
[9] Hiroshi Inagaki, Kokichi Sugihara, and Noboru Sugie. Numerically robust incremental algorithm
for constructing three-dimensional voronoi diagrams. In Proc. 4th Canad. Conf. Comput. Geom.,
pages 334{339, 1992.

[10] D. G. Kirkpatrick. E�cient computation of continuous skeletons. In Proc. 20th Annu. IEEE

Sympos. Found. Comput. Sci., pages 18{27, 1979.

[11] Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, USA, 1991.

[12] David Lavender, Adrian Bowyer, James Davenport, Andrew Wallis, and John Woodwark. Voronoi
diagrams of set-theoretic solid models. IEEE Comput. Graph. Appl., 12(5):69{77, 1992.

[13] D. Leven and M. Sharir. Planning a purely translational motion for a convex object in two-
dimensional space using generalized Voronoi diagrams. Discrete Comput. Geom., 2:9{31, 1987.

[14] A. Lingas. Fast algorithms for bounded Voronoi diagrams of restricted polygons. In Proc. 2nd

Canad. Conf. Comput. Geom., pages 204{208, 1990.

[15] T. Lozano-P�erez. Spatial planning: a con�guration space approach. IEEE Trans. Comput.,
32:108{120, 1983.

[16] C. �O'D�unlaing, M. Sharir, and C. K. Yap. Retraction: a new approach to motion-planning. In
Proc. 15th Annu. ACM Sympos. Theory Comput., pages 207{220, 1983.

[17] C. �O'D�unlaing and C. K. Yap. A \retraction" method for planning the motion of a disk. J.

Algorithms, 6:104{111, 1985.

[18] Atsuyuki Okabe, Barry Boots, and Kokichki Sugihara. Spatial Tessellations: Concepts and Ap-

plications of Voronoi Diagrams. John Wiley & Sons, Chichester, England, 1992.

[19] D. Siersma. Private communication, 1995.

[20] K. Sugihara and M. Iri. Construction of the Voronoi diagram for `one million' generators in
single-precision arithmetic. Proc. IEEE, 80:1471{1484, 1992.

17

0 100 200 300 400 500

0

10

20

30

40

50

60

running time (sec.)

number of sites

0 1 2 3 4 5 6 7 8 9 10 11 12

0

1

2

3

4

5

running time (sec.)

minimum depth

(a) (b)

Figure 5: The running time set against (a) the number of sites, and (b) the recursion depth.

robots (that is, robots that are allowed to rotate) and if it can be used to e�ciently compute
the dual of the Voronoi diagram, the Delaunay triangulation. Finally, can the algorithm be
modi�ed in such a way that favorable asymptotic complexity bounds can be proven?

References

[1] H. Alt and C. K. Yap. Algorithmic aspect of motion planning: a tutorial, part 2. Algorithms

Rev., 1(2):61{77, 1990.

[2] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu. An optimal algorithm for
approximate nearest neighbor search. In Proc. 5th ACM-SIAM Sympos. Discrete Algorithms,
pages 573{582, 1994.

[3] F. Aurenhammer. Voronoi diagrams: a survey of a fundamental geometric data structure. ACM
Comput. Surv., 23:345{405, 1991.

[4] Christoph Burnikel, Kurt Mehlhorn, and Stefan Schirra. How to compute the voronoi diagram
of line segments: Theoretical and experimental results. In Proc. 2nd Annu. Sympos., volume 855
of Lecture Notes in Computer Science, pages 227{237, 1994.

[5] L. P. Chew. Building Voronoi diagrams for convex polygons in linear expected time. Technical
Report PCS-TR90-147, Dept. Math. Comput. Sci., Dartmouth College, Hanover, NH, 1986.

[6] L. P. Chew and R. L. Drysdale, III. Voronoi diagrams based on convex distance functions. In
Proc. 1st Annu. ACM Sympos. Comput. Geom., pages 235{244, 1985.

[7] L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremental construction of Delaunay
and Voronoi diagrams. Algorithmica, 7:381{413, 1992.

[8] J. E. Hopcroft, J. T. Schwartz, and M. Sharir. Planning, Geometry, and Complexity of Robot

Motion. Ablex Publishing, Norwood, NJ, 1987.

16

Figure 4: A stereogram view of the approximate diagram of a set of convex sites in R3.

(as described in Section 5). Figure 5b shows the results; the variable precision is indicated with
a solid line. For small depths, the two curves coincide. After a certain point (approximately
at a depth of �ve), the slope of the curve indicating the variable precision decreases because
many cells of this size are empty, whereas the other curve's slope keeps increasing. Note
that in this particular case the approximation will never be �nished since the scene contains
passages through which the robot cannot pass.

7 Conclusions and open problems

We described a method to e�ciently approximate the Voronoi diagram of a set of disjoint con-
vex sites in Rd within some predetermined precision, and its application to retraction motion
planning. There are a number of advantages to this approach. The only primitive required
is the computation of the distance to the nearest site from a given point. As a consequence,
the method is very general and can be used for arbitrary convex sites. Implementing the
algorithm is easy, and although the theoretical complexity of the algorithm is higher than
existing approaches it is very e�cient in terms of running time. Unlike many existing ap-
proaches it does not su�er from robustness problems, that is, it is insensitive to round-o�
errors introduced in the computation of the diagram, and it can handle degenerate diagrams
without modi�cations. These properties make it well-suited for practical applications.

