Mechanization of Substitution Rule and
Compositionality of UNITY in HOL

I.S.W.B. Prasetya

UU-CS-1994-19
May 1994

Utrecht University

oAt So
f (2 Department of Computer Science
@
TS g Padualaan 14, P.O. Box 80.089,

O
K25k 3508 TB Utrecht, The Netherlands,
Tel. : ... + 31 - 30 - 531454

Mechanization of Substitution Rule and
Compositionality of UNITY in HOL

I.S.W.B. Prasetya

Technical Report UU-CS-1994-19
May 1994

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

ISSN: 0924-3275

Mechanization of Substitution Rule and Compositionality of
UNITY in HOL

1.S.W.B. Prasetya
Rijksuniversiteit Utrecht, Vakgroep Informatica
Postbus 80.089, 3508 TB Utrecht, Nederland

Email: wishnu@cs.ruu.nl

Abstract

UNITY is a programming logic designed for reasoning about distributed programs. The
logic has been embedded in HOL, which makes it possible to —in principle— do mechanical
verification of UNITY programs. In our research we extend the existing embedding of UNITY
with a substitution rule and compositionality results. The substitution rule is very useful in
calculation as it enables us to simplify behavior expressions using invariants. Not only that:
some behavior is even inexpressible in UNITY without exploiting invariants. Compositionality
is what allows us to conclude a property of a composite program from the properties of
its components. So, it allows modularity in designing. Indeed, both the substitution rule
and compositionality are essential tools in designing. Therefore their mechanization in HOL
increases the feasibility of HOL to verify distributed programs.

1 Introduction

UNITY, invented by Chandy and Misra in 1988 [CM88], is a programming logic which is intended
to reason about liveness properties of distributed programs. Although it is not as powerful as the
linear temporal logic, it does enjoy a great popularity due to its simplicity. Regardless the chosen
formal framework however, reasoning about distributed programs is basically a complicated and
error prone process, which is why people have tried to employ machines to aid the verification
of distributed programs (this is still an ongoing research). As a first step towards this goal
people have embedded many programming logics in various theorem provers. For example Interval
Temporal Logic and Temporal Logic of Actions have been embedded in HOL theorem prover by,
respectively, Hale [Hal88] and von Wright and Langbacka [vWL92]. As for the UNITY logic,
it has also been embedded in HOL [And92, Pra93c] but the embeddings do not fully support
substitutions by invariants and the application of compositionality results. In this report we will
discuss an extension of the existing embedding of UNITY to support these two design techniques.
We will assume the embedding of UNITY in HOL as in [Pra93c].

The results mentioned in this paper are available in a package of HOL files called U3_.COMP,
available at request.

By ’‘embedding a logic in a theorem prover’ we mean extending the theorem prover with the
definition of the logic. Unless the logic is rather trivial, we will also have to extend the theorem
prover with a library of theorems of that logic before we can do any verification with an acceptable
convenience. A step further, is to provide the users with some tools to automate formal reasoning
with the embedded logic, according to a style which is typical for the logic at hand. In HOL we
have ML as a meta language which can be used to tailor such a tool. In the end of this report we
will briefly discuss about some tools to support substitutions by invariants and the application of
compositionality results.

HOL itself is an interactive proof environment that supports reasoning in higher order logic
—hence the name HOL— ,that is, a version of predicate calculus where variables can range over

functions and predicates. The logic is also typed. See [GM93] for an introduction to HOL. HOL
has mainly been used for hardware verification. However, the higher order features make it also
attractive to express and do formal reasoning about program behavior.

The source files for both HOL-UNITY and its extension with the Substitution Rule and com-
positionality results is available at request.

1.1 Compositionality

In UNITY a program is simply a non-empty set of atomic, always enabled statements. A program
execution starts from any state satisfying a given initial condition and goes on forever; in each
execution step some statement is selected nondeterministically and executed. The selection process
is required to be fair, that is, each statement should be selected infinitely many times. In UNITY’s
view, there is no such thing as termination although it can always be simulated by fized points,
that is, states that are invariant under the execution any statement in the program. As there is
no ordering on the execution imposed, one is free to think that the statements are distributed
among a number of parallel processors. Of course then the underlying architecture should respect
the atomicity and fairness assumptions of UNITY.

Compositionality is what allows one to conclude a property of a composite program from
the properties of its components. In other words, compositionality tells us how to break a global
specification of a program into the specifications of its components. It is thus a very useful property
for designing programs.

There are two primitive program composition methods in UNITY: parallel composition and
superposition. The later is not going to be dealt with in this paper. There is not much use for
sequential composition of programs since a UNITY program is essentially non-terminating.

Parallel composition in UNITY is simply the union of all statements in the component pro-
grams. This turns out to be very advantageous for the compositionality of safety properties as
they simply distribute over parallel composition. Progress properties are however more difficult.

