.

The idea is to solve the construction versions of problems as follows. First apply a reduction
algorithm and store the applied reductions and the place at which they are applied. Then, if
P (G) holds, construct a solution for the reduced graph. After that, undo the reductions one by
one in reversed order, and after each undo-action, reconstruct the solution for the old graph into
a solution of the new graph.

To keep the total running time of the algorithm linear in the number of vertices of the graph,
the total time for all reconstructions of solutions must be linear. This is possible if a solution for
the reduced graph can be constructed in constant time, and, for each undo-action, a solution for
the new graph can be computed from the old solution in constant time. This may for example
be possible if the new solution only differs from the old solution in the part of the graph that
was involved in the undone reduction. This gives rise to the following algorithm for a given set
R of reduction rules for a graph property P with P (G) = 9S2D(G) Q(G;S).

Algorithm ConstructSolution
Input: A graph G
Output: An S 2 D(G) such that Q(G;S) holds if P (G) holds, false otherwise
1. i 0
2. while there is applicable reduction rule ri = (Hi;H

0
i) 2 R

3. do apply ri to G and store place of application of ri
4. i i+ 1
5. if :P (G)
6. then return false
7. else (� construct initial solution �)
8. let S 2 D(G) be such that Q(G;S)
9. while i > 0

9



10. do (� undo reduction ri�1 and reconstruct solution �)
11. i i� 1
12. undo reduction ri, let G0 denote new graph
13. let H be such that G = H 0

i �H and G0 = Hi �H
14. construct S0 2 D(G0) from S such that Q(G0; S0) holds, and S0 only differs

from S in part Hi

15. G G0 ;S  S0

16. return S

In analogy with �P;l, we define �Q;l. We show that if Q is of finite index, then there is a
finite, safe, complete and decreasing set of reduction rules for Pk (k � 1), and furthermore,
with this set of reduction rules, it is possible to use algorithm ConstructSolution for construct-
ing solutions. What remains after that is that, to keep the algorithm running in linear time, the
construction of a solution for the reduced graph must be done in constant time, and the con-
struction of a new solution from an old solution in the reduced part of the graph must be done
in constant time.

Before being able to define �Q;l, we first give a number of other definitions. The first def-
inition we need is a definition of � for solutions of two l-terminal graphs.

Let D be some solution domain and let G1 and G2 be l-terminal graphs. Let S 2 D(G1 �
G2). We have to define S[G1] in such a way that it only depends on G1, i.e. it may not contain
vertices or edges which are not in G1. For most domains this works if S[G1] is obtained from
S by deleting all edges which are not in E(G2), and all vertices which are not in V (G2) from
S. ([ ] should be seen as a function, mapping the pair (S;G) to S[G].)

Let D be a solution domain, and let a definition of [ ] be given. For each l � 0, each l-
terminal graph G, define

D[ ](G) = fS[G] j S 2 D(G�H) for some l-terminal graph Hg:

D[ ](G) is called the domain of partial solutions of G. Note that D(G) � D[ ](G).

Definition 3.1 (Inducibility). Let D be some domain. D is inducible if there is a function [ ]
for D, such that for each graph G and for each pair of terminal graphs G1 and G2 such that
G1 � G2 = G, each S 2 D(G), there is no S0 2 D(G), S0 6= S, such that S0[G1] = S[G1]
and S0[G2] = S[G2].

Definition 3.2 (�-Compatibility). Let G and H be l-terminal graphs for some l � 0, let D
be an inducible domain, and let S 2 D[ ](G) and S0 2 D[ ](H). (G;S) and (H:S0) are �-
compatible if there is an S00 2 D(G � H) such that S00[G] = S and S00[H] = S0. If (G;S)
and (H;S0) are �-compatible, then we write S � S0 = S00.

Note that S�S0 is defined properly, since if there is anS00 2 D(G�H) such that S = S00[G]
and S0 = S00[H], then this S00 is unique, because D is inducible.

For example, if D(G) = P(V ), then D is inducible with the common definition of [ ],
and D[ ](G) = D(G) for all terminal graphs G. If G = (V;E; hx1; : : : ; xli) and H =

10



(V 0; E0; hy1; : : : ; yli) are l-terminal graphs, and S 2 D[ ](G), S0 2 D[ ](H), then (G;S) and
(H;S0) are �-compatible if and only if

fi j 1 � i � l ^ xi 2 Sg = fi j 1 � i � l ^ yi 2 S
0g:

In that case, S � S0 is simply the union of S and S0 in G�H .
The following definition is necessary for the definition of �Q;l.

Definition 3.3 (Compatibility). Let D be an inducible domain, let G1 and G2 be l-terminal
graphs for some l � 0, and let S1 2 D[ ](G1) and S2 2 D[ ](G2). (G1; S1) and (G2; S2) are
compatible if for each l-terminal graph H , each S 2 D[ ](H), (G1; S1) is �-compatible with
(H;S) if and only if (G2; S2) is �-compatible with (H;S).

Note that compatibility is an equivalence relation. The set of all these equivalence classes is
denoted by Ccmp;l, for each l, and the equivalence classes are also called compatibility classes.
For two equivalence classes c and c0 of some equivalence relation which is a refinement of com-
patibility, we say that c and c0 are �-compatible if, for each (G;S) 2 c, (H;S0) 2 c0, (G;S)
and (H;S0) are �-compatible.

Let P be a graph property, and suppose P (G) can be written as 9S2D(G) Q(G;S), such
that domain D is inducible.

Definition 3.4. For each l � 0, �Q;l is an equivalence relation on pairs of l-terminal graphs
G and partial solutions S 2 D[ ](G), which is defined as follows. Let G1, G2 be l-terminal
graphs, and S1 2 D[ ](G1) and S2 2 D[ ](G2).

(G1; S1) �Q;l (G2; S2) , (G1; S1) and (G2; S2) are compatible and

8l-terminal graphs H 8S2D[ ](H)

(H;S) �-compatible with (G1; S1) and (G2; S2)

) Q(G1 �H;S1 � S) = Q(G2 �H;S2 � S)

Let CQ;l denote the set of equivalence classes of�Q;l, and for each l-terminal graph G and
S 2 D[ ](G), let ecQ;l(G;S) = c, c 2 CQ;l, if and only if (G;S) 2 c.

By �rQ;l, we usually denote an equivalence relation which is a refinement of �Q;l. By
CrQ;l we denote the set of equivalence classes of �rQ;l, and for each l-terminal graph G, each
S 2 D[ ](G), ecrQ;l(G;S) = c if (G;S) is in equivalence class c 2 CrQ;l.

Definition 3.5. For each l � 0, and for each refinement �rQ;l of �Q;l, let �rQ;l be an equiva-
lence relation on l-terminal graphs, which is defined as follows. For each two l-terminal graphs
G1 and G2,

G1 �rQ;l G2 , f ecrQ;l(G1; S1) 2 CrQ;l j S1 2 D[ ](G1) g

= f ecrQ;l(G2; S2) 2 CrQ;l j S2 2 D[ ](G2) g

Note that �rQ;l is an equivalence relation.

Lemma 3.1. For each l � 0, each refinement �rQ;l of �Q;l, �rQ;l is a refinement of �P;l.

11



Proof. Let G1 and G2 be l-terminal graphs, Suppose G1 �rQ;l G2. We have to prove that for
all l-terminal graphs H , P (G1 � H) = P (G2 � H). Suppose P (G1 � H) holds. Let S 2
D(G1 �H) such that Q(G1 �H;S) holds. Let S1 = S[G1] and S0 = S[H]. Since G1 �rQ;l
G2, there is an S2 2 D[ ](G2) such that (G1; S1) �rQ;l (G2; S2), and hence (G1; S1) �Q;l
(G2; S2). Since domain D is inducible, (G1; S1) and (H;S) are �-compatible. Furthermore,
(G1; S1) and (G2; S2) are compatible, so (G2; S2) and (H;S0) are also �-compatible. Hence
Q(G1�H;S1� S

0) = Q(G2 �H;S2 � S
0), so P (G2 �H) holds. By symmetry, this means

that P (G1 �H) = P (G2 �H). 2

Let G be a graph. Suppose we run Algorithm ConstructSolution on G with a set of finite,
safe, complete and decreasing setR of reduction rules. Furthermore, suppose that in line 12 we
undo a rule ri = (Hi;H

0
i) in G, and Hi �Q;l H

0
i. Let G0 and H be defined as in the algorithm.

Then there exists anS0 2 D(G0), such thatQ(G0; S0) holds and S0 and S do not differ inH (i.e.,
S0[H] = S[H]): let S00 2 D[ ](Hi) such that (Hi; S

00) �Q;l (H
0
i; S[H

0
i]), and let S0 = S00 �

S[H]. This gives us an algorithmic method to quickly construct a solution for the unreduced
graph, given a solution for the reduced graph.

So what we need is a finite, safe, complete and terminating set R of reduction rules, such
that for each rule (G1; G2) 2 R, G1 �Q;l G2. We now show when this is possible.

Lemma 3.2. If for each l � 0, jCrQ;lj is finite, then �rQ;l has a finite number of equivalence
classes.

Proof. For each l � 0, the number of equivalence classes of �rQ;l is at most 2jCrQ;lj, which is
finite if jCrQ;lj is finite. 2

Note that for jCrQ;lj to be finite, jCQ;ljmust be finite, and hence also jCcmp;ljmust be finite.

Definition 3.6. For each k � 1 and l � 0, each refinement �rQ;l of �Q;l, let �rQk;l be an
equivalence relation on l-terminal graphs, which is defined as follows. For each two l-terminal
graphs G1 and G2,

G1 �rQk;l G2 , G1 �rQ;l G2 ^ G1 �TWk;l G2:

The analogy of Lemma 2.1 also holds for �rQk;l.

Lemma 3.3. For each l � 0, if jCrQ;lj is finite, then so is the number of equivalence classes
of �rQk;l.

Lemma 3.4. For each k � 1, l � 0, each refinement �rQ;l of �Q;l, �rQk;l is a refinement of
�Pk;l.

Proof. LetG1 andG2 be l-terminal graphs. LetH be an l-terminal graph, and suppose P (G1�
H) holds and tw(G1�H) � k. Then P (G2�H) holds because of Lemma 3.1. Furthermore,
tw(G2 �H) � k because of Definition 3.6. Hence for all l-terminal graphs H , P (G1 �H)^
tw(G1 �H) � k , P (G2 �H) ^ tw(G2 �H) � k. 2

12



We now come to the main result of this section.

Theorem 3.1. Let P be a graph property. Suppose that the following conditions hold.

1. P can be written in the form

P (G) = 9S2D(G)Q(G;S);

in such a way that domain D is inducible, Q is decidable, a refinement �rQ;l of �Q;l is
decidable, and jCrQ;lj is finite,

2. There is a function s, which assigns to each terminal graph G a positive integer, such that
for each S 2 D[ ](G), the number of bits needed to represent S is at most s(G).

3. For each two fixed l-terminal graphs H and H 0, the following holds. For each l-terminal
graph G, if S 2 D(G�H), then S[H] can be computed from S and H in constant time,
and for each S0 2 D[ ](H

0), such that (H;S[H]) �rQ;l (H 0; S0), S0 � S[G] can be
computed in constant time from S, S0, H and H 0.

Then for each k � 1, there is a finite, safe, complete and decreasing set R of reduction rules
for Pk, and there is an implementation of Algorithm ConstructSolution which can be used to
compute for each graph G, in linear time, an S 2 D(G) such that Q(G;S) holds, if Pk(G)
holds.

If, in addition, Q and �rQ;l are effectively decidable, s is effectively computable, and in
condition 3, S[H] and S0 � S[G] are effectively computable from S and H , then R and the
implementation of Algorithm ConstructSolution can be constructed.

Proof. Since jCrQ;lj is finite, �rQk;l has a finite number of equivalence classes, and it is a
refinement of �Pk;l. Let R be a finite set of safe, complete and terminating reduction rules,
such that for each rule H1 ! H2, H1 �rQk;l H2. Note that this set can be constructed, if�rQ;l
is effectively decidable, since in that case, �rQk;l is effectively decidable (Theorem 2.1).