Although in this paper we have restricted ourselves to convex sites, we have a strong belief
that the method works for concave sites as well. This setting would however require a much
more elaborate study of the properties of both the Voronoi diagram and the approximate
diagram, and a formal correctness proof seems di�cult in this case. We furthermore believe
that the method can be used to approximate the Voronoi diagram for a large class of metrics|
in particular, for the Minkowski metrics Lm. Some of the lemmas would have to be revised to
account for this; for arbitrary metrics, some of the properties of the approximate diagram will
most likely be lost. It would be interesting to see if the method can be applied to free-ying

15

(a) (b)

Figure 3: The approximate diagram (a) of a large number of sites, and (b) for a motion
planning problem.

To gain insight into the practical complexity of the method, we tested the running time
in relation to the number of sites. We did this by generating a total of n (with n varying
from 10 to 500) disjoint triangular sites that together cover 20% of the unit square, and
approximating the Voronoi diagram to a depth of eight (that is, cells of size 1=256). Figure 5a
shows the running time of the program set against the number of sites. The running time
of the algorithm is expected to be proportional to the number of obtained cells times the
number of sites, since for each vertex of a cell we compute the distance from each obstacle.
A possible way to improve this is to keep track of `interesting' sites for each cell C in the
recursion, by ruling out those sites that can not be closest to a vertex of any cell that is
created by subdividing C. That way we need to compute distances to (asymptotically) only
O(n=4k) sites for each vertex, where k is the recursion depth. This could also be used to
obtain a better theoretical complexity of the algorithm.

Figure 5a seems to indicate a linear behavior when n increases; this suggests that the
number of cells does not increase. This though is not true: the number of cells for n = 200 is
about �ve times as large as for n = 10. The reason probably is that sites that are far away
take little time to test because a simple bounding box test su�ces. Hence, the time bounds
are dominated by the time required to compute the distance to nearby sites. As noted before,
we could improve the running time by keeping track of `interesting' sites while recursively
subdividing the space. The above observation though suggests that in practice this will not
help much because we would only loose the `easy' sites.

We also tested the running time in relation to the precision of the approximate diagram,
by approximating the diagram of Figure 3b with increasing precision in two ways: �rst we
approximated the diagram with a �xed precision, that is, with cells of equal size; next we
approximated the diagram with variable precision by not subdividing empty cells any further

14

Proof. The minimum clearance along P is achieved at a point p closest to the boundary of C.
Since every cell C 0 adjacent to C is at least the size of C, the portion of the skeleton within
C is located at a constant distance of size(C)=2 from the boundary of C.

Although this approach resembles the standard approximate cell decomposition [11], there
is an important di�erence: whereas the standard cell decomposition subdivides every cell that
is not either empty or full, our approach re�nes only those cells that intersect the Voronoi
diagram as well. Consequently, the number of cell to be subdivided will be smaller, and
the resulting diagram will contain less redundancy. For example, standard approximate cell
decomposition approximates the boundary of every obstacle with very small cells, whereas
our approach only does this at places where two obstacles are very close.

As mentioned before, an important property of our method is that it is robust. It is not
only insensitive to round-o� errors introduced in the computation (as discussed in Section 4),
even inaccurate information does not cause any problems. For example, a cell can slightly
intersect an obstacle but accidentally be labeled as located entirely in CF. Because the skeleton
is de�ned in such a way that it does not come close to the cell boundaries (except where two
cells are adjacent|this obviously does not cause a problem) the robot stays well away from
the obstacles.

6 Experimental results

We implemented the algorithm described in the previous sections in C++ on a Silicon Graph-
ics Indigo II workstation, which is based on an R4400 processor running at 150 MHz and rated
on the SpecMarks benchmark with 93 SPECfp92 and 85 SPECint92. The program computes
the approximate diagram of a set of convex polygons and also plans the translational motion
of either a point or a convex polygon. It comprises approximately 1700 lines of source code,
500 of which contain the implementation of Algorithm Hierarchical; the rest is used for
the graphical interface, user interaction, and �le handling. To demonstrate the e�ciency of
the algorithm we now provide some experimental data obtained with the program.

Figure 3 shows the approximate diagram of a large number of sites and the approximate
diagram for a motion planning application. The diagram of Figure 3a was computed in about
four seconds; the diagram was approximated to a depth of eight in order to obtain an accurate
approximation. In Figure 3b, a robot moves from the middle left to the top right amidst a set
of obstacles of various sizes. The approximate diagram was computed in less than one second;
a path for the robot is indicated. Note that the diagram contains some large cells that are
not subdivided because they can not cause the robot to collide with an obstacle, whereas the
precision is locally increased where necessary; this speeds up the computation considerably.
These results indicate that the e�ciency of our approach is comparable to existing algorithms.

To show that the same algorithm works for arbitrarily shaped convex sites, we modi�ed
the aforementioned implementation to work for a set of discs in the plane. The diagram shown
in Figure 1 was computed in less than �ve seconds using this implementation; the depth of the
approximation was ten. We also have an implementation to compute the approximate diagram
of a set of convex polytopes in R3; Figure 4 shows a stereogram of (the skeleton of) such a
diagram, which was computed in just under a minute. We expect that this implementation
can be optimized in a number of ways|in particular, the distance computations are currently
done in a not so e�cient way.