UNITY expresses progress by means of ENSURES operator, which exploits fairness to establish
progress. More specifically, ENSURES requires the existence of a statement A that establishes,
say, q. Then by fairness A will be executed and thus ¢ will be established. Compositionality of

ENSURES can be expressed elegantly. However, ENSURES does not cover all possible progress.
For example progress may rely on the mutual effect of several statements instead of just one
statement. To cover this, — operator is introduced as a transitive and disjunctive closure of
ENSURES . However, — is not compositional —that is, we cannot conclude a — property in the
composite program based on the —’s in the component programs, unless we know how the +’s in
the component programs are constructed. That is, we have to look into the proofs of the progress
properties of the component programs. To get around this one can define a stronger closure of
ENSURES which captures a proof scheme which is compositional. For example Udink, Herman,
and Kok [UHJ94] has shown that a closure of ENSURES that roughly behaves like the until
operator from the linear temporal logic is compositional. The trade off is however that a stronger
progress operator will have a more restricted proof scheme. In this paper we will handle a more
traditional approach as proposed by Singh [Sin89] who claims that local progress is compositional
under some strict condition regarding the shared variables. It should be added that we have to
be very precise in dealing with write variables and the type of permissible progress expressions in
order to derive Singh’s compositionality. See also [Pra93b] for more discussion on this topics.

1.2 Substitution Rule

The Substitution Rule of UNITY states that an invariant can be treated as a theorem that can
be applied to a behavior expression of a program. So if the invariant implies £ = y then by the
Rule it is permissible to substitute —hence the name Substitution Rule— any occurrence of z
in a behavior expression by y. The Rule is very practical for calculations in UNITY logic. Also,
there are properties of a program that cannot be expressed in UNITY without using Substitution
Rule. However, things are rather subtle here. Only behavior expressions that take reachable states

explicitly into account are permissible in the Substitution Rule, otherwise the Rule may lead to
a contradiction [San91]. Reachability is however rather hard to calculate with and moreover a
complete formulation of all reachable states is often not needed in practical derivations.

To make it more practical, behavior expressions can be parameterized with an invariant [San91],
stating that the behavior holds, assuming the invariant holds. The Substitution Rule can be
safely applied to parameterized expressions. There is also no problem with compositionality as
the parameters —being invariant— are compositional.

1.3 An Overview of this Paper

Section 2 gives a brief review of the UNITY logic and how it is formally represented in HOL.
Sections 3 and 4 present the formalization of parameterized UNITY operators and associated
compositionality results. Section 5 gives a brief introduction about the mechanisms used in formal
reasoning within HOL. Section 6 explains some tools by which application of Substitution Rule
and compositionality can be done in a (semi-)automatic way in HOL.

Because the notation used here may be non-standard at some points, the reader is suggested
to read the following subsection about notation.

1.4 Notation

The notation used is a mix of HOL notation and notation common to the computer science
community. This is to make the formulas more readable, especially for those who are new to
HOL, and at the same time to give some idea as how a given formula is represented in HOL.

Function application is denoted with a small dot: f applied to z is written as f-xz. Some
functions are treated as unary operators and an application of such a function is thus written
without dot like NOT p and UNITY Pr. Function abstraction is denoted by . For type 7, z: T
or £ € T means z is an object of type 7.

Assuming an expression language, E(E1 + E2) denotes an expression obtained by substituting
all occurrences of E1 in E by E2. This is a purely syntactic operation.

Predicate calculus operators are denoted as usual by -, A,V, =,V and 3.

Universal quantification over the whole domain is written Yi. P.i. Universal quantification over
a restricted part of the domain characterized by predicate V is written Vi :: V. P.i. Notice that
the big dot marks the end of domain specification while small dot denotes function application.
The same notation applies for other quantified operators.

A predicate is a function from a given domain to bool. Predicate operators are defined as the
point-wise lift of the predicate calculus operators:

Definition 1.1 : Predicate Operators
For predicates p,qg € D — bool:

TT = (As. true)

FF = ()s. false)

NOT p = (As. (p.9))

p AND ¢ = (Xs. (p-s)A(q.9))
pORg¢q = (Xs. (p-s)V(g.5)
p IMP ¢ = (Xs. (p.s) = (g.5))
MW, fi = (As. ViuW. fis)
icW. fi = (As. F W, fis)

We use the terms ’set’ and ’predicate’ —and also the corresponding notations— interchangely
as they are isomorphic (so for example to denote that a set P is non-empty we write 3z. P.z).
The reason for this is that we have chosen for predicate representation in HOL as in the current
state of HOL’s development predicates are still easier to work with than sets. On the other hand,

people are more familiar with the set notation. So, for the benefit of the presentation we will use
the set notation whenever possible without having to depart too far from the HOL notation.

For predicate p, the everywhere operator is denoted by [p]. It means that in every point s in
the domain, p.s holds.

We use the following binding convention:

Binding Power of the Operators
Here is a list of operators used in this paper, ordered from the most binding to the least.

A,V

=

NOT

AND , OR

IMP

all other operators but ’=’

O 00 =] O U N~

2 A Review on UNITY

This section briefly explains the UNITY logic and its formalization in HOL.

A UNITY program is a basically non-empty set of statements (the non-emptiness is required
to guarantee progress). How the program is executed is already mentioned in Section 1. Let the
reader also be reminded that: (a) each statement is atomic, never aborts and always terminates,
and (b) the execution should be fair. The last point is crucial in UNITY logic, let us here repeat
the definition of fairness. An execution is called fair iff each statement is executed infinitely many
often during the execution. For example if a program Pr consists of three statements {4, B,C},
then:

A;AA B A A A C A A A B; A A A;C - - -
is a fair execution but
A;B;C;B;C;B;C;---

is, while infinite, un-fair because A is only executed once. If C will color 2 to black then a fair
execution of Pr will guarantee that £ will eventually become black, even-though a moment later
A or B may change the color of z.

