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In the analysis of social dominance in groups of animals, linearity has been used by many researchers as
the main structural characteristic of a dominance hierarchy. In this paper we propose, alongside linearity,
a quantitative measure for another property of a dominance hierarchy, namely its steepness. Steepness of
a hierarchy is defined here as the absolute slope of the straight line fitted to the normalized David’s scores
(calculated on the basis of a dyadic dominance index corrected for chance) plotted against the subjects’
ranks. This correction for chance is an improvement of an earlier proposal by de Vries (appendix 2 in
de Vries, Animal Behaviour, 1998, 55, 827-843). In addition, we present a randomization procedure for de-
termining the statistical significance of a hierarchy’s steepness, which can be used to test the observed
steepness against the steepness expected under the null hypothesis of random win chances for all pairs
of individuals. Whereas linearity depends on the number of established binary dominance relationships
and the degree of transitivity in these relationships, steepness measures the degree to which individuals
differ from each other in winning dominance encounters. Linearity and steepness are complementary

measures to characterize a dominance hierarchy.

© 2006 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.

Dominance hierarchies can be characterized in terms of
two properties: linearity and steepness. Although a mea-
sure of linearity, along with a statistical test procedure, is
available (de Vries 1995), a quantitative operational mea-
sure of the steepness of a dominance hierarchy does not
exist. In an often-quoted paper about primate socioecol-
ogy, van Schaik (1989, page 206) used the terms ‘egalitar-
ian’ and ‘despotic’ (see also Vehrencamp 1983) to describe
dominance hierarchies that are ‘weakly linear and shal-
low’ and ‘steep and linear’, respectively. Although the
term ‘steepness’ was thus introduced conceptually, an op-
erational measure, along with a statistical test procedure,
to be used in empirical studies has not been provided.
Nevertheless, the concept has since been used (sometimes
referred to as ‘dominance gradient’) in several behavioural
studies such as biological market models (e.g. Barrett et al.
1999; Henzi & Barrett 1999; Leinfelder et al. 2001) and
theoretical modelling studies by Hemelrijk (1999) and
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Hemelrijk & Gygax (2004), who used the coefficient of
variation as a measure of rank differentiation. The concept
is further pivotal in the realms of social power and domi-
nance styles (Flack & de Waal 2004) and reconciliation
(e.g. Thierry 2000; Demaria & Thierry 2001).

Linearity in a set of binary dominance relationships
depends on the number of established relationships and
on the degree to which these relationships are transitive
(Landau 1951; Kendall 1962; Appleby 1983; de Vries
1995). The steepness of a dominance hierarchy refers to
the size of the absolute differences between adjacently
ranked individuals in their overall success in winning
dominance encounters (i.e. dominance success). When
these differences are large the hierarchy is steep; when
they are small the hierarchy is shallow. Whereas linearity
is based on the binary dyadic dominance relationships,
steepness requires a cardinal rank measure (Flack & de
Waal 2004).

Two broad types of methods can be used to produce
a linear hierarchy (reviewed in de Vries 1998; also Jameson
et al. 1999; de Vries & Appleby 2000; Albers & de Vries
2001; Gammell et al. 2003). In the first type the domi-
nance matrix is reorganized such that a numerical crite-
rion, calculated for the matrix as a whole, is minimized
or maximized. This yields an ordinal rank order. The sec-
ond type provides a suitable measure of individual overall

© 2006 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.


mailto:J.deVries@bio.uu.nl

586

ANIMAL BEHAVIOUR, 71, 3

success from which a cardinal rank order can be directly
derived. Such overall success measures can be used to cal-
culate a steepness measure of a hierarchy.

Recently, Gammell et al. (2003) showed that David’s
score (David 1987, 1988) appears to be the most suitable
of the proposed measures of individual overall success.
David'’s score is based on an unweighted and a weighted
sum of the individual’s dyadic proportions of wins com-
bined with an unweighted and a weighted sum of its dy-
adic proportions of losses. The crucial advantage of the
David’s score is that the overall success of an individual
is determined by weighting each dyadic success measure
by the unweighted estimate of the interactant’s overall
success, so that relative strengths of the other individuals
are taken into account. Thus, defeating a high-ranking
animal is weighted heavier than defeating a low-ranking
one.

