A Proof System for Asynchronously
Communicating Deterministic Processes

F.S. de Boer and M. van Hulst

UU-CS-1994-45
October 1994

Utrecht University

o
f (2. Department of Computer Science
1S gl) Padualaan 14, P.O. Box 80.089,
M

3508 TB Utrecht, The Netherlands,
Tel. : ... + 31 - 30 - 531454

A Proof System for Asynchronously
Communicating Deterministic Processes

F.S. de Boer and M. van Hulst

Technical Report UU-CS-1994-45
October 1994

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

ISSN: 0924-3275

A Proof System for Asynchronously Communicating
Deterministic Processes *

F.S. de Boer and M. van Hulst

Utrecht University
Dept. of Comp. Sc.
P.O. Box 80089
3508 TB Utrecht, The Netherlands

Abstract

We introduce in this paper new communication and synchronization constructs which allow
deterministic processes, communicating asynchronously via unbounded FIFO buffers, to cope
with an indeterminate environment. We develop for the resulting parallel programming lan-
guage, which subsumes deterministic dataflow, a simple compositional proof system. Reason-
ing about communication and synchronization is formalized in terms of input/output variables
which record for each buffer the sequence of values sent and received. These input /output vari-
ables provide an abstraction of the usual notion of history variables which denote sequences of
communication events. History variables are in general necessary for compositional reasoning
about the correctness of distributed systems composed of non-deterministic processes,

1 Introduction

Hoare logics have been used successfully for reasoning about correctness of a variety of distributed
systems [OG76, AFdR80, ZdRvEBS85, Pan8s, HdR86). In general, proof systems for distributed
systems based on some kind of Hoare logic formalize reasoning about communication and synchro-
nization in terms of sequences of communication events called histories.

Distributed systems based on synchronous communication allow an elegant compositional proof
theory [Zwi88] essentially because there exists a simple criterion for deciding when the local histories
of the processes of a system are compatible, that is, can be combined into a global history of the
entire system. This criterion consists of checking whether the local histories can be obtained as
some kind of projection of some global history.

On the other hand distributed systems based on asynchronous communication do not allow such
a simple criterion: To check the compatibility of the local histories one has in general to consider
all possible interleavings [Pan88]. As such its logical formulation will involve quantification over
histories, and this will obviously complicate the reasoning process.

The recent book on program correctness by Francez [Fra92] contains a section on non-deterministic
processes which communicate asynchronously via FIFO buffers, featuring a proof system that uses
a logic based on input/output variables instead of histories. A buffer is logically represented by an

*Part of this work is published in the Proceedings of Mathematical Foundations of Computer Science 1994
(MFCS’94), volume 841 of Lecture Notes in Computer Science

input variable which records the sequence of values read from the buffer and by an output variable
which records the sequence of values sent to the buffer. The difference between input/output
variables and histories is that in the former information of the relative ordering of communication
events on different buffers is lost. However, it can be shown that this logic is incomplete for non-
deterministic processes; the information expressible by input/output variables only is insufficient
to obtain a complete specification of an entire system by composing the local specifications of its
constituent processes.

The main contribution of this paper consists of showing that distributed systems composed of
deterministic processes which communicate asynchronously via (unbounded) FIFO buffers, how-
ever do allow a simple complete compositional proof theory based on input/output variables. In
order to endow a deterministic process with the capability of responding to an indeterminate en-
vironment we introduce communication and synchronization constructs which allow a process to
test the contents of a buffer and to synchronize on a set of input buffers simultaneously. The
resulting programming language subsumes deterministic dataflow. Thus despite the restriction to
deterministic processes we obtain a powerful parallel programming language which still allows a
simple compositional proof theory based on input/output variables.

The rest of this paper is organized as follows: In section 2, the programming language is defined.
Then, in section 3, an operational semantics and a definition of correctness formulas and their
semantics is given. In section 4, the proof system is presented, followed by the proofs of soundness
(section 5) and completeness (section 6). Section 7 discusses an extension of the language which
provides a process with the full means to cope with an indeterminate environment. Finally, section
8 contains some concluding remarks and observations.

2 The programming language

In this section, we define the syntax of the programming language. The language describes the
behaviour of asynchronously communicating deterministic sequential processes. Processes interact
only via communication channels which are implemented by (unbounded) FIFO-buffers. A process
can send a value along a channel or it can input a value from a channel. The value sent will
be appended to the buffer, whereas reading a value from a buffer consists of retrieving its first
element. Thus the values will be read in the order in which they have been sent. A process will
be suspended when it tries to read a value from an empty buffer. Since buffers are assumed to
be unbounded sending values can always take place. Additionally we introduce constructs which
allow testing whether a buffer is empty or not.

We assume given a set of program variables Var, with typical elements z,Yy,.... Channels are
denoted by ¢,d,....

Definition 1 The syntaz of a statement S which describes the behaviour of a (deterministic)
sequential process, is defined by

S = skip

r:=e

c?z | clle

515 82

if b then S; else S, fi
while b do S od

if ¢??z then S; else S, fi
while ¢??z do S od
repeat S until c??x

In the above definition skip denotes the ‘empty’ statement. In the assignment statement z := e
we restrict for technical convenience to arithmetical expressions e. Sending a value of an (arith-
metical) expression e along channel c is described by c!'e, whereas storing a value read from a
channel c in a variable z is described by c??z. The execution of c??z is suspended in case the
corresponding buffer is empty. Furthermore we have the usual sequential control structures of se-
quential composition,-choice and iteration (b denotes a boolean expression). Additionally we allow
as tests in the choice and while construct an input statement ¢??z. The execution of a statement
if c??z then S; else S; fi consists of reading a value from channel ¢, in case its corresponding buffer
is non-empty, storing it in z and proceeding subsequently with $;. In case the buffer is empty
control moves on to S;. The execution of a statement while ¢??z do S od consists of alternatingly
reading a value from channel ¢ and executing S until the corresponding buffer is empty. Finally
repeat S until c??z models a form of busy waiting: repeat S for as long as no value can be read
from channel c. Note that c??z is equivalent to repeat skip until ¢??z, this corresponds to the ‘idle
waiting’ inherent in c??z. To resolve possible ambiguities in the grammar we assign to sequential
composition the lowest binding priority.

Definition 2 A parallel program P is of the form [Sy || ... || Sa], where we assume the following
restrictions: the statements S; do not share program variables, channels are unidirectional and
connect ezactly one sender and one receiver.

3 Semantics

In this section we define the operational semantics of the programming language and an appropriate
notion of program correctness.

First we need to define the notion of state which assigns values to program variables and associates
a FIFO buffer to each channel. For the formal justification of the compositional proof system it
will appear to be convenient to introduce for each channel ¢ variables ¢?? and ¢!! which record
the sequence of values read from channel ¢ and the sequence of values sent along ¢. The values
read from a channel will also include a special value L which results from testing an empty buffer.
For example a sequence (1,2,3, 1,4,5) representing the values read from a channel indicates that
after 1,2 and 3 have been read the process tested the contents of the buffer when it was empty.
Subsequent read operations on the channel resulted in the values 4 and 5. A variable ¢?? () is
also called an input (output) variable. We denote the set of variables c?? and c!! by IO.