We assume a set Var of all available variable names. A state is just a function s € Var = Val
where Val denotes some domain of the values that the variables may have. The space of all possible
states is denoted with State.

From now on we will use the term action instead of statement. An action A is a relation on
the state space, that is, A € State — State — bool. For states s and ¢ the interpretation of A.s.t
is that if A is executed in state s then it can bring the system to the state ¢.

Each action in a UNITY program is required to be always enabled, that is, any begin state is
always related to some end states. Consequently an always enabled action does not abort. There is

also no need to introduce a special constant to mark non-termination since each action is assumed
to terminate.

Definition 2.1 : Always Enabled Action
For all action A € State — State — bool:

AlwaysEnA = Vs. 3t. A.sit

A simple assignment is always enabled. According to the conventional definition, a guarded
assignment will abort on the states where the guard does not hold. In UNITY however, an if-
action like if b — z := z + 1 denotes a guarded-or-skip assignment. That is, if the guard fails then
the effect of the action is equal to skip. Such an action is therefore always enabled.

Let Nov define a polymorphic constant. Because in HOL a type cannot be empty, Nov exists
for any given type. Let us define function projection as follows.

Definition 2.2 : Function Projection
Forall fe A— B:

Graa={ fz tzen

Nov else

A variable set V is ignored by an action A4 if A does not change the value of any variable in
V. A variable set V is invisible to an action A4 if the result of executing A does not depend on the
value of any variable in V. The definition of ’ignored’ and ’invisible’ is given below.

Definition 2.3 : Ignored By
For any variable set V and action A:

VIGBY A = Vs,t. Ast=>(s[V =t [V)

Definition 2.4 : Invisible
For any variable set V and action A:

s[(NOT V)=+s"[(NOT V) A
_ v g tI(INOTV)=t'[(NOTV) A '
VINVIA = Vs,t,46,t. SNV =tV A = As't
Ast

We will represent a UNITY program by a quadruple (P,In,R,W) where P,In, R, and W are
predicates defining respectively: (a) a non-empty set of always enabled actions, (b) the initial
states, (c) the set of read variables, and (d) the set of write variables. In the sequel, let Uprog
denote the type of such quadruple and let z € Pred mean that z is a state predicate, that is

z € State = bool. Not all objects of type Uprog are UNITY programs. Those that are, are
characterized by predicate UNITY defined below.

Definition 2.5 : UNITY Program
For all (P, In, R, W) € Uprog:

(3A. P.A)

(VA :: P. AlwaysEnA)
UNITY.(P,In,R,W) = (VA :: P. (NOT W) IG_BY A)

(Vz. Wz = R.z)

(VA :: P. (NOT R) INVI A)

>>> >

The first condition states that a UNITY program has at least one action; the second states
that all actions in a UNITY program are always enabled; the third states that a UNITY program
does not write to any variable that is not declared as its write variable; the fourth states that a
write variable is also readable; and the last states that the effect of a UNITY program does not
depend on the value of any variable outside its declared read variables.

The third condition is called write constraint and the fifth is called read constraint.

The first two conditions are explicitly mentioned in the original UNITY description {[CM88]
while the other conditions, those regarding variables accessibility, are left implicit. Indeed, all
basic theorems mentioned in [CM88] do not require any notion of variable accessibility. However,
accessibility turns out to play an important role in the compositionality of progress properties
[Sin89, Pra93b, UHJ94], which is the reason that we include it in our definition.

To denote each component of a UNITY program the following destructors are introduced.

Definition 2.6 : PROG, INIT, READ, WRITE
For all quadruple Pr = (P, In,R,W):

PROG.Pr = P
INIT.Pr = In
READ.Pr = R
WRITE.Pr = W

Without being explicit about the syntax used, below we give a piece of code denoting a UNITY
program for an alternating bit protocol. Actions are separated by [1 symbols. The meaning of an
IF action is somewhat non-conventional: it behaves like a skip if none of its guards is satisfied.

PROG ALT_BIT

READ wire, Sbit, buffer, Rbit, ack
WRITE wire, Sbit, buffer, Rbit, ack
INIT Sbit<>ack /\ Rbit=ack

ASSIGN

(IF Sbit = ack --> wire, Sbit := Exp, ~Sbit)
[0 (buffer, Rbit := wire, Sbit)
(0 (ack := buffer)

We will call a predicate that only restricts the value of the read variables of a program Pr a
local predicate of Pr. For example, wire = 3 is a local predicate of the program ALT_BIT above

whereas wire = 3V z = 0 is not because it restricts the value of z, which is not a read variable of
ALT_BIT.

Definition 2.7 : Local Predicate
For all p € Pred and Pr € Uprog:

p LocPred in Pr = Vs,t. (Vz :: READ.Pr. s.x =t.z) = (p.s = p.t)

TT and FF are always local predicates. Local predicates are also preserved by the predicate

operators (NOT, AND, OR, ...).