For each reduction ruleH1 ! H2 inR, keep a table T forH1, which contains for each pos-
sible equivalence class c 2 CrQk;l, a partial solution S1 2 D[ ](H1) such that ecrQk;l(H1; S1) =
c, if such a solution exists, and false otherwise.

Let G be a graph. Algorithm ConstructSolution can now be further refined as follows. In
line 8, an S 2 D(G) (G is the reduced graph here) for which Q(G;S) holds can be constructed
as follows. Each possible S 2 D(G) is tried, and if Q(G;S) holds, then this solution is taken.
Note that this can be done in constant time, because of condition 2, and we can actually do it if
s is effectively computable and Q is effectively decidable.

In line 14 of Algorithm ConstructSolution, the construction of S0 can be done as follows.
First S[H 0

i] is computed. Then c = ecrQk;l(H
0
i; S[H

0
i]) is computed. After that S00 = T (c) is

obtained, and S0 = S00 � S[H] is computed. Note that all these steps can be done in constant
time, and we can actually do them if the constant time algorithms to compute S[H 0

i] and S00 �
S[H] are known.

This completes the proof. 2

13



As an important special case, we consider the graph properties that are MS-definable (see
e.g. [9] or [3]). Let k � 1. Suppose we have a graph property P which can be written as
P (G) = 9S2D(G) Q(G;S), where D(G) = D1(G) � D2(G) � � � � � Dt(G) for some t �
1, each Di(G) is either equal to V (G), to E(G), to P(V (G)) or to P(E(G)), and we have a
definition of Q in monadic second order logic. We show that Algorithm ConstructSolution can
be used to find for a given graph G an S 2 D(G) such that Q(G;S) holds, if Pk(G) holds,
and that we can construct the finite, safe, complete and decreasing set of reduction rules that is
needed for the algorithm.

For each two l-terminal graphs G and H , each S = (S1; : : : ; St) 2 D(G�H), let S[G] =
(S1[G]; : : : ; St[G]), where for each i, Si[G] is defined as follows.

Si[G] =

8>>>>>>><
>>>>>>>:

Si \ V (G) if Di(G) = P(V (G))
Si \E(G) if Di(G) = P(E(G))
Si if Di(G) = V (G) ^ Si 2 V (G)
� if Di(G) = V (G) ^ Si =2 V (G)
Si if Di(G) = E(G) ^ Si 2 E(G)
� if Di(G) = V (G) ^ Si =2 E(G)

Hence ifDi(G�H) isP(V (G�H)) orP(E(G�H)), thenD[ ];i(G) = Di(G). IfDi(G�H)
is V (G�H) or E(G�H), then D[ ];i(G) = Di(G) [ f�g.

With this definition of [ ], D is inducible, and jCcmp;lj is finite, for each l � 0.
Borie et al. [7] have shown that for each k � 1, there is a homomorphism h, mapping each

pair (G;S), where G is an l-terminal graph, l � k, and S 2 D[ ](G), to an element of a finite
set Ak, such that the following conditions hold.

1. For each l; l0 � k, each l-terminal graphG1 and l0-terminal graphG2, each S1 2 D[ ](G1)
and S2 2 D[ ](G2), if h(G1; S1) = h(G2; S2), then Q(G1; S1) = Q(G2; S2).

2. There is a function f� : Ak � Ak ! Ak, such that for each l � k, each two l-terminal
graphs G and H , each S 2 D[ ](G) and S0 2 D[ ](H), if (G;S) and (H;S0) are �-
compatible, then

h(G�H;S � S0) = f�(h(G;S); h(H;S
0)):

This homomorphism can be computed if we have a definition of Q in monadic second order
logic.

For each l � 0, each l-terminal graph G and S 2 D[ ](G), let ecl(G;S) = (h(G;S); c),
where c 2 Ccmp;l is such that (G;S) belongs to compatibility class c. Furthermore, let Cl =
Ak�Ccmp;l, and let (G1; S1) �l (G2; S2) if and only if ecl(G1; S1) = ecl(G2; S2). Since jAkj
and jCcmp;lj are both finite, jClj is also finite. We now show that �l is a refinement of �Q;l.

Let l � 0, let G1 and G2 be l-terminal graphs, let S1 2 D[ ](G1), S2 2 D[ ](G2), such
that G1 �Q;l G2. We have to show that for all l-terminal graphs H , all S 2 D[ ](H) such that
(G1; S1) and (H;S) are �-compatible, Q(G1 � H;S1 � S) = Q(G2 � H;S2 � S). Let H
be an l-terminal graph, and let S 2 D[ ](H) such that (G1; S1) and (H;S) are �-compatible.

14



Then, since h(G1; S1) = h(G2; S2),

h(G1 �H;S1 � S) = f�(h(G1; S1); h(H;S))

= f�(h(G2; S2); h(H;S))

= h(G2 �H;S2 � S):

Hence Q(G1�H;S1�S) = Q(G2�H;S2�S). This shows that condition 1 of Theorem 3.1
holds.

Condition 2 of Theorem 3.1 is also satisfied, since each S 2 D(G) has at mostO(tjV (G)j+
tjE(G)j) elements (vertices and edges).

Now consider condition 3. We use a data structure for storing tuples S = (S1; : : : ; St) 2
D[ ](G), which consists of an array of t data structures for each Si. If Si is a set of vertices or
edges, then these vertices or edges are put in a list. If Si is a vertex or edge, or �, then this vertex
or edge or � is stored. Furthermore, we keep a pointer from each vertex and edge to each place
in the data structure where this vertex or edge occurs. There are at most t of these pointers for
each vertex and each edge.

For each two fixed l-terminal graphs H and H 0, each l-terminal graph G, if we have S 2
D(G�H) stored in this way, then we can compute S[H] as follows. Make a new data structure
for S[H] with each Si[H] empty for each i. For each vertex v in H , follow the pointers from v
to the places in which it occurs in S, and check in which part Si of S it occurs. Then add v to
Si[H]. Do the same for all edges. Then for each i, check if Di is a set of vertices or edges, but
there is no vertex or edge in the data structure at the location of Si[H], and if so, add � to Si[H].
This can all be done in constant time, since H has constant size, and each vertex or edge occurs
at most once in each Si, so at most t times in S.

Let S0 = (S01; : : : ; S
0
t) 2 D[ ](H

0) such that (H;S) �rQ;l (H 0; S0). S0 � S[G] can be
computed as follows. For each vertex v of H which is not a terminal, follow the pointers from
v to all places in S where it occurs, and delete it there. Do the same for all edges in H for which
at least one end point is not a terminal.

For each vertex v of H 0 which is a terminal, follow the pointers from v to all pointers in S0

where it occurs, and delete v at that place. Do the same for all edges in H 0 of which both end
points are terminals.

Next, for each i, 1 � i � t, append the list S0i to the list Si. The resulting data structure
represents S0 � S[G]. Hence Algorithm ConstructSolution can be used.

The following theorem follows.

Theorem 3.2. Let P (G) = 9S2D(G) Q(G;S) and let k � 1. If Q is MS-definable, and
D(G) = D1(G)�� � ��Dt(G), for some t � 1, such that for each i,Di(G) is either P(V (G)),
P(E(G)), V (G) or E(G), then there is a finite set of safe, complete and terminating reduction
rules and an implementation of Algorithm ConstructSolution which can be used to construct in
linear time an S 2 D(G) such that Q(G;S) holds, if Pk(G) holds.

If in addition, we have a definition of Q in monadic second order logic, then such a set of
reduction rules and implementation of Algorithm ConstructSolution can be constructed.

As a corollary, we also have the following.

15



Corollary 3.1. Let P be a graph property. Suppose that P can be written in the form

P (G) = 9S2D1(G)�����Dt(G)Q(G;S);

in such a way that for each G and i, Di(G) is equal to V (G), E(G), P(V (G)) or P(E(G)),
and furthermore Q is decidable, a refinement �rQ;l of �Q;l is decidable, and jCrQ;lj is finite.
Then for each k � 1, there is a finite, safe, complete and decreasing set R of reduction rules
for Pk and an implementation of Algorithm ConstructSolution which can be used to compute
for each graph G, in linear time, an S 2 D(G) such that Q(G;S) holds, if Pk(G) holds.

If, in addition, Q and �rQ;l are effectively decidable, then R and the implementation of
Algorithm ConstructSolution can be constructed.

4 Optimization Problems

In this section we show how the idea of reduction algorithms can be extended to optimization
problems.

Let R be a function, mapping the set of graphs to [ ffalseg. Typically, R will be an
optimization problem, like independent set, vertex cover, etc. We will callR a graph optimiza-
tion problem. The value false is used to denote that a certain condition does not hold. Denote
Z = [ ffalseg. Define addition on Z as follows: if i; j 2 , then we take for i + j the
usual sum, and for all i 2 Z , i+ false = false + i = false.

Instead of reduction rules, we use reduction-counter rules for graph optimization problems.

Definition 4.1. A reduction-counter rule is a pair ((H;H 0); i), where (H;H 0) is a reduction
rule, and i 2 . An application of reduction-counter rule ((H;H 0); i) is the operation, that
takes a counter cnt 2 and a graph G of the form G1 �G3, with G1 isomorphic to H1, and
replaces cnt by cnt + i and G by the graph G2 � G3, with G2 isomorphic to H2. We write
G

r
! G2 �G3.

For two graphs G and G0, and a set of reduction-counter rulesR, we write G R
! G0, if there

exists an r = ((H;H 0); i) 2 R with G r
! G0.

To be able to use a reduction algorithm with reduction-counter rules for graph optimization
problems, we need a notion of finiteness, safeness, completeness, termination and decrease for
a set of reduction-counter rules.

Definition 4.2. Let R be a graph optimization problem. Let R be a set of reduction-counter
rules.

� R is safe for R if, whenever G r
! G0 for some r = ((H;H 0); i) 2 R, then R(G) =

R(G0) + i.

� R is complete for R if the set of graphs fG j R(G) 6= false^:9G0 : G
R
! G0g is finite.

� R is terminating if there does not exist an infinite sequence G1
R
! G2

R
! G3

R
! � � �.

� R is decreasing if whenever G R
! G0, then G0 contains fewer vertices than G.

16



To solve a graph optimization problem R on a graph G with a linear time reduction algo-
rithm, we can now use a finite, safe, complete and decreasing set R of reduction-counter rules
as follows. Apply the reduction algorithm as usual, using R, but maintain during the reduction
an integer counter. Initially, this counter is equal to zero, and after applying a reduction rule
((H;H 0); i), the counter is increased by i. Let Gj denote the graph after the jth reduction is
applied, and let cntj denote the value of the counter at this moment. It is important to note that
the sum ofR(Gj) and the counter is equal for all j. Thus, at each moment in the reduction algo-
rithm,R(G) = R(Gj)+cntj . Hence, whenG has been rewritten to a small graphGt, andGt is

in the finite set F = fG j R(G) 6= false^:9G0 G
R
! G0g, then R(G) = R(Gt)+ cntt, which

can be computed easily, since Gt is small. However, if Gt is not in F , then R(G) = false.
In analogy with �P;l for graph properties P , we define �R;l for graph optimization prob-

lems R.

Definition 4.3. For a graph optimization problem R the equivalence relation �R;l on l-
terminal graphs is defined as follows.

G1 �R;l G2 , 9i2 8l-terminals graphs H R(G1 �H) = R(G2 �H) + i:

Optimization problem R is of finite integer index if the number of equivalence classes of �R;l
is finite, for each fixed l.

Note that a if reduction-counter rule ((H;H 0); i) is safe for a graph optimization problem
R, thenH �R;l H 0. Furthermore, ifH �R;l H 0 for two l-terminal graphs H andH 0, then there
is a reduction-counter rule ((H;H 0); i) for some i 2 .

For given R, let CR;l be the set of equivalence classes of�R;l and for each l-terminal graph
G, let ecR;l(G) = c if c 2 CR;l and G belongs to equivalence class c.

For a graph optimization problem R and an integer k � 1, the graph optimization problem
Rk is defined as

Rk(G) =

(
false if tw(G) > k
R(G) otherwise

Lemma 4.1. If R is of finite integer index, then for each k � 1, Rk is of finite integer index.

Proof. For each l � 0, let�l be the equivalence relation on l-terminal graphs which is defined
as follows.