Definition 3 Restricting ourselves to the domain of values consisting of integers only, denoted by
Z, the set of states T, with typical element o, is defined as & = (Var — Z,I0 — zy)

In the above definition Z’} denotes all finite sequences of elements of the set Z; = Z U {1}. We
introduce the following operations on sequences. The empty sequence is denoted by €. Given a
sequence s € Z7, its first element will be denoted by f(s), and the subsequence of s consisting
of elements of Z only we denote by 7, (s). The result of appending an element d to a sequence
s is denoted by s - d. We define s < ¢’ iff s is a prefix of s'. By s’ — s we denote the suffix of &'
determined by its prefix given by s (so it is defined only if s < s’). The buffer corresponding to a
channel cin a state o, that is, the sequence of values sent along ¢ but not yet read, which we denote
by o(c), is given by o(c!!) — r1(o(c??)). For example, if o(c!!) = (1,2,3) and o(c??) = (1, L,2)
then o(c) = (3).

The value of a variable v, which might be either a program variable z or an input/output variable
c??, c!! in a state o will be simply denoted by o(v). Given a state o, a variable v and a value d (of

corresponding type), we define the state o{d/v} as follows:

o{d/v}(0) = { o(v') ifv#o

d otherwise

The value of an arithmetical expression e (boolean expression b) we denote by o(e) (o(b)).

Definition 4 A configuration is a pair ([S || ... || Sa], o), where S; is either a statement or equals
E which denotes termination.

We now define a transition relation — between configurations. For convenience, we identify the
statements S and S; E for any statement S.

Definition 5 The relation — between configurations is the smallest relation satisfying:

L ([|| skip; S 1| .J,0) = ([| S 1| -] 0)
(- Nz:=e; S .],0) = ([| S || ..],0{o(e)/a})
([|l ;S || oo]ya) = (Lo || S] s o{a () - ae) Jelt})

(Lo ez S ooy = (L NS -, o{a(c??) - dfc??,d/x}),
provided o(c) # € and d = f(a(c)).

5. ([|| if b then S; else S fi; S || ...]J,0) = {[... || S1;S || ...], o),
provided a(b) = true.

6. {[... || if b then S; else Sy fi; S || ..],0) = ([... || S; 8 || ...],0),
provided o(b) = false.

7. ([... | if c??x then S else S5 fi; S || ...],0) = ([... || S1; S || ...], o{o(c??) - d/c??,d/z}),
provided o(c) # € and d = f(a(c))).

8 ([... |lif c??z then Sy else S5 fi; S || ...],0) = {[... || S2;S || ...], o {a(c??) - 1/c?7}),
provided o(c) = e.

9. [|l while b do S od; ' || ...],0) = {[... || S;while b do S od; &' || ...], 5),
provided o(b) = true.

e

10. {[... || while b do S od; S’ || ...],@) = {[... | " || ...], &),
provided o(b) = false.

11. {[... || while c??z do S od; S’ || ...],0) = ([... || S;while c??z do S od; S’ || o), o{a(c??) -
d/c??,d/z}),
provided o(c) # € and d = f(o(c)).

12. ([... || while c??z do S od; § || ..},0) = ([... || S" |} ...], o {o(c??) - L/c??}),
provided o(c) = e.

13. ([... || repeat S until c??2;S" || ...}, o) = ([... || S;if c??x then skip else repeat S until c??z fi:

S ..),0})

It is worthwhile noticing that, although not strictly necessary for the definition of the operational
semantics, recording tests on an empty buffer allow one to determine the local behaviour of a
process. Consider the following two statements: S = if ¢??7z then d!'0; R; else dl0; c??z; Ry fi and
S’ = if d??y then c!'0; R] else c!!0; d??y; R} fi. In case one does not record tests on an empty buffer

4

we cannot determine on the basis of the values of the input/output variables whether R; or R,
(and, symmetrically, R} or Rj) is reached in a computation of [S || '], which starts with empty
buffers ¢ and d. This observation will play an important role in the completeness proof of the proof
system.

Definition 6 A computation sequence of a program P = [S; || ... || Sn] is a finite or infinite
sequence Co — C1 — ... of configurations such that Co = ([S1 || ... || Sw],0) for some state 0.

We are now ready to define the semantics of a program:

Definition 7 The semantics [P](c) of program P in state o is defined as {CS| CS is a compu-
tation sequence of P, and the state-component of the first configuration of CS equals o}.

Definition 8 A computation sequence of program P is terminating iff it is finite and its last
configuration is ((E || ... || E], o), for some state .

To reason about the correctness of a program we assume given some first-order logic (so we allow
only quantification over Var, not over IO) to describe properties of states. Thus the vocabulary of
the logic includes the standard arithmetical operations and relations. Additionally we assume the
logic to include operations and relations on sequences like append, prefixing, etc. Sequence terms
of the logic are then constructed from the basic sequence terms c?? and c!! using the included
repertoire of sequence operations. The sequence term c representing the buffer associated with
channel ¢ we introduce as an abbreviation of the term c!! — r; (¢??). The truth of an assertion ¢
in a state o is denoted by o |= ¢. For example, o |= ¢?? < ! iff ¢(c??) < a(c!!).

The correctness of a program P will be specified in terms of formulas of the form I : {¢} P{%},
where I, ¢ and 9 are assertions (of the given first-order logic). The assertions ¢ and 9 are called
the precondition and postcondition, respectively. The assertion I is called the (global) invariant,
it expresses some invariant properties of the communication structure of a computation. As such
a global invariant in general refers to sequence terms, no references to variables occurring in the
program are allowed. Moreover, in I, ¢ and ¥ no quantification over the program variables of
P may occur. Intuitively the meaning of a correctness formula I : {¢}P{1} can be rendered as
follows:

Every state of a computation of P starting in a state which satisfies both I and ¢
satisfies I, and upon termination 1) is guaranteed to hold.

Thus the formalism used here is a variant of I-logic, as introduced by Pandya [Pan88]. The
following definition gives a more formal account of the semantics of correctness formulas:

Definition 9 Given a correctness formula I : {¢}P{1} such that I and P do not have program
variables in common, we define |= I : {¢}P{y} iff for any o, if o = I A ¢ then for all finite
CS € [Pl(0), o' = I holds, where o' is the second component of the last configuration of CS;
moreover if CS is terminating, then o’ = I Ay holds.