2.1 UNITY Operators

UNITY has three primitive operators to express the behavior of a program. There is the UNLESS
operator which expresses safety and the ENSURES and — operators which express progress.

To remind the reader: For an action A and states descriptions (predicates) p and ¢, the Hoare
triple {p} A {q} asserts that the execution of A in any state satisfying p —if it does not abort—
always ends in a state satisfying g.

For a UNITY program Pr = (P,In,V,W) and predicates p and ¢, p UNLESS ¢ informally
means that p, once holds in Pr, will remain to hold until ¢ holds. In other words, each action in

P should either leave p invariant, or establish ¢.

Definition 2.8 : Unless
Let p,q € Pred and Pr € Uprog.

pUNLESS g in Pr = (VA :: PROG.Pr. {pA—q} A {pVq})

UNLESS is reflexive, anti-reflexive, and includes IMP. It is also IMP-monotonic in its second
argument.

Theorem 2.1 : Some Properties of UNLESS
Let Pr € Uprog and p, ¢, € Pred.

1. UNLESS Reflexivity
p UNLESS pin Pr
2. UNLESS Anti-Reflexivity
p UNLESS (NOT p) in Pr
3. IMP Promotion

[p IMP q]
p UNLESS ¢ in Pr

4. UNLESS Monotonicity

p UNLESS ¢ A [q IMP r]
p UNLESS r in Pr

Informally, p ENSURES ¢ is an extension of p UNLESS ¢ with as an additional property that
there also exists an action that establishes ¢. By fairness, this action will eventually be executed
and hence ¢ will be established indeed. Thus ENSURES formulates a progress property.

Definition 2.9 : Ensures
Let p,q € Pred and Pr € Uprog.

UNITY.Pr A pUNLESS q¢in Pr A
p ENSURES ¢ in Pr =
(34 :: PROG.Pr. {p AND (NOT ¢)} 4 {¢})

While many properties of UNLESS still hold regardless whether a program is a UNITY pro-
gram or not, this is not the case with progress properties. Here, we will consider a progress
expression to be valid only if it is applied to a UNITY program. This is why we have explicitly
required in the definition of p ENSURES g in Pr that Pr should be a UNITY program.

ENSURES is reflexive, includes IMP , and is monotonic in its second argument.

However, ENSURES only covers progress which is guaranteed by the execution of a single
action. To express progress achieved by concerted effect of several actions, ~» is introduced as,
roughly speaking, the least transitive and left disjunctive closure of ENSURES . More specifically,
(Ap,¢. p+> ¢in Pr) is the least relation U satisfying the following three properties:

1. ENSURES Lift

(p ENSURES g in Pr) A (p,q LocPred in Pr) = Upg
2. Transitivity

UzyAUyz =Uzz

3. Left Disjunctivity
For any non-empty W:

Vz=W.Uzy) = U(Nz:=W. z)y

Being a least closure — induces an induction principle: it suffices to show that a relation X
satisfies above three rules to prove:

Vp,¢. p—qin Pr = X.pgq

Also, > itself satisfies above three rules.

We deviate slightly from the original definition in [CM88]. There the locality of the predicates
in the first rule above is not required. By defining — as we do, a progress by ~ can only be
valid in a program if the progress does not depend on the value of any local variable of whatever
environment of that program. This way we can get a stronger compositionality result [Pra93b,
which is why deviate from the original definition.

Other simple properties of ~+ are that it: (a) is monotonic in its second argument, (b) is
anti-monotonic in its first argument, and (c) includes IMP .

3 Formalization of Parameterized Operators

There are some properties of a program that cannot be expressed in UNITY without exploiting
invariants. For example suppose Pr is a UNITY program that contains

if 20— b:=true

as the only action that modifies b. We cannot prove that (NOT 5) UNLESS FF —if with UNLESS
here we mean the intended interpretation— unless we know that z = 0 is invariant.

To keep track of which invariant has been used to conclude a property, Sanders [San91] proposed
to parameterize the UNITY operators with the invariant used to conclude it. This is very useful
when composing programs to know which invariant the component programs should satisfy.

Let J be an invariant in program Pr which, for now, means that J holds through out the
execution of Pr. Since J is invariant, whatever the behavior of Pr, J will always hold and thus
can be regarded as a theorem in manipulating a behavior expression of Pr. So for example, if J
implies ¢ = r then we may substitute any occurrence of ¢ in —for example p — (¢ OR r) in Pr—
with r, thus concluding p ~ r in Pr. This is basically what the Substitution Rule asserts. That
is:

Substitution Rule (This theorem is NOT formalized in HOL)

Let p,q,I € Pred and Pr € Uprog and Op € { UNLESS ; ENSURES ,—~}. Let p’ be as p but with
some occurrences of subterm E1 is replaced by term E2. Similarly we define ¢’. Then:

I is invariant in Pr
[I IMP (E1 = E2)]
pOpgqin Pr
p’ Op ¢’ in Pr

The reader should be warned that the rule above is not a sound extension of the UNITY logic
defined so far (see the discussion in the paragraph below). However, if UNLESS , ENSURES and
> are interpreted as they intended to mean, for example as in [San91] then the Rule above is a
valid theorem. The formalization of the Rule in the form as formulated above is outside the scope
of this paper. We did however formalize an equivalent form of it.

