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Positive and negative Lyapunov exponents for a dilute, random, two-dimensional Lorentz gas in
an applied field,E, in a steady state at constant energy are computed to @&derThe results are
A+ = A% — a.(gE/mv)*ty where A% are the exponents for the field-free Lorentz gas,= 11/48,
a_ = 7/48, 1, is the mean free time between collisiong,is the chargem is the mass, and is
the speed of the particle. The calculation is based on an extended Boltzmann equation in which a
radius of curvature, characterizing the separation of two nearby trajectories, is one of the variables in
the distribution function. The analytical results are in excellent agreement with computer simulations.
[S0031-9007(96)01100-3]

PACS numbers: 05.45.+b, 05.20.Dd

One of the outstanding problems in transport theoryions, as well as with the general relation, given above. We
is to relate macroscopic quantities such as transport capply a method based on the extended Lorentz-Boltzmann
efficients to microscopic quantities that characterize th€LB) equation developed by van Beijeren and Dorfman for
chaotic dynamics of the system. This chaotic dynamicgomputing the Lyapunov exponents [5,6].
is responsible for the stochasticlike behavior which leads The motion of the particle is described by a position
to normal hydrodynamic processes taking place in fluidsvector 7, and velocitys. Between collisions with the
One approach is to consider the system as a Hamiltordisks, the (non-Hamiltonian) equations of motion of the
ian system, obeying classical mechanics, and to apply thgarticle in the field and with an energy conserving
escape-rate formalism which can be used to express tranGaussian thermostat are

port coefficients 'in terms of Lyqpunoy exponents and % = v, = vCcosh, y=v, =vsing,
Kolmogorov-Sinai entropies for trajectories in phase space ) o @
on an appropriate fractal repeller [1]. Another approach to Ux = VE = AUy, Uy = —avy.

this problem is to consider driven, thermostated systems irlere § is the angle the particle’s velocity makes with
anonequilibrium steady state where the system is subjectee applied field, in thex direction, anda = v,&/v
to an applied force as well as to a “Gaussian thermostatfepresents the strength of the frictional force provided by
which allows the system to reach a steady state by remothe Gaussian thermostat [2], determined by the condition
ing the heat produced by the applied force [2,3]. Here onehat the kinetic energy remains constant.
can relate the transport coefficients to the change in the The instantaneous change in velocity of the moving
sum of all, or in some cases, a pair [2], of the Lyapunovparticle upon collisions i®/’ — v = —2k(@ - k), where
exponents in the steady state. v/ is its velocity after collision, and is the unit vector in
The system considered here is a dilute, thermostatethe direction from the center of the scatterer to the point
two-dimensional Lorentz gas, where a particle with chargef impact.
g and massn moves in an infinite random array of fixed To determine the positive Lyapunov exponent we
hard disk scatterers of radiusand densityn,ga2 < 1, first consider the separation of two diverging trajectories
subject to a constant, uniform, external figldas well that start simultaneously at the same initial spatial point,
as to a frictional thermostat which maintains the speedbut have slightly different initial velocity directions, speci-
of the particle at a constant value The system ap- fied by angles? andd’, with 6(r = 0) = 6, and 6'(r =
proaches a nonequilibrium steady state, characterized ) = 6y + §6y. We choose to measure the separation of
an attractor in phase space. In this steady state, the fdlrajectories along a line which is at all times> 0 perpen-
lowing relation holds for the macroscopic diffusion coeffi- dicular to the reference trajectory. Because the trajecto-
cient D for the particle [or, equivalently, the conductivity ries are curved by the thermostated field, the intersection
o related toD by an Einstein formulaD = m(v/q)*c]  of this line with the adjacent trajectory does not occur at
and the Lyapunov exponenis (¢) andA_(g) [2,4]: D =  the point that a particle following the adjacent trajectory
—limg—ofv?[A+(e) + A_(e)]}e 2, wheres = (¢E/vm).  will reach at timer, even to first order in the infinitesimal
Here we report the first theoretical calculation of bothquantities, such ag6,. In order to determine the Lya-
A+(g) andA—(g), for this system, using kinetic theory. We punov exponents, one must take effects produced by the
also present a comparison with extensive computer simulaurving of the trajectories into account (see Fig. 1). The
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adjacent to include the case under discussion:
BO+BBON L[0Ty v
'/ r+or, 0+560 Ay = lim —f —dt = <—> ) 4)
9(")"'590)\‘ T—=T J;  p(t) P /ss
U~ SS_p(tr)See(t) Here we assume ergodicity and calculate the ensemble av-
' erage in the steady state, denoted by the angular brackets
\reference with subscripts s.s., using a nonequilibrium steady state
trajectory distribution function for the moving particle in the con-