4 The proof system

In this section we present the proof system for deriving correctness formulas. In order to reason
about the correctness of a program P = [S; || ... || Sn] compositionally, that is, in terms of

the correctness of its parallel components S;, we introduce local correctness formulas of the form
I: {p}S{q}, where I is a global invariant which does not contain occurrences of program variables
of S, and p and q are assertions which are allowed only to refer to variables occurring in S. The
set of variables of a statement S consists of its program variables and those input/output variables
c?? (c!) for which c is an input channel of S (c is an output channel of). We define the semantics
of local correctness formulas axiomatically in terms of the following axioms and rules:

Axiom 1 (skip) I : {p}skip{p}
Axiom 2 (assignment) I : {ple/z]}z := e{p}

Rule 1 (output)

(IAp) = (IAQ)e! e/l
I': {p}c!le{q}

Rule 2 (input)

(IApAc#e) = (TAQIf(c)/x,c?? - f(c)/c??)
I: {p}c??z{q}

Rule 3 (sequential composition)

I:{p}Si{r}, I: {r}S:{q}
I:{p}S1; S2{q}

Rule 4 (conditional)

I:{pAb}Si{g}, I: {pA-b}S:{q}
I: {p}if b then S; else S; fi{q}

Rule 5 (while loop)

I: {p A b}S:{p}
I: {p}while b do S; od{p A -b}

Rule 6 (input conditional)

I:{p}c??2;Si{q}, UApAc=€) - (IAT)[c??- L/c??), I:{r}Se{q}
I: {p}if c??z then S else S, fi{g}

Rule 7 (input while loop)

I:{p}c??z;S{p}, IApAc=¢€) = (IAQIc?? - L/c?7]
I : {p}while c??z do S; od{q}

Rule 8 (repeat)

I:{p}S{r}, UATAc=€) = (IAD)c?? - L[c??], I : {r}c??a{g}
I: {p}repeat S until c??z{q}

Rule 9 (local consequence)

INp—=p, I:{p}S{d}, INgd ¢
I:{p}S{q}

Note that we have assertions occurring as premises, that is, we assume as additional axioms all
valid first-order assertions. In the axiom for the assignment statement we only need to substitute
the expression e for z in the postcondition p since I is not allowed to refer to program variables.
Thus I is on purely syntactical grounds invariant over assignments. The output statement c!le is
modeled as an assignment to the corresponding output variable c!! which consists of appending the
value sent to the sequence c!!. Since the global invariant may refer to the variable c!! we have to
apply the corresponding substitution also to I itself. In a similar manner an input statement c??z
is modeled as a (multiple) assignment to the variable z and the input variable c??. To obtain a
complete rule the enabledness condition of the input action, namely that the buffer ¢ is non-empty,
is included. (Note that the term c is actually an abbreviation of the term c!! — 7, (c??).) The
following rules for the conditional and while statement are straightforward extensions of the usual
rules. The rules for the conditional, while and repeat statement with an input statement as a
test combine naturally the standard rules and the rule for input statements. The main additional
feature is the recording of a test on an empty buffer. Finally, the local consequence rule extends
in an obvious way the classical rule.

Local correctness formulas can be combined into correctness formulas of an entire program as
follows:

Rule 10 (parallel composition)

I:{p}S{a}(i=1,..,n)
A 2SN N Sal{As @}

For completeness we need the following rules:

Rule 11 (consequence)

ING TN, I {¢}P{W'}, I AW =, I' > 1
I:{¢}P{y}

Rule 12 (substitution) Let v be a variable not occurring in P or ¢, and ¢ be a sequence term if v
is an input/output variable, and an arithmetical term, otherwise.

I:{p}P{q}
I: {p[t/v]}P{q}

5 Soundness

In this section we will prove the soundness of the proof system, that is, we will argue that every
derivable correctness formula I : {¢}P{v} is valid. We will consider only the soundness of the
parallel composition rule, the soundness of the consequence rule and the substitution rule being
straightforward. Since the meaning of a local correctness formula is defined only axiomatically we
introduce the notion of a local proof outline, and prove the soundness of the parallel composition
rule by induction on the length of the computation of the program using information about the
components as given by the local proof outlines.

In the following, we will need the syntactical continuations after(R, S) and before(R, S}, where R
is a substatement of S. Informally, they denote the part of S that remains to be executed after
(before) R has been executed.

Definition 10 Let S be some statement, and R some substatement of S. Define the syntactical
continuations after(R, S) and before(R, S) as follows:

o If R =S then after(R,S)=E

e If S = if b then Sy else S fi or S = if c??7x then Sy else S2 fi and R is a substatement of S;
(4 € {1,2}) then after(R, S) = after(R, S;)

o If S = while bdo Sy od or S = while c?7z do S1 od and R is a substatement of Sy then
after(R, S) = after(R, 51); S

o If S = repeat S; until c??z and R is a substatement of S1 then after(R, S) = after(R, 51);
if ¢??z then skip else S fi

o If S = 51;5; and R is a substatement of Si then after(R,S) = after(R,S1);S2; if R is a
substatement of Sz then after(R,S) = after(R, S2)

e before(R, S) = R; after(R,S)

Note: We do not consider input commands occurring as tests in statement S to be substatements
of S.

Definition 11 Given a statement S, an invariant I and pre- and postcondition p and g, where p
and q only contain variables occurring in S, a proof outline pfo(I,p, S, q) consists of the program
text of S together with an assignment pre(R) and post(R) to all substatements R of S such that
the following assertions are valid:

1. (I Ap) — pre(S) and (I A post(S)) = q
(I A pre(R)) — post(R), for R = skip
(I A pre(R)) = post(R)[e/x], for R=z:=e
(I A pre(R)) = (I A post(R))[c!! - e/c!], for R =clle
(I Apre(R) Ac# €) = (I Apost(R))[f(c)/z,c?? - f(c)/c?] for R=c??x

(I A pre(R)) — pre(R1), (I A post(Ry)) — pre(Rg) and (I A post(Rz)) — post(R), for
R = Ry; Ry

7. (I Apre(R) Ab) — pre(Ry),
(I A pre(R) A —b) — pre(Rz) and I A post(R;) — post(R)(i = 1,2),
for R =if b then R; else R, fi

8. (I Apre(R) Ac# €)= (I Apre(Ra))[f(c)/z,c?? - f(c)/c??],
(I Apre(R) Ac=¢€) = (I Apre(Rz))[c??- L/c??], and
I A post(R;) = post(R)(i = 1,2), for R =if c??x then Ry else R; fi

9. (I A pre(R) Ab) — pre(R1), (I A post(Ry)) — pre(R), and (I Apre(R) A -b) — post(R) for
R = while b do R; od

S ;o e e

10. (I Apre(R) Ac# €) = (I Apre(R1))[f(c)/z,c?? - fle)/c?,
(I A post(Ry)) = pre(R), and (I Apre(R)Ac =€) = (I A post(R))[c?? - L/c??],
for R = while ¢??z do R; od

11. (I A pre(R)) = pre(R,),
(I A post(Ry) Ac =€) = (I Apre(R))[c?? - L/c??], and
(I A post(Ry) A c # €) = (I A post(R))[f(c)/z,c?7 - fle)/c,
for R = repeat R until c?7z

The following lemma relates a proof of a local correctness formula with the existence of a local
proof outline.