13

Proof. d(x;A�
i) = d(x;Ai 	 P)

= inffd(x; r) j r 2 (Ai 	 P)g

= inffd(x; q- p) j p 2 P; q 2 Aig

= inffd(x+ p; q) j p 2 P; q 2 Aig

= d(P(x); Ai):

This yields an easy way to compute the clearance that can be performed completely in the
workspace. As in the case of a disc, we de�ne a one-dimensional skeleton in this approximate
diagram and search for a path along this skeleton.

While we assumed disjoint sites in the general framework, this is no longer possible in
the motion planning setting since the con�guration space obstacles can overlap even if the
workspace obstacles are disjoint. Although this does not invalidate the method, we would
waste a lot of e�ort in subdividing cells that are contained completely in a con�guration space
obstacle.

Lemma 5.4 If P(vi) intersects an obstacle Aj for every vertex vi of a cell C, then C is full,
that is, C � CF�.

Proof. Suppose that P(vi) intersects Aj for each of the vi. Because both P and Aj are convex,
P(v) also intersects Aj for any convex combination v of the vi, which is just C.

Using this test, we can avoid further subdivision of a cell that does not contain any con�gura-
tion at which the robot can safely be placed. We now apply Algorithm Hierarchical with
the metric induced by clearance() to obtain the approximate diagram Va. The retraction is
de�ned analogously to the case of a disc.

5.3 Improved computation of the diagram

The following observation can reduce the complexity of the approximate diagram. In the mo-
tion planning application it is not necessary to approximate the Voronoi diagram accurately;
we merely need to construct a (topology-preserving) set of cells along which the robot can
safely move.2 Small cells are only required in small passages. Therefore we subdivide a cell
only if it contains (part of) a con�guration space obstacle, that is, if the L

1
distance from

the robot placed at the center of the cell to an obstacle is smaller than half the cell size. By
adding this condition to Step 7 of Algorithm Hierarchical we can avoid further subdivision
of a cell if it is located entirely in CF. Note that by doing so we obtain an approximate
diagram with cells of di�erent sizes. Since this diagram contains the approximate diagram
with equally sized cells, this does not a�ect the connectivity of the diagram. In this diagram
the robot does no longer follow paths with maximum clearance since the cell boundaries can
now be arbitrarily close to the obstacles. However, if we de�ne a skeleton in the same way as
before and move the robot only along the skeleton, we can guarantee a lower bound on the
clearance along the diagram.

Lemma 5.5 The clearance along a path P in Va is at least size(C)=2, where C is a smallest
cell of P.

2It can still be desirable to keep the robot su�ciently far from the obstacles. There is however no need to
approximate the whole diagram with high precision.

12

approximate diagram we can however approximate the Voronoi diagram arbitrarily close. We
de�ne the depth of a cell C 2 H as the log1=2 of its size, or equivalently, the number of times
the unit hypercube has to be subdivided to obtain a cell of the size of C. The depth of the
approximate diagram is given by the depth of a smallest cell.

Lemma 5.2 If there exists a path P in V(A) such that the clearance along P is at least " > 0,
there exists a path in the skeleton of Va(A) at a depth of dlog1=2 "e+ 1.

Proof. Consider a point p 2 P and the open sphere D centered at p with radius ". Since
clearance(p) > ", D \ A = ;. Now any cell of size "=

p
2 with p as an interior point

is contained completely in D and thus is empty. This cell size is obtained at a depth of
dlog1=2("=

p
2)e = dlog1=2 "e + 1.

This lemma shows that there always exists a depth at which a path can be constructed; the
depth depends on the minimum clearance along the Voronoi diagram. As a result, we can
use the approximate diagram to plan the motion of a sphere.

5.2 Planning the motion of a polytope

The approach for a sphere can easily be generalized to the case of a convex polytope P by
means of a convex distance function [6]. We de�ne the clearance of P from Ai as

clearance(P(x); Ai) = minfdP(x; y) j y 2 Aig (8)

where dP is the convex distance function induced by P; for this it is necessary that P contains
its origin as an interior point. The same diagram can again be used to plan the motion of
any homothet of the original robot polytope [13]. However, it is not guaranteed that the
robot stays far from the obstacles when travelling along the diagram|the minimum distance
depends on the exact shape of the robot and the position of the origin in the robot polytope.
This property is undesired if the method is to be used for real-world applications, since
controlling a robot nearly always introduces some error in the trajectory. By maximizing the
distance from the obstacles, we minimize the chance of the robot accidentally colliding with
an obstacle. The clearance that realizes this is given by

clearance(P(x); Ai) = d(x;A�
i): (9)

This clearance gives the shortest distance that P(x) has to be moved to intersect Ai; this
is exactly the distance of x from the corresponding con�guration space obstacle A�

i . The
Voronoi diagram under the metric induced by Equation (9) is the Euclidean Voronoi diagram
generated by the con�guration space obstacles, and thus maximizes the distance that P has
to move to collide with the nearest obstacle. Unfortunately, we can not directly compute
this because we do not have a description of the A�

i . If W � R2, we can explicitly compute
C by means of the Minkowski di�erence, given by (P 	 Q) = fp - q j p 2 P; q 2 Qg for
polytopes P;Q. The con�guration space obstacle generated by Ai is given by A�

i = Ai 	 P,
and consequently x 2 CF if and only if x 62 (A	 P) [15]. While it is possible to compute this
in the planar case, we prefer a di�erent approach that computes the above clearance() in W

instead.