G1 �l G2 , G1 �R;l G2 ^G1 �TWk;l G2

If G1 �l G2, then G1 �R;l G2 and G1 �TWk;l G2, and hence there is an i 2 , such that for
all l-terminal graphs H , Rk(G1 �H) = Rk(G2 �H) + i. Hence �l is a refinement of �Rk;l.
Furthermore, for each l � 0,�l has a finite number of equivalence classes, hence so has�Rk;l.

2

The following theorem is the analogy of Theorem 2.1 for finite integer index problems.

17



Theorem 4.1. Let k be a constant, suppose R is a graph optimization problem which is of fi-
nite integer index. Then there exists a finite, safe, complete and decreasing setR of reduction-
counter rules for Rk. Moreover, for each reduction-counter rule ((H;H 0); i) 2 R, H and H 0

are open, and if H has one or more terminals, then H is connected.
If, in addition, there is an equivalence relation �l for each l � 0, which is a refinement of

�R;l, which is effectively decidable, has a finite number of equivalence classes, and for each
pair H;H 0, if H �l H

0, then we can effectively compute an i 2 such that for each G,
R(H�G) = R(H 0�G)+ i, then such a setR of reduction-counter rules can be constructed,
and for each ((H;H 0); i) 2 R, H �l H 0.

Proof. Let P be the graph property, defined as follows. For each graph G, P (G) = (R(G) 6=
false). For each l � 0,�R;l is a refinement of �P;l, and �Rk;l is a refinement of �Pk;l. Hence,
with Corollary 2.1, there is a finite, safe, complete and decreasing set R of reduction rules for
Pk, such that for each (H;H 0) 2 R, H �Rk;l H

0. For each reduction rule (H;H 0), make a
reduction-counter rule ((H;H 0); i), where i = 0 if for all G, R(H � G) = false (and hence
R(H 0 � G) = false), i = R(H � G) � R(H 0 � G) for some G such that R(H � G) 2
otherwise. Let R0 denote the set of all these reduction-counter rules. Then R0 is a finite, safe,
complete and decreasing set of reduction-counter rules for R.

If we have a refinement �l of �R;l, for each l � 0, then we can construct a finite, safe,
complete and decreasing set R of reduction rules for Pk, such that for each rule (H;H 0) 2 R,
H �l H

0. If we can compute an i 2 for which R(H � G) = R(H 0 �G) + i for each G,
then we can again turn each of these rules (H;H 0) in a reduction-counter rule ((H;H 0); i) with
i defined as above. 2

Note that the algorithm of Arnborg et al. [2] can easily be adapted to solve a graph opti-
mization problem with a finite, safe, complete and decreasing set of reduction-counter rules. In
Section 6 we show that the efficient parallel algorithm of [6] can be adapted to solve graph op-
timization problems with a finite, safe, complete and decreasing set of reduction-counter rules.

In the remainder of this section, we therefore give a method which makes it easier to prove
that a graph optimization problem is of finite integer index if it has the following form.

R(G) = optfz(S) j S 2 D(G) ^Q(G;S)g;

where D is a solution domain, for each S 2 D(G), z(S) 2 , and either opt = max or
opt = min. (If there is no S 2 D(G) for which Q(G;S) holds, then we define R(G) to be
false.)

Also, we use this method for a number of problems to prove that they are of finite integer
index, and we show for a number of other problems that they are not of finite integer index.

GivenR, z,D, as above, and a fixed refinement�rQ;l of�Q;l, we define for each l-terminal
graph G and c 2 CrQ;l opt(G; c) 2 Z as follows.

opt(G; c) = optfz(S) j S 2 D[ ](G) ^ ecrQ;l(G;S) = cg

If there is an S 2 D[ ](G) such that ecrQ;l(G;S) = c, then let optS(G; c) 2 D[ ](G) be
such that ecrQ;l(G; optS(G; c)) = c and z(optS(G; c)) = opt(G; c). opt(G; c) represents

18



‘the value of the best partial solution on G in equivalence class c’, and optS(G; c) gives such
a partial solution (if existing).

Let �Q;l be as defined in Section 3.

Theorem 4.2. Let R(G) = optfz(S) j S 2 D(G) ^Q(G;S)g. Suppose D is inducible for [ ]
and there is a refinement �rQ;l of �Q;l for which the following conditions hold.

1. For each l � 0, jCrQ;lj is finite (CrQ;l is the set of equivalence classes of �rQ;l).

2. Function z can be extended to the domain of partial solutions for terminal graphs (i.e.
z : D[ ](G)! for each terminal graph G) such that the following holds.

(a) For each l � 0, each c; c0 2 CrQ;l, if c and c0 are �-compatible, then there is a
constant dl(c; c0) 2 such that for all l-terminal graphs G and H , all S0 2 D(G),
S00 2 D(H), if (G;S) 2 c and (H;S0) 2 c0, then z(S0 � S00) = z(S0) + z(S00)�
dl(c; c

0).

(b) For each l � 0, there is a constant Kl 2 IN, and for each l-terminal graph G
there is an integer iG 2 , such that for each partial solution S 2 D[ ](G), if
jz(S)�iGj > Kl, then S can not lead to an optimal solution, i.e. for each l-terminal
graph H , for each S0 2 D(G � H), if Q(G �H;S0) holds and S0[G] = S, then
z(S0) 6= R(G�H).

Then there is an equivalence relation �l which is a refinement of �R;l and has a finite number
of equivalence classes for each l � 0, and hence R is of finite integer index.

If, in addition, �rQ;l is effectively decidable, there is an effectively computable function s,
which assigns to each graph G a positive integer, such that for each S 2 D[ ](G), the number
of bits to store S is at most s(G), and z(S) is effectively computable for each terminal graph
G and each S 2 D[ ](G), and for each terminal graph G, iG is effectively computable, then
�l is effectively decidable, and for each two l-terminal graphs H and H 0, if H �l H 0, then
we can effectively compute an i 2 , such that for each l-terminal graph G, R(H � G) =
R(H 0 �G) + i.

Proof. Suppose conditions 1 and 2 hold for R. Let z on partial solution domains be defined
as in condition 2. For each l � 0, let dl be as in condition 2(a), let Kl 2 IN be as in condition
2(b), and for all l-terminal graphs G, let iG 2 be as in condition 2(b).

We construct an equivalence relation �l on l-terminal graphs, such that �l is a refinement
of �R;l, and we show that �l has a finite number of equivalence classes for each l.

For each l � 0, each l-terminal graph G, let fG be a function mapping each c 2 CrQ;l to
the set f�Kl; : : : ;Klg [ ffalseg, and, for each c 2 Cl, let

fG(c) =

(
max(G; c)� iG if �Kl � max(G; cG)� iG � Kl

false otherwise.

For each l � 0, let G1 �l G2 , fG1 = fG2 , and let Cl denote the set of equivalence classes
of �l.

19



jf�Kl; : : : ;Klg [ ffalsegj = 2Kl + 2, which depends only on l. Furthermore, for each
l � 0, jCrQ;lj is constant, which means that there are at most a constant number of different
functions fG, so jClj is finite.

We now have to prove that �l is a refinement of �R;l, i.e. we have to prove that for all l-
terminal graphs G1 and G2, if G1 �l G2, then there is an i 2 , such that for all l-terminal
graphs H , R(G1 �H) = R(G2 �H) + i. We only show this for the case that opt = max. If
opt = min, the proof is similar.

Suppose fG1 = fG2 = f . We show that R(G1 �H) = R(G2 �H) + iG1 � iG2 (where
iG1 and iG2 are the integers as defined in condition 2(b) of the theorem).

First consider the case thatR(G1�H) = false. Then fS 2 D(G1�H) j Q(G1�H;S)g =
;, since z(S) 2 for each S 2 D(G1�H). This means that for each c 2 Cl, if f(c) 6= false
(hence there is an S1 2 D[ ](G1) with ecl(G1; S1) = c and S1 can lead to an optimal solution),
then for all c0 2 Cl, if c and c0 are �-compatible, fH(c0) = false (i.e. there is no SH 2 D[ ](H)
such that (G1; S1) and (H;SH) are �-compatible and SH may lead to an optimal solution).
This also means that for all S2 2 D[ ](G2), if S2 can lead to an optimal solution, then there
is no SH 2 D[ ](H) such that (G2; S2) and (H;SH) are �-compatible and S0 may lead to an
optimal solution. Hence R(G1 �H)� iG1 = false = R(G2 �H)� iG2 .

Suppose R(G1 � H) 2 . Let S 2 D(G1 � H) be such that Q(G1 � H;S) holds
and z(S) = R(G1 � H). Let SH = S[H], S1 = S[G1], c = ecrQ;l(G1; S1) and
c0 = ecrQ;l(H;SH). We first show that z(S1) = max(G1; c). Suppose not. Then there
is an S01 2 D[ ](G1) such that ecrQ;l(G1; S

0
1) = c and z(S01) = max(G1; c). But then

Q(G1 �H;S
0
1 � SH) = Q(G1 �H;S1 � SH) = true, and z(S01 � SH) = z(S01) + z(SH)�

dl(c; c
0) > z(S1) + z(SH)� dl(c; c

0) = z(S1 � SH) = R(G1 �H), which is a contradiction.
Since S is optimal and z(S1) = max(G1; c), it must hold that z(S1) = iG1 + f(c). Since

f(c) 2 , max(G2; c) 2 , and hence there is an S2 2 D[ ](G2) such that ecrQ;l(G2; S2) = c
and z(S2) = max(G2; c). Furthermore, Q(G2 �H;S2 � SH) holds, and

R(G2 �H) � z(S2 � SH)

= z(S2) + z(SH)� dl(c; c
0)

= fz(S2) = max(G2;H) = f(c) + iG2g

f(c) + iG2 + z(SH)� dl(c; c
0)

= f(c) + iG1 � iG1 + iG2 + z(SH)� dl(c; c
0)

= fz(S1) = f(c) + iG1g

z(S1) + z(SH)� dl(c; c
0)� iG1 + iG2

= z(S) � iG1 + iG2

= R(G1 �H)� iG1 + iG2 :

HenceR(G1�H)�i1 � R(G2�H)�i2. By symmetry,R(G2�H)�i2 � R(G1�H)�i1,
which means that R(G1 �H)� i1 = R(G2 �H)� i2.

We have now shown that �l is a refinement of �R;l, for each l � 0. Since jClj is finite for
each l, this means that R is of finite integer index.

If�rQ;l is effectively decidable, we have an effectively computable function s, iG is effec-
tively computable for each G, and z(S) is effectively computable for each S, then �l is effec-

20



tively decidable, and we can effectively compute for each pair of l-terminal graphs H;H 0, an
i 2 such that for each l-terminal graph G, R(H �G) = R(H 0 �G) + i. 2

While the theorem may seem complex to use, it is in most cases not hard to find an equiva-
lence relation �rQ;l which satisfies conditions 1 and 2(a). Only condition 2(b) is often not easy
to prove. Therefore, we give two other theorems, which are weaker than Theorem 4.2, but eas-
ier to use for showing problems to be of finite integer index, as will be demonstrated later in
this section.

Theorem 4.3. Let R(G) = optfz(S) j S 2 D(G) ^Q(G;S)g. Suppose D is inducible for [ ]
and there is a refinement �rQ;l of �Q;l for which condition 1 of Theorem 4.2 holds, and z can
be extended to the domain of partial solutions such that condition 2(a) of Theorem 4.2 holds,
and

2(c) for each l � 0, there is a constant Kl 2 IN, such that for each l-terminal graph G and
for each c; c0 2 Cl, if opt(G; c) 6= false and opt(G; c0) 6= false and partial solutions in
class c or c0 may lead to a solution, then jopt(G; c)� opt(G; c0)j � Kl.

Then condition 2(b) of Theorem 4.2 also holds.

Proof. Suppose conditions 1 and 2(a) of Theorem 4.2 hold, and condition 2(c) holds for R.
Let z be as in condition 2 and for each l � 0, let dl be as in condition 2(a), let Kl 2 IN be as
in condition 2(c). For all l-terminal graphs G, let iG = 0 if there is no S 2 D[ ](G) which can
lead to a solution, otherwise, let iG = opt(G; c) for some c 2 Cl which may lead to a solution.

We now show that with these definitions ofKl and iG, condition 2(b) of Theorem 4.2 holds.
We only consider the case that opt = max. The case that opt = min can be proved similarly.