Lemma 1 A local correctness formula I : {p}S{q} is derivable iff there erists a proof outline

pfo(l,p,S,q).

Proof Only if: induction on the length of the derivation of I : {p}S{q}. The base cases (skip,
assignment, input and output) are immediate. We consider some rules:

e sequential composition. Consider a proof ending with an application of the sequential
composition rule, yielding I : {p}S1; S2{q}. Then we also have proofs of I : {p}S1{r} and
I : {r}S2{gq}, for some 7. By induction hypothesis there exist proofoutlines pfo(I,p, S1,7)
and pfo(I,r,Sz2,q). In particular, we have (I A post(51)) =7 and (I Ar) — pre(Sz). From
this we deduce (I Apost(S;)) — pre(Sz). Choosing pre(S1;S2) = pre(S;) and post(Sy; S2) =
post(S;) then gives us a proofoutline pfo(I,p, S1; Sz, q)-

e while rule. Consider a proof ending with an application of the while rule, yielding I :
{p}while b do S; od{p A ~b}. Then we also have a proof of I : {p A b}S1{p}. By induction
hypothesis there exists a proofoutline pfo(I,pAb, S1, p). Choosing pre(while b do S; od) =p
and post(while b do S; od) = pA-b then gives us a proofoutline pfo(I,p,while b do Sy od,q),
because (I ApAb) — pre(S1), (I Apost(S1)) =+ pand (IApA =b) = (p A —b).

e input conditional. ~Consider a proof ending with an application of the input conditional

rule, yielding I : {p}if c??z then Sy else S fi{p A =b}. Then there exists r such that we
have a proof of I : {p}c??z; S1{q} and of I : {r}S2{q}, and (I ApAc=¢) = (I AT)[c??-
1/c?7) is valid. By induction hypothesis there exist proofoutlines pfo(I,p, c??x; S1,q) and
pfo(I,7,S2,q). Thus, there are pre(c??z; S1), post(c??z; Sy), pre(c??z), post(c??z), pre(S1),
post(S1), pre(Sz), and post(Sz) such that (I A p) — pre(c??z; 51), (I A post(c??z;S1)) = g,
(I Apre(c??z; S1)) = pre(c??z), (I Apost(c??z)) — pre(S1), (I Apost(S1)) = post(c??z; S1),
(I A pre(c??z) Ac # €) = (I A post(c??z))[f(c)/x,c?? - f(c)/c??), (I Ar) — pre(S2) and
(I A post(S2)) = q.
Choosing pre(if ¢??x then Sy else S, fi) = p and post(if c??z then S else 5, fi) = g then
gives us a proofoutline pfo(I, p, while b do S od,q), as can be seen by verifying (I ApAc #
€) = (I Apre(S1))f(c)/z,c??- f(c)/c??], IApAc=¢€) — (I A pre(S2))[c?? - L/c??] and
(I A post(S;) = ¢ (¢ = 1,2) from the above.

The if-part is proven with induction on the structure of S (the input and output cases are omitted,
being very similar to the assignment case):

e S = skip Suppose we have a proof outline pfo(I,p,S,q). According to the definition of
a proofoutline we then have assertions pre(S) and post(S) such that the following hold:
(I Ap) — pre(S), (I Apost(S)) = g, and (I Apre(S)) — post(S). We next show a derivation
of I: {p}S{q}:

(1) I:{p}S{p}, by Axiom 1

(2) I:{p}S{pre(S)}, by Rule 8, (1) and (I A p) = pre(S)

(3) I:{p}S{post(S)}, by Rule 8, (2) and (I A pre(S)) — post(S)
(4) 1I:{p}S{g}, by Rule 8, (3) and (I A post(S)) = ¢

S =z :=e Suppose we have a proof outline pfo(I,p, S,q). We now have assertions pre(S)
and post(S) such that the following hold: (I A p) = pre(S), (I A post(S)) — ¢, and (I A
pre(S)) — post(S)[e/z]. We next show a derivation of I : {p}S{q}:

(1) I:{qle/=}}S{q}, by Axiom 2

(2) I:{post(S)le/z]}S{g}, by Rule 8, (1) and (I A post(S)) = ¢, hence also
(I A post(S)[e/z]) — gle/z]

(3) I:{pre(S5)}S{g}, by Rule 8, (2) and (I A pre(S)) —+ post(S)le/z]

(4) I:{p}S{g}, by Rule 8, (3) and (I A p) = pre(S)

S = S1;S, Suppose we have a proof outline pfo(I,p, S,q). We now have assertions pre(S),
post(S), pre(S1), post(S1), pre(Sz), and post(Sz) such that the following hold: (I Ap) =
pre(S), (I A post(S)) = g, (I Apre(S)) = pre(S1), (I A post(Sy)) — pre(Sz), and (I A
post(Sz2)) — post(S).

From these facts we can easily derive (I A p) = pre(S1) and (I A post(S;)) — pre(S2), and
also (I A pre(Sz)) — pre(Sz) and (I A post(Sz)) — g. This means we have proofoutlines
pfo(I,p, S1,pre(Sz)) and pfo(I,pre(S:), S2,q). Using the induction hypothesis twice and
the rule for sequential composition we arrive at - I : {p}S{q}.

S = if bthen S; else S fi Suppose we have a proof outline pfo(I,p,S,q). We now have
assertions pre(S), post(S), pre(S1), post(S1), pre(Sz), and post(S2) such that the following
hold: (I Ap) = pre(S), (I Apost(S)) = q, (I Apre(S)Ab) — pre(Sy), (I Apre(S)A-b) =
pre(Sz), (I Apost(S1)) = post(S), and (I A post(S2)) - post(S).

From these facts we derive (I ApAb) = pre(S1) and (I Apost(Sy)) = ¢, and also (A pAb) =
pre(Sy) and (I A post(Sz)) = q. This means we have proofoutlines pfo(I,p A b, S1,¢q) and
pfo(I,p A —b,Ss,q). Using the induction hypothesis twice and the rule for conditionals we
arrive at + I : {p}S{q}.

S = while b do $; od Suppose we have a proof outline pfo(I,p, S,q). We now have assertions
pre(S), post(S), pre(Si), and post(S1) such that the following hold: (I A p) — pre(S),
(IApost(S)) = g, (IApre(S)Ab) = pre(S1), (IApost(S1)) —+ pre(S), and (IApre(S)A-b) —
post(S).

From these facts we immediately derive the existence of a proofoutline pfo(I,pre(S) A
b, S1,pre(S)). Using the induction hypothesis we obtain - I : {pre(S) A b}S1{pre(S)},
and hence, by application of the while rule, - I : {pre(S)}S{pre(S) A ~b}. Finally, we apply
the consequence rule, using the facts (I A pre(S) A -b) = g and (I Ap) = pre(S), which
follow from the above, to obtain + I : {p}S{q}.