In the current paper we develop a measure of steepness
of a hierarchy based on David’s scores. More specifically,
we present a formula for normalizing the David’s scores,
which can be used to define an initial steepness measure.
Next, we present a dyadic dominance index corrected for
chance to be used in the calculation of the David’s scores.
The final steepness measure is based on these adjusted,
normalized David’s scores. Finally, we describe a random-
ization test procedure for calculating the statistical signif-
icance of the steepness of a hierarchy.

NORMALIZING DAVID’S SCORES

The procedure for calculating David’s score (DS) for each
individual in a group of N individuals on the basis of the
observed numbers of dyadic wins and losses is as follows.
First, the dyadic proportions of wins are calculated. The
proportion of wins by individual i in its interactions
with another individual j (Py) is the number of times
that i defeats j (s;;) divided by the total number of interac-
tions between i and j (1), i.e. P;; = s;/n;;. The proportion of
losses by i in its interactions with j (P;) equals 1 — Py. If
n; =0 then P; =0 and P; = 0 (David 1988). DS for each
member, i, of a group is calculated with the formula:

DS=W+W2—I—12

Here w represents the sum of i's P; values, i.e.
w=>_P; (j=1...N; j # i); w, represents a weighted sum of
i's P values (weighted by the w values of its interactants),
i.e. wo= WPy (j=1...N; j # i). Similarly, I represents the
sum of i's P; values, i.e. [ =3 P; (j=1...N; j # i); I, repre-
sents a weighted sum of i's P; values (weighted by the I
values of its interactants), i.e. I, =3 IP; (j=1...N; j # i)
(David 1988, page 108; de Vries 1998). Tables 1 and 2
give a worked example showing these calculations. Table 1
presents the numbers of wins and losses of dyadic dom-
inance encounters in a group of seven bonobos, Pan pan-
iscus (J. M. G. Stevens, unpublished data). Table 2 presents
the proportions of wins (P;) and the calculated w, w,, l and
I, values and the resulting DS values. For instance, for the
bonobo Dz w(Dz)=0.0+1.0+1.04+0.0+0.99+1.0=
3.99 and wy(Dz)=5.0x0.0+3.94x10+2.0x1.0+
1.29 x 0.0 +1.53 x 0.99 +0.25 x 1.0=7.71.  Similarly,

Table 1. Dominance interaction matrix with numbers of wins and
losses among seven bonobos

He Dz Ho De Ko Re Ki

He * 0 1 2 10 63 8
Dz 0 * 2 3 0 88 4
Ho 0 0 * 4 65 84 3
De 0 0 0 * 0 80 10
Ko 0 0 0 0 * 4 1
Re 0 1 5 0 10 * 6
Ki 0 0 0 0 0 2 *

Data from ]. M. G. Stevens, unpublished.

I(Dz) =0.01 and [,(Dz) =0.05 and thus DS(Dz) =w +
Wy —1l—1=399+7.71 -0.01 —0.05 =11.64.

To obtain a steepness measure that varies between 0 and
1, it is necessary to convert DS into a normalized DS
(NormDS) as follows:

NormDS = {DS + MaxDS(N)}/N = {DS+ N(N — 1)/2} /N,

where MaxDS(N) is the highest potential David’s score
that can be obtained by an individual in a group of size
N. The structure of this formula can be reasoned as fol-
lows. Consider a group of individuals in which a perfect
linear dominance hierarchy exists and for which the
wins in every dyad are completely unidirectionally distrib-
uted (i.e. for each dyad (i,j) either i or j has won all dom-
inance encounters between i and j). The wins and losses in
such a group can be presented in a matrix in which the an-
imals have been ordered from highest to lowest rank. This
matrix contains all zeroes in the left lower triangular half
and positive counts in the upper triangular half. It can eas-
ily be seen that for such a matrix the DS of the top-ranking
animal equals N(N — 1)/2 and the DS of the animal at the
bottom equals —N(N — 1)/2. By adding N(N — 1)/2 (i.e. the
maximum DS value) to the DS of each animal, the scores
will lie between 0 and 2 x N(N — 1)/2. By dividing this
score by N we arrive at a normalized David’s score that
varies between 0 and N — 1. The last column in Table 2
presents the normalized David’s scores for the bonobo
example.