stant thermostated applied field. The main idea is to con-
sider an ensemble of similarly prepared systems, assume
FIG. 1. Geometry for the curvatuye(r) in the applied field.  that the distribution function for the moving particle, in
this ensemble, reaches a spatially homogeneous steady

separation between the two trajectories at timéS(s),  State (since there is no way to distinguish one spatial point
can be written as the product of a radius of curvajfe  from another in the ensemble average), and to derive and
and 8'6(1), the difference between the velocity angles ofsolve a LB equation for the distribution function for the
the two trajectories at the points of intersection with themoving particlef (v, p), where the variables include both
perpendicular line, op(r) = S(¢)/8'6(t). The radius of the velocity and the radius of curvature describing the
curvature changes continuously between collisions, and irseparation of trajectories of the moving particle and an
stantaneously at the collisions of the particle with the scatadjacent trajectory, as described above.
terers. Simple geometric considerations yield an equation Thus we write
for the rate of change g (r) between collisions as w y
. ple? At =fd5f dp — f(v,p), (5)
p=v + (pe)cosh + Tsmze. 2) 0 p
i ) i assuming thaf has been normalized to unity. The LB
The instantaneous change in the radius of curvature due Iéhuation forf is
a collision is given by [7]
5 J . ad
11, 2 @ b+ 6n=(L) @
P+ p— a COS(;') P coll

where v - k = —cos¢, ¢ is the angle of incidence at Since the dynamics between collisions is not Hamiltonian,
collision, andp— andp . are the radii of curvature before the usual form of the streaming terms on the left hand
and after collision, respectively. side of the LB equation must be replaced by the form that

We now compute the positive Lyapunov exponant  reflects the total conservation of particles under the actual,
from the rate of separation of diverging trajectories. Thenon-Hamiltonian dynamics. The left hand side of the LB
result of Sinai [7] for the positive Lyapunov exponent in aequation can be obtained from the equations of motion,
field-free Lorentz gas can be straightforwardly generaliﬁequ. (1), and Eq. (2) fop

Jt

where we used the constant speed of the particle to def{@tep) by (6, p). The right hand side (rhs) of the LB
equation is the change ifidue to collisions given previously [5] as

af _ /2 ” / . (a COS¢)/2 SN >
<¥>COH = nav ]_77/2 do COS(Z)/; dp (S(p p COS¢)/2p’>f(U ,p') — 2navf(v,p). (8)

—s%(fsinﬁ) + %[(v + pecosfd + #sin2 (9)4 = <ﬂ>coll’ 7

To leading order in the density, the collision terms can The calculation ofA_(e) requires the study of trajec-
be simplified further by approximating the factér+  tories thatasymptoticallyconverge to the reference tra-
(acosg)/2p' inside the s function by unity sincep’  jectory of the moving particle rather than diverge from
is typically on the order of the mean free path, so thait. That is, the negative Lyapunov exponent can only be
p' > a. Then Eqg. (7) can be solved by expandifng@s determined if one can find trajectories that lie on the sta-
a power series im and inserting the solution into Eq. (5). ble manifold of the reference trajectory, which is typically

We obtain difficult since almost all of the adjacent trajectories will
5 4 eventually diverge from it. To overcome this difficulty
Ai(e) = Ao — 48 toe” + O(&"), (9  we consider the time-reversed motion of the moving par-
wherety = €/v, with £ = (2na)~! the mean free path of ticle [8]. This allows us to consider diverging trajectories
the moving particle, and, is given in Ref. [5]. again. We thus consider the steady state distribution func-
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tion f_(v, p) for trajectories of the particle with velocity uncorrelatecbeforecollision in the forward motion, then

v and radius of curvatur@ on the time reversal of the in the time-reversed motion the moving particle and scat-
stable manifold. The equation fgi— takes the form of terer will be uncorrelate@fter the collision. That is, to
an “anti—Lorentz-Boltzmann” (ALB) equation. This un- obtain the ALB, one must use ti&osszahlansatpr the
usual form is dictated by the observation that if the mov-exiting collision cylinders, rather than for those before the
ing particle and the scatterer with which it collides a[ecollision [6,9]. The ALB then reads

v Jat

—s%(f_ sing) + %[(v + pecosfd + pre’ sir? 0>f_} = <i>con, (10)

where

/2 ®
<<9f_—> = navf dé cos¢>[ dp'8(p — (acose)/2) f-(v,p") — nav
coll - 0

at /2
2 [y dp'f-G'p) ,
x [ docoss LTI ), an)