S = if 77z then S; else Sz fi Suppose we have a proof outline pfo(I,p, S,q). We now have
assertions pre(S), post(S), pre(S1), post(S1), pre(Sz), and post(Sz) such that the following
hold: (I Ap) — pre(S), (I Apost(S)) = q, I Apre(S)Ac#¢€) = (I Apre(S1))[f(c)/z,c?? -
f(e)/c??, (I Apre(S) Ac =€) = (I Apre(S2))[c??- 1/¢??), (I A post(S1)) — post(S), and
(I A post(S3)) — post(S).

From these facts we derive (I A p) = pre(S), (I A post(S)) = g, (I Apre(S)) — pre(S),
(I A pre(S1)) = pre(S1), (I A post(S)) — post(S), and (I A pre(S)Y Ac # €) = (I A
pre(51))[f(c)/z,c??- f(c)/c??]. This means we have a proofoutline pfo(I,p, c??z; S1,q). Simi-
larly, we derive (IApre(Sz)) — pre(S2) and (IApost(Sz)) — g, giving us pfo(I,pre(S2),52,9)
Using the induction hypothesis twice and (IApAc =€) = (I Apre(S2))[c??- L /c??] the rule
for input conditionals gives us - I : {p}S{q}.

10

e S = while ¢??7z do S; od Suppose we have a proof outline pfo(I,p,S, q). We now have

assertions pre(S), post(S), pre(S1), and post(S;) such that the following hold: (IAnp) =
orol(S). (I A posi(S)) — @ (I Apre(S) Ac # €) = (I Apre(Sn){f(e)/=,e?? - f(e)/eT],
(Inpre(S)ync=¢) (I A post(S))[c?? - L/c??], and (I A post(S1)) = pre(S).
From the facts (I A pre(S)) — pre(S), (I A pre(S;)) = pre(S1) and (I A pre(S) Ac # €) —
(I A pre(S1)[f(c)/=z,c?7? - f(c)/c??] we derive a proofoutline pfo(I,pre(S),c?z; Sy, pre(S))
(Somewhat more precisely: if we choose assertions pre(c??z) = pre(c??z; S) = post(c??; S) =
post'(Sy) = pre(S), and post(c??z) = pre'(S1) = pre(Sh), all requirements of the proofoutline
are met. We use pre’(Sy) and post'(S1) to distinguish from the assertions pre(S1) and
post(Sy) from the proofoutline pfo(I,p, S, g).) By induction hypothesis, we have a proof
of T : {pre(S)}c??z; S1{pre(S)}. Now we can apply the input while loop rule, using IA
pre(SYAc=¢€) = (I A post(8))[c?? - L/c??}, to obtain - I': {pre(S)}S{post(S)}, which after
application of the consequence rule (using (I A p) — pre(S) and (I A post(S)) — gq) gives
1 {p}S{q}-

e S = repeat S; until c??z Suppose we have a proof outline pfo(I,p,S, g). We now have

assertions pre(S), post(S), pre(S1), and post(S;) such that the following hold: (I Ap) —
pre(8), (I Apost(S)) = q, (I Apre(S)) — pre(S1), (I Apost(Sy)Ac=€) = (I Apre(S))[c??-
1/c??), and (I Apost(S1) Ac# €) = (I A post(S))[f(c)/z,c?? f(e)/c??].
From (I A pre(S)) — pre(S1) we directly obtain a proofoutline pfo(I,pre(S), S1,post(S1)),
and from (I Apost(S)) = q and (IApost(S1)Ac # €) = (I/\post(S))[f(c)/x,c??~f(c)/c??] we
obtain a proofoutline pfo(I,post(S1),c??z,q) (take pre(c??x) = post(S:) and post(c??z) =
post(S)). Thus, using the induction hypothesis we have proofs of I : {pre(S)}S1{post(S1)}
and I : {post(S1)}c??z{q}. Now we apply the repeat rule using (I Apost(Si)Ac=¢€) = (IA
pre(8))[e?? - L/c?7] to obtain a proof of I : {pre(S)}S{g}. Finally, applying the consequence
rule using (I A p) — pre(S) gives the desired result.

Given lemma 1 it is not difficult to derive as a corollary from theorem 1 below the soundness of
the parallel composition rule.

Theorem 1 Given local proof outlines pfo(l, 9i,8i,¢) (1 < i < n), a state o such that o =
I AN, pi, and a computation (11 1| -+ l| Sn)yo) =* ([Ra | ... || Rnl,0’) (—* denotes the reflezive,
transitive closure of the transition relation —), we have

1.1

2. if R; is before(R, S:) then o' = pre(R)

8. if Ry is after(R, S;) then o' = post(R)

Proof The proof proceeds with induction on the length of the computation.

The base case derives immediately from the validity of (I Ap;) = pre(S;) which follows from the
local proof outlines pfo(I, pi, Si, q:)-

With respect to the induction step, we treat some representative cases:

o ([S1 1l - || Sals0) =" ([Ry || - Il 7725 B | oo | Ral,0") = ({Ry Il | B Nl oo Il Rn], o).
From the induction hypothesis we derive that o" E1,0" E pre(R), if Ri = before(R, Si)
or 0" |= post(R), if Ri = after(R, S;) (i #), and 0" pre(c??z). Now, since the local
assertion pre(R) (post(R)) refers only to the variables of S;, it follows that ¢’ |= pre(R)
(¢’ = post(R)), for i # j. Furthermore, it is not difficult to derive from the proof outline
pfo(I,p;,S;,q;) the validity of (I A pre(c??r) Ac # €) = (I A p)lf(c)/z,c?? - fc)/c?,

11

where p = pre(R) in case R; = before(R, S;), for some substatement Rof Sj, and p =
post(R) in case R; = after(R, S;), for some substatement R of S;.) We have that o” |=
Inpre(c??z)Ac# e (0" FcFe follows from the existence of the last transition) and thus
" = (I AD)[f(e)/x,c?? - f(c)/c??]. Since o' = o"{f(c"(c))/z,a"(c??) - f(a"(c))/c??} we
conclude that ' = (I A p).

o ([S1 | .. Il Salio) =* (IRy || .- |l if bthen Sy else Sy fi:R; || ... || Ral,0") — ([Ra | - Il
Sl;Rj " “ Rn],a').
From the induction hypothesis we again derive o' k= pre(R)(post(R)) for i # j. Also by
induction hypothesis we have 0"’ | I A pre(if b then S else S fi). Furthermore, by the last
step we know o |= b, so by j's proof outline we derive ¢ = pre(S1), and hence, because
o' = o' also ¢’ |= pre(S1) (the other choice possibility is completely analogous).

o ([S1 || .. | Sn)yo) —=* ([Ry || ... || repeat Sy until Mz R; || ... || Rn]y0") = ([Ra || ol
S1:if ¢??z then skip else repeat Sy until Mz fi;R; || ... || Ra), o).