STEEPNESS MEASURE

When the animals, ranked from the highest rank 1 to the
lowest rank N in the rank order found by NormDS, are put
on the X axis, and are given the normalized DS value on
the Y axis, ordinary least-squares linear regression can be
used to find the best-fitting straight line. We propose to
use the absolute value of the slope of this line as a measure
of steepness of the dominance hierarchy. Figure 1 shows
this regression line for the bonobo data. The equation of
this line is Y = —0.74X + 5.94, so the steepness of this hi-
erarchy is 0.74.

In general, the steepness can vary between 0 and 1
when the normalized DS is used. When there is perfect
linearity in the set of dominance relationships and when
all proportions of wins Pj are 1, the slope equals —1, and
steepness is thus at its maximum 1 (Fig. 2). When the



Table 2. Matrix of proportions of wins (P), matrix of dyadic dominance indices corrected for chance (Dj) and the values for w, w,, /and I, used

to calculate David’s score (DS) and the normalized DS (NormDS)
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He Dz Ho De Ko Re Ki w Wy DS NormDS
Win proportions

He * 0.0 1.0 1.0 1.0 1.0 1.0 5.00 9.01 14.01 5.00
Dz 0.0 * 1.0 1.0 0.0 0.99 1.0 3.99 7.71 11.64 4.66
Ho 0.0 0.0 * 1.0 1.0 0.94 1.0 3.94 4.98 6.61 3.94
De 0.0 0.0 0.0 * 0.0 1.0 1.0 2.00 1.78 -1.29 2.82
Ko 0.0 0.0 0.0 0.0 * 0.29 1.0 1.29 0.69 -5.99 2.14
Re 0.0 0.01 0.06 0.0 0.71 * 0.75 1.53 1.37 -8.73 1.75
Ki 0.0 0.0 0.0 0.0 0.0 0.25 * 0.25 0.38 -16.25 0.68
/ 0.00 0.01 2.06 3.00 271 4.47 5.75

L 0.00 0.05 0.26 2.07 5.25 7.16 11.13

Dyadic dominance indices

He * 0.00 0.75 0.83 0.95 0.99 0.94 4.47 8.40 10.99 4.57
Dz 0.00 * 0.83 0.88 0.00 0.98 0.90 3.59 7.74 9.69 4.38
Ho 0.25 0.17 * 0.90 0.99 0.94 0.88 4.12 7.09 7.39 4.06
De 0.17 0.13 0.10 * 0.00 0.99 0.95 2.34 3.93 0.86 3.12
Ko 0.05 0.00 0.01 0.00 * 0.30 0.75 1.10 1.33 —7.26 1.96
Re 0.01 0.02 0.06 0.01 0.70 * 0.72 1.51 1.75 —8.85 1.74
Ki 0.06 0.10 0.13 0.05 0.25 0.28 * 0.85 1.93 -12.82 117
/ 0.53 0.41 1.88 2.66 2.90 4.49 5.15

I 1.37 1.23 1.94 2.75 6.79 7.63 10.46

non-normalized DS is used the slope of the fitted straight
line can vary between 0 and N. With a normalized DS the
maximum value of the steepness measure has become
independent of the number of subjects in the group. Fur-
thermore, the steepness measure is generally independent
of the number of subjects, which is obviously a desirable
feature when slopes of different-sized groups are to be
compared (Appendix 1).

So, normalizing DS is a necessary first step to arrive at
a suitable steepness measure.
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Bonobos in rank order

Figure 1. The normalized David’s scores (NormDS) plotted against
the rank of seven bonobos, He—Ki, ranked from 1 (highest) to 7 (low-
est). The straight line fitted through the normalized David’s scores
based on the proportions of wins (Pj) has slope —0.74, so the steep-
ness of the hierarchy based on these scores is 0.74. The steepness hi-
erarchy based on the normalized David’s scores based on the dyadic
dominance index (Dj) is 0.63.