Lemma 5.3 The Euclidean distance in CF is equal to the clearance in W, that is, d(x;A�
i) =

d(P(x); Ai).

11

space obstacle A�
i consisting of all con�gurations in which R collides with Ai. For given

con�gurations s; g 2 CF, we de�ne a motion between s; g as a continuous map f : [0; 1]! CF

such that f(0) = s, f(1) = g. The corresponding path is the set of con�gurations f(t)

for t 2 [0; 1].
The retraction method for motion planning [1, 8, 16, 17] uses the Voronoi diagram of

the obstacles to compute a motion between given con�gurations s; g of the robot. First, a
retraction of s; g onto con�gurations s 0; g 0 on the diagram is computed, and next s 0; g 0 are
connected through a path entirely on the diagram. Because points on the diagram are equidis-
tant from the d closest obstacles, the resulting paths have the nice property of maximizing
the clearance of the robot.

5.1 Planning the motion of a disc

�O'D�unlaing and Yap [17] showed that this method can be used to plan the (planar) motion of
a disc. Each con�guration is retracted onto the Voronoi diagram of the obstacles by moving
away from the nearest obstacle until we reach the Voronoi diagram. A disc can be moved
along a path on the diagram if the minimum clearance along this path is greater than its
radius. Thus the same diagram can be used to plan the motion of discs with di�erent radii.

We follow the same method with our approximate diagram. Using Algorithm Hierar-

chical, we �rst compute the approximate diagram of the obstacles. Note that in the motion
planning application we only want to use those cells of the approximate diagram that do not
contain (part of) an obstacle, because the robot can not collide with an obstacle when moving
inside these cells. We call a cell C empty if it does not contain (part of) an obstacle; this
can be checked by means of the convex distance function dC induced by C [6] as follows. By
de�nition of a convex distance function, a convex polytope P that includes the origin as an
interior point intersects a polyhedron Q if and only if dP(o;Q) 6 1. In our case we can alter-
natively use the dL1 metric to determine whether a cell is empty, as shown by the following
lemma.

Lemma 5.1 Let C be a cell centered at c, then C intersects an obstacle Ai if and only if
dL1(c; Ai) > size(C)=2.

Proof. The set of points at unit distance from a point p under dL1 is just the axis-parallel hy-
percube with sides of length 2 and centered at p; hence, dL1(c; Ai) > size(C)=2, dC(c; Ai) >

1.

We add this condition to Line 6 of Algorithm Hierarchical. Next, we de�ne a one-
dimensional skeleton in Va as follows. Let C1; C2 be adjacent cells of Va, c1; c2 the centers
of C1; C2, respectively, h the side of C1 which is adjacent to C2, and x the midpoint of h; we
call x the via point of C1; C2. We connect C1 and C2 through the line segments c1x and xc2.
The resulting skeleton clearly preserves the connectivity of Va and thus is connected if Va is
connected. Each con�guration x is retracted onto the approximate diagram by moving away
from the nearest obstacle until we reach a cell C of the approximate diagram. This can not
cause the sphere to collide with the obstacles because the clearance strictly increases during
the move. Next we search for a path along the skeleton with su�cient clearance for the disc
to move. Because of the approximate nature of the skeleton this is not always possible|even
if there exists a path along the Voronoi diagram. By decreasing the size of the cells in the

10

Algorithm Hierarchical

1. Q the unit hypercube
2. Va ;
3. while Q is not empty
4. do C an element of Q
5. Q QnfCg

6. if jL(C)j > 1

7. then if size(C) > sizemax
8. then subdivide C into 2d smaller cells C 0

i

9. Q Q [fC 0
ig

10. subdivide cells adjacent to C and of size > size(C)
11. else Va Va [fCg

12. return Va

Table 2: Hierarchical computation of the diagram.

This algorithm gives an e�cient way to construct the approximate Voronoi diagram; some
experimental results are presented in Section 6.

An advantage of the method proposed here is that it is robust. In particular, round-o�
errors introduced in the computation of the diagram do not cause any problems if we can
guarantee that coinciding vertices of adjacent cells are labeled identically|even with the
possibility of round-o� errors occurring in distance computations. This can easily be satis�ed
by computing the label of a vertex only once and storing references to this label at the cells
sharing this vertex. Furthermore, degenerate diagrams are automatically handled correctly
without any requirement for special cases.

5 Application to motion planning

In this section we describe the application of the general framework of Section 3 to a classical
problem that can be solved by means of the generalized Voronoi diagram: motion planning us-
ing retraction. We demonstrate the e�ciency of the resulting algorithm through experimental
results.

The objective of the motion planning problem is �nding a path for a robot R moving
from a source to a goal position amidst a set of obstacles. The workspace W of the robot is
a closed subset of Rd that contains a set of n obstacles A = fA1; A2; : : : ; Ang. We assume
that A is �nite and that each obstacle consists of a simple convex polytope including its
interior; by abuse of notation, we also denote the union of the obstacles by A. The area
outside W is also regarded as an obstacle. By �xing a reference point to the robot R we
can describe any placement of R by the coordinates of its reference point in W, assuming we
only allow for translations; we call such a speci�cation a con�guration. The robot placed at
a con�guration x is denoted by R(x). The con�guration space C is the space consisting of all
possible con�gurations of R in W and is a closed subset of Rd. For simplicity, we assume C
to be normalized to [0; 1]d. The free con�guration space CF consists of all con�gurations for
which R(c) does not collide with A. Similarly, the forbidden con�guration space CF� = CnCF

is the subset of C in which R collides with A. Every obstacle Ai de�nes a con�guration

9

Figure 2: A disconnected approximate bisector.

cells that are adjacent to cells on the approximate diagram but are not part of the diagram
themselves|in fact, we examine every such cell.