From the induction hypothesis we again derive o' = pre(R)(post(R)) for i # j. Also by
induction hypothesis we have ¢” = I A pre(repeat Sy until c??z). By 4's proof outline we
derive o |= pre(S1), and hence, because o' = o' also o' k= pre(S1)-

()
Corollary 1 The parallel composition rule is sound.

Proof We show that any derivation ending in an application of the parallel composition rule leads
to a valid formula. Suppose we have a derived I : {A; pi}{S1 || - Il Snl{A@:}, using the parallel
composition rule in the last step. Then, for all i, we have a derivation of I : {p;}Si{¢;}. By lemma
1 we have proofoutlines pfo(I, pi, Si, g;) for all 4.

Now consider a state o such that o = I A A;pi. Let CS be a finite terminating computation
sequence of [S1 || .. || Sn], of which o' is the second component of the last configuration. According
to theorem 1, we have that o' = I A N\ post(Si), and hence, using (I A post(S;)) = g; from the
proofoutline of S; also o' = I A A\; ¢;- We therefore conclude = I : {A;pi}(S1 || - | Sa){\; &} O

6 Completeness

We prove completeness in the sense that every valid global correctness formula is derivable. Let
I: {¢}P{y} be a valid correctness formula, with P = [S1 || ... || Sa]. We will sketch a proof of the
derivability of I : {¢}P{¥}. Let 7 be the variables of P (both the program variables and those
input/output variables ¢??, ¢, for which c is a channel of P). By ©; we denote the variables of S;.
To be more precise, ¥; consists of all the program variables of S; and the input (output) variables
c?? (c!!) with ¢ an input (output) channel of S;. Finally, the set of input/output variables of P we
denote by & (so € consists of the variables ¢??, c!!, with c a channel of P).

We first construct local proof outlines of the components S; by introducing local assertions pre(R)
and post(R), for all substatements R of S;. Roughly speaking, an assertion pre(R) characterizes
all those intermediate states of a computation of the program P such that process ¢ is about to
execute R (or has just finished executing R, in case of post(R)). Let ¢ = ¢AT =12, where Z are
new variables which are introduced to ‘freeze’ the initial values of 7.

Definition 12 For R a substatement of Si we define:

12

B T e e e e

o = pre(R) if 30',0", Ry,..., Rn such that dEINY
([Stll -+ | Sn)yo’) =* {[Ra |l ... || Rnl,0”)
o(%;) = " (%;) and 0(Z) = 0" (2)

R; = before(R, Si)
and

o k= post(R) iff 3o’,0", Ry, ..., Rn such that o E=INY
([S1 1l . Nl Sal,o’) =* ([Ril ... || Rn),0”)
o(5;) = 0" (v;) and 0(2) = 0"(2)

R, = a.fte'r(R, S‘L)
Next we define the following global invariant I':

Definition 13 Let I' be an assertion such that:

ok I'iff 30',0", Ry, ..., Rn such thato' = 1IN
([S1,..1Sn),0") =* ([R1,..., Rn],0")
o(¢) = 0"(€) and 0(2) = ¢"(2)

In words, I’ asserts that ¢’s valuation of the input /output variables of P can actually be obtained
by some computation of [S1 || ... || Sn] starting from a state satisfying I A ¢'.

By standard techniques [TZ88], I, pre(R) and post(R) can be shown to be expressible in our
assertion language such that the variables of pre(R) and post(R) (R a substatement of S;) are
among the variables ¥; and Z, and the variables of I are among the variables ¢ and the variables
z.

In order to prove that the assertions pre(R), post(R) and I ' as above, with R a substatement of

S;, define a proof outline of S; we need the following lemma:

Lemma 2 (merging lemma) Let, fori=1,...,n, be given the computations

(S I - 1| Suly@) =™ ([| Ri |l -], 00)
Then for any computation
{[S1 1| .- l| Sal,0) =* (R || ... I| Rl o)
such that ' and o; agree with respect to the input/output variables of S;, there exists a computation
(81 Il .. | Snls@) =* {[Re || -.. | Ruls0™)
with " (%) = o:(®) (i=1,...,n).
The above lemma follows in a straightforward manner from the fact that the input/output be-
haviour of a statement S; as given by its input/output variables completely determines its local
behaviour up to internal, i.e. non-communication actions (S; being deterministic). A formal proof

is given below. Meanwhile, it is worthwhile to point out that the above lemma holds because of
the recording of tests on an empty buffer. Consider the following two statements:

S = if ¢??x then d0; R; else d!0; ¢??x; Ry fi

13

and
S’ = if d?7y then c!0; R} else c!0;d??y; R fi

Given an initial state with empty buffers ¢ and d, there exists a computation of [S || S’] which
reaches R; and there exists a computation of [S || S'] which reaches R;. But there does not exist a
computation which reaches both R; and Rj. This does not invalidate the merging lemma, because
there is no computation ending in a state which agrees with the two computations with respect
to the input/output variables; for the first computation reaches a state o with o(c??) = o(c!!) =
o(d") = (0), a(d??) = (L,0) and the second computation reaches a state o' with o'(c??) = (1L,0),
o'(d??) = o'(d") = o'(c!) = (0). If we would not record tests on empty buffers there is a
computation ending in a state which agrees with the two computations (take one of them), which
would invalidate the merging lemma.

Proof of merging lemma Let |0(c??)| (jo(c!!)|) denote the length of the sequence that is assigned
by o to channel variable ¢?? (c!!). Note that we also take into account the special symbol L. We
prove the merging lemma with induction on Zcero(lo’(c??)| + |o’'(c!)]), that is to say the total

number of all input and output actions that have taken place in the computation CS ef ([S1 Il
o || Snl, @) =* ([RL || ... || R,),0') from the lemma.

o Scero(lo’(€?)|+]o’(c)]) = 0: then for all i, 0'(c??) = o'(c!") = e. Hence, 0(c??) = ai(d!!) =
¢, where ¢??,d!! € IO;. So, for every i, CS; def (1S1 || - |l Salio) =* ([I Ri |l -] 09)
contains O i — JO transitions. Therefore, we can leave out all non-i transitions from CS;
(updating the intermediate global states in order to obtain a correct global computation) for
all i, obtaining CS!, and then “glue” all CS] together, executing them one after another,

again revising the global states accordingly. Evidently, this gives the desired computation.

o Seero(lo’(c??)| + |o'(c!)]) > 0: Suppose that the last JO-transition in CS was due to
execution of an input ¢??z in process i (replacing c??z by dl!le is completely analogous).
Thus, CS has the following form:

(S I oo N Salio) =% (R M o | 2B || e || RLLE) = (R L R 07) =7
((By Il - | R,],0'). Define CS' as the prefix of CS up to and including the configuration
({R'1 || - || ??z; R'; || ... || R3], 6), ie. up to the point where ¢??z is about to be executed.
By lemma 3 we know that there exists CS! = ([S1 || ... |l S,),a) =* ([.. || Mz R; ||

Wy = (L R\ ..oy =* ([... | Ri || ...}, 0%) where c!(v;) = 0i(v;), and all transitions
after the input c??z are internal i-transitions. Define CS! as the prefix of CS; up to and
including the configuration ([... || c??z; R || ...],o7).