LetG be an l-terminal graph, let S 2 D[ ](G), let c = ecl(G;S), and suppose jz(S)�iGj >
Kl. If z(S) < opt(G; c), then S can not lead to an optimal solution, since for each l-terminal
graph H , each S0 2 D(G � H), if S0[G] = S, then z(S0) < z(optS(G; c) � S0[H]), and
Q(G�H;S0) holds if and only if Q(G�H; optS(G; c)� S[H]) holds.

If z(S) = opt(G; c), then by condition 2(c), jz(S) � iGj � Kl. 2

Theorem 4.4. Let R(G) = optfz(S) j S 2 D(G) ^Q(G;S)g. Suppose D is inducible for [ ]
and there is a refinement �rQ;l of �Q;l for which condition 1 holds, and z can be extended to
the domain of partial solutions such that condition 2(a) holds, and

2(d) for each l � 0, there is a constant K 0
l 2 IN, and with each l-terminal graph G, we can

associate an equivalence class cG 2 CrQ;l, such that the following holds.

(i) For all l-terminal graphs G and H , and S 2 D[ ](G), S0 2 D[ ](H), if
ecrQ;l(G;S) = cG and ecrQ;l(H;S

0) = cH , then (G;S) and (H;S0) are �-
compatible, and Q(G�H;S � S0) holds.

(ii) If opt = max, then for all l-terminals graphs G, all S 2 D[ ](G), if S can lead to
a solution (i.e. there is an (H;S0) such that Q(G�H;S�S0) holds), then z(S)�
opt(G; cG) � Kl.

21



(iii) If opt = min, then for all l-terminals graphs G, all S 2 D[ ](G), if S can lead to a
solution, then opt(G; cG)� z(S) � Kl.

Then condition 2(b) of Theorem 4.2 also holds.

Proof. Suppose conditions 1 and 2(a) of Theorem 4.2 hold, and condition 2(d) holds for R.
Let z be as in condition 2, and for each l � 0, let dl be as in condition 2(a), let K 0

l 2 IN be as
in condition 2(d), and for all l-terminal graphs G, let cG 2 CrQ;l be as in condition 2(d).

For each l � 0, let

Kl = K 0
l + 2maxfjdl(c; c

0)j j c; c0 2 CrQ;l ^ c and c0 are �-compatibleg;

and for each l-terminal graph G, let

iG =

(
opt(G; cG) if opt(G; cG) 6= false
0 otherwise.

We now show that with these definitions of Kl and iG, condition 2(b) of Theorem 4.2 holds.
We only consider the case that opt = max. The case that opt = min can be proved similarly.

Let G be an l-terminal graph, let S 2 D[ ](G), and suppose jz(S) � iGj > Kl. We have
to show that S can not lead to an optimal solution. Suppose S leads to a solution. Let H be an
l-terminal graph and suppose there is an S0 2 D(G � H) such that Q(G � H;S0) holds and
S0[G] = S. We show that z(S0) < R(G�H). Let SH = S0[H], let c = ecrQ;l(G;S) and let
c0 = ecrQ;l(H;SH).

Because of condition 2(d)(ii), z(S) �max(G; cG) � K 0
l , which means that z(S) 6= false

andmax(G; cG) 6= false, hence iG = max(G; cG). This means that z(S)�iG � Kl, and hence
iG � z(S) > Kl, so z(S) < max(G; cG) � Kl. Furthermore, because of condition 2(d)(ii),
z(SH) � max(H; cH ) +K 0

l . This means that

z(S0) = z(S) + z(SH)� dl(c; c
0)

< max(G; cG)�Kl +max(H; cH ) +K 0
l � dl(c; c

0)

= f by definition of Klg

max(G; cG) + max(H; cH)� dl(c; c
0)� 2maxfdl(c; c

0) j c; c0 2 CrQ;lg

� z(maxS(G; cG)) + z(maxS(H; cH))�maxfdl(c; c
0) j c; c0 2 CrQ;lg

= f condition 2(d)(i)g

z(maxS(G; cG)�maxS(H; cH))

+ dl(cG; cH)�maxfdl(c; c
0) j c; c0 2 CrQ;lg

� z(maxS(G; cG)�maxS(H; cH))

� R(G�H):

Hence z(S0) < R(G�H). This completes the proof. 2

We now give a number of graph optimization problems for each of which we can either
prove that it is of finite integer index by using the method of Theorem 4.2, Theorem 4.3, or
Theorem 4.4, or we can prove that it is not of finite integer index.

22



Definition 4.4 (INDUCED BOUNDED DEGREE SUBGRAPH)
Given: A fixed integer constant p � 0, a graph G = (V;E).
Find: The maximum value of jSj, where S � V and all vertices in G[S] have degree at most p.

For p = 0, this is the INDEPENDENT SET problem.

Definition 4.5 (p-DOMINATING SET)
Given: A fixed integer constant p � 1, a graph G = (V;E).
Find: The minimum value of jSj, where S � V and all vertices in V �S have at least p neigh-
bors in S.

For p = 1, this is the DOMINATING SET problem.

Definition 4.6 (PARTITION INTO CLIQUES)
Given: A graph G = (V;E).
Find: The minimum value of s, such that there is a partition fV1; : : : ; Vsg of V in which for
each i, 1 � i � s, G[Vi] is a complete graph.

Definition 4.7 (COVERING BY CLIQUES)
Given: A graph G = (V;E).
Find: The minimum value of s, such that there is a set fV1; : : : ; Vsg, in which for each i, 1 �
i � s, Vi � V , G[Vi] is a complete graph, and for each edge e 2 E, there is an i, 1 � i � s,
such that e 2 E(G[Vi]).

Definition 4.8 (HAMILTONIAN PATH COMPLETION NUMBER)
Given: A graph G = (V;E).
Find: The minimum value of jSj, where S � ffu; vg j u; v 2 V g, such that G0 = (V;E [ S)
contains a Hamiltonian path.

Definition 4.9 (MAXIMUM CUT)
Given: A graph G = (V;E).
Find: The maximum value of z((V1; V2)), where (V1; V2) partitions V , and z(V1; V2) =
jffv; wg 2 E j v 2 V1 ^ w 2 V2gj.

Definition 4.10 (MAXIMUM LEAF SPANNING TREE)
Given: A graph G = (V;E).
Find: The maximum value of z(T ), where T is a spanning tree of G, and z(T ) denotes the
number of vertices of degree one of T .

Definition 4.11 (LONGEST PATH)
Given: A graph G = (V;E).
Find: The maximum value of s, such that there is a path (v1; v2; : : : ; vs) in G.

Definition 4.12 (LONGEST CYCLE)
Given: A graph G = (V;E).
Find: The maximum value of s, such that there is a path (v1; : : : ; vs) in G, and fvs; v1g 2 E.

23



(The problem HAMILTONIAN CIRCUIT COMPLETION NUMBER can be solved using re-
sults for HAMILTONIAN PATH COMPLETION NUMBER and is not further discussed here.)

Theorem 4.5. The following graph optimization problems are of finite integer index:

1. INDUCED BOUNDED DEGREE SUBGRAPH for all p � 0,

2. p-DOMINATING SET for all p � 1,

3. MAXIMUM CUT on graphs with bounded degree,

4. PARTITION INTO CLIQUES,

5. HAMILTONIAN PATH COMPLETION NUMBER, and

6. MAXIMUM LEAF SPANNING TREE.

For each of these problems on graphs with bounded treewidth, a finite, safe, complete and de-
creasing set of reduction-counter rules can be constructed.

Proof.

1 INDUCED BOUNDED DEGREE SUBGRAPH. Let p � 0 be fixed. D(G) = P(V ), and for
a given graph and solution S 2 D(G),

Q(G;S) = 8v2S jNG;S(v)j � p;

where
NG;S(v) = fw 2 S j fv; wg 2 E(G)g;

z(S) = jSj, and opt = max. For two l-terminal graphs G and H , and S 2 D(G � H), let
S[G] = S \ V (G), and let z(S[G]) = jS[G]j. Hence D[ ](G) = D(G), and two solutions S 2
D[ ](G) and S0 2 D[ ](H) are compatible and �-compatible if they contain the same terminals.

For each l � 0, let Il = f1; : : : ; lg, let Fl = ffi; jg j 1 � i < j � lg, and for each
l-terminal graph G = (V;E; hx1; : : : ; xli), let F (G) = ffi; jg j fxi; xjg 2 Eg.

For each l � 0, let

CrQ;l = f(I; false) j I � Ilg [ f(F; I;N) j F � Fl

^ I � Il ^N � f(i; n) j i 2 Il ^ n 2 f1; : : : ; pgg:

jCrQ;lj is bounded, because p is fixed. For each l-terminal graph G = (V;E; hx1; : : : ; xli),
each S 2 D[ ](G), let ecrQ;l(G;S) 2 CrQ;l be defined as follows. If there is a v 2 S such
that jNG;S(v)j > p, then ecrQ;l(G;S) = (I; false), where I = fi 2 Il j xi 2 Sg, otherwise,
ecrQ;l(G;S) = (F; I;N), where

F = F (G);

I = fi 2 Il j xi 2 Sg;

N = f(i; jNG;S(xi)j) j i 2 Ig:

24



Let G1 = (V1; E1; hx1; : : : ; xli) and G2 = (V2; E2; hy1; : : : ; yli) be two l-terminal graphs,
let S1 2 D[ ](G1) and S2 2 D[ ](G2). (G1; S1) �rQ;l (G2; S2) if and only if ecrQ;l(G1; S1) =
ecrQ;l(G2; S2).

We first show that�rQ;l is a refinement of�Q;l for all l. Suppose (G1; S1) �rQ;l (G2; S2).
Clearly, (G1; S1) and (G2; S2) are compatible. We have to show that for each l-terminal graph
H = (VH ; EH ; hz1; : : : ; zli), each SH 2 D[ ](H) such that (G1; S1) and (H;SH) are �-
compatible, Q(G1 � H;S1 � SH) holds if and only if Q(G2 � H;S2 � H) holds. Let H
be an l-terminal graph, let SH 2 D[ ](H) such that (G1; S1) and (H;SH) are �-compatible. If
ecrQ;l(G1; S1) = ecrQ;l(G2; S2) = (I; false) for some I � Il, then Q(G1 �H;S1 � SH) =
false = Q(G2 �H;S2 � SH). Suppose ecrQ;l(G1; S1) = ecrQ;l(G2; S2) = (F; I;N), where
N = f(i; ni) j i 2 Ig.

Q(G1 �H;S1 � SH)

= 8v2S1�SH jNG1�H;S1�SH (v)j � p

= 8i2I jNH;SH (zi)j+ jNG1;S1(xi)j � jfj 2 I j xj 2 NG1;S1(xi) ^ zj 2 NH;SH (zi)gj � p

^ 8v2S1�X jNG1S1(v)j � p

^ 8v2SH�Z jNH;SH (v)j � p

= 8i2I jNH;SH (zi)j+ jnij � jfj 2 I j fi; jg 2 F ^ fzi; zjg 2 E(H)gj � p

^ 8v2S1�X jNG1;S1(v)j � p

^ 8v2SH�Z jNH;SH (v)j � p

= 8i2I jNH;SH (zi)j+ jNG;S2(yi)j � jfj 2 I j yj 2 NG2;S2(yi) ^ zj 2 NH;SH (zi)gj � p

^ 8v2S2�Y jNG2;S2(v)j � p

^ 8v2SH�Z jNH;SH (v)j � p

= Q(G2 �H;S2 � SH)

Hence �rQ;l is a refinement of �Q;l.
We now show that dl is well defined for all l � 0. Let c; c0 2 CrQ;l, such that c and c0

are compatible. Let I � Il such that c = (I; false) or c = (F; I;N) for some F and N , and
c0 = (I; false) or c0 = (F 0; I;N 0) for some F 0 and N 0. Let G and H be l-terminal graphs,
let S 2 D[ ](G) and S0 2 D[ ](H) such that ecrQ;l(G;S) = c and ecrQ;l(H;S0) = c0. Then
jS � S0j = jS [ S0j = jSj+ jS0j � jIj, hence dl(c; c0) = jIj.