THE DYADIC DOMINANCE INDEX
CORRECTED FOR CHANCE

So far we have used the dyadic proportions of wins, Pj;, in
the calculation of the normalized David’s scores. However,
as noted by David (1988, page 108), these P;; values are not

a b C d e
a * 5 1 1 3
b 0 * 1 2 1
C 0 0 * 4 2
d 0 0 0 * 1
e 0 0 0 0 *
4.5
—e— NormDS
4 Fitted line
3.5k Y=-X+5
3 -
A
2.5F
£
Z 2r
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1 -
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Individuals in rank order

Figure 2. Fictive interaction matrix of wins and losses to show the
necessity of normalizing DS. In the graph, the normalized David’s
scores (NormDS) are plotted against the rank of five animals, a—e,
ranked from 1 (highest) to 5 (lowest). The (absolute value of the)
slope of the straight line fitted through these values equals 1, indicat-
ing maximum steepness of the hierarchy. With non-normalized
David’s scores the slope would be —5 (not shown in the graph).
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wholly satisfactory when the interaction numbers differ
greatly between dyads. For instance, whether A defeats B
in two of two interactions or A defeats B in 10 of 10 inter-
actions, in both situations Pag equals 1. When estimating
A’s chances of defeating B we have to take the number of
interactions into account. To this purpose de Vries (appen-
dix 2 in de Vries 1998) proposed a dyadic dominance in-
dex d; in which the observed proportion of wins, Py, is
corrected for the chance occurrence of this observed out-
come. de Vries proposed calculating the chance occur-
rence of the observed outcome on the basis of a binomial
distribution with each animal having an equal chance of
winning or losing in every dominance encounter. In the
present paper we propose calculating the chance occur-
rence of the observed outcome on the basis of a uniform
distribution, that is, given a certain number of observed
dominance encounters, n;;, then by chance every possible
division of these encounters in wins and losses among the
two animals is equally likely. For two reasons this is better
than the former proposal: (1) this new dominance index
corrected for chance, Dj, turns out to be equal to the
well-known Bayesian estimator under Jeffreys’ prior distri-
bution used for estimating the parameter p in a sequence
of Bernoulli trials, and (2) a Monte Carlo simulation study
(Appendix 2) shows that D;; performs better as an estima-
tor of the win probability p than the dyadic dominance in-
dex d; that was proposed by de Vries (appendix 2 in de
Vries 1998).

To be specific, the dyadic dominance index D;; of i over
j, corrected for chance under the assumption that every
outcome is equally likely, is defined as:

D;; = observed proportion
— {(observed proportion — expected proportion)
x Prob[observed proportion]};

that is,
Dii :P,'i — {(P,'j — 05) x Prob [P,'j} },

where Prob[P;] is the probability that the observed propor-
tion will occur by chance. This probability is equal to
1/ (I’lij + 1)

An example illustrates the calculation of Dj;. Suppose
sij=4 and s; = 1, and hence n; =5, then

P,'/‘ = 4/5 = 087 while
D;=4/5-1{(4/5-0.5) x Prob([s; = 4|n; = 5 and
each outcome is equally likely] }
—0.8-0.3(1/6)=0.75.

For nj; = 5 interactions there are six possible outcomes of
s 0,1, 2, 3, 4 and 5, corresponding to six possible out-
comes of Py: 0, 0.2, 0.4, 0.6, 0.8 and 1. Under the assump-
tion that each of these outcomes is equally likely to occur,
the chance of a particular outcome is 1/6. In general,
when individuals i and j have had n; interactions there
are n;; + 1 equally likely outcomes of P;. So, the formula
for Dj; can be rewritten as:

Dy = sj/m — { (si/n;; = 0.5) / (n + 1) }.

It can easily be seen that D;j =1 — D;;, and that for s;; = sj;
(not zero) the value of Dj; equals 0.5. If n; = 0, Dy and Dj;
are zero (cf. David 1988). The value of D;; approaches 1 if
the difference between s; and s;; approaches infinity. For
example, s;=1 and s; =0 gives a Dy of 0.75, while
s =35 and s;; = 0 gives a D;; of 0.917.

By some algebraic manipulation it can be seen that D;; is
identically equal to (s; + 0.5)/(n; + 1). In Appendix 2 we
explain why Dj; is preferable to the earlier proposed dom-
inance index dj;; as well as to the simple proportion of wins
Py, the main reason being that Dj; is a better estimator of
the win probability p than d;; and Py (Fig. 3).