Then, we can use the induction hypothesis, using the existence of CS;, for j # i, CS]’ and
CS’, yielding a computation sequence CS: ([S1]l - I Snlsoy =* {[Ra | - | BRI -l R,],7)
with 7(v;) = 0;(1;), j # 4 and (%) = o/ (7:).

Now we can extend CS' with the transition sequence CS; - CS}', again adjusting the global
states accordingly, to get the desired run.

)

Lemma 3 Suppose there exists a computation sequence ([S1 || .- | Sulyo) =* ([..- | Ri |l -], 04)-
Suppose furthermore there ezists a c.s. {[S1 || ... |l Splyo) =* ([| 2?5 R |], 0") = ([Il
Rl oo™y = (R - Rl R!),0') such that o' agrees with o; on the input/output
variables of process i, and furthermore c??z is the last input/output command that is ezecuted.
Then, there ezists a c.s. ([S1 || .. || Sal,) =* ([.-- | ¢??z; R} || oty = (R o) =
(... | Ri || -], o) where oi(5;) = 0i(5:), c??z is the last input/output command that is ezecuted

and after c??x only i-transitions occur. (Again, this lemma also holds in the case that c??7x is
replaced by d'le.)

14

Proof By the fact that o; agrees with ¢’ with respect to the input/output variables of process
i, we know that the last i-IO-transition in the first transition sequence is due to execution of
¢??z in S;. This is because the ordering of input and output actions is uniquely determined by
the value of the input/output variables of a (deterministic!) process. In order to obtain from this
computation sequence the desired computation sequence, all we have to do is dismiss all subsequent
non-i transitions from it, adjusting the states accordingly. Note that this is possible because none
of the subsequent i-transitions depends on any non-i transition that is being removed O

Now we are ready for the following key lemma of the completeness proof:

Lemma 4 The as.éignment of local assertions pre(R) and post(R) to any substatement R of S;
defines a proof outline pfo(I', pre(S;), Ss, post(Si)).

Proof We only illustrate the following case from definition 11. Consider condition 5: (I' Apre(R)A
c # €) = (I' A post(c??z))[f(c)/z,c?? - f(c)/c??], with c??z occurring in S;. Suppose for some o
we have o |= I' A pre(R) A ¢ # . By definition of pre(c??z) and I ! there exist computations

(IS1 1| - | Suls 0’y =* {[Ry || .. || ??2; R || ... Ra), 04)

and
(St |l - || Sal,0”) =* ([Ry || - | Rp),0")

such that o' = I A ¢, 0(:) = 0i(%:), 0(2) = 0i(2), 0(€) = 0" (¢), and o(z) = o”(z). Note that the
introduction of the freeze variables z and the additional conjunct ¥ = Z of ¢ allows us to assume
without loss of generality that the above computations start indeed with the same initial state.

Now, since the states o; and o” agree with respect to the input/output variables of S;, we have
by lemma 2 that there exists a computation

(St 1| - 1| Salso’y =" (RN | PP R || Ry], 0™)

such that o;(#;) = ¢""(#;). Furthermore, since o and o agree with respect to the input/output
variables (this is because o(7;) = 0i(%;) = o™ (7;) and 0"(7;) = o"(v;) for 1 # j and o agrees
with o with respect to &) and a(c) # e, it also follows that a"'(c) # €, so that the input action ¢??z
indeed is enabled in o', Thus we have by definition of I’ and post(c??z) that o {f(c)/z, 0" (c??)
F(e)/c??} = I' A post(c??z), that is, o' = (I' A post(c??z))[f(c)/z,c?? - f(c)/c??]. From this we
conclude that o = (I' A post(c??z))[f(c)/z,c?? - f(c)/c??] (note that o and o' agree with respect
to the variables ¢ and 7;). O

By the above lemma and lemma 1, we thus infer - I’ : {pre(S;)}Si{post(S;)}, for all i. So, using
the parallel composition rule, we derive - I' : {A; pre(S:)}P{A, post(5:)}.

To proceed we need the following propositions:

Proposition 1 We have |= (I A ¢') = (I' A \; pre(Si)).

The above proposition follows immediately from the definition of I " and pre(S;).
Proposition 2 We have |= (I' A \; post(S;)) = ¥.

Proof Suppose o |= (I' A\, post(S;)), then by definition of I' and post(S;) we have a computation
(IS1 1| .- || Snlse’) =* ([Ry | ... || Ry),0") and, for all 2, a computation {[S1 || ... || Snl,0’) =*
([... | E || ..],0:) such that ¢’ = I A ¢, o(3i) = oi(;) and o(¢) = ¢"'(C) (again we may assume

15

a common initial state). Hence, by lemma 2 we have a computation ([Sy || ... || Sn},0’) =~
(IE || ... || E],0™) such that o"”(%;) = 0i(?;). So we have a terminating computation sequence of
[S1 || .. | Sn), starting in a state o’ that satisfies o' |= I A ¢ (even o' = I A ¢'), and ending in o
hence by = I : {¢}P{y} we derive ¢’ |= 9 and hence o =9 O

bl

Proposition 3 We have =1I' = I.

This proposition follows immediately from the definition of I’ and the validity of I : {p}P{v}.

We conclude with the following corollary:
Corollary 2 We have - I : {¢}P{v}.

Proof By an application of the consequence rule, using the above propositions we obtain the
derivability of I : {¢'}P{¥}. An application of the substitution rule (substituting o for) then
gives - I : {¢o}P{y} O

7 Extending synchronization

In the programming language discussed so far synchronization is modeled by the input statement
¢??z (note that input commands as tests in choice and while constructs model only communication
and do not incorporate synchronization). However since an input command ¢??z only checks for the
channel ¢ (and suspends in case its corresponding buffer is empty) its proper execution implicitly
requires a predictable and determinate environment which is guaranteed to send eventually along
channel c.

In order to increase the capability of a deterministic process to respond to an indeterminate envi-
ronment we introduce a natural generalization of the input command: the input command C??z,
with C a non-empty finite set of channels, which allows a process to scan the channels of C
simultaneously. More precisely, the execution of an input command C??z consists of selecting
non-deterministically a non-empty channel ¢ € C, and reading a value from ¢ (which is then stored
in z). The execution of C?7z suspends when all the channels of C are empty. Formally, we have
the following new syntax of a sequential process:

§ u= skip

| Ti=e

| C?z | e

| S1; S2

| if b then S; else S fi

| while b do S od

| if c??z then S, else S; fi
| while ¢??z do S od

| repeat S until ¢??z

where C denotes a (non-empty) finite set of channels. The (simple) input command c??z will be
interpreted as an abbreviation of {c}??z. For technical convenience we only allow simple input
commands to occur as tests in the choice and while construct, although the proof theory to be
presented below can easily be extended to the general case.