We now define Kl and cG for all l � 0 and all l-terminal graphs G, as in condition 2(d)
of Theorem 4.4. For each l � 0, let Kl = l, and for each l-terminal graph G, let cG =
(F (G); ;; ;). Clearly, for each l-terminal graphs G andH , each S 2 D[ ](G) and S0 2 D[ ](H),
if ecrQ;l(G;S) = cG and ecrQ;l(H;S0) = cH , then (G;S) and (H;S0) are �-compatible, and
Q(G�H;S�S0) holds. Furthermore, for each l-terminal graph G = (V;E;X), and each S 2
D[ ](G) that can lead to a solution (i.e. ecrQ;l(G;S) 6= (F (G); false)), ecrQ;l(G;S�X) = cG
and jSj �max(G; cG) � jSj � jS �Xj � l = Kl.

This proves that MAXIMUM DEGREE BOUNDED SUBGRAPH is of finite integer index for
all fixed p � 0.

25



2 p-DOMINATING SET. Let p � 1 be fixed. This proof is similar to the previous one.
D(G) = P(V ), for all l-terminal graphs G, S 2 D(G),

Q(G;S) = 8v2V�S jNG;S(v)j � p;

z(S) = jSj, and opt = min. [ ] is defined in the same way as for INDUCED BOUNDED DEGREE

SUBGRAPH, and hence so are � and (�-)compatibility. For each l � 0, let

CrQ;l = f(I; false) j I � Ilg [ f(F; I;N) j F � Fl

^ I � Il ^N � f(i; n) j i 2 Il � I ^ n 2 f1; : : : ; pgg:

For each l-terminal graph G = (V;E;X = hx1; : : : ; xli), each S 2 D[ ](G), let ecrQ;l(G;S) 2
CrQ;l be defined as follows. If there is a v 2 V � X such that jNG;S(v)j < p, then
ecrQ;l(G;S) = (F (G); false). Otherwise, ecrQ;l(G;S) = (F; I;N), where

F = F (G);

I = fi 2 Il j xi 2 Sg;

N = f(i; jNG;S(xi)j) j i 2 I � Ilg:

In the same way as for INDUCED BOUNDED DEGREE SUBGRAPH it can be shown that
�rQ;l is a refinement of �Q;l.

For each l � 0, dl is defined in the same way as for INDUCED BOUNDED DEGREE SUB-
GRAPH, since dl only depends on D.

We show again that condition 2(d) of Theorem 4.4 holds. For each l � 0, let Kl = l, and
for each l-terminal graph G, let cG = (F (G); Il; ;). Clearly, for all l-terminal graphs G and
H and S 2 D[ ](G), S0 2 D[ ](H) such that ecrQ;l(G;S) = cG and ecrQ;l(H;S

0) = cH ,
Q(G � H;S � S0) holds. Furthermore, for each l-terminal graph G = (V;E;X), each S 2
D[ ](G), if ecrQ;l(G;S) 6= (F (G); false), then ecrQ;l(G;S[X) = cG, and min(G; cG)�jSj �
jS [Xj � jSj � l = Kl.

3 MAXIMUM CUT on graphs with bounded degree. Let d � 0 be the maximum degree
of the graphs. For each graph G, let D(G) be the set of pairs (V1; V2), such that V1 and V2
partition V . For each two l-terminal graphs G and H , and S = (V1; V2) 2 D(G � H), let
S[G] = (V1 \ V (G); V2 \ V (G)). Note that D[ ](G) = D(G), and that D is inducible for [ ].
Two pairs (G;S) and (H;S) are (�-)compatible if S and S0 partition the terminals of G and
H in the same way.

For each graph G, each S = (V1; V2) 2 D(G), let Q(G;S) = true, let

z(S) = jffu; vg 2 E(G) j u 2 V1 ^ v 2 V2gj;

and let opt = max. Let z on the domain of partial solutions be defined in the same way as on
the domain of solutions.

For each l � 0, let

CrQ;l = f(F; (I; Il � I)) j F � Fl ^ I � Ilg;

26



and for each l-terminal graph G = (V;E;X = hx1; : : : ; xli), S = (V1; V2) 2 D[ ](G), let
ecrQ;l(G;S) = (F; (I; Il � I)) 2 CrQ;l, where

F = F (G);

I = fi j xi 2 V1g:

Let G1 and G2 be l-terminal graphs, S1 2 D[ ](G1), S2 2 D[ ](G2). (G1; S1) �rQ;l
(G2; S2) if and only if ecrQ;l(G1; S1) = ecrQ;l(G2; S2). If (G1; S1) �rQ;l (G2; S2), then
(G1; S1) and (G2; S2) are compatible, and hence �rQ;l is a refinement of �Q;l.

We now define dl and Kl for each l � 0, and cG for all graphs G.
Let G and H be l-terminal graphs, let S = (V1; V2) 2 D[ ](G) and S0 = (W1;W2) 2

D[ ](H), such that (G;S) and (H;S0) are �-compatible. Let ecrQ;l(G;S) = (F; (I; J)), and
let ecrQ;l(H;S) = (F 0; (I; J)). Then

z(S � S0) = jffu; vg 2 E(G�H) j u 2 V1 [W1 ^ v 2 V2 [W2gj

= jffu; vg 2 E(G) j u 2 V1 ^ v 2 V2gj

+ jffu; vg 2 E(H) j u 2W1 ^ v 2W2gj

� jffu; vg 2 E(G) \E(H) j u 2W1 ^ v 2W2gj

= z(S) + z(S0)� jffi; jg 2 F \ F 0 j i 2 I ^ j 2 Jgj:

Hence dl((F; (I; J)); (F 0; (I; J))) = jffi; jg 2 F \ F 0 j i 2 I ^ j 2 Jgj.
We now show that condition 2(c) of Theorem 4.3 holds. For each l � 0, letKl = 2�l�d. Let

G = (V;E;X) be an l-terminal graph, let c = (F (G); (I; J)) and let c0 = (F (G); (I 0; J 0)).
We have to show that jmax(G; c)�max(G; c0)j � Kl. Let S = (V1; V2) = maxS(G; c). Let
S0 = (W1;W2), where

W1 = (V1 �X) [ fxi j i 2 I
0g

W2 = (V2 �X) [ fxi j i 2 J
0g:

Then ecrQ;l(G;S0) = c0 and furthermore,

max(G; c)�max(G; c0) � z(S)� z(S0)

= z(S)� z(S)

� jffu; vg 2 E(G) j u 2 V1 \W1 ^ v 2 V2 \W1gj

� jffu; vg 2 E(G) j u 2 V1 \W2 ^ v 2 V2 \W2gj

� 2 � l � d = Kl:

Because of symmetry, this means that jmax(G; c) � max(G; c0)j � Kl. Hence MAXIMUM

CUT is of finite integer index on graphs with bounded degree.

4 PARTITION INTO CLIQUES. For each graph G, let D(G) be the set of all partitions S =
fV1; : : : ; Vsg of V (G) for which each Vi 2 S induces a connected subgraph of G. For each
S 2 D(G), let

Q(G;S) = 8V 02S G[V 0] is a complete graph,

27



let z(S) = jSj, and let opt = min.
For each l-terminal graphs G = (V;E;X) and H = (V 0; E0; Y ), each S 2 D(G�H), let

S[G] = fV 00 \ V (G) j V 00 \ V (G) 6= ;g;

and let z(S[G]) = jS[G]j. Hence D[ ](G) is the set of all partitions S in G in which for each
V 0 2 S, all connected components of G[V 0] have at least one vertex in X .

Note that D is inducible for [ ], since, for an S 2 D(G�H), it is not possible that there is
a V 00 2 S such that both V 00 \ V (G)�X 6= ; and V 00 \ V (H) � Y 6= ;, while S \X = ;.
Two pairs (G;S) and (H;S0) are (�-)compatible if the terminals of G and H are partitioned in
the same way in S and S0.

For each l � 0, let

CrQ;l = f(F; false) j F � Flg

[ f(F;J ) j F � Fl ^

J = f(J1; b1); : : : ; (Jt; bt)g) j t � 1 ^

fJ1; : : : ; Jtg partitions Il ^ 8i Ji 6= ; ^ bi 2 ftrue; falseggg

For each l-terminal graph G = (V;E; hx1; : : : ; xli), each S 2 D[ ](G), let ecrQ;l(G;S) 2
CrQ;l be defined as follows. If there are V 0 2 S and v; w 2 V 0, v 6= w, such that v =2 X and
fv; wg =2 E, then ecrQ;l(G;S) = (F (G); false). Otherwise, ecrQ;l(G;S) = (F;J ), where

F = F (G);

J = f(J; b) j (9V 02S J = fi 2 Il j xi 2 V
0g ^ J 6= ; ^ b, (V 0 � X))g:

(b is a Boolean variable in the definition above.) For each l � 0, let �rQ;l be defined as
usually. It is fairly easy to check that if ecrQ;l(G1; S1) = ecrQ;l(G2; S2), then (G1; S1) �Q;l
(G2; S2).

We now define dl for each l � 0. Let G and H be l-terminal graphs, let S 2 D[ ](G),
S0 2 D[ ](H), such that (G;S) and (H;S0) are �-compatible. Let ecrQ;l(G;S) = (F;J ), and
let ecrQ;l(H;S) = (F 0;J 0). Then

jSj+ jS0j � jS � S0j = jfV 0 2 S � S0 j V 0 \X 6= ;gj

= jJ j:

Hence dl((F;J ); (F 0;J 0)) = jJ j.
We now show that condition 2(d) of Theorem 4.4 holds. For each l � 0, let Kl = l, and

for each l-terminal graph G, let

cG = (F (G); f(i; true) j 1 � i � lg):

Let G be an l-terminal graph, let S 2 D[ ](G), such that ecrQ;l(G;S) 6= false. Furthermore, let

S0 = ffvg j v 2 Xg [ fV 0 �X j V 0 2 S ^ V 0 6� Xg:

ThenS0 2 D[ ](G) and ecrQ;l(G;S0) = cG, and hence min(G; cG)�jSj � jS
0j�jSj � l = Kl.

Hence PARTITION INTO CLIQUES is of finite integer index.

28



5 HAMILTONIAN PATH COMPLETION NUMBER. A path P in a graph G is a subgraph of
G, denoted as a sequence (v1; : : : ; vs), such that for each i, 1 � i < s, fvi; vi+1g 2 E(G). A
path P = (v1; : : : ; vs) is non-empty if s � 1. The vertices of a path P are denoted by V (P ).

For each graph G, let each element S in D(G) be a set of non-empty paths in G, such that
the set fV (P ) j P 2 Sg partitions G. For each S 2 D(G), letQ(G;S) = true, and let z(S) =
jSj�1. Furthermore, let opt = min. Note that this describes the problem HAMILTONIAN PATH

COMPLETION NUMBER.
Let G and H be l-terminal graphs, S 2 D(G�H), S = fP1; : : : ; Pmg. Let

S[G] =
m[
i=1

fP 0
i j P

0
i is a component of Pi \Gg;

and let z(S[G]) = jS[G]j � 1, i.e. S[G] is the set of paths in G which is obtained from S by
deleting all vertices and edges which are not in G, and deleting empty paths, and z(S[G]) is the
number of these paths minus 1. Note that D is inducible for this definition of [ ].

Let G = (V;E;X = hx1; : : : ; xli) be an l-terminal graph G, let P = (v1; : : : ; vs) be a
path in G. Suppose V (P ) \ X = fxi1 ; : : : ; xiqg, q � 1, and for each 1 � j < m � q, xij
occurs on the left side of xim in P (i.e. by walking from v1 to vs in P , we meet xij earlier than
xim). Then Ind(P ) is defined as follows.

Ind(P ) =

8>>><
>>>:

(i1; i2; : : : ; iq) if xi1 = v1 ^ xiq = vs
(d; i1; i2; : : : ; iq) if xi1 6= v1 ^ xiq = vs
(i1; i2; : : : ; iq;d) if xi1 = v1 ^ xiq 6= vs
(d; i1; i2; : : : ; iq;d) if xi1 6= v1 ^ xiq 6= vs:

(d denotes the ‘dummy’ vertex.)
For each l-terminal graph G, each S 2 D[ ](G), let ecrQ;l(G;S) be defined as follows.

ecrQ;l(G;S) = fInd(P ) j P 2 S ^ V (P ) \X 6= ;g

For each l � 0, let CrQ;l and �rQ;l be defined as usual. Note that if (G1; S1) �rQ;l (G2; S2),
then (G1; S1) and (G2; S2) are compatible, and hence (G1; S1) �Q;l (G2; S2).