To avoid this we instead start with a coarse approximation of the diagram and locally
re�ne it, discarding parts that are of no further interest. This process is repeated recursively
until we end up with cells of the desired size. Initially, the approximate diagram Va is empty.
Let C be the unit hypercube, and perform the following algorithm on C. First, determine the
labels (which have not yet been computed) of the vertices vi of C as given by Equation (5). If
not all li are identical, Lemma 3.2 states that C intersects the Voronoi diagram. Let sizemax
denote the requested size of the cells in the approximate diagram. If the size of C is sizemax we
add C to Va; if C is larger than sizemax, we locally re�ne the approximation by subdividing C

into a set of smaller cells as follows. Bisect the faces of C with d hyperplanes perpendicular to
the coordinate axes as described in Section 3. The arrangement of the hyperplanes within C

consists of 2d cells C 0
1; C

0
2; : : : ; C

0
2d
. Discard C and recursively apply the procedure to the C 0

i.
Although one would expect that this algorithm correctly computes the approximate diagram,
there are cases in which this approach fails; see Figure 2 for an example in the plane. The
top cell has identical labels and thus is not subdivided even though it intersects the Voronoi
diagram, and as a result the diagram becomes disconnected. To overcome this problem, we
subdivide any cell adjacent to C and at least twice the size of C, and add the resulting cells
to the recursion. Even with this additional step the resulting diagram does not include all
cells of the approximate diagram|we can however show that the diagrams are equivalent.
The resulting algorithm is shown in Figure 2.

Lemma 4.1 The diagram computed by AlgorithmHierarchical is connected if the Voronoi
diagram is connected.

Proof. We will show that cells of the approximate diagram that are not found by the algo-
rithm do not disconnect the resulting diagram. Let C 2 Va(A)|in other words, L(C) > 1

and size(C) = sizemax|and suppose that C is not found by the algorithm. This can happen
only if some larger cell C 0 containing C has identical labels and thus is not subdivided by
the algorithm. Furthermore, the size of the cells adjacent to C 0 is at most half that of C 0,
otherwise C 0 would have been subdivided in Step 10 of the algorithm. Since the Voronoi
diagram intersects C by Lemma 3.2, it also intersects C 0. According to Corollary 3.6, either
L(C 0) > 1|a contradiction|or C 0 is (in the diagram with cells the size of C 0) adjacent to a
cell C 00 with L(C 00) > 1 and size(C 00) = size(C 0). Since size(C 00) > size(C 0)=2, C 00 is subdi-
vided at most once, and the approximate diagram inside C 00 is connected.

8

As a result, the approximate diagram can be used for various problems that traditionally
require the computation of the Voronoi diagram. One such application is the post-o�ce
problem, which asks for the nearest site from a given query point. The approximate diagram
can be used to provide an approximate nearest neighbor; Arya et al. [2] describe another
approximate solution to this problem. A second application is the motion planning problem,
which consists of �nding a collision-free motion for a robot moving amidst a set of obstacles.
We elaborate on the latter in Section 5.

4 Construction of the approximate diagram

A straightforward way to compute the approximate diagram de�ned in the previous section
is by subdividing the unit hypercube into a set H of cells (as described in Section 3) and
determining the labels of every cell in H. By de�nition, the approximate diagram consists of
the cells in H with at least two di�erent labels. However, this method wastes a lot of e�ort
in computing labels of cells that are not important because they are located far from the
Voronoi diagram and, hence, can not contribute to the approximate diagram.

A better way to determine which cells in H de�ne the approximate diagram is the follow-
ing. Suppose we know a single cell C that is part of the diagram; such a cell can easily be
determined (see the retraction de�ned in Section 5). We mark C, and determine for every
unmarked cell C 0 adjacent to C whether L(C 0) > 1. If this is the case, C 0 is also part of the
approximate diagram, and the process is repeated recursively for C 0; otherwise we mark and
discard C 0. The resulting algorithm is shown in Figure 1. Its correctness follows from the

Algorithm Tracing

1. C a cell of the approximate diagram
2. Q Va fCg, and mark C
3. while Q is not empty
4. do C an element of Q, and mark C
5. Q QnfCg

6. for all unmarked cells C 0 adjacent to C
7. do if jL(C 0)j > 1

8. then Q Q [fC 0g

9. Va Va [fC 0g

10. else mark C 0

11. return Va

Table 1: Tracing the approximate diagram.

fact that the approximate diagram is connected (for a su�ciently small cell size). Note that
the test in line 7 can be done using at most 2d nearest neighbor queries under the Euclidean
metric to determine the labels of the vertices. Double calculations of labels for the same
vertex can easily be avoided by caching the results. Furthermore, as soon as we �nd that
two vertices have di�erent labels we can conclude that the cell is intersected by the Voronoi
diagram; the remaining labels need not be determined. As an optimization, for this test we
�rst check the labels that have already been computed. Thus the number of cells tested is in
the same order as the size of the approximate diagram. Still we waste a lot of time looking at

7

This lemma shows that, in the case of the Euclidean diagram of a set of point sites, the
approximate diagram covers the Voronoi diagram. We can approximate the diagram as closely
as we wish by choosing the cells su�ciently small.