One has to be careful in the use of the Substitution Rule or else one may come to a contradiction.
The problem is that by definition p UNLESS ¢ in Pr holds regardless whether p or ¢ ever holds
during the execution. On the other hands, an invariant only holds in reachable states. So, using
an invariant to do substitution is only valid on the part of p and ¢ that are reachable. See
[Mis90, San91, Pra93a) for more discussions on this topic. To avoid this problem we can weaken
the definition of UNITY operators by restricting them to reachable states. For example UNLESS
18 redefined to:

(t) pUNLESS ¢ in Pr = (VA :: PROG.Pr. {Reach.Pr AND p AND (NOT ¢)} A {p OR ¢})

Where Reach.Pr is a predicate that characterizes all reachable states of Pr. ENSURES can be
redefined in an analogous way.

Above definition captures exactly the intended meaning of UNLESS but unfortunately Reach
is in general not easy to compute. The solution is to parameterize UNITY operators with an
invariant to reflect that their validity is relative to the invariant. Using the invariant to do
substitution is then not a problem since it is already assumed.

Before we give a formal definition of parameterized operators, first here is the formal definition
of invariant.

Definition 3.1 : Invariant
For Pr € Uprog and J € Pred:

INV.Pr.J = [INIT.PrIMP J] A J UNLESS FFin Pr

An equivalent definition is —which can be obtained by unfolding the definition of UNLESS —
is:

INV.Pr.J = [INIT.Pr IMP J] A (VA : PROG.Pr. {J} A {J})

So, J is an invariant iff it is preserved by all actions in the program. Another, weaker, notion is:
J is an invariant iff it holds through out any computation. The reader is warned not to confuse
these two notions.

TT is always an invariant and the conjunction of two invariants is also an invariant. Also, INV
is not monotonic with respect to IMP (while the weaker notion of invariant mentioned above is),
that is, if INV.Pr.I holds and [I IMP J], then INV.Pr.J does not necessarily hold.

The formal definition of parameterized operators is as follows.

Definition 3.2 : Parameterized Operators
Let Pr € Uprog and p,q,J € Pred.

UNL.Pr.J.p.g = (p AND J) UNLESS (¢ AND J)in Pr A INV.Pr.J
ENS.Pr.Jp.q = (p AND J) ENSURES (g AND J)in Pr A INV.Pr.J
LTO.Pr.Jpg = (pAND J)— (¢ AND J)in Pr A INV.Pr.J

The second argument J is the parameter.

The definition above should correct the one in [San91] which with the Substitution Rule turns
out to be unsound [Pra93aj.

Since the conjunction of all invariants is again an invariant and that it precisely defines all
reachable states, the definition of UNITY operators as described (by example) earlier in (1) is just
an instantiation of above definition. Also, since TT is always an invariant, UNLESS , ENSURES
and > are just instantiations of UNL, ENS, and LTO.

Many theorems about UNITY operators can be transcribed to the corresponding theorems
about parameterized operators. Section 6 briefly explains a tool to —for simple cases— automate
this conversion.

A property worth mentioning of the parameterized operators is that the parameter can be
strengthened by another invariant. This means that a property remains valid under a stronger
invariant.

Theorem 3.1 : Strengthening Parameter
Let Pr € Uprog and p,q,J, H € Pred.

INV.Pr.J A UNL.Pr.H.pgq

1) UNL.Pr.(H AND 7) p.q
@) INV.Pr.J A ENS.Pr.H.pg
ENS.Pr.(H AND J).p.q

J LocPred in Pr
3) INV.Pr.J A LTO.Pr.H.pq
LTO.Pr.(H AND J).p.q

The Substitution Rule is just a corollary of the definition. We will show it for UNL. The

case for ENS and LTO can be proven in much the same way. Let J be an invariant that implies
El = E2.

UNL.p.q.J.Pr
= { Definition of UNL }

INV.Pr.J A ((p AND J) UNLESS (g AND J) in Pr)
= { Assumption: [J IMP (E1 = E2)], rewriting }

INV.Pr.J A ((p(E1 « EZ2) AND J) UNLESS (g(E1 « E2) AND J) in Pr)
= { Definition of UNL }

UNL.p(E1 ¢ E2).q(El E2).J.Pr

The formalization of Substitution Rule requires however a formal definition of the expression
language being used, which is beyond the scope of this paper. This does not mean that applying
the Substitution Rule is impossible in our HOL-formalization of UNITY. It is true that we cannot
have the Rule as a theorem, but we can still have it as a HOL-tactic. This is explained further in
Section 6.

4 Parallel Composition and Compositionality
Since UNITY does not require any fixed ordering on the execution of the actions in a program,

parallel composition can be modeled simply by taking the union of all actions in the component
programs. The formal definition is given below.

10

Definition 4.1 : Parallel Composition
Let Pr,Qr € Uprog.