Let G = (V;E;X) and H = (V 0; E0; Y ) be l-terminal graphs, S 2 D[ ](G) and S0 2
D[ ](H). If (G;S) and (H;S0) are �-compatible, then

z(S) + z(S0)� z(S � S0) = jfP 2 S j V (P ) \X 6= ;gj

+ jfP 2 S0 j V (P ) \ Y 6= ;gj

� jfP 2 S � S0 j V (P ) \X 6= ;gj:

This value can be computed from ecrQ;l(G;S) and ecrQ;l(H;S), hence dl is well defined.
We now define Kl for each l � 0 and cG for each terminal graph G, and show that they

satisfy condition 2(d) of Theorem 4.4. For each l � 0, let Kl = 2l, and for each l-terminal
graph G, let

cG = f(i) j 1 � i � lg:

29



Clearly, if ecrQ;l(G;S) = cG and ecrQ;l(H;S
0) = cH , then (G;S) and (H;S0) are �-

compatible.
Let G be an l-terminal graph, S 2 D[ ](G). Let

S0 = f(v) j v 2 Xg [ S[V (G)�X]:

Then S0 2 D[ ](G), and ecrQ;l(G;S
0) = cG. Hence min(G; cG) � z(S) � jS0j � jSj �

l + jSj+ l � jSj = 2l = Kl.
This completes the proof that HAMILTONIAN PATH COMPLETION NUMBER is of finite

integer index.

6 MAXIMUM LEAF SPANNING TREE. For each graphG, letD(G) be the set of all spanning
trees of G. For each S 2 D(G), let Q(G;S) = true, let z(S) = the number of vertices of
degree one in S, and let opt = max.

For each l-terminal graphs G and H , each S 2 D(G�H), let S[G] be the set of trees in G
obtained by deleting all vertices and edges from S which are not in G. Hence D[ ](G) is the set
of all spanning forests F of G for which each connected component of F contains at least one
terminal of the graph. Note that D is inducible for [ ]. Let z on the domain of partial solutions
be defined in the same way as on the domain of solutions.

For each l � 0, let

CrQ;l = f(F; false) j F � Flg [

f(F;I; f(i; si) j 1 � i � l ^ si 2 f0; 1; 2g) j F � Fl ^ I partitions Ilg

For each l-terminal graph G = (V;E; hx1; : : : ; xli), each S 2 D[ ](G), if S contains more than
one connected component, and one of these components does not contain a terminal, then let
ecrQ;l = (F; false) (there is no H such that G � H contains a spanning tree), otherwise, let
ecrQ;l(G;S) = (F;I; A), where

F = F (G);

I = fJ j 9V 0�V V 0 is a connected component of S ^ J = fi 2 Il j xi 2 V
0g ^ J 6= ;g

A = f(i; si) j 1 � i � l ^ si = jNS;V (xi)j if jNS;V (xi)j � 2; , otherwise si = 2g:

For each l � 0, let �rQ;l be defined as usually. It is fairly easy to check that if
(G1; S1) �rQ;l (G2; S2), then (G1; S1) �Q;l (G2; S2).

We now show that dl is well defined. Let G and H be l-terminal graphs, let S 2 D[ ](G),
S0 2 D[ ](H), such that (G;S) and (H;S0) are �-compatible. Let ecrQ;l(G;S) = (F;I; A),
and let ecrQ;l(H;S) = (F 0;I 0; A0), where A = f(i; si) j 1 � i � lg and A0 = f(i; s0i) j 1 �
i � lg. Then

z(S) + z(S0)� z(S � S0) =

jfi 2 Il j jNS�S0;V (G)[V (H)(xi)j � 2 ^ si = 1gj

+ jfi 2 Il j jNS�S0;V (G)�V (H)(xi)j � 2 ^ s0i = 1gj:

This value depends only on (F;I; A) and (F 0;I 0; A0), hence dl is well defined.

30



We now show that condition 2(b) of Theorem 4.2 holds. For each l � 0, let Kl = 2l, and
for each terminal graph G, let iG = z(F ), where F is a maximal spanning forest of G (i.e.
the connected components of F are the connected components of G), and z(F ) is maximum.
Let G be an l-terminal graph, such that each connected component of G contains a terminal.
Let S 2 D[ ](G) and suppose that jz(S) � iGj > Kl. First suppose that z(S) > iG + Kl.
Let S0 be a maximal spanning forest of G such that S is a subgraph of S0. S0 can be obtained
from S by adding at most l � 1 edges, and hence z(S0) � z(S) � 2l. But iG � z(S0), hence
z(S) � iG +Kl, which gives a contradiction.

Suppose z(S) < iG�Kl. Let H be an l-terminal graph, let S0 2 D[ ](H) such that (G;S)
and (H;S0) are �-compatible. We show that z(S � S0) < R(G � H). Let F be a maximal
spanning forest of G such that z(F ) = iG. Let G0 be the subgraph of G � H with V (G0) =
V (G�H), and E(G0) = E(F )[E(S0). The number of vertices of degree one in G0 is at least
z(F )+ z(S0)� l. G0 can be modified into a spanning tree T of G�H by deleting a number of
edges in G0. This does not decrease the number of vertices of degree one, since if a vertex has
one incident edge, then this edge is not removed. Hence z(T ) � z(G0) � z(F ) + z(S0)� l =
iG + z(S0) � l > z(S) + z(S0) + Kl � l � z(S) + z(S0) � z(S � S0). This means that
z(S � S0) < R(G�H).

Hence MAXIMUM LEAF SPANNING TREE is of finite integer index.
For each problem, we have given an explicit definition of �rQ;l, hence �rQ;l is effectively

decidable. Furthermore, z, s and iG are effectively computable. Hence we can construct a finite,
safe, complete and decreasing set of reduction-counter rules of Rk (k � 1), where R is one of
the optimization problems of this theorem. 2

Theorem 4.6. The following problems are not of finite integer index:

1. MAXIMUM CUT,

2. COVERING BY CLIQUES,

3. LONGEST PATH, and

4. LONGEST CYCLE.

Proof. Below, in each of the parts of the proof, R denotes the respective optimization problem.

1 MAXIMUM CUT. We give an infinite set G of two-terminal graphs such that for each G
and G0 in this set, if G 6= G0 then G 6�R;2 G0. For each n � 2, let Gn be a two-terminal graph
which is defined as follows (see also Figure 3).

V (Gn) = X [A [Bn [ Cn;

where all sets are disjoint, X = hx1; x2i is the set of terminals, A = fa1; a2g, and Bn and Cn
each contain n vertices.

E(Gn) = ffx1; a1g; fx2; a2gg

[ ffai; vg j 1 � i � 2 ^ v 2 Bn [ Cng

[ ffx2; bg j b 2 Bng

[ ffx1; cg j c 2 Cng:

31



x1 x2

A Bn

Gn

x1 x2

Hp

Dp Fp

Cn

Figure 3: The graphs Gn (n � 2) and Hp (p � 0).

Let G = fGn j n � 2 ^ n eveng.

Claim 4.1. Let n � 1, let H be a two-terminal graph. There is a partition (V1; V2) of V =
V (Gn �H) such that A � V1, Bn [ Cn � V2, and z((V1; V2)) is maximum.

Proof. Suppose (W1;W2) is a maximum cut for Gn �H , let M� = z((W1;W2)). Let A1 =
W1 \A, A2 = W2 \A, BC1 = (Bn [ Cn) \W1, and BC2 = (Bn [ Cn) \W2. Let

(V1; V2) = (W1 �BC1 [A2;W2 �A2 [BC1), and

(V 0
1 ; V

0
2) = (W2 �BC2 [A1;W1 �A1 [BC2):

Then (V1; V2) and (V 0
1 ; V

0
2) are both cuts of Gn � H , and A � V1, A � V 0

1 , Bn [ Cn � V2
and Bn [ Cn � V 0

2 . We now show that either (V1; V2) or (V 0
1 ; V

0
2) is a maximum cut. Let

M = z((V1; V2)) and let M 0 = z((V 0
1 ; V

0
2)). We consider two cases, namely

1. jA2j = 0 _ jBC1j = 0, and

2. 0 < jA2j � jAj and 0 < jBC1j � jBC1 [BC2j.

In case 1,

M � M� + jA1j � jBC1j+ jA2j � jBC2j � jA2j � jBC1j

= M� + jA2j(jBC2j � 1) + jBC1j(jA1j � 1)

� M�:

32



In case 2,

M 0 � M� + jA1j � jBC1j+ jA2j � jBC2j � jA1j � jBC2j

= M� + jA1j(jBC1j � 1) + jBC2j(jA2j � 1)

� M�:

This proves the claim. 2

For each p � 0, let Hp be the graph defined as follows (see also Figure 3).

V (Hp) = Y [Dp [ Fp;

where all sets are disjoint Y = hy1; y2i is the set of terminals, and Dp and Fp each contain p
vertices, and

E(Hp) = ffd; fg j d 2 Dp ^ f 2 Fpg

[ fy1; dg j d 2 Dpg

[ ffy2; fg j f 2 Fpg:

Claim 4.2. Let p � 0, let H be a two-terminal graph. There is a partition (V1; V2) of V =
V (Hp �H) such that Dp � V1, Fp � V2, and z((V1; V2)) is maximum.

Proof. Similar to proof of Claim 4.1. 2

We now show that for each Gn; Gm 2 G, if n 6= m, then Gn 6�R;2 Gm.

For i � 2, each p � 0, consider the graph Gi � Hp: let V (i;p)
1 = A [ Dp, let V (i;p)

2 =

Bi [ Ci [ Fp. There is a maximum cut (W1;W2) of Gi � Hp such that V (i;p)
1 � W1 and

V
(i;p)
2 � W2, because of Claim 4.1, Claim 4.2, and the fact that Hp is symmetrical in Dp and
Fp. In the following table, all cuts that are candidates for maximum cuts in Gi�Hp are given,
together with there values.

nr. cut value

1 (V
(i;p)
1 [X;V

(i;p)
2 ) 4i+ p2 + 2i+ p

2 (V
(i;p)
1 [ fx1g; V

(i;p)
2 [ fx2g) 4i+ p2 + i+ 1

3 (V
(i;p)
1 [ fx2g; V

(i;p)
2 [ fx1g) 4i+ p2 + i+ 1 + 2p

4 (V
(i;p)
1 ; V

(i;p)
2 [X) 4i+ p2 + 2+ p

Note that either cut 1 or cut 3 is maximum, since i � 2, and p � 0.
Let n > m > 1, n, m even. If p = 0, then 1 is a maximum cut for both Gn � H0 and

Gm �H0, since i � 2, which means that 2i > i+ 1. Hence R(Gn �H0) = 6n and R(Gm �
H0) = 6m, so R(Gn �H0)�R(Gm �H0) = 6(n�m).

33



Let p = 1
2(n+m)� 1. Then

R(Gn �Hp) = 4n+ p2 +maxf2n+
1

2
(n+m)� 1; n+ 1 + (n+m)� 2g

= 4n+ p2 +maxf2
1

2
n+

1

2
m� 1; 2n+m� 1g

= 4n+ p2 + 2
1

2
n+

1

2
m� 1

= 6
1

2
n+

1

2
m+ p2 � 1;

and

R(Gm �Hp) = 4m+ p2 +maxf2m+
1

2
(n+m)� 1;m+ 1 + (n+m)� 2g

= 4m+ p2 +maxf2
1

2
m+

1

2
n� 1; 2m+ n� 1g

= 4m+ p2 + 2m+ n� 1

= 6m+ n+ p2 � 1

Hence

R(Gn �Hp)�R(Gm �Hp) = (6
1

2
n+

1

2
m+ p2 � 1)� (6m+ n+ p2 � 1)

= 5
1

2
(n�m)

However, 51
2(n � m) 6= 6(n � m) = R(Gn � H0) � R(Gm � H0), since n 6= m. So

Gn 6�R;2 Gm. As each Gn, n > 1, n even, belongs to a different equivalence class of �R;2,
the MAXIMUM CUT problem is not of finite integer index.