When the sites are convex objects, the Voronoi diagram is not necessarily covered by
the approximate diagram. If however we choose the cells su�ciently small, the approximate
diagram is connected if the Voronoi diagram is connected. The following lemma due to
Siersma [19] plays a crucial role in this.

Lemma 3.5 The bisector of two convex sites inRd is di�erentiable with a bounded derivative.

Although this result seems straightforward, it requires a rather lengthy proof. By choosing
the cells su�ciently small, the part of the diagram intersecting a given cell has an arbitrarily
small curvature|in other words, it approximates a straight line segment arbitrarily precise.
The following is a direct consequence of this.

Corollary 3.6 For su�ciently small cells, let C be a cell whose interior intersects a bisec-
tor bis(). Then either L(C) > 1 or L(C 0) > 1, where C 0 is a cell adjacent to C.

As a result, if we choose the cells su�ciently small, each cell that intersects a bisector is
at most one cell `o�' the approximate bisector. As in the case in which every bisector is a
hyperplane, the same holds for the complete diagram.

Lemma 3.7 For su�ciently small cells, let C be a cell whose interior intersects the Voronoi
diagram. Then either L(C) > 1 or L(C 0) > 1, where C 0 is a cell adjacent to C.

Proof. Analogous to the proof to Lemma 3.4.

Since every cell that intersects the Voronoi diagram is at most one cell `o�' the approximate
diagram, it approximates the Voronoi diagram with a good precision.

Corollary 3.8 For cells of size " (" su�ciently small), a point on the approximate diagram
is at most "

p
d from the Voronoi diagram, and vice versa.

Proof. Since the real diagram intersects every cell of the approximate diagram, a point on the
approximate diagram is at most "

p
d from the real diagram. Conversely, Lemma 3.7 implies

that the approximate diagram is at most one cell o� the cells that are intersected by the real
diagram; a point on the diagram is consequently at most � from the nearest point on the
approximate diagram.

This shows that by decreasing the size of the cells in H we can approximate the Voronoi
diagram arbitrarily precise. We summarize the main properties of the approximate diagram
in the following theorem.

Theorem 3.9 For su�ciently small cells, the approximate Voronoi diagram is connected if
the Voronoi diagram is connected and can be used to approximate the Voronoi diagram with
arbitrary precision.

6

De�nition 3.1 The approximate bisector of two sites is de�ned as

bisa(Ai; Aj) = fC 2 H j fi; jg � L(C)g (6)

that is, a cell is part of some approximate bisector if and only if not all its labels are identical.
On the other hand we call the set

Va(Ai) = fC 2 H j L(C) = figg (7)

the approximate Voronoi region of Ai. The approximate Voronoi diagram Va(A) generated
by A is the set of cells in H with non-identical labels. In addition, we de�ne the (d - k)-
dimensional approximate Voronoi faces as the set of cells fC 2 H j jL(C)j > kg.

It is clear that every cell in H is part of either an approximate region or the approximate
diagram; together they cover the unit hypercube. The approximate diagram consists of the
cells whose vertices are located in di�erent Voronoi regions.

3.2 Properties of the approximate Voronoi diagram

Let C be a cell of the subdivision H. The claim is that the labels of the vertices of C, as
de�ned by Equation (5), can be used to determine whether C intersects the Voronoi diagram.

Lemma 3.2 A cell C intersects the Voronoi diagram if L(C) > 1.

Proof. Assume that L(C) > 1, and let vi; vj be vertices of C with di�erent labels. The line
segment vivj intersects the bisector of the corresponding sites at some point p. Since C is
convex, p 2 C.

This lemma shows that each cell of the diagram is intersected by the real diagram. The
reverse is not necessarily true; sometimes the Voronoi diagram might run through cells that
do not belong to the approximate diagram. Only for particular diagrams this is not the case.

Lemma 3.3 If a bisector bis() is a (d - 1)-dimensional hyperplane, the interior of a cell C
intersects bis() if and only if L(C) > 1.

Proof. The `if' part follows from the previous lemma. Now suppose that bis() intersects int C.
Since C is convex, bis() separates at least one vertex of C from the other vertices; therefore
C's labels cannot be identical.

It follows that a single bisector is covered by its approximate counterpart. The same holds if
we combine a number of bisectors into a Voronoi diagram:

Lemma 3.4 If every bisector of two sites forms a (d-1)-dimensional hyperplane, the interior
of a cell C intersects the Voronoi diagram if and only if L(C) > 1.

Proof. The `if' part follows from Lemma 3.2. Now let C be a convex polytope intersecting the
Voronoi diagram, v a vertex of C with label i, and bis(Ai; Aj) a bisector intersected by C. By
the previous lemma, L(C) > 1 in the absence of other bisectors; let w be a vertex of C that
is (in the absence of other sites) not located in dom(Ai). Since dom(Ai) is the intersection of
the dominance regions of Ai over all other sites, w cannot be located in dom(Ai) if we add
other sites (and bisectors). It follows that L(C) > 1.