PrlQr = (PROG.PruUPROG.Qr, INIT.Pr AND INIT.Qr,
READ.PrUREAD.Qr , WRITE.PrUWRITE.Qr)

Parallel composition is commutative and closed within the space of UNITY programs. A
local predicate in a component program is also a local predicate in the composite program. The
composition also preserves INV, UNLESS , and UNL, and hence they are compositional. The last
mentioned property is displayed below. ‘

Theorem 4.1 : Compositionality of Safety
Let Pr,Qr € Uprog and p, q,J € Pred.

1 INV.Pr.J A INV.Qr.J
1) INV.(Pr]Qr).J

2) p UNLESS gin Pr A p UNLESS ¢ in Qr
p UNLESS ¢ in (Pr]Qr)

3) UNL.Pr.J.p.g A UNL.Qr.J.p.q
UNL.(Pr]Qr).J.p.q

Theorem 4.1 states that the safety of the composite program follows from the safety of its com-
ponents —which is quite a natural design strategy. The proof is a matter of unfolding definitions.
In fact, HOL can automatically prove Theorem 4.1.

Since ENSURES implies UNLESS , a progress property expressed by ENSURES in a com-
posite program follows from the safety of its components and in addition one of the component
should have an action that can indeed ensures the progress.

Theorem 4.2 : Compositionality of ENSURES
Let Pr,Qr € Uprog and let p,q € Pred.

UNITY.Pr
p UNLESS ¢ in Pr A p ENSURES qin Qr
p ENSURES ¢ in (Pr]Qr)

Notice that the condition p ENSURES ¢ in Qr implies the existence of an action establishing q.
The additional condition UNITY.Pr is required because otherwise Pr]@Qr may not be a UNITY
program and thus no ENSURES property is valid in it. As a corollary an analogous composition-
ality statement also holds for ENS.

4.1 Compositionality of —

Progress under — is unfortunately not compositional except under some conditions as given by
Ambuj K Singh [Sin89]. This is not too surprising because a progress expression such as p ~ ¢
does not tell us anything about how the progress is to be established, so we do not know which
programs can be safely executed in parallel without destroying the progress properties.

Indeed, if we have full knowledge of the behavior upon which a progress property relies, then
parallel composition can be made to preserve this property by requiring the component programs
to satisfy this behavior. However, during a design process such knowledge may not be known until

11

a later design stage.

Consider two programs: Pr and Q@r. Assume that whenever Qr modifies any shared variable
between Pr and Qr it also raises the flag b. Singh’s theorem then states that any progress
P — ¢in Pr will be preserved by the composite Pr[Qr, or if Qr does disrupt this progress it can
only do so by modifying the shared variables, in which case b will be raised.

Singh’s Theorem on the Compositionality of —
Let V denote the vector v, v2,...of all variables read by Pr and written by Qr.

p—qin Pr
VC. (V = C) UNLESS bin Qr
P~ (¢ ORb)in (PrlQr)

Before we can verify above theorem in HOL there are some informalities which have to be
cleared first. First, the expression V = C in (V = C) UNLESS b that appears in the theorem is
an abuse of notation because V = C has the type bool whereas UNLESS expects a predicate
in its place. What is actually meant is a predicate characterizing those states where the value of
each z € V is C.z. We need to be more explicit to the machine about this or else it will complain
about type conflicts. To formalize this we introduce angled brackets lifting: (V = C) denotes the
predicate as explained above.

Definition 4.2 : Angled Brackets Lifting
For all V € Var — bool, D: Val - Val — Bool, and C € Var — Val:

(V>C) = (As:State. (Vz:: V. 5.z > C.z))

Secondly, we have used the term shared variables without mentioning what we exactly mean
by this. A possibility is to define it as the intersection of the read variables of the component
programs. However, here we will formally define shared variables between Pr and Qr, denoted by
DVa.Pr.Qr, as the variables read by Pr and written by Qr —DVa stands for Dependent Variables.
Note that DVa is not symmetric. Singh’s Theorem becomes more general with this definition of
shared variables.

Definition 4.3 : Shared Variables
For all Pr,Qr e Uprog:

DVa.Pr.Qr = READ.Pr N WRITE.Qr

So, the condition in Singh’s theorem can now be formally written as
VC. (DVa.Pr.Qr = C) UNLESS b in Qr

To prove Singh’s theorem we need the following property of local predicates. The property 1s
so natural that we often take it for granted. Let p be a local predicate of Pr. Being local, it does
not refer to any local variables of other programs. Consequently, the only way another program
can disrupt p is by writing to the shared variables, ‘

Theorem 4.3 : Local Predicate Safety
For all Pr,Qr € Uprog:

(UNITYPr) A (UNITYQr)
p LocPred in Pr
VC. (p AND (DVa.Pr.Qr = C)) UNLESS (NOT (DVa.Pr.Qr=C))in Qr

12

For the proof the reader is referred to [Pra93b]. It suffices here to say that without having write
accessibility formally present in the definition of UNITY the property would not be derivable. This
is not too difficult to see: if Qr is free to write to the local variables of Pr (that is those variables
in READ.Pr — WRITE.Qr) then it does not need to write to any shared variable to destroy a local
predicate of Pr.

Singh’s theorem can now be formalized as follows.