2 COVERING BY CLIQUES. For each n � 1, let Gn be the two-terminal graph with vertex
set

V (Gn) = fx1; x2g [ fa1; : : : ; ang;

(x1 and x2 are the first and the second terminal, respectively), and edge set

E(Gn) = ffxi; ajg j 1 � i � 2 ^ 1 � j � ng:

Let G = fGn j n � 1g. We show that for each Gn; Gm 2 G, if n 6= m, then Gn 6�R;2 Gm.
Let H be the two-terminal graph consisting of terminals y1 and y2 and no edges, and let H 0

be the two-terminal graph consisting of terminals y1 and y2 and edge fy1; y2g.
For each i, i � 1, R(Gi�H) = jfe j e 2 E(Gi)gj = 2i, since Gi�H contains no cliques

of more than two vertices. Furthermore, R(Gi � H 0) = jffx1; x2; ajg j 1 � j � ngj = i.
This means that for all n and m, n 6= m,

R(Gn �H)�R(Gm �H) = 2n� 2m 6= n�m = R(Gn �H
0)�R(Gm �H

0);

and hence Gn 6�R;l Gm.

34



3 LONGEST PATH. For each n � 1, let Gn be the two-terminal graph with vertex set

V (Gn) = fx1; x2g [ fa1; : : : ; ang;

(x1 and x2 are the first and the second terminal, respectively), and edge set

E(Gn) = ffx1; a1gg [ ffai; ai+1g j 1 � i < ng:

Let G = fGn j n � 1 ^ n eveng. Furthermore, for each p � 1, let Hp be the two-terminal
graph with vertex set

V (Hp) = fy1; y2g [ fb1; : : : ; bpg;

(y1 and y2 are the first and the second terminal, respectively), and edge set

E(Gn) = ffy2; b1gg [ ffbi; bi+1g j 1 � i < pg:

For each i � 1, j � 1, R(Gi �Hj) = maxfi; jg+ 1.
Let 1 � n < m, such that n and m are even. Then R(Gn �Hn+1) � R(Gm �Hn+1) =

n + 1 + 1 � (m + 1) = n �m + 1 < 0. Furthermore, R(Gn � Hm) � R(Gm � Hm) =
m+ 1� (m+ 1) = 0. Hence Gn 6�R;l Gm.

4 LONGEST CYCLE. For each n � 1, let Gn be the two-terminal graph with vertex set

V (Gn) = fx1; x2g [ fa1; : : : ; ang;

(x1 and x2 are the first and the second terminal, respectively), and edge set

E(Gn) = ffx1; a1gg [ ffx1; angg [ ffai; ai+1g j 1 � i < ng:

Let G = fGn j n � 1 ^ n eveng. Furthermore, for each p � 1, let Hp be the two-terminal
graph with vertex set

V (Hp) = fy1; y2g [ fb1; : : : ; bpg;

(y1 and y2 are the first and the second terminal, respectively), and edge set

E(Gn) = ffy2; b1gg [ ffy2; bpgg [ ffbi; bi+1g j 1 � i < pg:

The rest of the proof is similar to the proof that LONGEST PATH is not of finite integer index.
2

5 Constructing Optimal Solutions

Let R be a graph optimization problem. If R can be written in the form

R(G) = optfz(S) j S 2 D(G) ^Q(G;S)g;

then we are often not only interested in the value of R(G) for a given graph G, but also a so-
lution S 2 D(G) for which z(S) = R(G). In this section we show that we can combine the

35



results of Sections 3 and 4 to get a method with which we can make an efficient reduction algo-
rithm forR, in which bothR(G) and an S 2 D(G) for whichQ(G;S) holds andR(G) = z(S)
are computed. We can then use a small modification of Algorithm ConstructSolution to do this:
instead of using a finite, safe, complete and decreasing set of reduction rules, use a finite, safe,
complete and decreasing set of reduction-counter rules. Then in lines 1 to 4 of Algorithm Con-
structSolution, apply the reduction-counter rules as described in Section 4.

Theorem 5.1. Let R be a graph optimization problem. Suppose R can be written in the form

R(G) = optfz(S) j S 2 D(G) ^Q(G;S)g;

where D is inducible for [ ], Q is decidable, there is a refinement �rQ;l of �Q;l which is decid-
able, jCrQ;lj is finite for each l � 0, conditions 2 and 3 of Theorem 3.1 hold, and conditions 2
and 3 of Theorem 4.2 hold.

Then for each k � 1, there exists a finite, safe, complete and terminating setR of reduction-
counter rules for Rk, and an implementation of the modification of Algorithm ConstructSolu-
tion which can be used to compute for each graph G, in linear time, the value Rk(G), and if
Rk(G) 2 , an S 2 D(G) such that Q(G;S) holds and z(S) = R(G).

If, in addition, Q and �rQ;l are effectively decidable, z is effectively computable, the func-
tion s from condition 2 of Theorem 3.1 is effectively computable, and in condition 3 of Theo-
rem 3.1, S[H] and S0 � S[G] are effectively computable from S, S0, H and H 0, then we can
construct R and the implementation of the modification of Algorithm ConstructSolution.

Proof. For each l-terminal graph G, let fG be the function as defined in the proof of Theo-
rem 4.2. Let �l be the equivalence relation on l-terminal graphs defined as follows. G1 �l
G2 , fG1 = fG2 . Theorem 4.1 shows that there is a finite, safe, complete and decreasing set
of reduction-counter rules R for R, such that for each rule ((H;H 0); i) 2 R, H �l H 0. This
set can be constructed if �rQ;l is effectively decidable and functions z and s are effectively
computable.

In the same way as is shown in the proof of Theorem 3.1, for each reduction-counter rule
((H1;H2); i) in R, keep a table T for H1, which contains for each possible equivalence class
c 2 CrQk;l, a partial solution S1 2 D[ ](H1) such that ecrQk;l(H1; S1) = c and z(S1) =
opt(G1; c), if fG1(c) 6= false, false otherwise. This table can be constructed if �rQ;l is decid-
able, and functions s and z are effectively computable.

Let G be a graph. The modification of Algorithm ConstructSolution can now be further
refined as follows. In line 8, an optimal S 2 D(G) (G is the reduced graph here) for which
Q(G;S) holds can be constructed as follows (if Q is effectively decidable, and z and s are ef-
fectively computable). Each possible S 2 D(G) is tried, and if Q(G;S) holds, and z(S) is
optimal, then this solution is taken. Note that this can be done in constant time, see also the
proof of Theorem 3.1.

In line 14 of Algorithm ConstructSolution, the construction of S0 is done in the same way as
is shown in the proof of Theorem 3.1. First S[H 0

i] is computed. Then c = ecrQk;l(H
0
i; S[H

0
i])

is computed. After that S00 = T (c) is obtained, and S0 = S00�S[H] is computed. In the proof
of Theorem 4.2 it is shown that fH0

i
(c) 6= false, and hence S00 exists. The fact that S0 is an

optimal solution in G0, if S is an optimal solution in G, follows from the last part of the proof
of Theorem 4.2. 2

36



Theorem 5.1 can be applied to all problems of Theorem 4.5.

Theorem 5.2. Let R = optfz(S) j S 2 D(G) ^ Q(G;S)g be one of the following graph
optimization problems, with opt, z, D and Q as defined in the proof of Theorem 4.5:

1. INDUCED BOUNDED DEGREE SUBGRAPH for all p � 0,

2. p-DOMINATING SET for all p � 1,

3. MAXIMUM CUT on graphs with bounded degree,

4. PARTITION INTO CLIQUES,

5. HAMILTONIAN PATH COMPLETION NUMBER, and

6. MAXIMUM LEAF SPANNING TREE.

For each k � 1, there is, and we can construct, a finite, safe, complete and decreasing set of
reduction-counter rules for Rk and an implementation of the modification of Algorithm Con-
structSolution with which we can compute in linear time the value Rk(G), and an S 2 D(G)
for which z(S) = Rk(G), if Rk(G) 2 .

Proof. We only have to show for each problem that conditions 2 and 3 of Theorem 3.1 hold
(in the ‘effective’ way). This can be done straightforwardly. 2

6 Parallel Reduction Algorithms

It is possible to combine the results of Sections 2 up to 5 with results from [6] to obtain fast
parallel algorithms for several problems on graphs with bounded treewidth.

A set of applications of reduction(-counter) rules is said to be concurrent, if there is no inner
vertex of any subgraph to be rewritten that also occurs in another subgraph to be rewritten.

The idea behind concurrent applications of rules is that in a parallel algorithm, all reduction
steps from a concurrent set can be carried out simultaneously. This is very useful in order to
obtain fast parallel algorithms, based on reduction.

We use a result from [6] to show that there exists a finite, safe, complete, and decreasing
set R of reduction rules for finite index properties P , such that in any graph G of treewidth at
most k with more than a constant number of vertices, a set of 
(n) concurrent reductions can
be found.

Definition 6.1. Suppose G = (V;E) = H1�H2, H1 = (V1; E1;X) open. Let d be a constant
positive integer. We say that H1 is strongly connected in Gwith respect to a fixed adjacency list
representation of G and bound d, if for all v; w 2 V1, there is a path (v = x0; x1; : : : ; xr = w)
in H1 from v to w, such that for all i, 1 � i < r, the edges fxi; xi�1g and fxi; xi+1g have
distance at most d in the adjacency list of xi.

The following lemma is a weaker version of Lemma 5 in [6].

37



Lemma 6.1. [Bodlaender, Hagerup [6]] For all integers k; nmin � 1, there are integers
d; nmax � 1 and a real c > 0, such that every connected graph G with n > nmax vertices
and treewidth at most k, with an arbitrary adjacency-list representation, contains at least cn
strongly connected subgraphs which each have at most nmax inner vertices and at most 2k+1
terminals, and no inner vertex of any of these subgraphs occurs in another subgraph.

We now can prove the following result, which is a generalization of Theorem 2.1, geared
towards parallel algorithms.

Theorem 6.1. Let k be a constant, P a graph property that is of finite index. There exist a set
of reduction rules R for Pk, and a constant d, that fulfil the following properties.

� R is finite, safe, complete, and decreasing for Pk.

� For each reduction rule (H;H 0) 2 R, H and H 0 are open, and if H has one or more
terminals, then H is connected.

� There exist constants nmax, c > 0, such that for any connected graph G = (V;E) for
which Pk(G) holds or which is a connected component of a graph H with Pk(H), either
jV j � nmax, or for any adjacency-list representation of G, there exists a set of at least
cjV j concurrent applications of rules from R in G, such that for each application, re-
placing a terminal subgraph G1 by another terminal subgraph, G1 is strongly connected
in G with respect to this adjacency-list representation and d.

If there is also an equivalence relation �l for each l � 0, which is a refinement of �P;l, is
effectively decidable, and has a finite number of equivalence classes, then such a set of reduction
rules can be constructed.

Proof. We use the same approach as in the proof of Theorem 2.1. For every l � 2(k + 1),
and every equivalence class c of�Pk;l, we take representing open terminal graphs Hc, as in the
proof of Theorem 2.1. Again, r is the maximum number of vertices of any such representing
graph, over all equivalence classes of �Pk;l, all l � 2(k + 1). Let nmax, d, be as given by
Lemma 6.1, with nmin = r + 1.

For all zero-terminal graphs H with at least r + 1 and at most nmax vertices, if we have a
representative for the class c which contains H , then add reduction rule (H;Hc) to R. For all
l, 1 � l � 2(k+1), and for all open connected l-terminal graphs H with at least r+1 = nmin

and at most nmax + l vertices, if we have a representative for the equivalence class c in which
H is contained, then add the reduction rule (H;Hc) to R.

As in the proof of Theorem 2.1, we can see that R fulfils the first two stated properties.
Construction of the set can also be done as in the proof of Theorem 2.1.