5

equal distance from the two closest sites and divide the space into the (open) Voronoi regions.
The (d - 1)-dimensional faces meet in (d - 2)-dimensional Voronoi faces that achieve equal
distance from the three closest sites. Finally, the 2-dimensional faces meet in 1-dimensional
faces (that is, points) that achieve equal distance from the d closest sites. For convenience we
refer to the (d- 1)-dimensional faces as Voronoi facets, to the 2-dimensional faces as Voronoi
edges and to the 1-dimensional facets as Voronoi vertices. The set of all Voronoi facets is
called the Voronoi diagram V(A) generated by A; the set of all Voronoi edges is called the
Voronoi skeleton. In the following we use the terms region, face, etc. if it is clear that the
Voronoi region, face, etc. is understood.

The requirement that the sites be disjoint is not really necessary, neither in the above nor
in our method; it mainly serves to make the notions correspond more closely to their intuitive
meaning. For example, if this requirement is relaxed the Voronoi facets includes those regions
where two sites overlap. The method we are about to present works without any modi�cation
for overlapping sites.

3 The general framework

In this section we de�ne a subdivision of the space into primitive cells, a subset of which
forms an approximation to the Voronoi diagram.

3.1 The approximate Voronoi diagram

Let A = fA1; A2; : : : ; Ang be a set of n convex sites in Rd under the Euclidean metric. For
simplicity, we scale the space such that the relevant portion of the Voronoi diagram of A is
located inside the unit hypercube. To ensure that the diagram is connected, we treat the area
outside the unit hypercube as an additional site. We now subdivide the unit hypercube into
a set H of smaller hypercubes by means of d(k - 1) hyperplanes hij : xi = j=k for 1 6 i 6 d

and 1 6 j 6 k - 1. That is, we construct k - 1 hyperplanes normal to every coordinate axis
and at equal distance 1=k. The arrangement of these hyperplanes within the unit hypercube
consists of a grid of kd hypercubes of size 1=k. Instead of axis-parallel hypercubes we could
use cells of a di�erent shape, such as simplices; however, hypercubes greatly simplify an
implementation of the method. We call the hypercubes in H the cells of the approximation.
Two cells are adjacent in H if their boundaries intersect in a (d- 1)-dimensional hyperplane;
a set S of cells is connected if every pair of cells in S is adjacent under transitivity.

Using the cells in H we de�ne an approximate version of the Voronoi diagram generated
by A. Let C be a cell of H, and attach labels li to the vertices vi of C such that1

8k 2 [1; n] :

�
d(vi; Ali) 6 d(vi; Ak) if li 6 k

d(vi; Ali) < d(vi; Ak) if li > k
(5)

In other words, li indicates a unique site that is closest to vi. Note that the label of vi is
uniquely de�ned even in the case in which vi lies on a bisector: it is the site with the smallest
index. We de�ne L(C) as the set fli j 1 6 i 6 2dg of labels of C, and more generally, L(M) as
the set of sites closest to the vertices of a polytope M.

1If no confusion is possible, we write vi; li instead of vi(C); li(C).

4

su�ciently far away from the sites|in our approach the approximate bisector always stays
close to the real bisector). Furthermore, in their paper no properties (like connectivity) of
the approximate diagram are proven; such properties can be crucial for certain applications
(for example, motion planning). Finally, the experimental results reported are quite bad. A
simple two-dimensional diagram takes over an hour to compute, while our method solves a
similar case in close to one second. (This is partially due to their ine�cient implementation,
but we believe that, due to their representation of the sites, an e�cient implementation will
still be considerably slower because their diagram consists of much more cells.)

The rest of this paper is organized as follows. In Section 2 we recall the de�nition of
the Voronoi diagram and give some preliminary de�nitions. Next, in Sections 3 we de�ne
the approximate diagram and prove some important properties. In Section 4 we describe its
e�cient construction. We proceed with the application of the method to motion planning
using retraction in Section 5 and provide some experimental results in Section 6. Finally, we
conclude the paper in Section 7 where we also discuss some open problems and directions for
possible future work.

2 Preliminaries

We �rst de�ne the various terms and notations that will be used throughout the rest of the
paper. Next we briey review the Voronoi diagram.

The number of unique elements in a set S is denoted as jSj. Given a polytope M, we denote
a copy of M placed at a position x as M(x), and its vertices as v1(M); v2(M); : : : ; vm(M).
For nonempty sets S; T of points, we de�ne the distance of S from T under a metric d as

d(S; T) = inffd(x; y) j x 2 S; y 2 Tg (1)

In the case in which S consists of a single point x, we write d(x; T) instead of d(fxg; T) to
simplify the notation. Now let A = fA1; A2; : : : ; Ang be a set of disjoint sites in Rd; by site
we mean any convex compact set. The bisector of two sites under a distance function d is
de�ned as

bis(Ai; Aj) = fp j d(p;Ai) = d(p;Aj)g (2)

that is, the locus of points at equal distance from both sites. Under the Euclidean metric the
bisector of two sites is a curved surface; for some metrics however (for example, the Minkowski
metrics L1 and L1) the bisector can include a region [18]. The bisector divides the space into
two regions and gives the dominance region of Ai over Aj, de�ned as

dom(Ai; Aj) = fp j d(p;Ai) 6 d(p;Aj)g (3)