We now show why the dyadic dominance index D;
should be used rather than the P; in the calculation of
the normalized DS to arrive at a suitable steepness mea-
sure. In the bonobo example, Fig. 1 shows the values of
NormDS based on Dy plotted against the ranks of the
seven bonobos. The steepness of the straight line fitted
to the normalized David’s scores based on Dj is 0.63,
whereas the steepness based on the P; is 0.74. In this ex-
ample, differences between NormDS based on P; and
NormDS based on Dj; are rather small. However, in the fol-
lowing example comparing two artificial interaction ma-
trices, the benefits of using D;; instead of P; become

0.06

(@ ——P; (n=5)

0.05

0.04

0.03

0.02

0.01

0.06

(b) —— d;; (n=5)

Mean squared error

0.05
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0.03
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Figure 3. Mean squared error (MSE) of the Bayesian estimator D;;
compared to (a) the MSE of the maximum likelihood estimator P;
and (b) the MSE of the estimator dj. Dj; performs better (has smaller
MSE) across a large range of win probabilities p. n = number of inter-
actions per dyad.
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Figure 4. Fictive interaction matrices of wins and losses. In (a) there
are five times fewer interactions than in (b). The normalized David’s
scores (NormDS) using the proportions of wins P; are plotted against
the rank of five animals, a—e, ranked from 1 (highest) to 5 (lowest).
The (absolute value of the) slope of the straight line fitted through
these points equals 0.92 in (a) and (b). The slope of the straight
line fitted through the normalized David’s scores using the dyadic
dominance index Dj; equals 0.52 in (a) and 0.79 in (b).
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obvious. The first matrix (Fig. 4a) includes for each dyad
five times fewer interactions than the second (Fig. 4b).
Figure 4a shows the normalized DS values based on Pj
and the normalized DS values based on Dy (called
‘NormDS using Py’ and ‘NormDS using Dij’, respectively).
The steepness of the fitted line is 0.92 for NormDS using
P; and 0.52 for NormDS using Dij (Fig. 4a). So, with
NormDS using Pj; the steepness would be considered to
be high, whereas with NormDS using Dj; it is much lower.
When the numbers of wins and losses are increased by
a factor of five (Fig. 4b), the P;’s remain unchanged. This
property of P; is undesirable, since it means that winning
one of one interaction gives the same P value as winning
two of two interactions or 10 of 10 interactions (see for in-
stance dyads (He, Ho), (He, De) and (He, Ko) in Table 1); in
each case P equals 1 (Table 2). In contrast, D;; differenti-
ates between these three cases: Dj; for the (1,0) dyad (He,
Ho) equals 0.75, for the (2,0) dyad (He, De) it equals
0.83, and for the (10,0) dyad (He, Ko) it equals 0.95 (Table 2).
So, with increasing numbers of interactions, the D;; values
will approach the Pj; values, and thus also the steepness of
the dominance order based on Dj; will approach the one
based on Py: the steepness based on NormDS using Pj; is
0.92, whereas that based on NormDS using D;; is 0.79
(Fig. 4b). From this example it is clear that when the dy-
adic dominance index Dj is used instead of the simple
win proportion Py, the individual overall success as mea-
sured by the normalized David’s score takes the number
of encounters for each dyad into account. Thus, the use
of Dj; allows the comparison of matrices containing differ-
ent interaction frequencies. Because of this desirable fea-
ture of D; compared to Py the resulting steepness found
using the normalized DS based on Dj is more suitable
than the one based on Py.

SIGNIFICANCE TEST

To test whether the observed steepness differs significantly
from the steepness to be expected under the null hypoth-
esis of random win chances for all pairs of individuals we
can use the following randomization test procedure.
Generate for each and every dyad (i,j) a random number
of wins r for individual i by randomly drawing a number
from the integers O, 1, 2 ... ny. Then n; — r will be the
number of losses by i from j. Calculate the steepness for
the resulting random win-loss matrix.