The first term on the rhs of Eq. (11) is the gain term.with f—- normalized to unity. The negative sign on the rhs
It is constructed by (a) using th8tosszahlansatfor  of Eq. (13) is the result of the time-reversal procedure.
the collision cylinders centered on particles which areAgain, the equation fo— can be solved by expanding
produced in collisions with velocity, (b) requiring that f_ in powers ofs. We finally obtain
the radius of curvature after collision e and (c) noting 7 ) .
that before collision the radius of curvature will typically A== Ao~ oot F 0(e"). (14)

be on the order of a mean free path, so that after collision . ) e .
p will be very close to(a/2)cosf. The loss term in Using the relation between the diffusion coefficiénand

Eq. (11) can be obtained by noting that (a) the rate at whicf!€ sum of the Lyapunov exponents (ﬂscussed zearlier, we
particles with velocity disappear due to collisions with €cover the correct low density valie = (3/8)rpv”.

angle of incidencep is nav cose [; dp'f_ (%', p'), and It is important to compare th_ese results with those

(b) the fraction of those which disappear having radiugPt@inéd from computer simulations OSf the same sys-
of curvaturep is f_(v,p) [ [5 dp'f—(v,p")]"!. These tem. For this purpose we distributeld” nonoverlap-

considerations lead directly to the rhs of Eq. (11), and &’i”_g scatterers ra_ndomly in a square ;imulation C?” with
more detailed explanation will be given elsewhere [6]. periodic boundaries. Between collisions the trajectory

Equation (10) can be solved by imposing the require©f the moving particle is computed from an analytical
ment that solution [10] of the thermostated equations of motion.

The collision points with the scatterers are determined
. . numerically with an accuracy of0~!2. The Lyapunov
] dp f-(©,p) = f-(v), (12) exponents were computed in tangent space by a simul-
taneous integration of the linearized equations of motion
with f_(9) the time-reversed steady state solution of thefor the intercollisional streaming and an exact lineariza-
spatially homogeneous Lorentz-Boltzmann equation. Tdion of the map which relates the separation of trajectories
understand this condition, we note that when Eg. (10pfter collision to that before collision [11]. In Fig. 2 we
is integrated over all values gf to obtain an equation show the deviation of the nonvanishing Lyapunov expo-
for the velocity distribution functionf_ () one obtains nents from their equilibrium values as a function of the
an ALB equation with a collision operator that has thesquared applied field. All numbers are made dimension-
opposite sign from the usual Lorentz-Boltzmann equationless by usingz, v, m, and ¢ as the respective units for
due to the fact that we are considering the time-reverseténgth, velocity, mass, and charge. Two reduced scat-
motion, and using th&tosszahlansagdter collisions [9].  terer densities:” = na®? were considered, 0.001 (circles)
For consistency, we then require that the steady statend 0.002 (squares). Each point is obtained by averag-
solutions of thep integrated LB and ALB equations be ing over ten simulation runs with different scatterer con-
related by a simple time-reversal operation, as indicatefigurations and a total of X 10° collisions for each run.

by Eq. (12). The standard deviation for the exponents-8.1%. The
The negative Lyapunov exponent is obtained frém  lines refer to the theoretical expressions, Egs. (9) and (14).
by Both A4+ and A_ exhibit the predicted quadratic weak
. field behavior. These results are clearly consistent with
- _ > v > the theoretical predictions for the field-dependent Lya-
Al = d d _ 13
f v[o P p f-@.p), (13) punov exponents, though at densities somewhat higher
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these corrected values for vanishing field indicated by the
dashed £* = 0.001) and solid ¢* = 0.002) horizontal
lines. Thus the computer results confirm the presence of
these nonanalytic terms in the density expansion.

As a check we computed the Lyapunov exponents for
still smaller densities;* = 0.0001, and fields<10~> with
a very efficient direct-simulation Monte Carlo method [13]
and found perfect agreement with our other simulation
results quoted above.

We conclude by remarking that this work illustrates the
power of kinetic theory methods for computing quantities
of interest to both statistical mechanics and dynamical
systems theory [5,6,14].
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