It is not so difficult to see that recording for each channel the values sent and received, respectively,
is not sufficient anymore to determine the local behaviour of a process completely. Consider for

16

example the process
{c,d}??z;if z = 0 then {c,d}??z; R, else {c,d}??z;2: =2+ 1; Ry fi

Suppose that the value 0 has been sent first along channel ¢ and that the value 1 has been sent
first along d. Recording only for the channels ¢ and d the values sent and received, respectively, we
would not be able to determine whether the above process is about to execute R, or Ry: namely,
either the process could have read first from c and then from d or vica versa.

In order to be able to determine the local behaviour of a process we introduce for each process

S; (of a program P = [S1 || ... | Sa]) a local channel variable h; which records the sequence of
channels that have been selected in a generalized input command. Axiomatically, this is formalized
as follows. Let P =[S1 || ... || Sa]- A local correctness formula is of the form I : {p}R{q}, with
R a substatement of S; 1 = 1,... ,n), and I is an assertion which is not allowed to refer to the

program variables of P (so it is allowed to refer to the channel variables), p and ¢ are assertions
which are allowed to refer only to the set of variables of S;, which now additionally contains, besides
its program variables and its input/output variables, the channel variable h; (the input variables
of a statement S consist of all those variables c? for which there exists a substatement C?7z of S
such that ¢ € C). We have the following proof rule for an input command C?7z:

(InpAc#e) = (IAQIf(e)/z,c?- fle)/cl hir c/hi)
I:{p}C"?=z{q}

Here ¢ € C, and C??z is understood to occur in S; of the program P =[S || ... || Sn). Since we
allow a channel variable h; to occur in the global invariant I we have to include I in the scope of
the newly added substitution [hi - ¢/hi), which models appending the channel c to the sequence of
channels ;. We assume in the above rule that C is not a singleton set. For {c}??z, that is ¢z,
we have the same proof rule as before:

(IApAc#e = (IAQf(e)/z et f(e)/cN]
I: {p}c??z{q}

For the formal justification of the resulting proof system we have to include in a state a valuation
of the new channel variables h;. The semantics of an input command C?7z is then described in
terms of the input/output variables and the corresponding channel variable. For C??z in S; of
the program P = [S1 || ... || S,] we have the following semantic description corresponding to the
above proof rule:

(Lo 1 C7225 S | -1 0) = (L 1l S 1|)y o{o(e?) - dfet /o (hs) c/hi})

provided o(c) # € and d = f(o(c)), for ¢ € C. Again, here C is assumed to be different from a
singleton set. Input commands of the form {c}??x, that is c?7z, are treated as before: they do not
require an additional update to the channel variable h;.

It should be noted that the additional information recorded by the channel variables still provides
an abstraction from histories as sequences of communication events, where a communication event
is of the form ¢??d or c!!d, indicating that the value d has been read from channel ¢, or that d has
been sent along c.

Soundness and completeness can be proved in essentially the same way as before. In the complete-
ness proof both the local assertions pre(R), post(R) and the global invariant I additionally specify
the valuation of the new channel variables. Note that the set of local variables of Si (belonging
to the program P = [S1 | ... || S.]) now include the channel variable h;. The global invariant
now specifies the values of the variables & which, besides the usual input /output variables, include
the channel variables h;. The main point of the completeness proof consists of the observation
that also in this new case the merging lemma holds, which follows easily from the observation that

17

the input/output variables of a process together with its channel variable completely determine its
local behaviour.

8 Conclusion

We have shown that it is possible to obtain a compositional proof theory for distributed systems
composed of asynchronously communicating processes, using input /output variables only to reason
about communication, provided the programming language considered is in essence deterministic.
In spite of this determinism, by providing constructs which allow a process to test the contents of
a buffer we obtain a quite powerful language in which one can describe processes with the ability
to respond to an indeterminate environment.

Nevertheless, it seems possible to extend the degree of nondeterminism available, as is indicated in
section 7. Therefore, it is interesting to investigate the expressivity of the language thus obtained,
in particular as compared to common nondeterministic languages, such as CSP.

First of all, the nondeterminism introduced by the generalized input command can be seen to be
of a limited nature. This is because a process is not able to choose between subsequent actions
(following the generalized input command) depending on which of the channels was read. In other
words, the generalized input command could be viewed as a CSP guarded command with boolean
guard parts set to true and empty bodies.

In the following we will indicate how, via coding messages by tagging them with the channel
name of the channel over which they are sent, it is possible to express the CSP guarded command
1?7z — 51[--Jen??Tn — S,] in our __extended— language, provided that all channels are
distinct.

Suppose that, instead of the normal values v, now messages of type v, are transmitted, where ¢
refers to the channel over which v is sent. Also assume the operations tag and val which yield the
channel and value of a message. Then we can write the above statement as follows:

{c1, - Cn }77xsif tag(z) = &1 then z1 := val(z); Sy else

if tag(z) = cn then z, 1= val(z); Sn, else skip fi

Of course, the introduction of this new type of message along with the operations tag and val has
its price: we are no longer able to reason on the same abstractness level as that of the (original,
i.e. CSP) program, because we now have to hack around unravelling messages. This provides
an interesting trade-off between aiming for compositionality using as little history information as
possible on one hand, and staying as close to the abstractness level of the programming language
on the other hand.

References

[AFdRR0] K.R. Apt, N. Francez, and W .P. de Roever. A proof system for communicating
sequential processes. ACM-TOPLAS, 2(3):359-385, 1980.

[Fra92) N. Francez. Program Verification. Addison Wesley, 1992.

[HdR86] J. Hooman and W.P. de Roever. The quest goes on: 2 survey of proof systems for
partial correctness of CSP. In Current trends in concurrency, volume 24 of Lecture
Notes in Computer Science, Pages 343-395. Springer-Verlag, 1986.

18

[0GT6]

[Pan88]

[TZ88]

[ZdRvEBSS)

[Zwi88]

S. Owicki and D. Gries. An axiomatic proof technique for parallel programs I. Acta
Informatica, 6:319-340, 1976.

P.K. Pandya. Compositional Verification of Distributed Programs. PhD thesis, Tata
Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005, INDIA,
1988.

J.V. Tucker and J.I. Zucker. Program Correctness over Abstract Data Types, with
Error-State Semantics. CWI Monographs 6. North-Holland, 1988.

J. Zwiers, W.P. de Roever, and P. van Emde Boas. Compositionality and concurrent
networks: Soundness and completeness of a proofsystem. In Proc. ICALP’85, volume
194 of Lecture Notes in Computer Science. Springer-Verlag, 1985.

J. Zwiers. Compositionality, Concurrency and Partial Correctness. PhD thesis, Tech-
nical University Eindhoven, 1988.

19