If this procedure is repeated 2000 times (or more if
a more precise estimate of the P value is needed), this cre-
ates a null frequency distribution of steepness values. The
significance (the right-tailed P value) of the observed
steepness can be obtained by calculating the proportion
of times that a randomly generated steepness under the
null hypothesis is greater than or equal to the actually ob-
served steepness. We applied the test procedure to the bo-
nobo example matrix presented in Table 1. None of the
randomly generated steepness values are greater than or
equal to the observed steepness of 0.63, so P < 0.001, indi-
cating that the degree of steepness of the bonobo domi-
nance hierarchy is significant. In addition, application of
the linearity test (de Vries 1995) shows that the degree
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Table 3. Dominance interaction matrix with fictive numbers of wins
and losses among seven individuals

a b C d e f g NormDS
a * 1 1 4 2 6 10 4.19
b 0 * 4 5 0 10 4 3.49
c 0 2 * 4 65 8 3 3.41
d 2 3 2 * 0 80 10 3.21
e 1 0 0 0 * 6 7 2.60
f 1 8 5 0 2 * 6 2.10
g 4 0 1 8 5 3 * 2.01

The degree of linearity in the set of dominance relationships is strong
(h" = 0.946) and differs significantly (right-tailed P = 0.008) from the
expected h’ value of 0.375. Yet, the observed steepness of the hier-
archy is 0.362 and not significantly different (right-tailed P =0.17)
from the steepness value (0.283) to be expected under the null hy-
pothesis that for every dyad in the matrix each division of wins and
losses over the two opponents is equally likely.

of linearity in this set of dominance relationships is also
significant: h’ = 0.86 (right-tailed P = 0.028).

As a further illustration, Table 3 presents a fictive dom-
inance matrix with a strong and highly significant degree
of linearity, while at the same time the degree of steepness
is rather low and nonsignificant. This example goes to
show that linearity and steepness measure two different
characteristics of a dominance hierarchy.

DISCUSSION

Several animal behaviour researchers have suggested that
it is important to characterize the dominance hierarchy in
terms of being more or less ‘egalitarian’ or ‘despotic’ (e.g.
Vehrencamp 1983; van Schaik 1989). van Schaik (1989)
proposed that dominance hierarchies that are both weakly
linear and shallow can be called ‘egalitarian’, whereas
steep, linear hierarchies can be called ‘despotic’. Flack &
de Waal (2004) stated that attempts to measure steepness
were hereto incomplete because of the absence of a quan-
titative assessment. Here we have presented a methodol-
ogy to quantify steepness of dominance hierarchies,
based upon the same sociometric matrices that can be
used to quantify linearity of those hierarchies. The ques-
tion can now be addressed whether more egalitarian or
more despotic dominance hierarchies, in the sense of
van Schaik (1989), also lead to a more balanced or more
unequal distribution of resources/reproduction (Vehren-
camp 1983 and others). Future research will reveal
whether the measure that is proposed here fills this gap.
In their model studies, Hemelrijk (1999) and Hemelrijk
& Gygax (2004) used the coefficient of variation (standard
deviation divided by the mean) of the individual domi-
nance values as a measure of the hierarchical gradient,
and they used this term interchangeably with hierarchical
differentiation or rank differentiation. Although the coef-
ficient of variation (CV) is indeed a measure of rank differ-
entiation, it is not fully suitable as a measure of the
gradient or steepness of a hierarchy. This can easily be
seen by comparing the following two sets of dominance

values: set A: 14, 9, 7, 2; set B: 23, 17, 14, 5 (these values
lie within the range of possible DOM values presented in
Figure 2a of Hemelrijk 1999). The CV of set A equals
0.62 and the CV of set B equals 0.51; yet, it is clear that
the four animals in set B form a steeper hierarchy than
the four animals in set A. When the slope of the fitted lin-
ear regression line is taken as a steepness measure no such
illogical values are found: for set A a slope of 3.8 and for
set B a slope of 5.7.

As in studies of linearity, one should be cautious in
interpreting the results with respect to observational
zeroes, which arise when two individuals are never
observed to interact because of biased sampling or in-
adequate observation effort (de Vries 1995; Galimberti
et al. 2003). Thus, it is important that adequate sampling
efforts and observation methodologies are used. When
sufficient time has been spent observing all animals of
the study group but some dyads have still not had any
dominance interactions, one can use circumstantial obser-
vations to interpret the relationships of these dyads. First,
it might be that during the observation period itself a sub-
ordinate animal keeps a safe distance from a dominant
one, without having any dominance interactions, because
they had established their dominance-subordination rela-
tionship well before the observation period started, by
means of aggressive dominance interactions (Hemelrijk
1999). When it is possible reliably to observe dyadic
‘avoiding at a distance’ interactions, the number of dyads
with missing values can be reduced by including ‘avoiding
at a distance’ into the class of dominance interactions.
Second, when two animals are regularly seen in each oth-
er's (close) neighbourhood, without having any domi-
nance interactions with each other, these animals show
by their behaviour that a clear dominance-subordination
relationship between them is absent. In this case, the
zeroes in the respective cells of this dyad are appropriate.
Finally, when two animals stay at a relatively large dis-
tance from each other (but still clearly belong to the
same group), and neither one is clearly responsible for
this (i.e. neither one shows ‘avoiding at a distance’ behav-
iour), it is likely that their dominance relationship is unre-
solved, and therefore in this case the zeroes in the
respective cells of the dyad are also appropriate.