Finally, we note that any connected graphG with more than nmax vertices such that Pk(G)
holds contains a set of cjV j concurrent applications of rules from R, each involving a strongly
connected terminal subgraph: Lemma 6.1 states that there are cjV j strongly connected sub-
graphs in Gwhich have at most nmax inner vertices and at most 2k+1 terminals, and of which
the sets of inner vertices are pairwise disjoint. Each of these strongly connected subgraphs can
be taken as left-hand-side in a rule application (because of its size), and hence the rule applica-
tions are concurrent. 2

38



Theorem 6.1 allows us to use the method from [6] to obtain fast parallel algorithms, based
on graph reduction. The basic idea is the following: each vertex can have a processor find all
O(1) vertices to which it has a path of distance at most d, such that any two consecutive edges
fxi�1; xig and fxi; xi+1g have distance at most d in the adjacency list of xi. Then, the pro-
cessor looks for a possible occurrence of a left-hand-side of a rule application in the subgraph,
just discovered. Each such occurrence gives a possible rule application. By building a conflict
graph, where applications that are not concurrent correspond to adjacent vertices, and finding an
independent set in the conflict graph, a concurrent set of applications is found. After O(logn)
parallel reduction rounds, G is reduced to a collection of connected components, each of size at
most nmax. By repeatedly, in parallel, grouping these sets of size between nmax+1 and 2nmax,
and reducing each group to a graph of size at most nmax, we end up with a reduced graph G of
constant size, after O(logn) rounds. For more details, we refer to [6].

Moreover, the approach from Section 3 can be used to construct solutions. Reductions are
then undone in parallel, in reverse order. By using proper bookkeeping, we can make sure that
a reduction is undone by the same processor that carried out the reduction. Thus, we increase
the time by not more than a constant factor, and use the same number of processors.

We denote the product of the number of processors, and the time used by a parallel algo-
rithm, as the number of operations of the algorithm. The techniques from [6], combined with
the results of this paper, give the following results.

Theorem 6.2. Let k be a constant, P a finite index graph property.
(i) The problem whether for a given graph G, Pk(G) = P (G) ^ tw(G) � k holds can be
solved on an EREW PRAM using O(logn log� n) time, O(n) operations, and O(n) space, and
on a CRCW PRAM using O(logn) time, O(n) operations, and O(n) space. If a refinement �l
of �P;l with a finite number of equivalence classes is effectively decidable, then the algorithms
can be constructed.
(ii) Suppose that P can be written in the form

P (G) = 9S2D1(G)�����Dt(G)Q(G;S);

in such a way that for each G and i, Di(G) is equal to V (G), E(G), P(V (G)) or P(E(G)).
Then, the problem, given a graph G, to construct an S 2 D(G) with Q(G;S) if Pk(G) holds,
can be solved on an EREW PRAM using O(logn log� n) time, O(n) operations, and O(n)
space, and on a CRCW PRAM using O(logn) time, O(n) operations, and O(n) space. If Q
is effectively decidable, a refinement �rQ;l of�Q;l is effectively decidable, and jCrQ;lj is finite,
then the algorithms can be constructed. These last conditions hold when a definition of Q in
monadic second order logic is given.

In particular, Theorem 6.2 shows that many well known graph problems, including k-
COLORABILITY for fixed k, HAMILTONIAN CIRCUIT, etc., when restricted to graphs of
bounded treewidth, can be solved constructively in the stated resource bounds.

A similar approach can be taken for problems that are of finite integer index. In addition to
what is written above, each processor p owns an integer variable �p, which is initially 0. For
each reduction-counter rule ((H;H 0); i) carried out, we let one processor p that is involved in
carrying out the reduction, add i to its integer variable �p. Suppose we have rewritten input

39



graph G to a graph G0 of constant bounded size. If R(G0) is false, then R(G) is false. Other-
wise, we add R(G0) with the sum of all values �p, over all processors p. This sum can easily be
computed inO(logn) time withO(n) operations and space on an EREW PRAM. The obtained
value equals R(G). In all other aspects, the method is the same as the one used for finite index
problems.

Theorem 6.3. Let k be a constant, R a graph optimization problem which is of finite integer
index. The problem to compute for a given graphG the valueRk(G) can be solved on an EREW
PRAM using O(logn log� n) time, O(n) operations, and O(n) space, and on a CRCW PRAM
using O(logn) time, O(n) operations, and O(n) space.

If a refinement�l of�R;l with a finite number of equivalence classes is effectively decidable,
and for each pair H;H 0, if H �l H 0, then we can effectively compute an i 2 such that
((H;H 0); i) is safe for Rk, then the algorithms can be constructed.

Theorem 6.4. Let R be a graph optimization problem. Suppose R can be written in the form

R(G) = optfz(S) j S 2 D(G) ^Q(G;S)g;

where D is inducible for [ ], Q is decidable, there is a refinement �rQ;l of �Q;l which is decid-
able, jCrQ;lj is finite for each l � 0, conditions 2 and 3 of Theorem 3.1 hold, and conditions 2
and 3 of Theorem 4.2 hold.

Then, for each k � 1, there exists algorithms, that compute for each G the value Rk(G),
and if Rk(G) 2 , an S 2 D(G) such that Q(G;S) holds and z(S) = R(G), using on an
EREW PRAM O(logn log� n) time, O(n) operations, and O(n) space, and using on a CRCW
PRAM O(logn) time, O(n) operations, and O(n) space.

If, in addition, Q and �rQ;l are effectively decidable, z is effectively computable, the func-
tion s from condition 2 of Theorem 3.1 is effectively computable, and in condition 3 of Theo-
rem 3.1, S[H] and S0 � S[G] are effectively computable from S and H , then we can construct
the algorithms.

This implies parallel algorithms with the stated resource bounds for (the constructive ver-
sions of) INDUCED BOUNDED DEGREE SUBGRAPH for all p � 0, p-DOMINATING SET for
all p � 1, MAXIMUM CUT on graphs with bounded degree, PARTITION INTO CLIQUES,
HAMILTONIAN PATH COMPLETION NUMBER, and MAXIMUM LEAF SPANNING TREE when
restricted to graphs of bounded treewidth.

7 Conclusions and Further Research

In this paper, we have shown that reduction algorithms as introduced by Arnborg et al. [2] can
not only be used to decide whether a graph property holds for a given graph with bounded
treewidth, but in many cases, they can also be used to give a solution if one exists, to solve
optimization problems on graphs with bounded treewidth, and to construct optimal solutions
for graph optimization problems.

The reduction algorithms of Arnborg et al. use a linear amount of time, but a polynomial
amount of space. We have shown that the techniques from [6] can be used to run the reduc-
tion algorithms in O(logn log� n) time on an EREW PRAM with O(n) operations and O(n)

40



space, and in O(logn) time on a CRCW PRAM withO(n) operations and space (n is the num-
ber of vertices of the graph). Sequential implementations of these algorithms give linear time
algorithms, that use linear space (and the standard pointer-machine model).

We have shown that the reduction algorithms for deciding graph properties and constructing
a solution can be applied to the class of graph properties that are definable in monadic second-
order logic, and for which the solution space consists of tuples of vertices, edges, vertex-sets
and edge-sets. This class includes problems like k-COLORABILITY (for fixed k) and HAMIL-
TONIAN CIRCUIT. Unfortunately, it seems that this method can not be used to find tree or path
decompositions of a graph with small treewidth, since we do not know whether the solution
space for these problems can be represented in the right form. It is an interesting open problem
whether our approach can be extended such that tree and path decompositions for graphs with
small treewidth can be found.

For graph optimization problems, we have given a method to prove that for a given graph
optimization problem a reduction algorithm can be used, and we have proved for a number of
problems that this works, e.g. INDEPENDENT SET, PARTITION INTO CLIQUES. For all these
problems, optimal solutions can be constructed. An interesting problem would be to find gen-
eral characterizations of large classes of graph optimization problems for which our method can
be used.

It is also possible to generalize the results in the paper to directed, mixed and/or labeled
graphs. In case of labeled graphs, we can allow the graph to be given together with a labeling
of the vertices and/or edges with labels from a set of size, bounded by a constant. These labels
could also act as weights for finite integer index problems, e.g., we can deal with WEIGHTED

INDEPENDENT SET, with each vertex a weight from f1; 2; : : : ; Cg for some fixed C , in the
same way as we dealt with INDEPENDENT SET. The desired output of the algorithm can also
be a direction given to each edge of the graph, such that the directed variant of the input graph
fulfils a certain (MS-definable or otherwise finite state) property. Each of these generalizations
can be handeled in a very similar way as the results, given in this paper.

The results of this paper can also be used to give algorithms that generate all solutions for
a graph property P of the form P (G) = 9S2D(G) Q(G;S), or all optimal solutions for a graph
optimization problem R of the form R(G) = optfz(S) j S 2 D(G) ^ Q(G;S)g. For these
cases, algorithm ConstructSolution can be modified as follows. The table T that is kept for each
left-hand-side H of a reduction(-counter) rule, as described in the proofs of Theorem 3.1 and
Theorem 5.1, contains for each equivalence class c a list of all (optimal) S 2 D[ ](H) with
ecrQ;l(H;S) = c. In Line 8, all possible (optimal) S 2 D[ ](G) are constructed for which
Q(G;S) holds. In Line 14, for each (optimal) solution S of G, the following is done. First,
S0 = S[H 0

i] and c = ecrQk;l(H
0
i; S[H

0
i]) are computed. Then the list of all partial solutions

S00 2 T (c) is obtained, suppose there are m such partial solutions. Then m copies are made of
S, and each copy of S is changed into S00�S[H] for some S00 2 T (c). Note that this algorithm
runs in O(n+s) time, where n is the number of vertices of the input graph, and s is the amount
of space needed to store all solutions for the input graph.

Graph reduction may possibly also be a useful tool which helps to solve hard problems on
arbitrary (sparse) graphs. A possible approach to many such problems could be the following.

� Fix some safe and decreasing set of reduction or reduction-counter rules.

41



� Apply reduction rules on the input graph and reduced versions, until no rule application
is possible.

� Use another method to solve the problem on the reduced graph.

� Possibly, construct a solution for the original problem from the solution for the reduced
problem by using the method of Section 3.

The hope is, of course, that the graph after the reductions is substantially smaller than the orig-
inal graph, and hence, that the running time of the third step is much smaller than the running
time when this algorithm would have been applied directly to the input graph. Provided that the
reductions can be carried out quick enough, this approach may be a nice tool to reduce the time
needed to solve some graph problems on arbitrary sparse graphs.

References

[1] K. R. Abrahamson and M. R. Fellows. Finite automata, bounded treewidth and well-
quasiordering. In Proceedings of the AMS Summer Workshop on Graph Minors, Graph
Structure Theory, Contemporary Mathematics vol. 147, pages 539–564. American Math-
ematical Society, 1993.

[2] S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese. An algebraic theory of graph
reduction. J. ACM, 40:1134–1164, 1993.

[3] S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable graphs. J.
Algorithms, 12:308–340, 1991.

[4] H. L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11:1–23, 1993.

[5] H. L. Bodlaender. On reduction algorithms for graphs with small treewidth. In Pro-
ceedings 19th International Workshop on Graph-Theoretic Concepts in Computer Science
WG’93, pages 45–56, 1994.

[6] H. L. Bodlaender and T. Hagerup. Parallel algorithms with optimal speedup for bounded
treewidth. In Z. Fülöp and F. Gécseg, editors, Proceedings 22nd International Colloquium
on Automata, Languages and Programming, pages 268–279, Berlin, 1995. Springer-
Verlag, Lecture Notes in Computer Science 944.

[7] R. B. Borie, R. G. Parker, and C. A. Tovey. Automatic generation of linear-time algo-
rithms from predicate calculus descriptions of problems on recursively constructed graph
families. Algorithmica, 7:555–581, 1992.

[8] B. Courcelle. Graph rewriting: an algebraic and logical approach. In J. van Leeuwen, ed-
itor, Handbook of Theoretical Computer Science, volume B, pages 192–242, Amsterdam,
1990. North Holland Publ. Comp.

[9] B. Courcelle. The monadic second-order logic of graphs I: Recognizable sets of finite
graphs. Information and Computation, 85:12–75, 1990.

42



[10] J. Lagergren and S. Arnborg. Finding minimal forbidden minors using a finite congru-
ence. In Proceedings of the 18th International Colloquium on Automata, Languages and
Programming, pages 532–543. Springer Verlag, Lecture Notes in Computer Science, vol.
510, 1991.

[11] N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-width. J.
Algorithms, 7:309–322, 1986.

43