Since the dominance region is closed, the dominance regions of two sites intersect in their
bisector. We call the intersection of the dominance regions of Ai over all other sites, given by

V(Ai) =
\

16j6n;j6=i

dom(Ai; Aj) (4)

the (closed) Voronoi region of Ai. The Voronoi region of Ai consists of all points having
Ai as one of its closest sites; its boundary is composed of bisectors with other sites that
we call (d - 1)-dimensional Voronoi faces. That is, the faces consist of all points achieving

3

Figure 1: The approximate Voronoi diagram of a set of discs inside the unit square.

choose axis-parallel hypercubes because they are easy to handle in an actual implementation.
The approximate diagram is de�ned in the same terms of bisectors of sites and regions as the
ordinary Voronoi diagram. This framework can be constructed using the computation of the
distance from a point to a site as the only primitive operation. As a result, the approach can
be used for any set of sites for which such a distance function can be computed. For example,
the method works well for discs or hyperspheres. To give an idea of what the approximate
diagram looks like, Figure 1 shows the planar diagram of a set of discs under the Euclidean
metric. Next, we describe an algorithm for the construction of the diagram. We start with
a coarse approximation and locally re�ne it, discarding parts that are of no further interest.
Finally, we apply the framework to a classical problem that can be solved by means of the
Voronoi diagram: motion planning using retraction. Although theoretically the method is far
from optimal, it turns out to run fast in practice.

The method presented here has several advantages that make it �t for practical purposes.
Because of its generality, it can be used for a variety of applications. In addition, it is
robust with respect to round-o� errors introduced in the computation of the diagram, and it
requires no special handling for degenerate cases. Furthermore, it is easy to implement due
to its simplicity, and experiments show that the computation of the diagram is e�cient. For
example, the diagram shown in Figure 1 was computed in less than �ve seconds.

At this point we want to briey discuss a related approach by Lavender et al. [12]. Their
paper also describes a hierarchical approach to computing an approximate Voronoi diagram
of a set of general sites in arbitrary dimension. However, their approach di�ers in a number
of ways, making it (in our opinion) less useful. First of all, they represent the objects by
an octree approximation. Secondly, they de�ne the cells of the approximate diagram based
on the distance between the cell and the approximate objects. As a result, the error made
in the approximation becomes much larger and cannot be bounded (for example, for any
cell size the approximate bisector of two point sites becomes arbitrarily wide when moving

2

Approximating Generalized Voronoi Diagrams

in Any Dimension�

Jules Vleugels Mark Overmars

Abstract

Generalized Voronoi diagrams of objects are di�cult to compute in a robust way,
especially in higher dimensions. For a number of applications an approximation of the
real diagram within some predetermined precision is su�cient. In this paper we study
the computation of such approximate Voronoi diagrams. The emphasis is on practical
applicability, therefore we are mainly concerned with fast (in terms of running time) com-
putation, generality, robustness, and easy implementation, rather than optimal combina-
torial and computational complexity. Given a set of disjoint convex sites in any dimension
we describe a general algorithm that approximates their Voronoi diagram with arbitrary
precision; the only primitive operation that is required is the computation of the distance
from a point to a site. The method is illustrated by its application to motion planning
using retraction. To justify our claims on practical applicability, we provide experimental
results obtained with implementations of the method in two and three dimensions.

1 Introduction

The Voronoi diagram of a set of sites partitions the space into regions such that all points in a
region have the same closest site according to some given metric [10]. Voronoi diagrams have
proven useful in many problems in the �eld of computational geometry; we refer to Auren-
hammer [3] or Okabe et al. [18] for a survey of the many applications and generalizations of
the Voronoi diagram. The great interest in generalized Voronoi diagrams (that is, diagrams
of other than point sites) has recently produced many e�cient algorithms [5, 7, 14]. However,
the low complexity of these algorithms does not automatically make them �t for practical
applications because often they are complicated and su�er from robustness problems. To
our knowledge, numerically robust algorithms for constructing a topologically consistent ap-
proximation of the Voronoi diagram have been proposed only for point sites|either in the
plane [20] or in three-space [9]|and line segments in the plane [4]. The latter approach
demonstrates that exact implementations are time-consuming because they require calcula-
tions to be performed with high precision.

In this paper we propose a di�erent approach that is in our view better suited for particular
practical problems. Our interest is in applications for which an approximation of the Voronoi
diagram within some predetermined precision is su�cient|motion planning for example. We
�rst describe a general framework to divide the space into a set of primitive cells of �xed
size, a subset of which are used to approximate the Voronoi diagram. As primitive cells we

�This research was partially supported by ESPRIT Basic Research Action No. 6546 (project PROMotion)
and by the Netherlands Organization for Scienti�c Research (NWO).

1

ISSN: 0924{3275

Approximating Generalized Voronoi

Diagrams

in Any Dimension

Jules Vleugels Mark Overmars

Technical Report UU-CS-1995-14
May 1995

Department of Computer Science

Utrecht University

P.O.Box 80.089

3508 TB Utrecht

The Netherlands

Approximating Generalized Voronoi

Diagrams

in Any Dimension

Jules Vleugels Mark Overmars

UU-CS-1995-14
May 1995

�
Utrecht University
Department of Computer Science

Padualaan 14, P.O. Box 80.089,

3508 TB Utrecht, The Netherlands,

Tel. : + 31 - 30 - 531454