Within-species comparison of different dominance ma-
trices requires not only similar observational efforts, but
also analysis on the same sociospatial level, the latter to
minimize the number of structural zeroes. For example,
Galimberti et al. (2003) pointed out that population struc-
ture affects the likelihood of interaction among elephant
seals, Mirounga leonine: seals of the same harem have
a higher interaction rate than seals belonging to the
same population but different harems. Between species,
linear and steep hierarchies may be easier to detect among
close-knit groups of social animals, but more difficult to
find among individuals living in loose societies.

Meanwhile, the concept of steepness, as defined here,
has shown its value in comparing characteristics of
dominance hierarchies within and between captive
groups of bonobos (Stevens et al., in press). Sampling ef-
fort and social interaction frequencies between all animals
were relatively high, so that observational zeroes were



minimal. We found that hierarchies among male bono-
bos were generally steeper than those among females.
We also used the steepness concept to test predictions
of biological market models. We found that in bonobo
groups with a relatively shallow hierarchy grooming
was exchanged reciprocally, whereas grooming was
more unidirectional in groups with a steep hierarchy
(Stevens et al. 2005). So, steepness is a useful additional
measure of dominance hierarchies in animal societies.
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Appendix 1

To show that the steepness measure is generally in-
dependent of the number of subjects, consider matrices of
size N(N =2, 3, 4, ...) with, in the upper right triangle, the
win proportions Pj; (j > i) equal to some value p (>0.5). It
can easily be seen that the normalized DS for individual i
equals (N—i)p+ (i—1)(1 —p), and that the steepness
is equal to DS;—DS; , 1=N-ip+(@{G—1)(1—-p) — (N—
i—-Dp+(Gi+1-1)(1—-p) =2p— 1. So, indeed the steep-
ness does not depend on N.

Appendix 2

By some algebraic manipulation it can be seen that Dj; is
identically equal to (s;; + 0.5)/(n;; + 1). This shows that D;;
is in fact equal to the Bayesian estimator of the binomial
parameter p of the binomial distribution Bin(n;;p) under
the noninformative Jeffreys’ prior distribution (Gelman
et al. 2004). When a Bayesian estimator under a noninfor-
mative prior distribution is required, Jeffreys’ prior distri-
bution is usually recommended on the ground that the
Bayesian estimator under such a prior distribution is in-
variant under reparameterization (Jeffreys’ invariance
principle), a property that is not shared by other prior
distributions (Gelman et al. 2004). To compare the perfor-
mance of the Bayesian estimator Dj; in estimating the true
win probability p with the performance of the maximum
likelihood estimator Pj; and the performance of the for-
merly proposed estimator dj, the mean squared error
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(MSE) can be used (Casella & Berger 2001). Low MSE
values indicate better performance of the respective esti-
mator. The MSE of Dj; is defined by E{(D; — p)*}, where
E is the expected value. The MSE of P;; and dj; are defined
similarly. The MSE of D;; and Pj; are calculated via equation
(13) in Casella & Berger (2001); the MSE of d;; has been ob-
tained by means of a Monte Carlo procedure. Figure 3a
shows that the MSE of Dj; is smaller than the MSE of P;

when the win probability p lies between about 0.1 and
0.9. Similarly, Fig. 3b shows that the MSE of Dj; is smaller
than the MSE of d;; when the win probability p lies be-
tween about 0.05 and 0.95. For all these reasons, the
Bayesian estimator (s;; + 0.5)/(n; + 1), i.e. the dyadic dom-
inance index Dy, is to be preferred to both the earlier pro-
posed dominance index d; and the maximum likelihood
estimator Pj;.
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