Theorem 4.4 : Compositionality of
For all UNITY programs Pr, Qr and P,q,b € Pred:

b LocPred in (Pr]Qr)
p—>qin Pr
VC. (DVa.Pr.Qr = C) UNLESS b in Qr
p~ (¢ OR b) in (Pr|Qr)

For the proof of above the reader is referred to (Sin89] and [Pra93b]. Informally it can be
motivated as follows. Recall that by the definition of — the progress property p — ¢ can only
be valid in Pr if the progress does not at any point depend on the behavior of local variables of
Qr. So, by Theorem 4.3 Qr can only disturb this progress by modifying some (shared) variable
in DVa.Pr.Qr. However, the assumption also says that every time Qr modifies DVa.Pr.Qr it will
also raise the flag b. So, either the progress p — ¢ is maintained in Pr}Qr, or Qr disrupts this
progress —in which case b is raised. Hence p — (¢ OR b)in (Pr]@r).

A more general compositionality result than Theorem 4.4 has also been verified. It is displayed
below.

Theorem 4.5 : Compositionality of —
For all UNITY programs Pr, Qr and D;q,a,b € Pred:

a,b LocPred in (PrjQr)
. pr>qin Pr
VC. (a AND (DVa.Pr.Qr=C)) UNLESS b in Qr
(p AND a) — ((¢ AND a) ORB) in (Pri@Qr)

This concludes the discussion about formalizing compositionality in UNITY.

5 A Brief Review on HOL’s Proving Mechanisms

To support formal reasoning HOL has rules and tactics. Rules are used in forward proving and
tactics in backward proving. The base entities being manipulated are theorems. A theorem is a
pair separated by |- like: Asml |- concl, where Asml is the list of the assumptions from which
concl is provable. We also write |- th to stand for [0 I- ¢h.

A rule generates a theorem, usually from other theorems. A rule is either one of the HOL
primitive inference rules, or a composition of them. For example MP applies Modus Ponens:

|-P==>Q I- P

MP
I-q

Another example is CONJ:

13

I-P 1-Q

CONJ
I-P/\Q

In a backward proof one starts with a conjecture —or goal as it is called in HOL. A goal is a
pair (Asml,concl), containing the elements of a theorem but it is yet to be validated. It is also
denoted with ?- like Asml ?- concl. We also write ?- trm to stand for [] ?- tzm.

A tactic transform a goal into other (usually simpler) goals —also called subgoals— and a
function that will prove the goal once the subgoals are proven. In a sense, tactics are inverse of
rules: a goal transformation by a tactic is only permissible if there is a rule that can infer the goal
given the generated subgoals. A tactic proves a goal if it can transform the goal into subgoals of
the form (Asml,T), which means true. To prove a conjecture, tactics are applied. In the process
subgoals are created. When all subgoals are proven, the conjecture is justified and becomes a
theorem.

An example of a tactic is CONJ_TAC which is the counterpart of CONJ rule mentioned earlier.

------ CONJ_TAC

Tactics can also be composed using tacticals. Some examples of tacticals are THEN for sequential
composition and REPEAT to apply a tactic repeatedly until it fails.

Although forward and backward styles are duals, there are cases where one style may be easier
to use than the other. In this case HOL is very flexible because one can always mix both styles.
Most HOL users seem however to rely more on the backward style of reasoning.

6 Tactics and Rules for Substitution Rule and Composi-
tionality

In the earlier sections we have presented the formal definition of parameterized UNITY operators
and shown that the Substitution Rule is valid indeed. Also, we have presented the formalization
of various compositionality results. To apply these results one can always use the standard HOL
tactics and rules. However, further automation is possible. For example to apply the compo-
sitionality results, one has to explicitly inform HOL which theorem it should use. It would be
more convenient to let HOL select the theorem for us. Also, because we do not have an explicit
expression language we cannot formalize the Substitution Rule as a theorem. Its application has
to be simulated by performing the derivation at the end of Section 3. It would be more convenient
to automate the derivation in a form of a tactic. Here we will mention some such tactics that we
have made. They are available in a package of HOL files called U3_.COM P, available at request.

HOL expressions are printed in the typewriter font. Function application is denoted with a
space like £ x. UNITY basic operators will be treated like ordinary functions. For example the
P ENSURES ¢ in Pr is denoted in HOL by ENSURES P q Pr. Parallel composition | is denoted by
PAR in HOL.

The tactic PAR_TAC checks whether it can distribute a property in a composite program to the
component programs according to the UNITY compositionality theorems as mentioned in Section
4. For a given goal, there can only be at most one matching compositionality theorem to apply
to. Here is some example:

14

?- INV (Pr PAR Qr) J

PAR_TAC
?7- INV Pr J
?- INV Qr J

?- ENSURES (Pr PAR Qr) p q
=== ==== PAR_TAC
?7- UNITY Pr
?- UKLESS p q Pr
?7- ENSURES p q Qr

INV_STR_TAC applies Invariant Strengthening (Theorem 3.1) to the goal. It also automatically
selects which theorem to apply. For example:

?- LTO Pr (H AND J) p q

INV_STR_TAC
?7-LTOPr Hp q

?7- INV Pr J

?- LocPred Pr J

SR_TAC simulates the application of the Substitution Rule. For example:

?- ENS Pr J p q
SESSSTESSESSSTSSSSSSESSSEISSS SR_TAC "a" "b"

?2- ENS Pr J ab

?7- Q AND J = b AND J

?7- p AND J = a ARD J

As we said before, many theorems about UNITY operators can be transcribed to the corre-
sponding theorems about parameterized operators. It is possible to write a rule to automate this
conversion —by this we does not refer to the HOL’s definition of conversion— but the applicability
of such a function will depend on the ’regularity’ of its arguments. If the theorem is simple, for
example it contains no inner quantification and other operators than the UNITY operators, then
the function U2UP_LIFT may be able to convert it. For example:

I-'pqp’ q’.
UNLESS p q Pr /\ UNLESS p’ q’ Pr

UNLESS (p AND p’) (q OR q’) Pr

U2UP_LIFT Pred Uprog "J"
I-tpap’ q’.

UNL Pr Jpq /\UNLPrJp’ q’

==>

UNL Pr J (p AND p’) (q OR q’)

where Pred is the type of the state predicates such as p and q; Uprog is the type of Pr; and J
is a variable of type Pred not yet mentioned in the theorem we want to convert.

A theorem where U2UP_LIFT fails is for example the monotonicity of UNLESS (see Theorem
2.1). The rule fails because of the extra condition [g IMP r]. The rule also fails on many —
basic theorems because they usually contain extra conditions. In self-tailoring a conversion to

15

parametrized UNITY one can however use the help functions used to build U2UP_LIFT.
With above tactics formal reasoning using Substitution Rule and compositionality results
should be easier.

7 Conclusion

The Substitution Rule is very useful in doing calculation. Not only that some behavior is inex-
pressible in UNITY without the Rule, but it also enables us to simplify behavior expressions using
invariants. Compositionality allows modularity of designs as it tells us how to conclude a property
of a composite program from of the properties its components. Indeed, both the Substitution Rule
and compositionality are essential tools in designing.

We have extended the existing formalization of UNITY in HOL [And92, Pra93c] with the
definition of parameterized operators. We have also formally proven various compositionality
results —including Singh’s compositionality theorem for . Formal application of the Substitution
Rule and compositionality results is thus now possible with HOL. Furthermore, to assist the user
we provide tactics that —given arguments in proper forms— should automate the application of
Substitution Rule and Compositionality. This results should increase the potential of HOL to
verify distributed programs.

As an after-note we want to say that the use of theorem provers like HOL in the verification
of programs is still in an experimental phase. That a programming logic, UNITY or whatever
else, has been formalized in one or another theorem prover only means that it is then potentially
possible to do mechanical program verification. Sometimes the formalization of a theoretical result
fails and it turns out that the result carries some hidden assumptions. These hidden assumptions
may imply some additional features that are not yet present in the logic. Indeed, it would be
through experimentation only that we eventually come to a stable representation of the logic.
Later on, other people seeking to formalize some other programming logic or language can of
course benefit from the experience.

Another research course is the development of users interface. So far, an effective use of theorem
provers requires a lot of practice and experience. In the end, mechanical verification should not
be a branch of engineering mastered only by specialists. Instead, it should be a tool that can
be easily learned. Tactics should be provided not only to automate proofs but also to protect a
novice from a direct exposure to the un-human style of the underlying proof mechanisms.

The source files for both HOL-UNITY and its extension with the Substitution Rule and com-
positionality results is available at request.

References

[And92] Flemming Andersen. A Theorem Prover for UNITY in Higher Order Logic. PhD thesis,
Technical University of Denmark, 1992.

[CM88] K.M. Chandy and J. Misra. Parallel Program Design — A Foundation. Addison-Wesley
Publishing Company, Inc., 1988.

[GM93] Mike J.C. Gordon and Tom F. Melham. Introduction to HOL. Cambridge University
Press, 1993.

[Hal88] Roger W.S. Hale. Programming in Temporal Logic. PhD thesis, University of Cambridge,
1988.

[Mis90] J. Misra. Soundness of the substitution axiom. Notes on UNITY, 14-90, March 1990.

[Pra93a] ISWB Prasetya. Error in the unity substitution rule for subscripted operators. draft,
available on request, 1993.

16

[Pra93b] ISWB Prasetya. Formalization of variables access constraints to support ;ompositional—
ity of liveness properties. In Proceeding HUG 93, HOL User’s Group Workshop, pages
326-339. University of British Columbia, 1993.

[Pra93c] ISWB Prasetya. UU.UNITY: a Mechanical Proving Environment for UNITY Logic.
University of Utrecht, 1993. Will appear as a technical report.

[San91] B.A. Sanders. Eliminating the substitution axiom from UNITY logic. Formal Aspects
of Computing, 3(2):189-205, 1991.

[Sin89] A.K. Singh. Leads-to and program union. Notes on UNITY, 06-89, 1989.

[UHJ94] R. Udink, T. Herman, and Kok J. Compositional local progress in unity. to appear in
the proceeding of IFIP Working Conference on Programming Concepts, Methods and
Calculi, 1994., 1994.

[vWL92] J. von Wright and T. Langbacka. Using a theorem prover for reasoning about concurent

algorithms. In Proc. {th Workshop on Computer-Aided Verification, Montreal, Canada,
June 1992. Springer-Verlag.

17

